JPH0671761A - Formation of three-dimensional form - Google Patents

Formation of three-dimensional form

Info

Publication number
JPH0671761A
JPH0671761A JP4227609A JP22760992A JPH0671761A JP H0671761 A JPH0671761 A JP H0671761A JP 4227609 A JP4227609 A JP 4227609A JP 22760992 A JP22760992 A JP 22760992A JP H0671761 A JPH0671761 A JP H0671761A
Authority
JP
Japan
Prior art keywords
layer
photo
light
photocurable
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4227609A
Other languages
Japanese (ja)
Inventor
Yoshikazu Azuma
喜万 東
Yoshiyuki Uchinono
内野々良幸
Takeshi Ikemura
武史 池村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4227609A priority Critical patent/JPH0671761A/en
Publication of JPH0671761A publication Critical patent/JPH0671761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To provide a method capable of forming a three dimensional form which is high in form precision by a method wherein a warp and deformation of a photoset layer generated by following hardening shrinkage of photosetting resin are restrained from occurring. CONSTITUTION:In a method for forming a required three dimensional form by irradiating a photoset resin liquid with light to form a photoset layer and piling up a plurality of the photoset layers, a radiation pattern of the light when the photoset layer 5 is formed is changed for each hardening layer 5 such as a layer (n), a layer (n+1), a layer (n+2), etc. A difference in hardening shrinkage stress generated in each photoset layer 5 is cancelled thereby. A warp and deformation of the photoset layer 5 owing to hardening shrinkage stress are prevented, and precision in a three-dimensional form is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、三次元形状の形成方
法に関し、詳しくは、光の照射によって硬化する光硬化
性樹脂を用いて、立体的な三次元形状を有する物品を成
形製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a three-dimensional shape, and more particularly to a method for molding and producing an article having a three-dimensional shape using a photocurable resin which is cured by irradiation with light. It is about.

【0002】[0002]

【従来の技術】光硬化性樹脂を用いて三次元形状を形成
する方法は、複雑な三次元形状を、成形型や特別な加工
工具等を用いることなく、簡単かつ正確に形成すること
ができる方法として、各種の製品モデルや立体模型の製
造等に利用することが考えられている。具体的には、例
えば、特開昭61−114817号公報や特開昭63−
141724号公報、特開昭60−247515号公報
などに開示された方法がある。
2. Description of the Related Art A method of forming a three-dimensional shape using a photo-curable resin can easily and accurately form a complicated three-dimensional shape without using a molding die or a special processing tool. As a method, it is considered to use it for manufacturing various product models and three-dimensional models. Specifically, for example, Japanese Patent Application Laid-Open No. 61-114817 and Japanese Patent Application Laid-Open No. 63-114817.
There are methods disclosed in JP-A-141724 and JP-A-60-247515.

【0003】特開昭61−114817号公報記載の方
法は、つぎように実施される。容器内に光硬化性樹脂液
を供給して、一定厚みの樹脂液層を形成し、この樹脂液
層に対し、液面上方からレーザ光を照射して、この樹脂
液層を部分的に光硬化させる。その際、レーザ光の照射
位置を水平方向に順次移動させることにより、所定のパ
ターンを有する光硬化層を形成することができる。つぎ
に、この光硬化層の上に新たな樹脂液を供給して新しい
樹脂液層を形成し、この樹脂液層に再びレーザ光を照射
する。このような工程を繰り返して、光硬化層を順次積
み重ねることにより、所望の立体形状を有する樹脂製品
が得られる。
The method described in Japanese Patent Laid-Open No. 61-114817 is carried out as follows. A photo-curable resin liquid is supplied into the container to form a resin liquid layer of a certain thickness, and the resin liquid layer is irradiated with laser light from above the liquid surface to partially expose the resin liquid layer. Let it harden. At that time, by sequentially moving the irradiation position of the laser light in the horizontal direction, a photo-cured layer having a predetermined pattern can be formed. Next, a new resin liquid is supplied onto the photocurable layer to form a new resin liquid layer, and the resin liquid layer is irradiated again with laser light. By repeating such steps and sequentially stacking the photocurable layers, a resin product having a desired three-dimensional shape can be obtained.

【0004】上記方法以外にも、光硬化させる樹脂液層
の形成方法や、レーザ光の照射方法、あるいは、光硬化
層の積み重ね方法などが違う様々な方法が提案されてい
る。
In addition to the above methods, various methods have been proposed which differ in the method of forming a resin liquid layer to be photocured, the method of irradiating laser light, the method of stacking photocurable layers, and the like.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記のよう
な従来における三次元形状の形成方法では、光の照射に
よる個々の光硬化層の形状精度が正確であっても、光硬
化層を積み重ねて三次元形状を形成すると、光硬化層が
反ったり変形したりして、最終的に形成される三次元形
状の精度が悪くなるという問題があった。
However, in the conventional method for forming a three-dimensional shape as described above, even if the shape accuracy of each photocurable layer by irradiation of light is accurate, the photocurable layers are stacked. When a three-dimensional shape is formed, the photo-curable layer is warped or deformed, and the accuracy of the finally formed three-dimensional shape deteriorates.

【0006】これは、先に形成された光硬化層の上に、
新たな光硬化層を形成する際に、光硬化性樹脂の硬化収
縮によって、上下の光硬化層の間に応力が発生し、この
応力で、光硬化層の反りや変形が生じるのである。具体
的には、図3に示すように、光硬化性樹脂液Lの液面に
レーザ光Rを照射して、先に形成された光硬化層m0
上に、新たな光硬化層m1 を形成する場合について考え
る。図3(a) に示すように、レーザ光Rを、直線的に繰
り返し走査して、棒状の光硬化体cを次々と並べるよう
に形成して、面状の光硬化層m1 を形成する。そうする
と、図3(b) に示すように、レーザ光Rを照射された、
棒状光硬化体cに対応する一定範囲の光硬化性樹脂L
が、光硬化を起こすと同時に硬化収縮を起こす。棒状光
硬化体cは、片側の側面が先に光硬化された棒状光硬化
体cに接合されているとともに、底面は先に形成された
光硬化層m0 に接合されている。このような棒状光硬化
体cが硬化収縮を起こせば、棒状硬化体cは、先に形成
された隣接する棒状光硬化体c側に収縮変形して、下側
の光硬化層m0 を上方に持ち上げるようとする力が発生
する。図3のように、レーザ光Rを、直線的に繰り返し
走査すると、各棒状光硬化体cを形成する毎に、同じ方
向に硬化収縮力が作用するので、これらの硬化収縮力が
集積されて、光硬化層m0 、m1 を上方側に反り返るよ
うに変形させてしまうのである。
[0006] This is, on the photo-cured layer previously formed,
When a new photo-curable layer is formed, stress is generated between the upper and lower photo-curable layers due to the curing shrinkage of the photo-curable resin, and the stress causes warping and deformation of the photo-curable layer. Specifically, as shown in FIG. 3, the liquid surface of the photocurable resin liquid L is irradiated with the laser beam R, and a new photocurable layer m is formed on the photocurable layer m 0 formed previously. Consider the case of forming 1 . As shown in FIG. 3 (a), the laser beam R is linearly and repeatedly scanned to form rod-shaped photo-curing bodies c one after another to form a planar photo-curing layer m 1 . . Then, as shown in FIG. 3 (b), the laser beam R is irradiated,
A certain range of photocurable resin L corresponding to the rod-shaped photocurable body c
However, it causes photo-curing and at the same time causes curing shrinkage. One side surface of the rod-shaped photo-curing body c is joined to the rod-shaped photo-curing body c that has been previously photo-cured, and the bottom surface is joined to the photo-curing layer m 0 that was previously formed. When the rod-shaped photo-cured body c undergoes curing shrinkage, the rod-shaped photo-cured body c shrinks and deforms toward the adjacent rod-shaped photo-cured body c formed earlier, and the lower photo-cured layer m 0 is moved upward. The force to lift to is generated. As shown in FIG. 3, when the laser light R is linearly and repeatedly scanned, the curing shrinkage force acts in the same direction every time each rod-shaped photocured body c is formed, and therefore these curing shrinkage forces are accumulated. That is, the photo-cured layers m 0 and m 1 are deformed so as to warp upward.

【0007】そこで、この発明の課題は、前記したよう
な三次元形状の形成方法において、光硬化性樹脂の硬化
収縮に伴って生じる光硬化層の反りや変形を抑えて、形
状精度の高い三次元形状を形成できる方法を提供するこ
とにある。
Therefore, an object of the present invention is to prevent the warp and deformation of the photocurable layer caused by the curing shrinkage of the photocurable resin in the method for forming a three-dimensional shape as described above, and to obtain a tertiary shape with high shape accuracy. It is to provide a method capable of forming an original shape.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する、こ
の発明にかかる三次元形状の形成方法は、光硬化性樹脂
液に光を照射して光硬化層を形成し、この光硬化層を複
数層積み重ねて所望の三次元形状を形成する方法におい
て、光硬化層を形成する際の光の照射パターンを、各光
硬化層毎に違える。
A method for forming a three-dimensional shape according to the present invention, which solves the above-mentioned problems, irradiates a photocurable resin liquid with light to form a photocurable layer. In the method of stacking a plurality of layers to form a desired three-dimensional shape, the light irradiation pattern when forming the photocurable layer is different for each photocurable layer.

【0009】光硬化性樹脂の材料、光の照射装置、光硬
化層を積み重ねるための装置、あるいは、樹脂液の層を
形成したり、光を照射したり、光硬化層を積み重ねたり
する方法もしくは工程については、前記した先行技術な
どに開示されているような、通常の三次元形状の形成方
法と同様の方法が適用できる。この発明では、個々の光
硬化層を形成する際における光の照射パターンを、光硬
化層毎に違える。光の照射パターンとは、レーザ光など
のビーム状の光を、光硬化層となる領域全体に照射され
るように光を走査する際における、光の走査経路のパタ
ーンを意味している。
A material of a photocurable resin, a light irradiation device, a device for stacking photocurable layers, or a method of forming a layer of resin liquid, irradiating light, or stacking photocurable layers, or Regarding the process, the same method as the ordinary three-dimensional shape forming method as disclosed in the above-mentioned prior art can be applied. In this invention, the light irradiation pattern when forming the individual photo-curable layers is different for each photo-curable layer. The light irradiation pattern means a pattern of a light scanning path when scanning light so that beam-shaped light such as laser light is irradiated onto the entire region which becomes the photo-curable layer.

【0010】具体的には、前記した従来技術のように、
光を直線的に繰り返し走査するという照射パターンがあ
る。この場合、光を直線的に走査する方向を違えれば、
異なる照射パターンとなる。光を、光硬化層となる領域
の中心から外周に大きくなる多数の同心円状あるいは同
心多角形状などの同心図形状に走査するという照射パタ
ーンがある。同心図形状でなく、渦巻き状に走査する照
射パターンもある。渦巻きは、直線を屈曲させて構成す
る場合、円あるいは楕円などの曲線で構成する場合があ
る。また、渦巻き状の照射パターンは、中心から外周ま
で連続した1本の走査経路で構成する場合と、光硬化層
となる領域の外方まではみ出す渦巻き状の走査経路を設
定するが、光硬化層となる領域のみで光の照射を行うよ
うにして断続的な走査経路を構成する場合がある。
Specifically, as in the above-mentioned prior art,
There is an irradiation pattern in which light is linearly and repeatedly scanned. In this case, if you change the direction to scan the light linearly,
The irradiation patterns are different. There is an irradiation pattern in which the light is scanned into a large number of concentric circles or concentric polygonal shapes that increase from the center of the region to be the photocurable layer to the outer periphery. There is also an irradiation pattern that scans in a spiral shape instead of the concentric shape. The spiral may be formed by bending a straight line, or may be formed by a curved line such as a circle or an ellipse. In addition, the spiral irradiation pattern is configured by one continuous scanning path from the center to the outer circumference, and the spiral scanning path protruding outside the region to be the photo-curing layer is set. In some cases, the intermittent scanning path may be configured by irradiating the light only in the area.

【0011】同心状あるいは渦巻き状の場合、光硬化層
の外形と相似形状で段階的に変化する同心図形あるいは
渦巻きで構成する場合などがある。また、中心から外周
へと走査する場合と、外周から中心へと走査する場合で
照射パターンが異なる。光硬化層となる領域を、小さな
領域に分割して、この小領域毎に適当な走査経路で光を
照射して小ブロック状の光硬化層を形成し、この小ブロ
ック状の光硬化層を順次つなげて、全体の光硬化層を形
成するという照射パターンもある。この場合、前記した
小さな領域の形状は、任意の多角形あるいは曲線図形が
採用できるが、正六角形に構成しておけば、いわゆるハ
ニカム構造の光硬化層が形成され、耐変形性などの性能
が良好になる。
In the case of the concentric shape or the spiral shape, there are cases in which the shape is similar to the outer shape of the photo-curing layer and is composed of a concentric figure or a spiral shape which changes stepwise. Further, the irradiation pattern is different when scanning from the center to the outer periphery and when scanning from the outer periphery to the center. The area to be the photo-curing layer is divided into small areas, and light is irradiated to each small area through an appropriate scanning path to form a small-block-shaped photo-curing layer. There is also an irradiation pattern in which the entire photo-cured layer is formed by sequentially connecting them. In this case, the shape of the small area described above may be an arbitrary polygon or curved figure, but if it is formed into a regular hexagon, a photo-cured layer having a so-called honeycomb structure is formed and performance such as deformation resistance is improved. Get better

【0012】以上に説明したような各種の照射パターン
を、上下に積み重ねる光硬化層毎に違えながら、各光硬
化層を形成する。上下に隣接する光硬化層で、硬化収縮
に伴って生じる応力の方向や分布が異なるような照射パ
ターンを選択して組み合わせるのが好ましい。三次元形
状を構成する複数の光硬化層は、全ての光硬化層で、光
の照射パターンが違っていてもよいが、硬化収縮応力を
互いに相殺するのに必要な複数の照射パターンの組み合
わせを、上下に何回か繰り返して、全体の光硬化層を形
成することもできる。
The various photo-curing layers as described above are formed differently for each photo-curing layer stacked vertically. It is preferable to select and combine irradiation patterns in which the directions and distributions of the stresses caused by curing shrinkage are different in the vertically adjacent photocurable layers. The photo-curing layers forming the three-dimensional shape may have different light irradiation patterns in all the photo-curing layers, but a combination of a plurality of irradiation patterns necessary for canceling the curing shrinkage stresses may be used. It is also possible to repeat the above and below several times to form the entire photo-cured layer.

【0013】[0013]

【作用】光硬化層を形成する際の光の照射パターンが違
えば、光硬化性樹脂の硬化収縮に伴って生じる応力の方
向や分布も違ってくる。上下に積み重ねる光硬化層で、
上記のような硬化収縮応力の方向や分布を違えておけ
ば、互いの硬化収縮応力が相殺されるので、全体の硬化
収縮応力は小さくなる。
When the light irradiation pattern for forming the photocurable layer is different, the direction and distribution of the stress caused by the curing shrinkage of the photocurable resin are also different. A photo-curing layer that stacks vertically
If the directions and distributions of the above curing shrinkage stresses are made different, the curing shrinkage stresses cancel each other out, and the overall curing shrinkage stress becomes small.

【0014】その結果、光硬化層を積み重ねて形成され
る三次元形状全体では、反りや変形の発生が少なくな
り、三次元形状の形状精度が向上する。
As a result, in the entire three-dimensional shape formed by stacking the photo-curing layers, warpage and deformation are reduced, and the accuracy of the three-dimensional shape is improved.

【0015】[0015]

【実施例】ついで、この発明の実施例について図面を参
照しながら以下に説明する。図2は、三次元形状の形成
方法の1例を示している。樹脂液槽6には、光硬化性樹
脂液1が収容されている。樹脂液槽6の内部には、昇降
自在な成形台3が配置されている。光硬化性樹脂液1の
液面には、レーザ光7が照射されるようになっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows an example of a method for forming a three-dimensional shape. The photocurable resin liquid 1 is contained in the resin liquid tank 6. Inside the resin liquid tank 6, a molding table 3 that can move up and down is arranged. The laser light 7 is irradiated onto the liquid surface of the photocurable resin liquid 1.

【0016】成形台3を、樹脂液1の液面近くに沈めた
状態で、レーザ光7を照射しながら、所定の照射パター
ンで走査すれば、レーザ光7の照射パターンにしたがっ
て、成形台3と液面の間の樹脂液1が光硬化し、所定の
形状を備えた光硬化層5が形成される。ひとつの光硬化
層5が形成されれば、成形台3を少し下降させて、光硬
化層5の上に新たな樹脂液1を供給する。その後、前記
同様の光の照射による光硬化層5の形成および成形台3
の段階的下降動作を繰り返せば、複数の光硬化層5が積
み重ねられた三次元形状の成形品2が作製される。
When the molding table 3 is submerged near the surface of the resin liquid 1 and is scanned with a predetermined irradiation pattern while irradiating with the laser beam 7, the molding table 3 follows the irradiation pattern of the laser beam 7. The resin liquid 1 between the liquid surface and the liquid surface is photo-cured, and the photo-cured layer 5 having a predetermined shape is formed. When one photo-curable layer 5 is formed, the molding table 3 is lowered slightly and new resin liquid 1 is supplied onto the photo-curable layer 5. After that, the photocurable layer 5 is formed by irradiating light similar to the above, and the molding table 3 is formed.
By repeating the stepwise descending operation of, the three-dimensional shaped molded product 2 in which a plurality of photo-curing layers 5 are stacked is manufactured.

【0017】図1は、上記のような三次元形状の形成方
法において、複数の光硬化層5毎の、光の照射パターン
を示しており、矢印の方向が、光の走査経路を表してい
る。例えば、n層の光硬化層5では、概略長方形状の光
硬化層5に対して、短辺方向に直線的に光を照射し、こ
れを順次長辺方向に繰り返している。n+1層では、上
記n層とは直交する方向に光を走査している。
FIG. 1 shows a light irradiation pattern for each of a plurality of photo-curing layers 5 in the method for forming a three-dimensional shape as described above, and the direction of the arrow represents the light scanning path. . For example, in the n-layer photo-curing layer 5, the light-curing layer 5 having a substantially rectangular shape is irradiated with light linearly in the short side direction, and this is sequentially repeated in the long side direction. In the (n + 1) th layer, light is scanned in a direction orthogonal to the nth layer.

【0018】n+2層では、同心円状に光を走査してい
る。光の走査経路は、光硬化層5の外側にはみ出して設
定されており、この光硬化層5の外側に光の走査経路が
はみ出した領域では、光の照射を遮断して、光硬化層5
の領域のみで光が照射されるようにしている。n+3層
では、渦巻き状に光を走査している。
In the n + 2 layer, light is scanned concentrically. The light scanning path is set to extend outside the photo-curable layer 5, and in the region where the light scanning path extends to the outside of the photo-curable layer 5, the light irradiation is blocked and the photo-curable layer 5 is cut off.
The light is irradiated only in the area. In the n + 3 layer, the light is scanned spirally.

【0019】n+4層では、光硬化層5の外形と相似形
状の図形が、同心状に配置されるように、光の走査経路
を設定している。n+5層では、正六角形状の小さな領
域50に光を照射して光硬化させた後、このような小領
域50を順次つなげて、光硬化層5を形成している。す
なわち、ハニカム構造の光硬化層5を形成している。
In the n + 4 layer, the light scanning path is set so that the figures similar to the outer shape of the photo-curing layer 5 are arranged concentrically. In the n + 5 layer, a small region 50 having a regular hexagonal shape is irradiated with light to be photo-cured, and then the small regions 50 are sequentially connected to form a photo-cured layer 5. That is, the photocurable layer 5 having a honeycomb structure is formed.

【0020】[0020]

【発明の効果】以上に述べた、この発明にかかる三次元
形状の形成方法によれば、上下に積み重ねる光硬化層毎
に光の照射パターンを違えることで、光硬化層毎の硬化
収縮を相殺させて、三次元形状全体の反りや変形をなく
すことができる。その結果、特別な装置や作業工程を追
加することなく、三次元形状の形状精度を向上させるこ
とができ、光硬化性樹脂を用いた三次元形状の形成方法
の性能向上あるいは用途の拡大に大きく貢献することが
できる。
According to the method for forming a three-dimensional shape according to the present invention described above, the curing shrinkage of each photocuring layer is offset by changing the light irradiation pattern for each photocuring layer stacked vertically. As a result, the warp or deformation of the entire three-dimensional shape can be eliminated. As a result, it is possible to improve the shape accuracy of the three-dimensional shape without adding a special device or working process, and it is possible to greatly improve the performance of the three-dimensional shape forming method using the photocurable resin or expand the application. You can contribute.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例となる方法を表す斜視図FIG. 1 is a perspective view showing a method according to an embodiment of the present invention.

【図2】 三次元形状の形成方法の1例を概略的に示す
断面図
FIG. 2 is a sectional view schematically showing an example of a method for forming a three-dimensional shape.

【図3】 従来技術を説明する概略斜視図(a) および断
面図(b)
FIG. 3 is a schematic perspective view (a) and a sectional view (b) illustrating a conventional technique.

【符号の説明】[Explanation of symbols]

1 光硬化性樹脂液 2 三次元形状成形品 3 成形台 5 光硬化層 7 レーザ光 1 Photocurable resin liquid 2 Three-dimensional shaped molded product 3 Molding table 5 Photocurable layer 7 Laser light

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光硬化性樹脂液に光を照射して光硬化層
を形成し、この光硬化層を複数層積み重ねて所望の三次
元形状を形成する方法において、光硬化層を形成する際
の光の照射パターンを、各光硬化層毎に違えることを特
徴とする三次元形状の形成方法。
1. A method for forming a photocurable layer by irradiating a photocurable resin liquid with light to form a photocurable layer and stacking a plurality of the photocurable layers to form a desired three-dimensional shape, wherein the photocurable layer is formed. The method of forming a three-dimensional shape, characterized in that the light irradiation pattern is different for each photo-curing layer.
【請求項2】 請求項1の方法において、光の照射パタ
ーンとして、直線状の照射経路からなる照射パターン
と、曲線状の照射経路からなる照射パターンとを組み合
わせる三次元形状の形成方法。
2. The method for forming a three-dimensional shape according to claim 1, wherein an irradiation pattern having a linear irradiation path and an irradiation pattern having a curved irradiation path are combined as a light irradiation pattern.
JP4227609A 1992-08-26 1992-08-26 Formation of three-dimensional form Pending JPH0671761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4227609A JPH0671761A (en) 1992-08-26 1992-08-26 Formation of three-dimensional form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4227609A JPH0671761A (en) 1992-08-26 1992-08-26 Formation of three-dimensional form

Publications (1)

Publication Number Publication Date
JPH0671761A true JPH0671761A (en) 1994-03-15

Family

ID=16863628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4227609A Pending JPH0671761A (en) 1992-08-26 1992-08-26 Formation of three-dimensional form

Country Status (1)

Country Link
JP (1) JPH0671761A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267919B1 (en) 1998-02-19 2001-07-31 Nissan Motor Co., Ltd. Method of producing a three-dimensional object
JP2001225391A (en) * 2001-01-26 2001-08-21 Sony Corp Method and apparatus for optically molding
JP2006095806A (en) * 2004-09-29 2006-04-13 Nabtesco Corp Photofabrication apparatus and photofabrication method
JPWO2014010144A1 (en) * 2012-07-09 2016-06-20 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object
WO2017208361A1 (en) * 2016-05-31 2017-12-07 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional lamination shaping system, three-dimensional lamination shaping method, lamination shaping control device, and control method and control program therefor
CN109866418A (en) * 2017-12-04 2019-06-11 三纬国际立体列印科技股份有限公司 The 3D printer and its gradation Method of printing of graded printing
JP2020023727A (en) * 2018-08-06 2020-02-13 株式会社ソディック Metallic three-dimensional formed object and method for making metallic three-dimensional formed object
JP2020032716A (en) * 2018-06-07 2020-03-05 コンセプト・レーザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method of operating apparatus for additively manufacturing three-dimensional objects

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267919B1 (en) 1998-02-19 2001-07-31 Nissan Motor Co., Ltd. Method of producing a three-dimensional object
JP2001225391A (en) * 2001-01-26 2001-08-21 Sony Corp Method and apparatus for optically molding
JP2006095806A (en) * 2004-09-29 2006-04-13 Nabtesco Corp Photofabrication apparatus and photofabrication method
JPWO2014010144A1 (en) * 2012-07-09 2016-06-20 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object
US10442136B2 (en) 2016-05-31 2019-10-15 Technology Research Association For Future Additive Manufacturing Three-dimensional laminating and fabricating system, three-dimensional laminating and fabricating method, laminating and fabricating control apparatus and method of controlling the same, and control program
WO2017208361A1 (en) * 2016-05-31 2017-12-07 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional lamination shaping system, three-dimensional lamination shaping method, lamination shaping control device, and control method and control program therefor
JP6254292B1 (en) * 2016-05-31 2017-12-27 技術研究組合次世代3D積層造形技術総合開発機構 Three-dimensional additive manufacturing system, three-dimensional additive manufacturing method, additive manufacturing control device, control method thereof, and control program
CN109866418A (en) * 2017-12-04 2019-06-11 三纬国际立体列印科技股份有限公司 The 3D printer and its gradation Method of printing of graded printing
JP2019098735A (en) * 2017-12-04 2019-06-24 三緯國際立體列印科技股▲フン▼有限公司 3d printer and division printing method for division printing
US10569472B2 (en) 2017-12-04 2020-02-25 Xyzprinting, Inc. 3D printer capable of multiple sub-printing actions, and sub-printing method for using the same
JP2020032716A (en) * 2018-06-07 2020-03-05 コンセプト・レーザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Method of operating apparatus for additively manufacturing three-dimensional objects
US11117327B2 (en) 2018-06-07 2021-09-14 Concept Laser Gmbh Method for operating an apparatus for additively manufacturing three-dimensional objects
JP2020023727A (en) * 2018-08-06 2020-02-13 株式会社ソディック Metallic three-dimensional formed object and method for making metallic three-dimensional formed object

Similar Documents

Publication Publication Date Title
JPH0671761A (en) Formation of three-dimensional form
JP3155185B2 (en) Manufacturing method of three-dimensional shaped object
JP3181987B2 (en) Manufacturing method of three-dimensional shaped object
JP3095302B2 (en) Molding method for three-dimensional shaped objects
JPH0985837A (en) Preparation of molding with three-dimensional shape
JP3458593B2 (en) Method for forming a three-dimensional shape
JPH0834063A (en) Optical shaping method and apparatus and resin molded object
JPH05318607A (en) Optically shaping device
JPH0596631A (en) Method and apparatus for optical shaping
JP3155156B2 (en) 3D shape forming method
JPH05154924A (en) Flat laminated sheet shaping method in photosetting shaping method
JP2010052318A (en) Light shaping method
JPH058307A (en) Optically shaping method
JPH0524119A (en) Formation of three-dimensional shape
JPH06254971A (en) Formation of three-dimensional shape
JP2019107874A (en) Lamination molding method
JPH03136834A (en) Three-dimensional structure and preparation thereof
JP3173196B2 (en) Optical shaping method and optical shaping apparatus
JP5194945B2 (en) Article manufacturing method and transfer member
JP3088046B2 (en) Molding method for three-dimensional shaped objects
JP2001018298A (en) Molding method for three-dimensional molded article
JP2746235B2 (en) Photocuring molding method and molding apparatus
JPH10180882A (en) Manufacture of highly elastic body by stereo lithography and highly elastic body manufactured by stereo lithography
WO2019124150A1 (en) Additive layer manufacturing method
JPH06297586A (en) Three-dimensional shaping method