JP6022493B2 - Stereolithography method, stereolithography apparatus, and generation program - Google Patents

Stereolithography method, stereolithography apparatus, and generation program Download PDF

Info

Publication number
JP6022493B2
JP6022493B2 JP2014025707A JP2014025707A JP6022493B2 JP 6022493 B2 JP6022493 B2 JP 6022493B2 JP 2014025707 A JP2014025707 A JP 2014025707A JP 2014025707 A JP2014025707 A JP 2014025707A JP 6022493 B2 JP6022493 B2 JP 6022493B2
Authority
JP
Japan
Prior art keywords
gap
layer
bridge girder
optical modeling
abutment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014025707A
Other languages
Japanese (ja)
Other versions
JP2015150761A (en
Inventor
幸吉 鈴木
幸吉 鈴木
好一 大場
好一 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CMET Inc
Original Assignee
CMET Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CMET Inc filed Critical CMET Inc
Priority to JP2014025707A priority Critical patent/JP6022493B2/en
Publication of JP2015150761A publication Critical patent/JP2015150761A/en
Application granted granted Critical
Publication of JP6022493B2 publication Critical patent/JP6022493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光造形方法、光造形装置、及び生成プログラムに関する。   The present invention relates to an optical modeling method, an optical modeling apparatus, and a generation program.

光硬化性材料に光線を照射してその一部を硬化させ、三次元形状物を造形する光造形装置が実用化されている(例えば、特許文献1参照)。この光造形装置は、CADシステムで設計した機械部品等を容易に実体化できる。造形された造形物によって設計の確認と直接的な評価とを行うことができる。   An optical modeling apparatus that irradiates a photocurable material with a light beam and cures a part thereof to model a three-dimensional shape has been put into practical use (see, for example, Patent Document 1). This stereolithography apparatus can easily materialize mechanical parts designed by a CAD system. Design confirmation and direct evaluation can be performed by the shaped object.

光造形装置は、三次元形状物のCADデータから鉛直方向におけるスライスデータを算出して、スライスデータに従って下から順に一層ずつ造形することで三次元形状物を造形する。   The optical modeling apparatus calculates the slice data in the vertical direction from the CAD data of the three-dimensional shape object, and forms the three-dimensional shape object by modeling one by one from the bottom according to the slice data.

光造形装置は、光硬化性材料として液状の光硬化性樹脂で満たされた液槽中に昇降可能な昇降テーブルを備えている。液槽の上部が開口しており、上部から光線が照射される。光造形装置は、三次元形状物を造形する際に、まず、昇降テーブルを液状の光硬化性樹脂の液面から最下層の厚さ分だけ下降した高さに位置させる。そして、光造形装置は、リコータを液面に沿って移動させることで液面を安定させる。光造形装置は、この状態でスキャナによって光線を必要な範囲内に走査して、最下層を光硬化させる。次に、光造形装置は、昇降テーブルを最下層から二番目の層の厚さ分だけ下降させ、同様にして二番目の層を光硬化させる。以降、光造形装置は、同様にして、下から順に一層ずつ光硬化させることによって三次元形状物を造形する。   The optical modeling apparatus includes an elevating table that can be moved up and down in a liquid tank filled with a liquid photocurable resin as a photocurable material. The upper part of the liquid tank is open, and light is irradiated from the upper part. When modeling a three-dimensional object, the optical modeling apparatus first positions the lifting table at a height lowered from the liquid surface of the liquid photocurable resin by the thickness of the lowest layer. The stereolithography apparatus stabilizes the liquid surface by moving the recoater along the liquid surface. In this state, the optical modeling apparatus scans the light beam within a necessary range by the scanner, and photocures the lowermost layer. Next, the optical modeling apparatus lowers the lifting table by the thickness of the second layer from the lowermost layer, and similarly photocures the second layer. Thereafter, the optical modeling apparatus similarly models a three-dimensional shape by photocuring one layer at a time from the bottom.

特開2011−218821号公報JP 2011-218821 A

ところで、光造形装置では、図5に示されるように、架橋構造を有する三次元形状物を造形することがある。架橋構造は、鉛直方向に積層された橋台部122,123に橋桁部121が架橋された構造である。図6に示されるように、架橋構造を有する三次元形状物の各層の硬化時に、橋台部122,123と橋桁部121との架橋部分における収縮によって変形することがある。このため、架橋構造を有する三次元形状物の各層の硬化時における変形を抑制する光造形方法、光造形装置、及び生成プログラムが求められている。   By the way, in an optical modeling apparatus, as FIG. 5 shows, the three-dimensional shaped object which has a bridge | crosslinking structure may be modeled. The bridge structure is a structure in which the bridge girder part 121 is bridged to the abutment parts 122 and 123 stacked in the vertical direction. As shown in FIG. 6, when each layer of the three-dimensional shape having a cross-linked structure is cured, the layer may be deformed by contraction at the cross-linked portion between the abutment parts 122 and 123 and the bridge girder part 121. For this reason, the optical modeling method, the optical modeling apparatus, and production | generation program which suppress the deformation | transformation at the time of hardening of each layer of the three-dimensional shaped object which has a crosslinked structure are calculated | required.

なお、光線を照射しながら移動させることによって光硬化性材料を硬化させる点描方式に代えて、面露光によって光硬化性材料を硬化させる面露光方式の光造形方法及び光造形装置においても共通の課題がある。   In addition, instead of the stippling method for curing the photocurable material by moving it while irradiating the light beam, a common problem is also present in the surface exposure method optical modeling method and the optical modeling device in which the photocurable material is cured by surface exposure. There is.

本発明は、こうした実情に鑑みてなされたものであり、その目的は、架橋構造を有する三次元形状物の各層の硬化時における変形を抑制する光造形方法、光造形装置、及び生成プログラムを提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide an optical modeling method, an optical modeling apparatus, and a generation program that suppress deformation during curing of each layer of a three-dimensional shape having a crosslinked structure. There is to do.

以下、上記課題を達成するための手段及びその作用効果について説明する。
上記課題を解決する光造形方法は、光硬化性材料に選択的に光を照射して前記光硬化性材料を一層ずつ硬化させることによって三次元形状物を造形する光造形方法において、橋台部と橋桁部とが接続された架橋構造を有する三次元形状物を造形する際に、前記橋台部と前記橋桁部との接続部の一部に隙間を形成し、前記隙間は、積層される同一層における前記橋桁部の積層方向と直交し、且つ前記橋台部に沿う方向である奥行き方向に形成することをその要旨としている。
Hereinafter, means for achieving the above-described problems and the effects thereof will be described.
An optical modeling method for solving the above-described problem is an optical modeling method for modeling a three-dimensional object by selectively irradiating light to a photocurable material to cure the photocurable material one by one. When forming a three-dimensional shape having a bridge structure in which the bridge girder is connected, a gap is formed in a part of the connection between the abutment and the bridge girder, and the gap is the same layer that is stacked. The gist is to form in the depth direction, which is perpendicular to the stacking direction of the bridge girder portion and along the abutment portion .

上記方法によれば、架橋構造を有する三次元形状物を造形する際に、橋台部と橋桁部との接続部の一部に隙間を形成する。このため、架橋構造を有する三次元形状物を造形する際に、各層の硬化に伴って収縮が発生したとしても、隙間によって収縮が抑制される。よって、架橋構造を有する三次元形状物の各層の硬化時における変形を抑制できる。   According to the said method, when modeling the three-dimensional shaped object which has a bridge structure, a clearance gap is formed in a part of connection part of an abutment part and a bridge girder part. For this reason, even when shrinkage | contraction generate | occur | produces with hardening of each layer when modeling the three-dimensional shaped object which has a crosslinked structure, shrinkage | contraction is suppressed by a clearance gap. Therefore, the deformation | transformation at the time of hardening of each layer of the three-dimensional-shaped thing which has a crosslinked structure can be suppressed.

上記光造形方法について、前記隙間は、積層方向に間隔を置いて形成することが好ましい。
上記方法によれば、積層方向に間隔を置いて隙間を形成する。このため、架橋構造を有する三次元形状物の各層の硬化時における変形を隙間によって抑制しつつ、間隔を置いて隙間を形成するので強度を持たせることができる。
About the said optical modeling method, it is preferable to form the said clearance gap at intervals in the lamination direction.
According to the above method, the gap is formed at an interval in the stacking direction. For this reason, since the gap is formed at intervals while the deformation of each layer of the three-dimensional shape having a crosslinked structure is suppressed by the gap, the gap can be formed and the strength can be increased.

上記光造形方法について、前記隙間は、前記奥行き方向に亘って形成することが好ましい。 About the said optical modeling method, it is preferable to form the said gap over the said depth direction.

上記方法によれば、積層される同一層における橋桁部の奥行き方向に亘って隙間を形成する。橋桁部の同一層は、奥行き方向において各層の硬化時に同じように収縮によって変形する。このため、架橋構造を有する三次元形状物の各層の硬化時における変形を抑制できる。   According to the said method, a clearance gap is formed over the depth direction of the bridge girder part in the same layer laminated | stacked. The same layer of the bridge girder is deformed by contraction in the depth direction when the layers are cured. For this reason, the deformation | transformation at the time of hardening of each layer of the three-dimensional-shaped thing which has a crosslinked structure can be suppressed.

上記光造形方法について、前記隙間は、前記橋台部と前記橋桁部とによって形成される角から積層方向に延長した延長線上の一部に形成することが好ましい。
上記方法によれば、橋台部と橋桁部とによって形成される角の積層方向における角の延長線上の一部に隙間を形成する。橋台部と橋桁部とによって形成される角の積層方向における角の延長線上は、各層の硬化時の収縮によって顕著に変形する。このため、架橋構造を有する三次元形状物の各層の硬化時における変形を更に抑制できる。
About the said optical modeling method, it is preferable to form the said clearance gap in the part on the extension line extended in the lamination direction from the angle | corner formed by the said abutment part and the said bridge girder part.
According to the above method, the gap is formed in a part on the extension line of the corner in the stacking direction of the corner formed by the abutment portion and the bridge girder portion. The extension line of the corner in the stacking direction of the corner formed by the abutment portion and the bridge girder portion is significantly deformed by the shrinkage at the time of curing of each layer. For this reason, the deformation | transformation at the time of hardening of each layer of the three-dimensional-shaped thing which has a crosslinked structure can further be suppressed.

上記光造形方法について、前記隙間は、前記橋桁部の最上面を含む層及び最下面を含む層の少なくとも一方に形成することが好ましい。
上記方法によれば、橋桁部の最上面を含む層及び最下面を含む層の少なくとも一方に隙間を形成する。橋台部と橋桁部との接続部分である最上面と最下面とは、各層の硬化時の収縮によって顕著に変形する。このため、架橋構造を有する三次元形状物の各層の硬化時における変形を更に抑制できる。
About the said optical modeling method, it is preferable to form the said clearance gap in at least one of the layer containing the uppermost surface of the said bridge girder part, and the layer containing the lowermost surface.
According to the above method, the gap is formed in at least one of the layer including the uppermost surface of the bridge girder and the layer including the lowermost surface. The uppermost surface and the lowermost surface, which are the connection portions between the abutment portion and the bridge girder portion, are significantly deformed by the shrinkage during curing of each layer. For this reason, the deformation | transformation at the time of hardening of each layer of the three-dimensional-shaped thing which has a crosslinked structure can further be suppressed.

上記光造形方法について、前記光は、光線であって、前記隙間は、前記光線の照射によって前記光硬化性材料が硬化する硬化幅よりも大きく形成することが好ましい。
上記方法によれば、光線の照射によって光硬化性材料が硬化する硬化幅よりも大きく隙間を形成する。このため、造形物が収縮する際に、収縮が伝達されることを十分に抑制できる。よって、架橋構造を有する三次元形状物の各層の硬化時における変形を更に抑制できる。
About the said optical modeling method, the said light is a light beam, Comprising: It is preferable to form the said clearance gap larger than the hardening width | variety which the said photocurable material hardens | cures by irradiation of the said light beam.
According to the said method, a clearance gap is formed larger than the hardening width | variety which a photocurable material hardens | cures by irradiation of a light ray. For this reason, it can fully suppress that contraction is transmitted when a modeling thing contracts. Therefore, the deformation | transformation at the time of hardening of each layer of the three-dimensional-shaped thing which has a crosslinked structure can be suppressed further.

上記課題を解決する光造形装置は、上記の光造形方法を行う制御部を備えることを要旨としている。
上記構成によれば、架橋構造を有する三次元形状物を造形する際に、橋台部と橋桁部との接続部の一部に隙間を形成する。このため、架橋構造を有する三次元形状物の各層の硬化時に、造形物に収縮が発生したとしても、隙間によって収縮が抑制される。よって、架橋構造を有する三次元形状物の各層の硬化時における変形を抑制できる。
The gist of a stereolithography apparatus that solves the above-described problems includes a control unit that performs the stereolithography method.
According to the said structure, when modeling the three-dimensional shaped object which has a bridge structure, a clearance gap is formed in a part of connection part of an abutment part and a bridge girder part. For this reason, even if shrinkage | contraction generate | occur | produces in a molded article at the time of hardening of each layer of the three-dimensional shape object which has a crosslinked structure, shrinkage | contraction is suppressed by a clearance gap. Therefore, the deformation | transformation at the time of hardening of each layer of the three-dimensional-shaped thing which has a crosslinked structure can be suppressed.

上記課題を解決する生成プログラムは、光硬化性材料に選択的に光を照射して前記光硬化性材料を一層ずつ硬化させることによって三次元形状物を造形する光造形に用いるデータを制御部によって生成する生成プログラムであって、前記制御部を、橋台部と橋桁部とが接続された架橋構造を有する三次元形状物の設計データに基づき、前記橋台部と前記橋桁部との接続部の一部に隙間を生成する変換部として機能させ、前記隙間は、積層される同一層における前記橋桁部の積層方向と直交し、且つ前記橋台部に沿う方向である奥行き方向に生成されることを要旨としている。 The generation program that solves the above-described problem is a data that is used for stereolithography for modeling a three-dimensional object by selectively irradiating light to a photocurable material and curing the photocurable material layer by layer by a control unit. A generating program for generating the control unit, based on design data of a three-dimensional shape object having a bridge structure in which the abutment part and the bridge girder part are connected to each other of the connection part between the abutment part and the bridge girder part. The gap is generated in the depth direction, which is perpendicular to the stacking direction of the bridge girder in the same layer to be stacked and is along the abutment. It is said.

上記構成によれば、架橋構造を有する三次元形状物の場合に、橋台部と橋桁部との接続部の一部に隙間を生成する。このため、三次元形状物の各層の硬化時に、各層の硬化に伴って収縮が発生したとしても、隙間によって収縮が抑制される。よって、架橋構造を有する三次元形状物の各層の硬化時における変形を抑制できる。また、データの生成時に隙間を生成するので、処理を簡素化できる。   According to the said structure, in the case of the three-dimensional shaped object which has a bridge structure, a clearance gap is produced | generated in a part of connection part of an abutment part and a bridge girder part. For this reason, even if shrinkage | contraction generate | occur | produces with hardening of each layer at the time of hardening of each layer of a three-dimensional shaped object, shrinkage | contraction is suppressed by a clearance gap. Therefore, the deformation | transformation at the time of hardening of each layer of the three-dimensional-shaped thing which has a crosslinked structure can be suppressed. In addition, since a gap is generated when data is generated, processing can be simplified.

本発明によれば、架橋構造を有する三次元形状物の各層の硬化時における変形を抑制できる。   ADVANTAGE OF THE INVENTION According to this invention, the deformation | transformation at the time of hardening of each layer of the three-dimensional shaped object which has a crosslinked structure can be suppressed.

光造形装置の概略構成を示す図。The figure which shows schematic structure of an optical modeling apparatus. 架橋構造を有する三次元形状物を示す斜視図。The perspective view which shows the three-dimensional shaped object which has a bridge | crosslinking structure. 架橋構造を有する三次元形状物の架橋部分のスライスデータを示す図。The figure which shows the slice data of the bridge | crosslinking part of the three-dimensional shape thing which has a bridge | crosslinking structure. 架橋構造を有する三次元形状物の架橋部分のスライスデータを示す図。The figure which shows the slice data of the bridge | crosslinking part of the three-dimensional shape thing which has a bridge | crosslinking structure. 架橋構造を有する三次元形状物を示す正面図。The front view which shows the three-dimensional shaped object which has a bridge | crosslinking structure. 従来の架橋構造を有する三次元形状物における造形後の変形を示す正面図。The front view which shows the deformation | transformation after modeling in the three-dimensional shaped object which has the conventional bridge | crosslinking structure.

以下、図1〜図4を参照して、光造形方法、光造形装置、及び生成プログラムの一実施形態について説明する。
図1に示されるように、光造形装置は、光硬化性材料として液状の光硬化性樹脂で満たされた液槽11と、光線を出射するレーザ12と、レーザ12から出射された光線を液槽11に照射するスキャナ13とを備えている。レーザ12から出射された光線は、光学系装置を介してスキャナ13に入射される。光造形装置は、液槽11内において上下方向に昇降可能な昇降テーブル15を備えている。昇降テーブル15は、テーブル駆動装置16によって上下に移動される。液槽11の上方には、液面を整えるリコータ17が設置されている。リコータ17は、リコータ駆動装置18によって前後方向(図中左右方向)に移動される。レーザ12、スキャナ13、テーブル駆動装置16、及びリコータ駆動装置18は、制御装置10によって制御される。
Hereinafter, an embodiment of an optical modeling method, an optical modeling apparatus, and a generation program will be described with reference to FIGS.
As shown in FIG. 1, the stereolithography apparatus includes a liquid tank 11 filled with a liquid photocurable resin as a photocurable material, a laser 12 that emits a light beam, and a light beam emitted from the laser 12. And a scanner 13 for irradiating the tank 11. The light beam emitted from the laser 12 is incident on the scanner 13 through the optical system device. The optical modeling apparatus includes an elevating table 15 that can be moved up and down in the liquid tank 11. The lifting table 15 is moved up and down by the table driving device 16. Above the liquid tank 11, a recoater 17 for adjusting the liquid level is installed. The recoater 17 is moved in the front-rear direction (left-right direction in the figure) by the recoater driving device 18. The laser 12, the scanner 13, the table driving device 16, and the recoater driving device 18 are controlled by the control device 10.

光造形装置は、三次元形状物のCADデータ(設計データ)から三次元形状物を鉛直方向において分割したスライスデータを算出する。そして、光造形装置は、スライスデータに従って下から順に一層ずつ造形することで三次元形状物の造形物Sを造形する。   The stereolithography apparatus calculates slice data obtained by dividing the three-dimensional shape object in the vertical direction from CAD data (design data) of the three-dimensional shape object. And an optical modeling apparatus models the modeling thing S of a three-dimensional shaped object by modeling one by one in order from the bottom according to slice data.

光造形装置は、三次元形状物を造形する際に、まず、昇降テーブル15を液状の光硬化性樹脂の液面から最下層の厚さ分だけ下降した高さに位置させる。そして、光造形装置は、リコータ17を液面に沿って移動させることで液面を安定させる。光造形装置は、この状態でスキャナ13によって光線を必要な範囲内に走査して、最下層を光硬化させる。次に、光造形装置は、昇降テーブル15を最下層から二番目の層の厚さ分だけ下降させ、同様にして二番目の層を光硬化させる。以降、光造形装置は、同様にして、下から順に一層ずつ光硬化させることによって三次元形状物を造形する。   When modeling a three-dimensional object, the optical modeling apparatus first positions the lifting table 15 at a height lowered from the liquid surface of the liquid photocurable resin by the thickness of the lowermost layer. Then, the optical modeling apparatus stabilizes the liquid level by moving the recoater 17 along the liquid level. In this state, the optical modeling apparatus scans the light beam within a necessary range by the scanner 13 and photocures the lowermost layer. Next, the stereolithography apparatus lowers the lifting table 15 by the thickness of the second layer from the lowermost layer, and similarly photocures the second layer. Thereafter, the optical modeling apparatus similarly models a three-dimensional shape by photocuring one layer at a time from the bottom.

次に、図2〜図4を参照して、橋台部と橋桁部とが接続された架橋構造を有する三次元形状物を造形する際に用いるスライスデータについて説明する。
図2に示されるように、ここでは正面視においてH字状の三次元形状物を造形する際について説明する。H字状の三次元形状物は、板状の橋桁部21と、橋桁部21と接続する2つの橋台部22,23とを有している。つまり、H字状の三次元形状物は、架橋構造を有している。橋台部22,23は、板状であって、対向して位置している。橋桁部21は、板状であって、橋台部22,23の対向した面に架橋されている。三次元形状物は、光造形装置によって下から順に一層ずつ光硬化されることによって造形される。
Next, with reference to FIG. 2 to FIG. 4, slice data used when modeling a three-dimensional object having a bridge structure in which an abutment part and a bridge girder part are connected will be described.
As shown in FIG. 2, a case where a three-dimensional object having an H shape in front view is modeled will be described here. The H-shaped three-dimensional object has a plate-like bridge girder part 21 and two abutment parts 22 and 23 connected to the bridge girder part 21. That is, the H-shaped three-dimensional shape has a crosslinked structure. The abutment parts 22 and 23 are plate-shaped, and are located facing each other. The bridge girder portion 21 is plate-shaped and is bridged to the opposed surfaces of the abutment portions 22 and 23. The three-dimensional shape is modeled by photocuring one layer at a time from the bottom by an optical modeling apparatus.

光造形装置の制御部である制御装置10は、三次元形状物が架橋構造を有する場合に、スライスデータを算出する際に三次元形状物に隙間を形成する。光造形装置の制御装置10には、隙間を生成する変換部として機能させる生成プログラムが保存されている。制御装置10は、橋桁部21と橋台部22,23とが接続している接続部25の一部に隙間を形成する。隙間は、積層される同一層における橋桁部21の奥行き方向に形成する。なお、橋桁部21の奥行き方向とは、積層方向と直交し、且つ橋台部22,23に沿う方向である。隙間は、積層方向に間隔を置いて形成する。隙間は、橋桁部21と橋台部22,23とによって形成される角26から積層方向に延長した延長線P上の一部に形成する。隙間は、橋桁部21の最上面を含む層及び最下面を含む層に形成する。   When the three-dimensional object has a cross-linking structure, the control device 10 that is a control unit of the optical modeling apparatus forms a gap in the three-dimensional object when calculating slice data. The control apparatus 10 of the optical modeling apparatus stores a generation program that functions as a conversion unit that generates a gap. The control device 10 forms a gap in a part of the connection part 25 where the bridge girder part 21 and the abutment parts 22 and 23 are connected. A clearance gap is formed in the depth direction of the bridge girder part 21 in the same layer laminated | stacked. The depth direction of the bridge girder 21 is a direction perpendicular to the stacking direction and along the abutment portions 22 and 23. The gap is formed at an interval in the stacking direction. The gap is formed in a part on the extension line P extending in the stacking direction from the corner 26 formed by the bridge girder 21 and the abutment parts 22 and 23. The gap is formed in the layer including the uppermost surface and the layer including the lowermost surface of the bridge girder 21.

図3に示されるように、隙間24を有する層のスライスデータ30aは、層の外形線となる枠31と、隙間24によって分割された造形部32とを組み合わせた形状のデータである。造形部32は、橋桁部21と各橋台部22,23とが接続する接続部25に位置する隙間24によって、橋桁部21となる第1造形部32aと、橋台部22となる第2造形部32bと、橋台部23となる第3造形部32cとを備える。隙間24の幅Wは、レーザ12から出射された光線(レーザ光)によって硬化性樹脂が硬化する硬化幅よりも大きく形成される。各層の隙間24は、枠31によって閉じられた形状に造形される。このため、造形物の表面には、凹凸が現れることなく意匠性を維持できる。   As illustrated in FIG. 3, the slice data 30 a of the layer having the gap 24 is data of a shape in which the frame 31 that is the outline of the layer and the modeling portion 32 that is divided by the gap 24 are combined. The modeling part 32 includes a first modeling part 32 a that becomes the bridge girder part 21 and a second modeling part that becomes the abutment part 22 by the gap 24 positioned in the connection part 25 where the bridge girder part 21 and each abutment part 22, 23 connect. 32b and the 3rd modeling part 32c used as the abutment part 23 are provided. The width W of the gap 24 is formed to be larger than the curing width at which the curable resin is cured by the light beam (laser light) emitted from the laser 12. The gap 24 of each layer is shaped into a shape closed by a frame 31. For this reason, the designability can be maintained without irregularities appearing on the surface of the modeled object.

図4に示されるように、橋桁部21のスライスデータ30は、隙間24を有する層のスライスデータ30aと、隙間24を有しない層のスライスデータ30bとを備えている。隙間24を有する層のスライスデータ30aと、隙間24を有しない層のスライスデータ30bとは、一層毎交互に形成される。なお、スライスデータ30には、造形した三次元形状物の大きさが設計データと一致するように補正する輪郭線データを含む。輪郭線データを生成する際に隙間24を生成する。   As shown in FIG. 4, the slice data 30 of the bridge girder 21 includes slice data 30 a of a layer having a gap 24 and slice data 30 b of a layer having no gap 24. The slice data 30a of the layer having the gap 24 and the slice data 30b of the layer not having the gap 24 are alternately formed for each layer. The slice data 30 includes contour line data that is corrected so that the size of the three-dimensional shaped object that is formed matches the design data. The gap 24 is generated when generating the contour line data.

橋桁部21の最下面を含む層の一層下をn層とする。n層は、橋台部22,23のみなので橋桁部21となる第1造形部32aを有さない造形部34からなる層である。(n+1)層は、橋桁部21の最下面を含む層であって隙間24を有する。各隙間24は、延長線Pを繋いだ境界線Bを縁部として橋台部22,23側に形成される。(n+2)層は、隙間24を有しない造形部33からなる層である。(n+3)層は、隙間24を有する造形部32からなる層である。(n+4)層は、隙間24を有しない造形部33からなる層である。(n+5)層は、隙間24を有する造形部32からなる層である。(n+6)層は、隙間24を有しない造形部33からなる層である。以降、橋桁部21を含む層は、同様に形成される。橋桁部21の最上面を含む層は、最下面を含む層と同様に隙間24を有する。   A layer below the layer including the lowermost surface of the bridge girder 21 is an n layer. Since the n layer is only the abutment portions 22 and 23, the n layer is a layer including the modeling portion 34 that does not have the first modeling portion 32 a that becomes the bridge girder portion 21. The (n + 1) layer is a layer including the lowermost surface of the bridge girder 21 and has a gap 24. Each clearance gap 24 is formed in the abutment part 22 and 23 side by using the boundary line B which connected the extension line P as an edge. The (n + 2) layer is a layer composed of the modeling portion 33 that does not have the gap 24. The (n + 3) layer is a layer composed of the modeling part 32 having the gap 24. The (n + 4) layer is a layer composed of the modeling portion 33 that does not have the gap 24. The (n + 5) layer is a layer composed of the modeling part 32 having the gap 24. The (n + 6) layer is a layer composed of the modeling portion 33 that does not have the gap 24. Henceforth, the layer containing the bridge girder part 21 is formed similarly. The layer including the uppermost surface of the bridge girder 21 has a gap 24 in the same manner as the layer including the lowermost surface.

さて、光造形装置は、上記のスライスデータを基に三次元形状物を造形すると、橋桁部21と橋台部22,23との接続部25に隙間24が形成されているので、各層の硬化に伴って収縮がおきたとしても、架橋部分における変形を抑制することができる。これは、各層の硬化時に橋台部22,23の橋桁部21と接続している部分にのみ、橋桁部21側へ収縮する力が働くので、橋桁部21の下部分の橋台部22,23が変形する。なお、収縮とは、レーザ光の照射による熱や重合反応熱による熱収縮と、液体の樹脂が固体に変わるときに液体の密度より固体の密度が小さいことによる硬化収縮等を含む。そこで、この橋桁部21における収縮を隙間24によって分断することで変形を抑制している。よって、架橋構造を有する三次元形状物の各層の硬化時における変形を抑制でき、図5のような変形のない造形物となる。   Now, when a stereolithography apparatus models a three-dimensional shape based on the above slice data, a gap 24 is formed in the connection part 25 between the bridge girder part 21 and the abutment parts 22, 23, so that each layer can be cured. Even if contraction occurs, deformation at the cross-linked portion can be suppressed. This is because only the portion connected to the bridge girder portion 21 of the abutment portions 22 and 23 at the time of hardening of each layer has a contracting force toward the bridge girder portion 21 side. Deform. The shrinkage includes heat shrinkage due to laser light irradiation or heat of polymerization reaction, and curing shrinkage due to the fact that the density of the solid is smaller than the density of the liquid when the liquid resin changes to a solid. Therefore, the deformation in the bridge girder 21 is suppressed by dividing the shrinkage by the gap 24. Therefore, the deformation | transformation at the time of hardening of each layer of the three-dimensional shaped object which has a bridge | crosslinking structure can be suppressed, and it becomes a molded article without a deformation | transformation like FIG.

以上、説明した実施形態によれば、以下の効果を奏することができる。
(1)架橋構造を有する三次元形状物を造形する際に、橋台部22,23と橋桁部21との接続部25の一部に隙間24を形成する。このため、架橋構造を有する三次元形状物を造形する際に、各層の硬化に伴って収縮が発生したとしても、隙間24によって収縮が抑制される。よって、架橋構造を有する三次元形状物の各層の硬化時における変形を抑制できる。
As described above, according to the embodiment described above, the following effects can be obtained.
(1) When forming a three-dimensional shape having a cross-linked structure, a gap 24 is formed in a part of the connection portion 25 between the abutment portions 22 and 23 and the bridge girder portion 21. For this reason, even when shrinkage occurs as each layer is cured when a three-dimensional shape having a crosslinked structure is formed, the shrinkage is suppressed by the gap 24. Therefore, the deformation | transformation at the time of hardening of each layer of the three-dimensional-shaped thing which has a crosslinked structure can be suppressed.

(2)積層方向に間隔を置いて隙間24を形成する。このため、架橋構造を有する三次元形状物の各層の硬化時における変形を隙間によって抑制しつつ、間隔を置いて隙間24を形成するので強度を持たせることができる。   (2) The gap 24 is formed at an interval in the stacking direction. For this reason, since the gap 24 is formed at an interval while suppressing the deformation of each layer of the three-dimensionally shaped article having a crosslinked structure at the time of curing, the strength can be increased.

(3)積層される同一層における橋桁部21の奥行き方向に亘って隙間24を形成する。橋桁部21の同一層は、奥行き方向において各層の硬化時に同じように収縮によって変形する。このため、架橋構造を有する三次元形状物の各層の硬化時における変形を抑制できる。   (3) A gap 24 is formed across the depth direction of the bridge girder portion 21 in the same layer to be laminated. The same layer of the bridge girder 21 is deformed by shrinkage in the same way when the layers are cured in the depth direction. For this reason, the deformation | transformation at the time of hardening of each layer of the three-dimensional-shaped thing which has a crosslinked structure can be suppressed.

(4)橋台部22,23と橋桁部21とによって形成される角26の積層方向における角26の延長線上の一部に隙間24を形成する。橋台部22,23と橋桁部21とによって形成される角26の積層方向における角26の延長線上は、各層の硬化時の収縮によって顕著に変形する。このため、架橋構造を有する三次元形状物の各層の硬化時における変形を更に抑制できる。   (4) The gap 24 is formed in a part on the extension line of the corner 26 in the stacking direction of the corner 26 formed by the abutment portions 22 and 23 and the bridge girder portion 21. The extension line of the corner 26 in the stacking direction of the corner 26 formed by the abutment portions 22 and 23 and the bridge girder portion 21 is remarkably deformed by contraction at the time of curing of each layer. For this reason, the deformation | transformation at the time of hardening of each layer of the three-dimensional-shaped thing which has a crosslinked structure can further be suppressed.

(5)橋桁部21の最上面を含む層及び最下面を含む層の少なくとも一方に隙間24を形成する。橋台部22,23と橋桁部21との接続部分である最上面と最下面とは、各層の硬化時の収縮によって顕著に変形する。このため、架橋構造を有する三次元形状物の各層の硬化時における変形を更に抑制できる。   (5) The gap 24 is formed in at least one of the layer including the uppermost surface and the layer including the lowermost surface of the bridge girder 21. The uppermost surface and the lowermost surface, which are the connection portions between the abutment portions 22 and 23 and the bridge girder portion 21, are significantly deformed by the shrinkage at the time of curing of each layer. For this reason, the deformation | transformation at the time of hardening of each layer of the three-dimensional-shaped thing which has a crosslinked structure can further be suppressed.

(6)照射されるレーザ光の直径よりも大きく隙間24を形成する。このため、造形物が収縮する際に、収縮が伝達されることを十分に抑制できる。よって、架橋構造を有する三次元形状物の各層の硬化時における変形を更に抑制できる。   (6) The gap 24 is formed larger than the diameter of the irradiated laser beam. For this reason, it can fully suppress that contraction is transmitted when a modeling thing contracts. Therefore, the deformation | transformation at the time of hardening of each layer of the three-dimensional-shaped thing which has a crosslinked structure can be suppressed further.

なお、上記実施形態は、これを適宜変更した以下の形態にて実施することができる。
・上記実施形態では、制御装置10を制御部としてスライスデータ及び輪郭線データを生成したが、光造形装置とは異なる外部装置を制御部としてスライスデータ及び輪郭線データの少なくとも一方を生成してもよい。
In addition, the said embodiment can be implemented with the following forms which changed this suitably.
In the above embodiment, the slice data and the contour line data are generated using the control device 10 as the control unit, but at least one of the slice data and the contour line data may be generated using an external device different from the optical modeling apparatus as the control unit. Good.

・上記実施形態では、輪郭線データを生成する際に隙間24を生成したが、スライスデータを生成する際に隙間24を生成してもよい。
・上記実施形態では、隙間24の幅Wをレーザ光の照射によって光硬化性材料が硬化する硬化幅よりも大きくした。しかしながら、変形の抑制が可能であれば、レーザ光の照射によって光硬化性材料が硬化する硬化幅よりも小さくてもよい。
In the above embodiment, the gap 24 is generated when generating the contour line data. However, the gap 24 may be generated when generating the slice data.
In the above embodiment, the width W of the gap 24 is made larger than the curing width at which the photocurable material is cured by the laser light irradiation. However, as long as the deformation can be suppressed, the width may be smaller than the curing width at which the photocurable material is cured by the irradiation of the laser beam.

・上記実施形態では、橋桁部21の最上面を含む層及び最下面を含む層に隙間24を形成したが、いずれか一方のみでもよく。また、いずれの層にも隙間24を形成しなくてもよい。   In the above embodiment, the gap 24 is formed in the layer including the uppermost surface and the layer including the lowermost surface of the bridge girder portion 21, but only one of them may be used. Further, the gap 24 may not be formed in any layer.

・上記実施形態では、各隙間24を、延長線Pを繋いだ境界線Bを縁部として橋台部22,23側に形成した。しかしながら、各隙間24を、延長線Pを繋いだ境界線Bを縁部として橋桁部21側に形成してもよい。また、隙間24の位置は、橋桁部21と橋台部22,23との接続部25であればどこでもよい。   In the above embodiment, the gaps 24 are formed on the abutment portions 22 and 23 side with the boundary line B connecting the extension line P as an edge. However, each gap 24 may be formed on the bridge girder 21 side with the boundary line B connecting the extension lines P as an edge. Further, the position of the gap 24 may be anywhere as long as it is a connection part 25 between the bridge girder part 21 and the abutment parts 22 and 23.

・上記実施形態では、各橋台部22,23に対する接続部25の隙間24を同一層に形成した。しかしながら、各橋台部22,23に対する接続部25の隙間24を異なる層に形成してもよい。   In the above embodiment, the gap 24 of the connection portion 25 with respect to the abutment portions 22 and 23 is formed in the same layer. However, you may form the clearance gap 24 of the connection part 25 with respect to each abutment part 22 and 23 in a different layer.

・上記実施形態では、同一層における橋桁部21の奥行方向に亘って隙間24を形成した。しかしながら、同一層において隙間24を分断してもよい。
・上記実施形態では、隙間24を有する層と隙間24を有しない層とを交互に形成した。しかしながら、隙間24を有する層と隙間24を有しない層とを複数層毎に並べてもよく、隙間24を有する層と隙間24を有しない層とを不規則に並べてもよい。
-In the said embodiment, the clearance gap 24 was formed over the depth direction of the bridge girder part 21 in the same layer. However, the gap 24 may be divided in the same layer.
In the above embodiment, layers having gaps 24 and layers not having gaps 24 are alternately formed. However, the layer having the gap 24 and the layer having no gap 24 may be arranged for each of a plurality of layers, and the layer having the gap 24 and the layer having no gap 24 may be arranged irregularly.

・上記実施形態では、橋桁部21の上面よりも突出する橋台部22,23を有する架橋構造において説明した。しかしながら、橋桁部21の上面よりも突出しない橋台部を有する架橋構造においても同様に効果が得られる。   In the above embodiment, the bridge structure having the abutment portions 22 and 23 protruding from the upper surface of the bridge girder portion 21 has been described. However, the same effect can be obtained in a bridge structure having an abutment that does not protrude from the upper surface of the bridge girder 21.

・上記実施形態では、光線によって光硬化性材料を硬化させる点描方式の光造形装置に本発明を適用した。しかしながら、点描方式の光造形装置に代えて、面露光によって光硬化性材料を硬化させる面露光方式の光造形装置に本発明を適用してもよい。面露光方式の光造形装置は、光源として高圧水銀ランプ、超高圧水銀ランプ、低圧水銀ランプやその他のレーザ光以外の光を発射するランプやLEDを用いる。面露光方式の光造形装置は、光源と光硬化性樹脂の造形面との間に、微小ドットエリアでの遮光及び透光が可能な微小液晶シャッターを多数面状に配置した液晶描画マスク、または複数のデジタルマイクロミラーシャッターを面状に配置した面状描画マスクを配置する。面露光方式の光造形装置は、面状描画マスクを介して光硬化性樹脂の造形面に光を照射して所定の断面形状パターンを有する光硬化樹脂層を順次積層させて三次元形状物を造形する。   In the embodiment described above, the present invention is applied to a stippling stereolithography apparatus that cures a photocurable material with light rays. However, the present invention may be applied to a surface exposure type optical modeling apparatus that cures a photocurable material by surface exposure instead of a stippling type optical modeling apparatus. The surface exposure type stereolithography apparatus uses, as a light source, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a low pressure mercury lamp, or other lamps or LEDs that emit light other than laser light. The surface exposure type stereolithography apparatus is a liquid crystal drawing mask in which a large number of micro liquid crystal shutters capable of shielding and transmitting light in a micro dot area are arranged between a light source and a photo molding resin molding surface, or A planar drawing mask in which a plurality of digital micromirror shutters are arranged in a planar shape is arranged. The surface exposure type stereolithography apparatus irradiates light on the modeling surface of the photocurable resin through a planar drawing mask and sequentially laminates a photocurable resin layer having a predetermined cross-sectional shape pattern to form a three-dimensional object. Model.

10…制御装置、11…液槽、12…レーザ、13…スキャナ、15…昇降テーブル、16…テーブル駆動装置、17…リコータ、18…リコータ駆動装置、21…橋桁部、22,23…橋台部、24…隙間、25…接続部、26…角、30,30a,30b…スライスデータ、31…枠、32,33,34…造形部、32a…第1造形部、32b…第2造形部、32c…第3造形部、B…境界線、P…延長線、S…造形物、W…幅。     DESCRIPTION OF SYMBOLS 10 ... Control apparatus, 11 ... Liquid tank, 12 ... Laser, 13 ... Scanner, 15 ... Lifting table, 16 ... Table drive device, 17 ... Recoater, 18 ... Recoater drive device, 21 ... Bridge girder part, 22, 23 ... Abutment part , 24 ... gap, 25 ... connection part, 26 ... corner, 30, 30a, 30b ... slice data, 31 ... frame, 32, 33, 34 ... modeling part, 32a ... first modeling part, 32b ... second modeling part, 32c ... 3rd modeling part, B ... Boundary line, P ... Extension line, S ... Modeling thing, W ... Width.

Claims (8)

光硬化性材料に選択的に光を照射して前記光硬化性材料を一層ずつ硬化させることによって三次元形状物を造形する光造形方法において、
橋台部と橋桁部とが接続された架橋構造を有する三次元形状物を造形する際に、前記橋台部と前記橋桁部との接続部の一部に隙間を形成し、
前記隙間は、積層される同一層における前記橋桁部の積層方向と直交し、且つ前記橋台部に沿う方向である奥行き方向に形成する
ことを特徴とする光造形方法。
In the optical modeling method of modeling a three-dimensional shape by selectively irradiating light to the photocurable material and curing the photocurable material one by one,
When forming a three-dimensional shape having a bridge structure in which the abutment part and the bridge girder part are connected, a gap is formed in a part of the connection part between the abutment part and the bridge girder part ,
The stereolithography method , wherein the gap is formed in a depth direction which is perpendicular to the stacking direction of the bridge girder portion in the same layer to be stacked and is along the abutment portion .
請求項1に記載の光造形方法において、
前記隙間は、積層方向に間隔を置いて形成する
ことを特徴とする光造形方法。
The stereolithography method according to claim 1,
The gap is formed with an interval in the stacking direction.
請求項1又は2に記載の光造形方法において、
前記隙間は、前記奥行き方向に亘って形成する
ことを特徴とする光造形方法。
In the optical modeling method according to claim 1 or 2,
The said gap is formed over the said depth direction. The optical modeling method characterized by the above-mentioned .
請求項1〜3のいずれか一項に記載の光造形方法において、
前記隙間は、前記橋台部と前記橋桁部とによって形成される角から積層方向に延長した延長線上の一部に形成する
ことを特徴とする光造形方法。
In the optical modeling method as described in any one of Claims 1-3,
The said gap is formed in a part on the extension line extended in the lamination direction from the angle | corner formed by the said abutment part and the said bridge girder part. The optical modeling method characterized by the above-mentioned.
請求項1〜4のいずれか一項に記載の光造形方法において、
前記隙間は、前記橋桁部の最上面を含む層及び最下面を含む層の少なくとも一方に形成する
ことを特徴とする光造形方法。
In the optical modeling method as described in any one of Claims 1-4,
The gap is formed in at least one of a layer including the uppermost surface and a layer including the lowermost surface of the bridge girder.
請求項1〜5のいずれか一項に記載の光造形方法において、
前記光は、光線であって、
前記隙間は、前記光線の照射によって前記光硬化性材料が硬化する硬化幅よりも大きく形成する
ことを特徴とする光造形方法。
In the optical modeling method as described in any one of Claims 1-5,
The light is a light beam,
The said space is formed larger than the hardening width | variety which the said photocurable material hardens | cures by irradiation of the said light ray. The optical modeling method characterized by the above-mentioned.
請求項1〜6のいずれか一項に記載の光造形方法を行う制御部を備える
ことを特徴とする光造形装置。
An optical modeling apparatus comprising: a control unit that performs the optical modeling method according to claim 1.
光硬化性材料に選択的に光を照射して前記光硬化性材料を一層ずつ硬化させることによって三次元形状物を造形する光造形に用いるデータを制御部によって生成する生成プログラムであって、
前記制御部を、橋台部と橋桁部とが接続された架橋構造を有する三次元形状物の設計データに基づき、前記橋台部と前記橋桁部との接続部の一部に隙間を生成する変換部として機能させ
前記隙間は、積層される同一層における前記橋桁部の積層方向と直交し、且つ前記橋台部に沿う方向である奥行き方向に生成される
ことを特徴とする生成プログラム。
A generation program that generates data to be used for optical modeling for modeling a three-dimensional shape by selectively irradiating light to a photocurable material and curing the photocurable material one layer at a time,
The control unit is a conversion unit that generates a gap in a part of a connection part between the abutment part and the bridge girder part based on design data of a three-dimensional shape object having a bridge structure in which the abutment part and the bridge girder part are connected. to function as,
The said clearance gap is produced | generated in the depth direction which is orthogonal to the lamination direction of the said bridge girder part in the same layer laminated | stacked, and is a direction along the said abutment part .
JP2014025707A 2014-02-13 2014-02-13 Stereolithography method, stereolithography apparatus, and generation program Active JP6022493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014025707A JP6022493B2 (en) 2014-02-13 2014-02-13 Stereolithography method, stereolithography apparatus, and generation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014025707A JP6022493B2 (en) 2014-02-13 2014-02-13 Stereolithography method, stereolithography apparatus, and generation program

Publications (2)

Publication Number Publication Date
JP2015150761A JP2015150761A (en) 2015-08-24
JP6022493B2 true JP6022493B2 (en) 2016-11-09

Family

ID=53893524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014025707A Active JP6022493B2 (en) 2014-02-13 2014-02-13 Stereolithography method, stereolithography apparatus, and generation program

Country Status (1)

Country Link
JP (1) JP6022493B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3342789B1 (en) * 2015-08-26 2021-06-02 Nagase ChemteX Corporation Patterning material, patterning method and patterning device
EP3702132B1 (en) * 2019-02-26 2023-01-11 UpNano GmbH Method for lithography-based generative production of a three-dimensional component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3641276B2 (en) * 1991-12-20 2005-04-20 Jsr株式会社 3D image forming method
JPH05329940A (en) * 1992-05-29 1993-12-14 Japan Synthetic Rubber Co Ltd Method of molding three-dimewsional
JP3181987B2 (en) * 1992-06-25 2001-07-03 松下電工株式会社 Manufacturing method of three-dimensional shaped object
JPH07100937A (en) * 1993-10-01 1995-04-18 C Met Kk Photosetting shaping method for reducing internal stress
JP3314608B2 (en) * 1996-02-27 2002-08-12 トヨタ自動車株式会社 Stereolithography

Also Published As

Publication number Publication date
JP2015150761A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
JP6800679B2 (en) Stereolithography equipment, stereolithography method and stereolithography program
JP6486189B2 (en) Three-dimensional printing apparatus and three-dimensional printing method
JP6849365B2 (en) Stereolithography equipment, stereolithography method and stereolithography program
JP5971266B2 (en) Stereolithography apparatus and stereolithography method
CN105014963B (en) Three-dimensional printing device
JP7132927B2 (en) Photo-curable three-dimensional printing method and apparatus
KR101954438B1 (en) Three Dimensional Printing Apparatus
JP2009132126A (en) Optical shaping apparatus and optical shaping method
JP2017007148A (en) Three-dimensional shaping apparatus
JP2009132127A (en) Optical shaping apparatus and optical shaping method
WO2018061996A1 (en) Device for three-dimensional modeling, method for manufacturing three-dimensional object, and program for three-dimensional modeling
WO2015030102A1 (en) Photofabrication method
JP6022493B2 (en) Stereolithography method, stereolithography apparatus, and generation program
JP2015027738A (en) Three-dimensional contouring apparatus
KR102180817B1 (en) 3d printer and printing system
WO2017110130A1 (en) Three-dimensional object shaping device and manufacturing method
CN114474732A (en) Data processing method, system, 3D printing method, device and storage medium
JP6247837B2 (en) Stereolithography method
WO2014112503A1 (en) Light shaping apparatus
CN114008619A (en) Method and system for outputting a manufacturing document for producing an optical element
JP2010052318A (en) Light shaping method
JP6210784B2 (en) 3D modeling apparatus and 3D modeling method
JP2021037687A (en) Molding method of three-dimensional molded product, molding program, molded model generation method, molding device, and three-dimensional molded product
JPH05154924A (en) Flat laminated sheet shaping method in photosetting shaping method
JP2017209820A (en) Light molding device and light molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161005

R150 Certificate of patent or registration of utility model

Ref document number: 6022493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250