JP2020124841A - Three-dimensional molding object - Google Patents

Three-dimensional molding object Download PDF

Info

Publication number
JP2020124841A
JP2020124841A JP2019018188A JP2019018188A JP2020124841A JP 2020124841 A JP2020124841 A JP 2020124841A JP 2019018188 A JP2019018188 A JP 2019018188A JP 2019018188 A JP2019018188 A JP 2019018188A JP 2020124841 A JP2020124841 A JP 2020124841A
Authority
JP
Japan
Prior art keywords
hollow portion
dimensional
hardened layer
recess
photocurable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019018188A
Other languages
Japanese (ja)
Inventor
久男 大島
Hisao Oshima
久男 大島
慶紀 小林
Yoshinori Kobayashi
慶紀 小林
泰成 小松
Yasunari Komatsu
泰成 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2019018188A priority Critical patent/JP2020124841A/en
Publication of JP2020124841A publication Critical patent/JP2020124841A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a three-dimensional molding object in which a shape of a hollow portion is formed with high precision by an optical molding method.SOLUTION: A three-dimensional molding object 20 is formed by stacking a cured layer 21 formed by irradiating a photocurable resin 12 with light, and has a hollow portion 22. At least one of a hole 24 and a recess 27 continuous with the hollow portion 22 is provided on a bottom 22a of the hollow portion 22.SELECTED DRAWING: Figure 1

Description

本発明は、光硬化性樹脂に光が照射されて形成される硬化層が積層されることで形成された中空部を有する立体造形物に関する。 The present invention relates to a three-dimensional structure having a hollow portion formed by laminating a cured layer formed by irradiating a photocurable resin with light.

近年、光硬化性樹脂に光を照射して各種の形状を有する立体造形物を作製することが行われている。
例えば、下記特許文献1には、リング状の立体造形物を光造形法により製造することが記載されている。この特許文献1では、リング体の内部にサポートを設けてリング状の立体造形物を造形することで、立体造形物に生じる反りなどの変形を防止していた。
In recent years, a photocurable resin is irradiated with light to produce three-dimensional molded objects having various shapes.
For example, Patent Document 1 below describes that a ring-shaped three-dimensional molded item is manufactured by an optical molding method. In Patent Document 1, a support is provided inside the ring body to form a ring-shaped three-dimensional object, and thus deformation such as warpage that occurs in the three-dimensional object is prevented.

光硬化性樹脂を用いて立体造形物を造形する場合、一般に図14(a)や図14(b)に示されるような装置が使用されている。
これらの装置では、底面板11が透光性材料からなり光硬化性樹脂12が供給された貯留部13と、底面板11の下方から光を照射する照射部14と、照射部14から照射された光により、底面板11の直上の光硬化性樹脂12を硬化させて所定形状の硬化層21を形成する造形部13aと、形成された硬化層21を保持して昇降可能な昇降保持部15と、を備えている。
When a three-dimensional molded object is molded using a photocurable resin, an apparatus as shown in FIG. 14(a) or 14(b) is generally used.
In these devices, the bottom plate 11 is made of a translucent material and is supplied with the photocurable resin 12, the storage part 13, the irradiation part 14 for irradiating light from below the bottom plate 11, and the irradiation part 14 for irradiation. The light-curable resin 12 just above the bottom plate 11 is cured by light to form a cured layer 21 having a predetermined shape, and a raised/lowered holding unit 15 that holds the formed cured layer 21 and can move up and down. And are equipped with.

このような装置を用いて、中空部を有する立体造形物20を造形するには、図15(a)に示すように、昇降保持部15に取り付けた支持部16を底面板11から所定高さに精度良く配置した状態で、照射部14から光を照射して硬化層21を形成し、硬化層21を昇降保持部15の支持部16に硬化層を積層させる。 In order to model the three-dimensional modeled object 20 having a hollow portion using such a device, as shown in FIG. 15A, the support section 16 attached to the elevating/retaining section 15 is set to a predetermined height from the bottom plate 11. In a state in which the hardened layer 21 is accurately arranged, the hardened layer 21 is formed by irradiating light from the irradiation unit 14, and the hardened layer 21 is laminated on the supporting unit 16 of the elevating and holding unit 15.

次に、昇降保持部15を上昇させて硬化層21の下面を、底面板11から所定高さに精度良く配置した状態で、照射部14からの光を照射して次の硬化層21を形成する。これにより先に硬化させた硬化層21の下面に次の硬化層21を積層して一体化させる。
その後、昇降保持部15を上昇させて例えば0.5mm程度の厚みの硬化層21を順次形成し先に積層された硬化層21の下面に順次積層させる。
Next, the raising/lowering holding unit 15 is raised to arrange the lower surface of the hardened layer 21 at a predetermined height from the bottom plate 11 with high accuracy, and the light from the irradiation unit 14 is irradiated to form the next hardened layer 21. To do. As a result, the next hardened layer 21 is laminated on the lower surface of the hardened layer 21 that has been previously hardened to be integrated.
After that, the elevating/holding unit 15 is raised to sequentially form a hardened layer 21 having a thickness of, for example, about 0.5 mm, and the hardened layer 21 is sequentially laminated on the lower surface of the previously laminated hardened layer 21.

その際、図15(b)に示すように、目的の立体造形物20における中空部22に対応する位置を除いた箇所に光を照射部14から照射することで、硬化層21毎に中空部22に対応した形状を形成しつつ硬化層21を繰り返し積層させる。
そして図15(c)に示すように、全硬化層21の積層を完了することで、所定形状の中空部22を有する立体造形物20が製造される。
At that time, as shown in FIG. 15B, by irradiating light from the irradiation unit 14 to a portion of the target three-dimensional object 20 except a position corresponding to the hollow portion 22, the hollow portion of each cured layer 21. The hardened layer 21 is repeatedly laminated while forming a shape corresponding to 22.
Then, as shown in FIG. 15C, the stacking of all the hardened layers 21 is completed, whereby the three-dimensional model 20 having the hollow portion 22 having a predetermined shape is manufactured.

特開2009−190291号公報JP, 2009-190291, A

しかしながら、図15(a)〜(c)に示すように、光硬化性樹脂中で多数の硬化層を順次積層することで従来の立体造形物20を製造すると、縦断面円形の中空部22を精度良く形成しようとしても、図16(a)(b)に示すように、中空部22の内部に変形部分Xが生じ、中空部22の形状を精度良く形成することができなかった。 However, as shown in FIGS. 15A to 15C, when a conventional three-dimensional object 20 is manufactured by sequentially laminating a large number of cured layers in a photocurable resin, a hollow portion 22 having a circular vertical cross section is formed. Even if it is attempted to form the hollow portion 22 with high accuracy, the deformed portion X is generated inside the hollow portion 22 as shown in FIGS. 16A and 16B, and the shape of the hollow portion 22 cannot be formed with high precision.

そこで本発明では、光造形法によって中空部の形状が精度良く形成された立体造形物を提供することを目的としている。 Therefore, an object of the present invention is to provide a three-dimensional object in which the shape of the hollow portion is formed with high precision by a stereolithography method.

本発明者らが鋭意検討した結果、光造形法によって光硬化性樹脂の硬化層を順次積層して立体造形物を形成する際、硬化層の下面が光硬化性樹脂から受ける流体圧により変形が生じることを新たに見いだした。 As a result of intensive studies by the present inventors, when a cured layer of a photocurable resin is sequentially laminated by a stereolithography method to form a three-dimensional object, the lower surface of the cured layer is deformed by fluid pressure received from the photocurable resin. I found something new to happen.

例えば、図14(a)(b)に示すような一般的な装置を用いて硬化層を積層する場合、支持部16や支持部16に積層された硬化層21を底面板11から所定高さに精度良く配置するためには、例えば、昇降保持部15を一度大きく上昇させた後で下降させるなど、硬化層21を光硬化性樹脂中で昇降させて底面板11から所定高さに精度良く位置を調整する。 For example, when laminating the hardened layer using a general apparatus as shown in FIGS. 14A and 14B, the hardened layer 21 laminated on the supporting portion 16 and the supporting portion 16 is provided at a predetermined height from the bottom plate 11. In order to accurately arrange the hardened layer 21 in the photocurable resin, the hardened layer 21 is lifted up and down in the photocurable resin by, for example, raising and lowering the raising and lowering holding portion 15 once and then accurately moving the hardened layer 21 to a predetermined height. Adjust the position.

その際、図17に示すように、中空部22の上部や側部が形成された中間体23の下面に、中空部22の底を構成する硬化層21を積層すると、中空部22の底に非常に薄肉で容易に変形する硬化層21が配置される。 At that time, as shown in FIG. 17, when the hardened layer 21 that constitutes the bottom of the hollow portion 22 is laminated on the lower surface of the intermediate body 23 in which the upper portion and side portions of the hollow portion 22 are formed, the bottom of the hollow portion 22 is formed. A hardened layer 21 is arranged which is very thin and easily deformed.

その状態で昇降保持部15により中間体23を昇降させると、中空部22の底を構成する硬化層21に光硬化性樹脂の流体圧が負荷され、中空部22側へ湾曲形状に変形する。
その後、さらに硬化層21が積層されると、中空部22の底が内側に変形した状態のまま立体造形物20が製造され、中空部22の内部に変形部分Xが生じてしまう。
When the intermediate body 23 is raised and lowered by the raising and lowering holding portion 15 in that state, the fluid pressure of the photocurable resin is applied to the hardened layer 21 forming the bottom of the hollow portion 22, and the hollow portion 22 is deformed into a curved shape.
After that, when the hardened layer 21 is further laminated, the three-dimensional object 20 is manufactured with the bottom of the hollow portion 22 deformed inward, and the deformed portion X occurs inside the hollow portion 22.

そこで本発明は、かかる問題点を解決するべく、光硬化性樹脂に光が照射されて形成される硬化層が積層されることで形成され、中空部を有する立体造形物であって、前記中空部の底に前記中空部と連続した孔部又は凹部の少なくとも一方が設けられていることを特徴としている。 Therefore, in order to solve the above problems, the present invention is a three-dimensional object having a hollow portion, which is formed by laminating a cured layer formed by irradiating a photocurable resin with light, It is characterized in that at least one of a hole portion and a concave portion continuous with the hollow portion is provided on the bottom of the portion.

本発明の立体造形物では、前記凹部は前記硬化層の厚み以上の深さを有していてもよい。
また、本発明の立体造形物では、前記凹部は前記凹部の底を構成する前記硬化層に生じる変形を収容可能な深さを有していてもよい。
さらに本発明の立体造形物では、上面に上面凹部が設けられていてもよい。
In the three-dimensional structure of the present invention, the recess may have a depth equal to or larger than the thickness of the hardened layer.
Further, in the three-dimensional molded article of the present invention, the recess may have a depth capable of accommodating a deformation occurring in the hardened layer forming the bottom of the recess.
Furthermore, in the three-dimensional molded article of the present invention, an upper surface recess may be provided on the upper surface.

本発明の立体造形物によれば、光硬化性樹脂に光が照射されて形成される硬化層が積層されることで形成された立体造形物において、中空部の底に中空部と連続した孔部又は凹部の少なくとも一方が設けられている。 According to the three-dimensional object of the present invention, in the three-dimensional object formed by laminating a cured layer formed by irradiating light on a photocurable resin, a hole continuous with the hollow portion at the bottom of the hollow portion. At least one of the part and the recess is provided.

そのため中空部の上部及び側部が形成された中間体の下面に中空部の底を構成する硬化層を光硬化性樹脂中で順次積層するときには、光硬化性樹脂が中空部の底を構成する硬化層に貫通孔が存在することになり、この貫通孔を光硬化性樹脂が通過できる。これにより中空部の底を構成する1乃至複数の硬化層が薄肉で変形し易いものであっても、光硬化性樹脂の流体圧が過剰に負荷されることを防止でき、中空部の底を構成する各硬化層の変形を防止できる。
よって本発明によれば、光硬化性樹脂中で硬化層を積層して形成しても精度良く中空部が形成された立体造形物を提供することが可能である。
Therefore, when the hardened layer forming the bottom of the hollow portion is sequentially laminated in the photocurable resin on the lower surface of the intermediate body in which the upper portion and the side portion of the hollow portion are formed, the photocurable resin constitutes the bottom of the hollow portion. Through holes are present in the cured layer, and the photocurable resin can pass through these through holes. As a result, even if one or a plurality of hardened layers forming the bottom of the hollow portion are thin and easily deformed, it is possible to prevent the fluid pressure of the photocurable resin from being excessively applied, and the bottom of the hollow portion can be prevented. It is possible to prevent deformation of the respective hardened layers.
Therefore, according to the present invention, it is possible to provide a three-dimensional modeled object in which a hollow portion is formed with high accuracy even when a cured layer is laminated in a photocurable resin.

本発明の立体造形物において、例えば、凹部が硬化層の厚み以上の深さを有していれば、硬化層を光硬化性樹脂中で順次積層する際、中空部の底を形成する硬化層には凹部に対応する貫通孔が確実に形成される。そのため、その後に硬化層を積層するときに貫通孔を光硬化性樹脂が通過でき、中空部の底を形成する硬化層の流体圧による変形を確実に防止できる。 In the three-dimensional molded article of the present invention, for example, when the recess has a depth equal to or greater than the thickness of the cured layer, the cured layer forming the bottom of the hollow portion when the cured layers are sequentially laminated in the photocurable resin. A through hole corresponding to the recess is surely formed in the. Therefore, the photocurable resin can pass through the through holes when the cured layer is laminated thereafter, and the deformation of the cured layer forming the bottom of the hollow portion due to the fluid pressure can be reliably prevented.

本発明の立体造形物において、例えば、凹部が凹部の底を構成する硬化層に生じる変形を収容可能な深さを有していれば、硬化層を積層して凹部を形成する際、凹部の側面が形成された中間体の下面に凹部の底を構成する硬化層を積層して凹部の底を閉塞し、その硬化層が光硬化性樹脂の流体圧により変形したとしても、凹部内で変形が生じるだけで中空部の形状に何ら影響しない。そのため中空部内を所望の形状で精度良く形成することが可能である。 In the three-dimensional molded article of the present invention, for example, when the recess has a depth capable of accommodating the deformation generated in the hardened layer forming the bottom of the recess, when the hardened layers are laminated to form the recess, Even if the hardened layer that forms the bottom of the recess is laminated on the lower surface of the intermediate body on which the side surface is formed to close the bottom of the recess and the hardened layer is deformed by the fluid pressure of the photocurable resin, it is deformed in the recess. However, it does not affect the shape of the hollow portion. Therefore, it is possible to accurately form the inside of the hollow portion with a desired shape.

本発明の立体造形物において、例えば、上面に上面凹部が設けられていてもよい。これにより、上面を構成する硬化層を光硬化性樹脂中で順次積層するときには、光硬化性樹脂が上面を構成する硬化層に貫通孔が存在することになり、この貫通孔を光硬化性樹脂が通過できる。
その結果、上面を構成する1乃至複数の硬化層の積層を開始したときの硬化層が薄肉で変形し易いものであっても、光硬化性樹脂の流体圧が過剰に負荷されることを防止でき、立体造形物の上面の変形を防止して滑らかな上面を形成できる。
In the three-dimensional molded object of the present invention, for example, an upper surface recess may be provided on the upper surface. As a result, when the cured layer forming the upper surface is sequentially laminated in the photocurable resin, the photocurable resin has through holes in the cured layer forming the upper surface. Can pass through.
As a result, the fluid pressure of the photocurable resin is prevented from being excessively applied even if the cured layer is thin and easily deformed when the lamination of one or more cured layers forming the upper surface is started. Therefore, it is possible to prevent the deformation of the upper surface of the three-dimensional object and form a smooth upper surface.

本発明の第1実施形態に係る立体造形物を示し、(a)は長手方向に沿う縦断面図、(b)は側面図、(c)は上面図、(d)は(a)のA−A断面図である。The three-dimensional molded object which concerns on 1st Embodiment of this invention is shown, (a) is a longitudinal cross-sectional view which follows a longitudinal direction, (b) is a side view, (c) is a top view, (d) is A of (a). FIG. 本発明の第1実施形態に係る立体造形物を光硬化性樹脂から造形するために用いる硬化装置の要部を示す模式図である。It is a schematic diagram which shows the principal part of the hardening device used in order to model the three-dimensional molded item which concerns on 1st Embodiment of this invention from a photocurable resin. 本発明の第1実施形態に係る立体造形物の製造工程を示し、(a)は最上部の硬化層を形成する工程を示し、(b)は立体造形物の上面を構成する硬化層に上面凹部を形成しつつ硬化する工程を示し、(c)は立体造形物の上部を構成する硬化層を積層する工程を示す。The manufacturing process of the three-dimensional molded item which concerns on 1st Embodiment of this invention is shown, (a) shows the process of forming the hardened layer of the uppermost part, (b) shows the hardening layer which comprises the upper surface of a three-dimensional molded item, and shows an upper surface. The step of hardening while forming the concave portion is shown, and (c) shows the step of laminating the hardened layer constituting the upper portion of the three-dimensional object. 本発明の第1実施形態に係る立体造形物の製造工程を示し、(d)は立体造形物の硬化層を中空部の上部を形成する工程を示し、(e)は立体造形物の硬化層を中空部の側部を形成する工程を示し、(f)は立体造形物の硬化層を中空部の底に孔部を形成する工程を示す。The manufacturing process of the three-dimensional molded object which concerns on 1st Embodiment of this invention is shown, (d) shows the process of forming the hardening layer of a three-dimensional molded object in the upper part of a hollow part, (e) shows the hardened layer of a three-dimensional molded object. Shows the step of forming the side portion of the hollow portion, and (f) shows the step of forming a hole in the cured layer of the three-dimensional molded article at the bottom of the hollow portion. (g)は本発明の第1実施形態に係る立体造形物の製造工程を示し、立体造形物の下部に孔部を形成する工程を示す。(G) shows the manufacturing process of the three-dimensional molded item which concerns on 1st Embodiment of this invention, and shows the process of forming a hole part in the lower part of the three-dimensional molded item. 本発明の第2実施形態に係る立体造形物を示し、(a)は長手方向に沿う縦断面図、(b)は側面図である。The three-dimensional molded item which concerns on 2nd Embodiment of this invention is shown, (a) is a longitudinal cross-sectional view which follows a longitudinal direction, (b) is a side view. 本発明の第2実施形態に係る立体造形物の硬化層を積層する際に照射部からのレーザ光を走査することで光を照射する照射形状を示し、(a)は中空部を形成する硬化層を積層する際の照射形状であり、(b)は凹部を形成する硬化層を積層する際の照射形状である。The irradiation shape which irradiates light by scanning the laser beam from an irradiation part at the time of laminating|stacking the hardening layer of the three-dimensional molded object which concerns on 2nd Embodiment of this invention shows (a) hardening which forms a hollow part. It is an irradiation shape when laminating layers, and (b) is an irradiation shape when laminating a hardened layer forming a concave portion. 本発明の第3実施形態に係る立体造形物を示し、(a)は長手方向に沿う縦断面図、(b)は(a)の側面図である。The three-dimensional molded item which concerns on 3rd Embodiment of this invention is shown, (a) is a longitudinal cross-sectional view which follows a longitudinal direction, (b) is a side view of (a). 本発明の第3実施形態に係る立体造形物の硬化層を積層させる際に照射部からのレーザ光を走査することで光を照射する照射形状を示し、(a)は中空部を形成する硬化層を積層させる際の照射形状であり、(b)は凹部を形成する硬化層を積層する際の照射形状である。The irradiation shape which irradiates light by scanning the laser beam from an irradiation part at the time of laminating|stacking the hardening layer of the three-dimensional molded object which concerns on 3rd Embodiment of this invention shows (a) hardening which forms a hollow part. It is an irradiation shape at the time of laminating layers, and (b) is an irradiation shape at the time of laminating a hardened layer forming a concave portion. 本発明の第3実施形態の他の変形例に係る立体造形物を示し、(a)は長手方向に沿う縦断面図、(b)は(a)のB−B断面図である。The three-dimensional molded item which concerns on the other modification of 3rd Embodiment of this invention is shown, (a) is a longitudinal cross-sectional view which follows a longitudinal direction, (b) is a BB sectional view of (a). 本発明の第3実施形態の別の変形例に係る立体造形物を示す縦断面図である。It is a longitudinal cross-sectional view which shows the three-dimensional molded item which concerns on another modification of 3rd Embodiment of this invention. 本発明の何れかの実施形態に係る中空部の変形例を示す縦断面図である。It is a longitudinal section showing a modification of a hollow part concerning any of the embodiments of the present invention. 本発明の何れかの実施形態に係る中空部の他の変形例を示す縦断面図である。It is a longitudinal cross-sectional view showing another modification of the hollow portion according to any of the embodiments of the present invention. (a)、(b)は光硬化性樹脂から立体造形物を製造するための一般的な硬化装置の要部を示す模式図である。(A), (b) is a schematic diagram which shows the principal part of the general hardening device for manufacturing a three-dimensional molded item from a photocurable resin. (a)〜(c)は従来の立体造形物の製造工程を説明する図であり、(a)は製造初期の状態を示し、(b)は製造中期の状態を示し、(c)は製造後期の状態を示す。(A)-(c) is a figure explaining the manufacturing process of the conventional three-dimensional molded item, (a) shows the state of the initial stage of manufacture, (b) shows the state of the middle stage of manufacture, (c) shows the manufacture. The state of the latter half is shown. 従来の立体造形物を示し、(a)は長手方向に沿う縦断面図、(b)は(a)のC−C断面図である。The conventional three-dimensional molded item is shown, (a) is a longitudinal cross-sectional view along a longitudinal direction, (b) is a CC cross-sectional view of (a). 従来の立体造形物の製造途中の状態を説明する断面図である。It is sectional drawing explaining the state in the middle of manufacture of the conventional three-dimensional molded item.

以下、本発明の実施形態について図を用いて詳細に説明する。
[第1実施形態]
図1(a)〜(d)は第1実施形態に係る立体造形物を示す図、図2は第1実施形態に係る立体造形物を造形するために使用する装置を示す図、図3〜図5の(a)〜(g)は第1実施形態の立体造形物の造形工程を説明する図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
1A to 1D are views showing a three-dimensional object according to the first embodiment, FIG. 2 is a view showing an apparatus used for forming the three-dimensional object according to the first embodiment, and FIGS. FIG. 5A to FIG. 5G are diagrams illustrating the modeling process of the three-dimensional modeled object of the first embodiment.

図1に示すように、この第1実施形態の立体造形物20は、光硬化性樹脂を硬化させた硬化層21が多数積層されて形成されている。
光硬化性樹脂12は、所定の光が照射されることで硬化する材料を含有する液体であり、例えば、各種の組成物などを用いることができる。
本実施形態の立体造形物20は、同一の光硬化性樹脂12を硬化させた硬化層21が一体化した状態で積層されており、互いに隣接する硬化層21間に界面が存在しない一体の造形物として構成されている。
As shown in FIG. 1, the three-dimensional structure 20 of the first embodiment is formed by stacking a large number of cured layers 21 obtained by curing a photocurable resin.
The photocurable resin 12 is a liquid containing a material that is cured by being irradiated with predetermined light, and for example, various compositions can be used.
The three-dimensional modeled object 20 of the present embodiment is a laminated body in which a cured layer 21 obtained by curing the same photocurable resin 12 is laminated in an integrated state, and an interface does not exist between the cured layers 21 adjacent to each other. It is configured as a thing.

図1の立体造形物20は、略直方体形状の外形を有し、内部に断面略円形の中空部22が略水平に長手方向に貫通して設けられている。
中空部22の底22aには、中空部22から連続して設けられ、中空部22と下面との間を貫通する孔部24を備えている。ここで中空部22の底22aとは、中空部22を形成する硬化層21の積層方向における下端である。
The three-dimensional model 20 of FIG. 1 has a substantially rectangular parallelepiped outer shape, and a hollow portion 22 having a substantially circular cross section is provided inside and penetrates substantially horizontally in the longitudinal direction.
The bottom 22a of the hollow portion 22 is provided with a hole portion 24 that is provided continuously from the hollow portion 22 and penetrates between the hollow portion 22 and the lower surface. Here, the bottom 22 a of the hollow portion 22 is the lower end of the hardened layer 21 forming the hollow portion 22 in the stacking direction.

孔部24は中空部22の底22aにおける長手方向に沿う複数位置に複数設けられており、各孔部24は後述のような造形時に光硬化性樹脂12が通過可能な形状を有している。具体的には造形時に立体造形物20の造形途中の中間体を光硬化性樹脂12中で上下方向に移動させた際、光硬化性樹脂12が通過できる向きや大きさなどを孔部24の全長で有していればよい。
一方、立体造形物20の上面には上方に向けて開口した上面凹部25が複数設けられている。ここで上面とは、硬化層21の積層方向における上端の層の上面である。
A plurality of hole portions 24 are provided at a plurality of positions along the longitudinal direction on the bottom 22a of the hollow portion 22, and each hole portion 24 has a shape through which the photocurable resin 12 can pass during modeling as described below. .. Specifically, when the intermediate body in the middle of modeling of the three-dimensional model 20 is moved in the vertical direction in the photocurable resin 12 at the time of modeling, the direction and size of the photocurable resin 12 that can pass through are defined in the hole 24. All you need to have is the full length.
On the other hand, the upper surface of the three-dimensional object 20 is provided with a plurality of upper surface recesses 25 that open upward. Here, the upper surface is the upper surface of the uppermost layer in the stacking direction of the hardened layer 21.

これらの孔部24の長さや上面凹部25の深さは少なくとも硬化層21より厚く形成されている。これにより造形時に、中空部22の底22aを形成する硬化層21や上面を形成する硬化層21に確実に貫通孔を設けることができる。 The length of these holes 24 and the depth of the upper surface recess 25 are formed to be at least thicker than the hardened layer 21. Thereby, at the time of modeling, the through hole can be surely provided in the hardened layer 21 forming the bottom 22a of the hollow portion 22 and the hardened layer 21 forming the upper surface.

次に、このような第1実施形態の立体造形物20の製造方法について説明する。この実施形態では、例えば図2に示すような装置を用いて製造する。
この装置は、底面板11が透光性材料からなり光硬化性樹脂12が供給された貯留部13と、底面板11の下方からレーザ光を所定の形状に走査する照射部14と、照射部14から照射されたレーザ光により、貯留部13における底面板11の直上の光硬化性樹脂12を硬化させて所定の形状の硬化層21が形成される造形部13aと、形成された硬化層21を保持して昇降可能な昇降保持部15と、を備えている。
まず図3(a)に示すように、昇降保持部15に取り付けた支持部16を底面板11から所定高さに精度良く配置して貯留部13に造形部13aを設けた状態で、光を照射して立体造形物20の最上部となる部分の光硬化性樹脂12を硬化し、硬化層21を形成させる。
Next, a method for manufacturing such a three-dimensional model 20 of the first embodiment will be described. In this embodiment, for example, the apparatus shown in FIG. 2 is used for manufacturing.
This apparatus includes a storage portion 13 in which a bottom plate 11 is made of a translucent material and a photo-curable resin 12 is supplied, an irradiation unit 14 that scans a laser beam from below the bottom plate 11 into a predetermined shape, and an irradiation unit. The laser light emitted from 14 hardens the photocurable resin 12 immediately above the bottom plate 11 in the storage portion 13 to form a hardened layer 21 having a predetermined shape, and the hardened layer 21 formed. And an elevating/retaining portion 15 capable of holding and elevating.
First, as shown in FIG. 3( a ), the support portion 16 attached to the lifting/lowering holding portion 15 is accurately arranged at a predetermined height from the bottom plate 11 and the storage portion 13 is provided with the shaping portion 13 a. Irradiation is performed to cure the photo-curable resin 12 in the uppermost portion of the three-dimensional structure 20 to form a cured layer 21.

このとき支持部16の最下端と底面板11との間の距離を立体造形物20の最上部となる硬化層21の厚みに対応させる。
また照射部14から光硬化性樹脂12に光を照射する。この光は底面板11を透過して、光硬化性樹脂12に照射され、光硬化性樹脂12は所定形状で硬化する。ここでは、図1(c)に示すような立体造形物20の上面の形状となるように、レーザ光を走査することにより上面凹部25に対応する部位が除かれた形に光が照射される。
これにより最上部となる部分の光硬化性樹脂12が硬化し、硬化層21が形成され、この硬化された硬化層21が支持部16の下部に積層した状態で保持される。
At this time, the distance between the lowermost end of the support portion 16 and the bottom plate 11 is made to correspond to the thickness of the hardened layer 21, which is the uppermost portion of the three-dimensional object 20.
In addition, the irradiation unit 14 irradiates the photocurable resin 12 with light. This light passes through the bottom plate 11 and is applied to the photocurable resin 12, and the photocurable resin 12 is cured in a predetermined shape. Here, by scanning with laser light, the light is emitted in a shape in which the portion corresponding to the upper surface recessed portion 25 is removed so that the shape of the upper surface of the three-dimensional structure 20 as illustrated in FIG. 1C is obtained. ..
As a result, the uppermost portion of the photocurable resin 12 is cured to form a cured layer 21, and the cured cured layer 21 is held in a state of being laminated under the support portion 16.

次いで、図3(b)に示すように、昇降保持部15により昇降させて最上部の硬化層21を上昇させた位置に配置することで最上部の硬化層21の下面と底面板11との間の距離を精度良く所定間隔にする。この状態で、光を照射して立体造形物20の次の層を硬化し、硬化層21を積層させる。そして、これらを所定厚みまで繰り返すことで、図3(c)に示すように、立体造形物20の上部を構成する複数の硬化層を形成することで中間体23を形成する。 Next, as shown in FIG. 3( b ), the upper and lower holding layers 15 are moved up and down to arrange the uppermost hardened layer 21 at the raised position, whereby the bottom surface of the uppermost hardened layer 21 and the bottom plate 11 are separated. The distance between them is accurately set to a predetermined interval. In this state, light is irradiated to cure the next layer of the three-dimensional model 20, and the cured layer 21 is laminated. Then, by repeating these steps up to a predetermined thickness, as shown in FIG. 3C, a plurality of hardened layers forming the upper part of the three-dimensional object 20 are formed to form the intermediate body 23.

このとき上面凹部25が形成される硬化層21を形成させるときには、光を上面凹部25に対応する部位を除いた箇所に照射し、他方、上面凹部25が形成されない硬化層21を形成させるときには立体造形物20の外形全体に光を照射して、各硬化層21を形成させる。 At this time, when forming the hardened layer 21 in which the upper surface recess 25 is formed, light is irradiated to a portion excluding the portion corresponding to the upper surface recess 25, while on the other hand, when forming the hardened layer 21 in which the upper surface recess 25 is not formed, three-dimensional The entire outer shape of the modeled object 20 is irradiated with light to form each cured layer 21.

次に、立体造形物20の上部が形成された中間体23を、図4(d)(e)に示すように、立体造形物20の外形を有して各硬化層21における中空部22に対応する部位が除かれた箇所の光を照射部14から照射する。これにより図4(d)に示すような中空部22の上部から図4(e)に示すような中空部22の側部までの各硬化層21を順次積層させ、順次中間体23の下面に積層する。 Next, as shown in FIGS. 4D and 4E, the intermediate body 23 on which the upper portion of the three-dimensional object 20 is formed is formed in the hollow portion 22 in each cured layer 21 having the outer shape of the three-dimensional object 20. The light of the part where the corresponding part is removed is irradiated from the irradiation part 14. Thereby, the hardened layers 21 from the upper portion of the hollow portion 22 as shown in FIG. 4D to the side portion of the hollow portion 22 as shown in FIG. Stack.

さらに図4(f)に示すように、中空部22の上部及び側部が形成された中間体23の下面を、底面板11から所定位置に精度良く配置し、立体造形物20の外形から孔部24に対応する部位を除いた箇所に光を照射部14から照射することで、光硬化性樹脂12を硬化し、中空部22の底を構成する硬化層21を積層する。 Further, as shown in FIG. 4( f ), the lower surface of the intermediate body 23 in which the upper portion and the side portion of the hollow portion 22 are formed is accurately arranged at a predetermined position from the bottom plate 11 and the outer shape of the three-dimensional molded object 20 is cut into a hole. The photocurable resin 12 is cured by irradiating the portion other than the portion corresponding to the portion 24 with light from the irradiation portion 14, and the cured layer 21 that forms the bottom of the hollow portion 22 is laminated.

その後、図5(g)に示すように、立体造形物20の外形から孔部24に対応する部位を除いた箇所に光を照射部14から照射することで、孔部24を形成しつつ立体造形物20の下部を構成する硬化層21を積層させる。
これにより立体造形物20の全ての硬化層21を積層一体化させることができる。
After that, as shown in FIG. 5G, by irradiating light from the irradiation unit 14 to the outer shape of the three-dimensional object 20 excluding the portion corresponding to the hole 24, the three-dimensional object 20 is formed while forming the hole 24. The hardened layer 21 that constitutes the lower part of the molded article 20 is laminated.
Thereby, all the hardened layers 21 of the three-dimensional molded item 20 can be laminated and integrated.

本実施形態では、このように繰り返し照射部14から光を照射して各硬化層21を積層する各工程で、光の照射前に昇降保持部15の支持部16の下端部や直前に積層された硬化層21の下面を、底面板11から所定高さに精度良く配置するため、各硬化層21を積層させた後、昇降保持部15を一端大きく上昇させた後で下降させ、その下降時に精密に高さ方向の位置調整を行っている。 In this embodiment, in each step of repeatedly irradiating light from the irradiating unit 14 to stack the respective hardened layers 21 as described above, the hardened layers 21 are stacked on the lower end portion of the supporting unit 16 of the elevating holding unit 15 or immediately before the light irradiation. In order to accurately arrange the lower surface of the hardened layer 21 at a predetermined height from the bottom plate 11, after stacking the hardened layers 21, the elevating/holding unit 15 is largely raised and then lowered, and at the time of the lowering. The position in the height direction is precisely adjusted.

さらにその位置合せされた支持部16の下端部や直前に積層された硬化層21の下面と底面板11との間の距離は、各硬化層21において毎回同じ距離にしている。
そしてこのような方法により全ての硬化層21を積層一体化することにより、支持部16に積層された状態で立体造形物20が完成され、支持部16から離脱させて必要に応じて研磨等の後処理を施すことで、第1実施形態の立体造形物20を得ることができる。
Further, the lower end of the aligned support portion 16 and the distance between the bottom surface of the hardened layer 21 laminated immediately before and the bottom plate 11 are the same in each hardened layer 21.
Then, by solidifying and integrating all the hardened layers 21 by such a method, the three-dimensional object 20 is completed in a state of being laminated on the supporting portion 16, and is separated from the supporting portion 16 and polished as necessary. By performing the post-treatment, the three-dimensional model 20 of the first embodiment can be obtained.

以上のような本実施形態の立体造形物20によれば、光硬化性樹脂12に光が照射されて形成される硬化層21が積層されることで形成された立体造形物20において、中空部22の底22aに中空部22と連続した孔部24が設けられているので、中空部22の底22aを構成する1乃至複数の硬化層21には孔部24に対応する部位に各硬化層21を貫通する貫通孔が存在する。 According to the three-dimensional object 20 of the present embodiment as described above, the hollow portion is formed in the three-dimensional object 20 formed by stacking the cured layer 21 formed by irradiating the photocurable resin 12 with light. Since the bottom portion 22a of the hollow portion 22 is provided with the hole portion 24 that is continuous with the hollow portion 22, the one or more cured layers 21 forming the bottom portion 22a of the hollow portion 22 are provided with the respective hardened layers at the portions corresponding to the hole portion 24. There is a through hole penetrating 21.

そのため多数の硬化層21を上から順に積層して中空部22を有する立体造形物20を形成していく過程において、中空部22の底22aを構成する1乃至複数の硬化層21を中空部22の上部及び側部が形成された中間体23の下面に積層することで、貫通孔を有する硬化層21により中空部22の底22aを形成する。 Therefore, in the process of stacking a large number of hardened layers 21 in order from the top to form the three-dimensional object 20 having the hollow portion 22, one or a plurality of hardened layers 21 forming the bottom 22a of the hollow portion 22 are formed. The bottom 22a of the hollow portion 22 is formed by the hardened layer 21 having a through hole by being laminated on the lower surface of the intermediate body 23 in which the upper portion and the side portion of the intermediate portion 23 are formed.

これにより、その後に硬化層21を積層する際に、中間体23の下面に中空部22の底22aを構成する1乃至複数の硬化層21が積層された状態で、光硬化性樹脂12中で昇降させて中間体23の下面を所定位置に配置するときには、光硬化性樹脂12が中空部22の底22aを構成する硬化層21の貫通孔を通過できる。そのため、中空部22の底22aを構成する硬化層21が薄肉で変形し易いものであっても、光硬化性樹脂12の流体圧が過剰に負荷されることを防止でき、中空部22の底22aを構成する硬化層21の変形を防止できる。
その結果、全硬化層21を積層して立体造形物20を完成させると、所定形状の中空部22を精度良く形成することができる。
Accordingly, when the cured layer 21 is laminated thereafter, one or more cured layers 21 forming the bottom 22a of the hollow portion 22 are laminated on the lower surface of the intermediate body 23 in the photocurable resin 12. When the lower surface of the intermediate member 23 is moved up and down to be placed at a predetermined position, the photo-curable resin 12 can pass through the through-hole of the hardened layer 21 forming the bottom 22a of the hollow portion 22. Therefore, even if the hardened layer 21 forming the bottom 22a of the hollow portion 22 is thin and easily deformed, it is possible to prevent the fluid pressure of the photocurable resin 12 from being excessively loaded, and the bottom of the hollow portion 22 is prevented. It is possible to prevent deformation of the hardened layer 21 that constitutes 22a.
As a result, when the fully cured layer 21 is laminated to complete the three-dimensional structure 20, the hollow portion 22 having a predetermined shape can be accurately formed.

また本実施形態の立体造形物20によれば、孔部24が光硬化性樹脂12を容易に通過可能な形状を有しているので、造形中に中空部22の底22aよりも下側の全ての硬化層21を積層する際に、各硬化層21を光硬化性樹脂12が容易に通過でき、全ての硬化層21で流体圧による変形を確実に防止できる。 Further, according to the three-dimensional modeled object 20 of the present embodiment, since the hole 24 has a shape that allows the photo-curable resin 12 to easily pass therethrough, the hole 24 located below the bottom 22a of the hollow part 22 during modeling. When all the hardened layers 21 are laminated, the photo-curable resin 12 can easily pass through each hardened layer 21, and deformation of all the hardened layers 21 due to fluid pressure can be reliably prevented.

さらに本実施形態の立体造形物20によれば、上面に上面凹部25が設けられているので、立体造形物20の上面を構成する1乃至複数の硬化層21には上面凹部25に対応する部位に貫通孔が存在する。そのため硬化層21の積層初期に、例えば上面を構成する硬化層21を光硬化性樹脂12中で昇降させて所定位置に配置するときに、光硬化性樹脂12が上面を構成する硬化層21の貫通孔を通過できる。
その結果、硬化層21の積層初期に各硬化層21が薄肉で変形し易いものであっても、光硬化性樹脂12の流体圧が過剰に負荷されることを防止でき、立体造形物20の変形を防止して上面を平面形状に形成できる。
Further, according to the three-dimensional object 20 of the present embodiment, the upper surface recessed portion 25 is provided on the upper surface. Therefore, the one or more cured layers 21 forming the upper surface of the three-dimensional object 20 have a portion corresponding to the upper surface recessed portion 25. There is a through hole in. Therefore, at the initial stage of stacking the hardened layer 21, for example, when the hardened layer 21 constituting the upper surface is moved up and down in the photocurable resin 12 and arranged at a predetermined position, the hardened layer 21 of the photocurable resin 12 constitutes the upper surface. Can pass through holes.
As a result, even if each hardened layer 21 is thin and easily deformed at the initial stage of stacking the hardened layer 21, it is possible to prevent the fluid pressure of the photocurable resin 12 from being excessively applied, and the solid modeling object 20 can be easily manufactured. It is possible to prevent deformation and form the upper surface into a planar shape.

[第2実施形態]
図6(a)(b)及び図7(a)(b)は第2実施形態に係る立体造形物20を示している。
第2実施形態の立体造形物20は、中空部22の底22aに中空部22に向けて開口した複数の凹部27が長手方向に配列して設けられている。各凹部27は、第1実施形態の孔部24と同程度の直径を有している。
その他は、第1実施形態の立体造形物20と同様に構成されている。
[Second Embodiment]
6A and 6B and FIGS. 7A and 7B show a three-dimensional modeled object 20 according to the second embodiment.
The three-dimensional model 20 of the second embodiment is provided with a plurality of recesses 27 that are open toward the hollow portion 22 and are arranged in the longitudinal direction at the bottom 22 a of the hollow portion 22. Each recess 27 has the same diameter as the hole 24 of the first embodiment.
Others are configured similarly to the three-dimensional model 20 of the first embodiment.

このような第2実施形態の立体造形物20も第1実施形態の立体造形物20と同様に、図2の装置を用いて同様の方法により製造することができる。
その際、この実施形態では、立体造形物20の上部を形成した後、中空部22を設けつつ各硬化層21を積層させて中間体23を形成する。
Like the three-dimensional object 20 of the first embodiment, the three-dimensional object 20 of the second embodiment can be manufactured by the same method using the apparatus shown in FIG.
At this time, in this embodiment, after forming the upper portion of the three-dimensional molded object 20, the hardened layers 21 are stacked while the hollow portion 22 is provided to form the intermediate body 23.

そして図7(a)に示すように、立体造形物20の外形から中空部22に対応した部位を除いた箇所に照射部14からレーザ光を照射して順次光硬化性樹脂12を硬化させて硬化層21を積層させた後、図7(b)に示すように、立体造形物20の外形から複数の凹部27に対応した部位を除いた箇所に光を照射することで立体造形物20の下部を形成する。 Then, as shown in FIG. 7A, a laser beam is irradiated from the irradiation unit 14 to a portion of the outer shape of the three-dimensional object 20 excluding the portion corresponding to the hollow portion 22 to sequentially cure the photocurable resin 12. After the hardened layer 21 is laminated, as shown in FIG. 7B, by irradiating the outer shape of the three-dimensional object 20 with light except for the portions corresponding to the plurality of recesses 27, the three-dimensional object 20 is irradiated. Form the bottom.

次に、複数の凹部27を形成した後、照射部14から立体造形物20の外形形状に対応した光を照射することで、凹部27の底を構成する硬化層21を積層させて、中間体23の下面に積層一体化し、これにより凹部27の底を形成する。
その後、凹部27の底を構成する硬化層21の下面に、他の硬化層21を積層する場合と同様に、昇降保持部15により支持部16及び多数の硬化層21が積層一体化した中間体23を、上昇させて下降することで、中間体23の下面を光硬化性樹脂12内で上昇及び下降させる。
Next, after forming the plurality of recesses 27, light corresponding to the outer shape of the three-dimensional object 20 is irradiated from the irradiation unit 14 to stack the hardened layer 21 forming the bottom of the recess 27, and the intermediate body. The bottom surface of the concave portion 27 is integrally formed by laminating on the lower surface of the concave portion 23.
After that, as in the case of stacking another hardened layer 21 on the lower surface of the hardened layer 21 that forms the bottom of the recess 27, an intermediate body in which the supporting unit 16 and a large number of hardened layers 21 are stacked and integrated by the lifting/lowering holding unit 15. By raising and lowering 23, the lower surface of the intermediate body 23 is raised and lowered in the photocurable resin 12.

すると凹部27の底を構成する薄肉の硬化層21に光硬化性樹脂12の流体圧が負荷されるが第2実施形態では、凹部27が第1実施形態の孔部24と同程度の断面形状であって中空部24の形状に対して十分に小さいため、各凹部27の底には変形を生じないか、微細な変形が生じる程度で第2実施形態の立体造形物20を製造することができる。 Then, the fluid pressure of the photocurable resin 12 is applied to the thin hardened layer 21 forming the bottom of the recess 27, but in the second embodiment, the recess 27 has a cross-sectional shape similar to that of the hole 24 of the first embodiment. However, since it is sufficiently smaller than the shape of the hollow portion 24, the bottom of each recess 27 is not deformed, or the three-dimensional object 20 of the second embodiment can be manufactured to the extent that minute deformation is generated. it can.

以上のような第2実施形態の立体造形物20であっても、第1実施形態と同様の作用効果を得ることができる。
即ち、第2実施形態では、第1実施形態の孔部24の代わりに凹部27が設けられているため、中空部22の底22aを構成する1乃至複数の硬化層21には凹部27に対応する部位に各硬化層21を貫通する貫通孔が存在する。特に第2実施形態では、凹部27が硬化層21の厚み以上の深さを有するため、硬化層21を光硬化性樹脂12中で順次積層する際、中空部22の底22aを形成する硬化層21に確実に貫通孔を存在させることができる。
Even with the three-dimensional model 20 of the second embodiment as described above, it is possible to obtain the same effect as that of the first embodiment.
That is, in the second embodiment, since the recess 27 is provided instead of the hole 24 of the first embodiment, the recesses 27 correspond to the one or more cured layers 21 forming the bottom 22a of the hollow portion 22. There is a through hole penetrating each hardened layer 21 at the portion to be formed. Particularly in the second embodiment, since the recess 27 has a depth equal to or larger than the thickness of the hardened layer 21, when the hardened layer 21 is sequentially laminated in the photocurable resin 12, the hardened layer forming the bottom 22a of the hollow portion 22 is formed. The through hole can be surely present in 21.

これにより、その後に硬化層21を積層する際、中空部22の底22aを形成する硬化層21が積層された状態で、光硬化性樹脂12中で昇降させるときに、光硬化性樹脂12が中空部22の底22aを構成する硬化層21の貫通孔を通過できる。そのため、中空部22の底22aを構成する硬化層21が薄肉で変形し易いものであっても、光硬化性樹脂12の流体圧が過剰に負荷されることを防止でき、中空部22の底22aを構成する硬化層21の変形を防止して所定の形状の中空部22を精度良く形成することができる。 Accordingly, when the cured layer 21 is laminated thereafter, when the cured layer 21 forming the bottom 22a of the hollow portion 22 is laminated, the photocurable resin 12 is moved up and down in the state where the cured layer 21 is moved up and down. It can pass through the through hole of the hardened layer 21 that constitutes the bottom 22 a of the hollow portion 22. Therefore, even if the hardened layer 21 forming the bottom 22a of the hollow portion 22 is thin and easily deformed, it is possible to prevent the fluid pressure of the photocurable resin 12 from being excessively loaded, and the bottom of the hollow portion 22 is prevented. It is possible to prevent deformation of the hardened layer 21 that constitutes 22a and accurately form the hollow portion 22 having a predetermined shape.

[第3実施形態]
図8(a)(b)は第3実施形態に係る立体造形物20を示している。
第3実施形態の立体造形物20は、中空部22の底22aに中空部22に向けて開口した凹部27が長手方向に連続した形状に設けられている。
この凹部27は、光硬化性樹脂12を用いて後述のように製造する際に、凹部27の底を構成する硬化層21に生じる変形部28を、収容可能な深さを有している。
その他は、第1実施形態の立体造形物20と同様に構成されている。
[Third Embodiment]
FIGS. 8A and 8B show a three-dimensional object 20 according to the third embodiment.
In the three-dimensional model 20 of the third embodiment, a bottom portion 22 a of the hollow portion 22 is provided with a recess 27 that opens toward the hollow portion 22 in a continuous shape in the longitudinal direction.
The concave portion 27 has a depth capable of accommodating the deformed portion 28 generated in the hardened layer 21 forming the bottom of the concave portion 27 when manufactured using the photocurable resin 12 as described later.
Others are configured similarly to the three-dimensional model 20 of the first embodiment.

このような第3実施形態の立体造形物20も第1実施形態の立体造形物20と同様に、図2の装置を用いて同様の方法により製造することができる。
その際、この実施形態では、立体造形物20の上部を形成した後、図9(a)に示すように、立体造形物20の外形から中空部22に対応した部位を除いた箇所に照射部14から光を照射して順次光硬化性樹脂12を硬化させて硬化層21を積層させ、中空部22を設けつつ中間体23を形成する。
Like the three-dimensional object 20 of the first embodiment, the three-dimensional object 20 of the third embodiment can be manufactured by the same method using the apparatus shown in FIG.
At this time, in this embodiment, after forming the upper part of the three-dimensional object 20, as shown in FIG. Light is irradiated from 14 to sequentially cure the photo-curable resin 12 to stack the cured layer 21 and form the intermediate body 23 while providing the hollow portion 22.

次いで、図9(b)に示すように、立体造形物20の外形から凹部27に対応した部位を除いた箇所に光を照射することで、長手方向に連続した凹部27を設けつつ凹部27の両側部となる立体造形物20の下部を形成する。
そして、凹部27の底を構成する硬化層21を積層一体化し、これにより凹部27の底を形成する。
Next, as shown in FIG. 9B, by irradiating the external shape of the three-dimensional object 20 with light except for the portion corresponding to the concave portion 27, the concave portion 27 of the concave portion 27 can be formed while providing the concave portion 27 continuous in the longitudinal direction. The lower part of the three-dimensional molded object 20 which becomes both sides is formed.
Then, the hardened layer 21 that forms the bottom of the recess 27 is integrally laminated to form the bottom of the recess 27.

その後、凹部27の底を構成する硬化層21の下面に次の硬化層21を積層するが、凹部27の底を形成する薄肉の硬化層21に光硬化性樹脂12の流体圧が負荷されるため、凹部27の底が中空部22側に変形する。さらにその下に硬化層21を積層させることで、凹部27の内部に変形部28が形成される。
ところがこの第3実施形態では、凹部27が変形部28の変形量に対して十分な深さを有しているため、変形部28が凹部27内にだけ形成された状態で、第3実施形態の立体造形物20が造形される。
Then, the next hardened layer 21 is laminated on the lower surface of the hardened layer 21 forming the bottom of the recess 27, but the thin hardened layer 21 forming the bottom of the recess 27 is loaded with the fluid pressure of the photocurable resin 12. Therefore, the bottom of the recess 27 is deformed toward the hollow portion 22 side. By further laminating the hardened layer 21 thereunder, the deformed portion 28 is formed inside the recess 27.
However, in the third embodiment, since the concave portion 27 has a sufficient depth for the deformation amount of the deforming portion 28, the deforming portion 28 is formed only in the concave portion 27, and the third embodiment The three-dimensional molded object 20 of is modeled.

以上のような第3実施形態の立体造形物20であっても、第1実施形態と同様の作用効果を得ることができる。
さらには第3実施形態によれば、凹部27が凹部27の底を構成する硬化層21に生じる変形を収容可能な深さを有しているので、多数の硬化層21を積層して凹部27を形成する際、凹部27の側面が形成された中間体23の下面に凹部27の底を構成する硬化層21を積層して形成したときに、その硬化層21に光硬化性樹脂12の流体圧により変形したとしても、凹部27内で変形が生じて中空部22の形状に何ら影響しない。そのため中空部22の底22aを形成した状態で、中空部22内を所望の形状で精度良く形成することが可能である。
Even with the three-dimensional model 20 of the third embodiment as described above, the same operational effects as those of the first embodiment can be obtained.
Furthermore, according to the third embodiment, since the recess 27 has a depth capable of accommodating the deformation generated in the hardened layer 21 forming the bottom of the recess 27, a large number of hardened layers 21 are stacked to form the recess 27. When the cured layer 21 that forms the bottom of the recess 27 is laminated on the lower surface of the intermediate body 23 on which the side surface of the recess 27 is formed, the fluid of the photocurable resin 12 is added to the cured layer 21. Even if it is deformed by the pressure, it is deformed in the concave portion 27 and has no influence on the shape of the hollow portion 22. Therefore, it is possible to accurately form the inside of the hollow portion 22 in a desired shape with the bottom 22a of the hollow portion 22 formed.

[第3実施形態の変形例]
図10は第3実施形態の変形例に係る立体造形物20を示している。
この変形例の立体造形物20は凹部27の長手方向両端側が、立体造形物20の両端面に開口しないで閉塞して形成されている。その他は第3実施形態と同様の構成を有して同様に製造されている。
このような立体造形物20であっても第3実施形態の立体造形物と同様の作用効果を実現できる。
しかもこの変形例では、凹部27の両端が閉塞しているので、側面視において中空部22の両端面形状のみが視認されるため、外観形状をシンプルにできる。
[Modification of Third Embodiment]
FIG. 10 shows a three-dimensional object 20 according to a modified example of the third embodiment.
In the three-dimensional object 20 of this modified example, both end sides in the longitudinal direction of the concave portion 27 are formed by closing the both end surfaces of the three-dimensional object 20 without opening. Others have the same configuration as the third embodiment and are manufactured in the same manner.
Even with such a three-dimensional model 20, the same operational effect as that of the three-dimensional model of the third embodiment can be realized.
Moreover, in this modified example, since both ends of the concave portion 27 are closed, only the shape of both end surfaces of the hollow portion 22 is visually recognized in a side view, so that the outer shape can be simplified.

図11は第3実施形態の別の変形例に係る立体造形物20を示している。
この変形例の立体造形物20では、中空部22が立体造形物20の最上面から縦に設けられた有端の穴形状を有している。この中空部22の水平断面形状は、例えば、円形又は多角形であってもよい。
そして中空部22の底には、中空部より水平断面形状が小さい凹部27が設けられている。
FIG. 11 shows a three-dimensional object 20 according to another modification of the third embodiment.
In the three-dimensional model 20 of this modified example, the hollow portion 22 has the shape of an end hole vertically provided from the uppermost surface of the three-dimensional model 20. The horizontal cross-sectional shape of the hollow portion 22 may be circular or polygonal, for example.
A recess 27 having a horizontal cross-sectional shape smaller than that of the hollow portion is provided at the bottom of the hollow portion 22.

その他は第3実施形態と同様であり、多数の硬化層21を形成する際に中空部22の形状に対応した部位を除いた箇所に光を照射部14から照射して形成することで、各硬化層を積層一体化させることで、第3実施形態と同様に製造することができる。 Others are the same as in the third embodiment, and when a large number of hardened layers 21 are formed, light is emitted from the irradiation unit 14 to a portion other than the portion corresponding to the shape of the hollow portion 22, thereby forming each By laminating and integrating the hardened layers, it is possible to manufacture in the same manner as in the third embodiment.

このような変形例の立体造形物20であっても、第3実施形態と同様の作用効果を得ることができ、凹部27内に変形部28が形成されることで、中空部22を所定形状に精度良く形成することが可能である。 Even with the three-dimensional object 20 of such a modified example, the same effect as that of the third embodiment can be obtained, and the deformed portion 28 is formed in the recess 27, so that the hollow portion 22 is formed into a predetermined shape. It is possible to form with high precision.

なお上記第1乃至第3実施形態は、本発明の範囲内において適宜変更可能である。
例えば、上記第1乃至第3実施形態では、立体造形物20として、略直方体形状の外形形状を有し、一つの中空部22が内部に設けられたものについて説明したが、立体造形物20の形状は何ら限定されるものではなく、光硬化性樹脂12に光を照射して形成される硬化層21を積層して形成可能な形状であればよい。
The first to third embodiments described above can be appropriately modified within the scope of the present invention.
For example, in the above-described first to third embodiments, the three-dimensional object 20 has a substantially rectangular parallelepiped outer shape and is provided with one hollow portion 22 therein. The shape is not limited at all, and may be any shape as long as it can be formed by laminating the cured layer 21 formed by irradiating the photocurable resin 12 with light.

また上記第1乃至第3実施形態では、中空部22として断面円形を有し、長手方向に貫通した中空部22を設けた例について説明したが、何ら限定されるものではない。例えば立体造形物20の内部に断面多角形形状の中空部を設けることも可能であり、さらに一方又は双方の端部が閉塞された中空部を設けてもよく、全周が閉塞された中空部を設けることも可能である。
また図12に示すように、長手方向の全長にわたり縦断面形状が逆三角形状となるように中空部22及び凹部27を設けたり、図13に示すように長手方向の全長にわたり縦断面形状が円形内面に半円形の凸部22bを複数有するような形状となるように中空部22及び凹部27を設けたりしてもよい。
また図12に仮想線で示すように縦断面円形の円筒部分を設けるとともに、長手方向の一部或いは複数部において円筒部分の周方向の複数位置から略三角形状に拡張した形状となるように中空部22及び凹部27を設け、円筒部分を逆三角形で支持するようにしてもよい。
さらに図13に仮想線で示すように縦断面円形の円筒部分を設けるとともに、長手方向の一部或いは複数部において円筒部分の周方向の複数位置から概略扇状に拡張した形状となるように中空部22及び凹部27を設け、円筒部分を半円形の複数の凸部22bで支持するようにしてもよい。
Further, in the above-described first to third embodiments, the example in which the hollow portion 22 has a circular cross section and the hollow portion 22 penetrating in the longitudinal direction is provided has been described, but the hollow portion 22 is not limited thereto. For example, it is possible to provide a hollow portion having a polygonal cross-section inside the three-dimensional object 20. Further, a hollow portion whose one or both ends are closed may be provided, and a hollow portion whose entire circumference is closed is provided. It is also possible to provide.
Further, as shown in FIG. 12, the hollow portion 22 and the concave portion 27 are provided so that the vertical cross-section has an inverted triangular shape over the entire length in the longitudinal direction, or the vertical cross-section has a circular shape over the entire length in the longitudinal direction as shown in FIG. The hollow portion 22 and the concave portion 27 may be provided so as to have a shape having a plurality of semicircular convex portions 22b on the inner surface.
Further, as shown by phantom lines in FIG. 12, a cylindrical portion having a circular vertical cross section is provided, and a hollow portion is formed in a part or a plurality of portions in the longitudinal direction so as to be expanded into a substantially triangular shape from a plurality of positions in the circumferential direction of the cylindrical portion. The portion 22 and the concave portion 27 may be provided so that the cylindrical portion is supported by the inverted triangle.
Further, as shown in phantom lines in FIG. 13, a cylindrical portion having a circular vertical cross section is provided, and a hollow portion is formed in a part or a plurality of portions in the longitudinal direction so as to be expanded into a fan shape from a plurality of positions in the circumferential direction of the cylindrical portion. 22 and the concave portion 27 may be provided, and the cylindrical portion may be supported by a plurality of semicircular convex portions 22b.

さらに上記第1乃至第3実施形態では、照光部14として、造形部13aに各硬化層21の平面形状に対応した形状にレーザ光を走査して所定の形状の硬化層21を積層した例について説明したが、特に限定されない。例えばプロジェクタにより各硬化層21の平面形状に対応した所定形状の光を造形部13aに照射する照光部14であってもよい。
また上記第1乃至第3実施形態では、孔部24及び凹部27のうちの何れか一方のみを設けた例について説明したが、孔部24と凹部27との両方を同じ立体造形物に設けてもよい。
Further, in the above-described first to third embodiments, an example in which the shaping portion 13a is laminated with the hardening layer 21 having a predetermined shape by scanning the shaping section 13a with laser light in a shape corresponding to the planar shape of each hardening layer 21 in the first to third embodiments. Although explained, it is not particularly limited. For example, the illumination unit 14 that irradiates the modeling unit 13a with light having a predetermined shape corresponding to the planar shape of each cured layer 21 by a projector may be used.
Further, in the first to third embodiments, the example in which only one of the hole 24 and the recess 27 is provided has been described, but both the hole 24 and the recess 27 are provided in the same three-dimensional model. Good.

X 変形部分
11 底面板
12 光硬化性樹脂
13 貯留部
13a 造形部
14 照射部
15 昇降保持部
16 支持部
20 立体造形物
21 硬化層
22 中空部
22a 底
23 中間体
24 孔部
25 上面凹部
27 凹部
28 変形部
X Deformation part 11 Bottom plate 12 Photocurable resin 13 Reservoir 13a Modeling part 14 Irradiating part 15 Elevating/holding part 16 Support part 20 Three-dimensional model 21 Hardened layer 22 Hollow part 22a Bottom 23 Intermediate 24 Hole 25 Top recess 27 Recess 28 Deformation part

Claims (4)

光硬化性樹脂に光が照射されて形成される硬化層が積層されることで形成され、中空部を有する立体造形物であって、
前記中空部の底に前記中空部と連続した孔部又は凹部の少なくとも一方が設けられていることを特徴とする立体造形物。
A three-dimensional object having a hollow portion, which is formed by stacking a cured layer formed by irradiating light on a photocurable resin,
At least one of a hole or a recess that is continuous with the hollow portion is provided on the bottom of the hollow portion.
前記凹部は前記硬化層の厚み以上の深さを有していることを特徴とする請求項1に記載の立体造形物。 The three-dimensional structure according to claim 1, wherein the recess has a depth equal to or larger than the thickness of the hardened layer. 前記凹部は、前記凹部の底を構成する前記硬化層に生じる変形を収容可能な深さを有することを特徴とする請求項1又は2に記載の立体造形物。 The three-dimensional molded object according to claim 1 or 2, wherein the recess has a depth capable of accommodating a deformation generated in the hardened layer forming the bottom of the recess. 上面に上面凹部が設けられていることを特徴とする請求項1乃至3の何れかに記載の立体造形物。
The three-dimensional modeled article according to claim 1, wherein an upper surface recess is provided on the upper surface.
JP2019018188A 2019-02-04 2019-02-04 Three-dimensional molding object Pending JP2020124841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019018188A JP2020124841A (en) 2019-02-04 2019-02-04 Three-dimensional molding object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019018188A JP2020124841A (en) 2019-02-04 2019-02-04 Three-dimensional molding object

Publications (1)

Publication Number Publication Date
JP2020124841A true JP2020124841A (en) 2020-08-20

Family

ID=72083304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019018188A Pending JP2020124841A (en) 2019-02-04 2019-02-04 Three-dimensional molding object

Country Status (1)

Country Link
JP (1) JP2020124841A (en)

Similar Documents

Publication Publication Date Title
JP5670198B2 (en) Optical element and method for manufacturing wafer scale assembly
US10413970B2 (en) Method for manufacturing three-dimensional shaped object and three-dimensional shaped object
JP4889266B2 (en) Three-dimensional shaped object and manufacturing method thereof
JP2010228332A (en) Production process of shaped article
KR102550800B1 (en) 3D Printer
JP2008101256A (en) Stack-molded die and producing method therefor
KR20180111912A (en) Method for manufacturing three dimensional shaped sculpture
EP3395550B1 (en) Three-dimensional object shaping device and manufacturing method
JP2020124841A (en) Three-dimensional molding object
KR20180119355A (en) 3D printer using double vat
JP2010052318A (en) Light shaping method
JPH06155587A (en) Method for molding of three dimensional shape molded product
JP2008231490A (en) Method for designing structure by lamination molding process using powder material
JPH0671761A (en) Formation of three-dimensional form
JP5194945B2 (en) Article manufacturing method and transfer member
JP6754454B2 (en) Three-dimensional printing equipment and its modeling water tank
JP2671534B2 (en) 3D shape forming method
JP6022493B2 (en) Stereolithography method, stereolithography apparatus, and generation program
JP7068576B2 (en) Injection molding mold and its manufacturing method
JP3558095B2 (en) Stereolithography
JPH0584834A (en) Molding method of three dimensional shape
JP2001018298A (en) Molding method for three-dimensional molded article
JP2019203145A (en) Lamination molding method and lamination molding device for laminated molding
KR102434182B1 (en) 3D Printer
JPH0295829A (en) Forming method of three dimensional shape