JP2020124126A - Nutritive composition for baby - Google Patents

Nutritive composition for baby Download PDF

Info

Publication number
JP2020124126A
JP2020124126A JP2019016957A JP2019016957A JP2020124126A JP 2020124126 A JP2020124126 A JP 2020124126A JP 2019016957 A JP2019016957 A JP 2019016957A JP 2019016957 A JP2019016957 A JP 2019016957A JP 2020124126 A JP2020124126 A JP 2020124126A
Authority
JP
Japan
Prior art keywords
sialic acid
amount
protein
infants
milk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019016957A
Other languages
Japanese (ja)
Other versions
JP7338978B2 (en
Inventor
博文 福留
Hirofumi Fukudome
博文 福留
史彦 酒井
Fumihiko Sakai
史彦 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP2019016957A priority Critical patent/JP7338978B2/en
Publication of JP2020124126A publication Critical patent/JP2020124126A/en
Application granted granted Critical
Publication of JP7338978B2 publication Critical patent/JP7338978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Dairy Products (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

To provide a new nutritive composition for babies controlling a protein amount to less than 2.4 g/100 kcal close to that of mother's milk and increasing a sialic acid amount up to the mother's milk level, and a method for producing the same.SOLUTION: The nutritive composition for babies includes sialic acid of 250 mg/100 g or more in solid matter and a protein amount of less than 2.4 g/100 kcal; in addition to the foregoing, it further includes galacto-N-biose of 90 mg/100 g or more in solid matter.SELECTED DRAWING: None

Description

本発明は、乳幼児用栄養組成物に関する。 The present invention relates to a nutritional composition for infants.

近年、乳幼児用栄養組成物に含まれる様々な成分は、可能な限り母乳の成分に近づけることが重要視されている。食品の国際規格を定めるコーデックス委員会(CODEX)、欧州食品安全機関(EFSA)、および厚生労働省では、乳幼児用調製粉乳に含まれるタンパク質、脂質、ビタミン、ミネラルなどの含量について、母乳に近似したある一定の規格範囲量を示している。 In recent years, it has been emphasized that various components contained in nutritional compositions for infants should be as close as possible to components of breast milk. The Codex Committee (CODEX), which establishes international food standards, the European Food Safety Authority (EFSA), and the Ministry of Health, Labor and Welfare have made the content of proteins, lipids, vitamins and minerals in infant formulas similar to that of human milk. It shows a certain standard range amount.

タンパク質については、以前は乳幼児用調製粉乳のタンパク質が母乳に比べて消化吸収性が劣る(低い利用効率)ことが考慮され、乳幼児用調製粉乳のタンパク質量は母乳よりも高めに設定されていた。しかし、乳児期の過剰なタンパク質摂取による生活習慣病発症リスクの増加が危惧されるようになり、現在では乳幼児用調製粉乳中のタンパク質量を減量する傾向にある。例えば、CODEXでは乳幼児用調製粉乳中のタンパク質量を1.8〜3.0g/100kcal(非特許文献1)、EFSAでは1.8〜2.5g/100kcal(非特許文献2)の規格範囲を示している。現在日本で許可を受けている乳幼児用調製粉乳の製品では、2.4g/100kcal未満である。 Regarding protein, it was previously considered that the protein of infant formula was inferior in digestion and absorption (lower utilization efficiency) than that of mother milk, and the amount of protein of infant formula was set higher than that of human milk. However, there is a concern that the risk of developing lifestyle-related diseases due to excessive protein intake during infancy will increase, and the amount of protein in infant formula has now tended to decrease. For example, in CODEX, the amount of protein in infant formula is 1.8 to 3.0 g/100 kcal (Non-patent document 1), and in EFSA, the standard range is 1.8 to 2.5 g/100 kcal (Non-patent document 2). Showing. The amount of infant formula products currently licensed in Japan is less than 2.4 g/100 kcal.

母乳中には乳児の健全な発育・生育を促す成分が豊富に含まれており、シアル酸はその一成分として注目されてきた。シアル酸は負に荷電した9炭糖の一つであり、母乳中ではオリゴ糖、糖タンパク質、糖脂質の分子形態で存在する。母乳中のシアル酸は、乳幼児の感染防御効果(特許文献1)、細菌毒素の中和効果(特許文献2)、ミネラル吸収促進作用(特許文献3)、脳機能発達効果(非特許文献3)、などの様々な機能性を担っている。しかし、牛乳はシアル酸量が少ないため、牛乳由来の乳素材を原材料とする乳幼児用栄養組成物では母乳に比べてシアル酸含量が非常に少なくなる。
具体的には、母乳中のシアル酸量は、714mg±64mg/L(平均±標準誤差)と報告されており、これは、母乳の平均的な固形率が12.1%として590mg/100g固形に相当する(非特許文献4)。井戸田らによる日本国内の母乳の一般成分(非特許文献5)、およびシアル酸含量(非特許文献6)の調査結果から算出した母乳の固形100gあたりの総シアル酸量について、表1に示した。この結果から、母乳のシアル酸量は泌乳期の経過に伴って減少するが、泌乳期120日以降のシアル酸量は約260mg/100g固形で一定となる傾向が認められる。また、表1について、非乳期3〜482日までの総シアル酸濃度の加重平均値は、約330mg/100g固形である。以上から、乳幼児用栄養組成物のシアル酸量を母乳に近似させるには、260mg/100g固形以上が必要であり、好ましくは日本人の母乳の平均的なシアル酸量である330mg/100g固形以上が望ましく、さらに好ましくは非特許文献4に記載されている母乳の平均的なシアル酸量である590mg/100g固形以上が望ましいと考えられる。
Breast milk contains abundant components that promote healthy growth and growth of infants, and sialic acid has been attracting attention as one of the components. Sialic acid is one of the negatively charged nine carbon sugars, and is present in breast milk in the molecular forms of oligosaccharides, glycoproteins and glycolipids. Sialic acid in breast milk protects infants from infection (Patent Document 1), neutralizes bacterial toxins (Patent Document 2), promotes mineral absorption (Patent Document 3), and develops brain function (Non-Patent Document 3). Has various functionalities such as,. However, since milk has a low amount of sialic acid, the nutritional composition for infants, which uses a milk-derived milk material as a raw material, has a much lower sialic acid content than that of breast milk.
Specifically, the amount of sialic acid in breast milk is reported to be 714 mg±64 mg/L (mean±standard error), which means that the average solid content of breast milk is 590 mg/100 g solid with 12.1%. (Non-Patent Document 4). Table 1 shows the total amount of sialic acid per 100 g of solid of the milk calculated from the results of the investigation of the general components of breast milk in Japan (Non-patent document 5) and the sialic acid content (Non-patent document 6) by Iwata et al. .. From this result, although the amount of sialic acid in breast milk decreases with the progress of the lactation period, the amount of sialic acid after 120 days of the lactation period tends to be constant at about 260 mg/100 g solid. Further, with respect to Table 1, the weighted average value of the total sialic acid concentration during the non-milky period 3 to 482 days is about 330 mg/100 g solid. From the above, in order to make the amount of sialic acid of the infant nutrition composition approximate to that of human milk, 260 mg/100 g solid or more is necessary, and preferably 330 mg/100 g solid or more, which is the average amount of sialic acid in Japanese breast milk. It is considered that the average sialic acid content of the milk described in Non-Patent Document 4 is 590 mg/100 g solid or more, which is desirable.

一方、一般的な乳幼児用調製粉乳のシアル酸量は193mg/100g固形であり(非特許文献7)、前記の日本人の母乳中のシアル酸量の低値である260mg/100g固形からは67mg/100g固形が不足し、母乳中シアル酸量の平均値である590mg/100g固形からは397mg/100g固形も不足している。牛乳中のシアル酸の90%以上はタンパク質に結合した形態で存在するため、例えばEFSA規格に従って乳幼児用調製粉乳中のタンパク質量を低下させると、それに伴ってシアル酸量も減少し、母乳と乳幼児用調製粉乳のシアル酸量はますます乖離してしまうという問題があった。 On the other hand, the amount of sialic acid in general infant formula is 193 mg/100 g solid (Non-Patent Document 7), and 67 mg from 260 mg/100 g solid, which is the low value of the amount of sialic acid in Japanese breast milk described above. /100 g solid is insufficient, and 397 mg/100 g solid is also insufficient from 590 mg/100 g solid, which is the average value of the amount of sialic acid in breast milk. Since 90% or more of sialic acid in milk exists in a form bound to protein, for example, if the amount of protein in infant formula is reduced in accordance with the EFSA standard, the amount of sialic acid will be reduced accordingly, and milk and infants There was a problem that the amount of sialic acid in the modified milk powder for use became more and more different.

この問題に対して、遺伝子組み換えした微生物を利用して調製したシアル酸やシアル酸含有オリゴ糖を利用することが報告されているが(特許文献4)、遺伝子組換え技術を利用して調製したシアル酸を乳幼児用栄養組成物に使用することに対しては各国の法規制への適合状況や、遺伝子組換え技術そのものに対する消費者の受容性などの観点において、未だ産業上の利用において忌避感が持たれている。 In order to solve this problem, it has been reported to use sialic acid or sialic acid-containing oligosaccharide prepared by using a genetically modified microorganism (Patent Document 4), but it was prepared by using a genetic recombination technique. Regarding the use of sialic acid in nutritional compositions for infants, it is still a repulsive factor in industrial use from the viewpoint of compliance with the laws and regulations of each country and the acceptability of consumers for the genetic modification technology itself. Is held.

ガラクト−N−ビオース(GNB)は、オリゴ糖のひとつであり、最近プレバイオティクスとして注目されている。ビフィズス菌は消化管上皮細胞から産生されるムチンのコアI型のO結合型糖鎖GNBを切り出す菌体外酵素をもち、ムチンからGNBを遊離させる(非特許文献8)。遊離したGNBは特異的なABC型のトランスポーターにより菌体内に取りこまれ、菌体内のGNBを加リン酸分解するGNB/LNBホスホリラーゼにより代謝することで(非特許文献9)、GNBをエネルギー源として利用すると考えられている。この代謝経路はビフィズス菌以外の微生物からはほとんど見つかっておらず(非特許文献10)、ビフィズス菌に選択的なオリゴ糖である。従って、GNBは乳児に有用なビフィズス菌を選択的に増やすオリゴ糖である。 Galacto-N-biose (GNB) is one of oligosaccharides, and has recently received attention as a prebiotic. Bifidobacteria have an extracellular enzyme that cleaves a mucin core type I O-linked sugar chain GNB produced from digestive tract epithelial cells, and releases GNB from mucin (Non-patent Document 8). The released GNB is taken into the cells by a specific ABC-type transporter, and is metabolized by GNB/LNB phosphorylase that phosphorolytically decomposes GNB in the cells (Non-patent document 9), and GNB is an energy source. Is considered to be used as. This metabolic pathway is rarely found in microorganisms other than Bifidobacterium (Non-Patent Document 10), and it is an oligosaccharide selective to Bifidobacterium. Therefore, GNB is an oligosaccharide that selectively increases bifidobacteria useful for infants.

一般的な乳幼児用調製粉乳中のGNB量の報告は見当たらないが、乳中ではGNBはグリコマクロペプチド(GMP)に結合して存在する。GMPは、一般的な乳幼児用調製粉乳中のタンパク質の14%であると報告されている(非特許文献11)。また、GMPにはGalNAc-O-R、Galβ1-3GalNAc-O-R、Neu5Acα2-3Galβ1-3GalNAc-O-R、Galβ1-3 (NeuAcα2-6) GalNAc-O-R、およびNeu5Acα2-3Galβ1-3 (Neu5Acα2-6) GalNAc-O-Rという5種類の糖鎖が結合するが、その結合割合(モル比)はそれぞれ0.8、6.3、18.4、18.5、および56%と報告されている(非特許文献12)。さらに、GMP中のシアル酸は6%と報告されており、これらの報告を参考にGMP中のGNB量は5%と試算された。
これらの結果から一般的な乳幼児用調製粉乳中のGNB量は82mg/100g固形と考えられた。これまでにGNBを強化した乳幼児用調製粉乳は上市されていない。また、遺伝子組み換えした微生物を利用した製造法についても報告されていない。さらに今後報告があった場合でも、遺伝子組換え技術を利用して調製したGNBを乳幼児用栄養組成物に使用することに対しては各国の法規制への適合状況や、遺伝子組換え技術そのものに対する消費者の受容性などの観点において、未だ産業上の利用において忌避感がもたれている。
Although there is no report of the amount of GNB in general infant formula, GNB is present in the milk in a state bound to glycomacropeptide (GMP). GMP is reported to be 14% of proteins in general infant formula (Non-patent Document 11). Further, GMP is called GalNAc-OR, Galβ1-3GalNAc-OR, Neu5Acα2-3Galβ1-3GalNAc-OR, Galβ1-3 (NeuAcα2-6) GalNAc-OR, and Neu5Acα2-3Galβ1-3 (Neu5Acα2-6) GalNAc-OR. Five types of sugar chains are bound, but their binding ratios (molar ratios) are reported to be 0.8, 6.3, 18.4, 18.5, and 56%, respectively (Non-Patent Document 12). Further, sialic acid in GMP was reported to be 6%, and the amount of GNB in GMP was estimated to be 5% with reference to these reports.
From these results, it was considered that the amount of GNB in general infant formula was 82 mg/100 g solid. Up to now, infant formulas fortified with GNB have not been put on the market. Further, there is no report on a production method using a genetically modified microorganism. Furthermore, even if there are future reports, regarding the use of GNB prepared using genetic modification technology in nutritional compositions for infants, it is not possible From the viewpoint of consumer acceptance, there is still a sense of evasion in industrial use.

特許第2514375号公報Japanese Patent No. 2514375 特許第2821770号公報Japanese Patent No. 2821770 特許第3372499号公報Japanese Patent No. 3372499 特許第4318549号公報Japanese Patent No. 4318549 特許第2673828号公報Japanese Patent No. 2673828

STANDARD FOR INFANT FORMULA AND FORMULAS FOR SPECIAL MEDICAL PURPOSES INTENDED FOR INFANTS, CODEX STAN 72-1981, Formerly CAC/RS 72-1972. Adopted as a worldwide Standard in 1981. Amendment: 1983, 1985, 1987, 2011, 2015 and 2016. Revision: 2007.STANDARD FOR INFANT FORMULA AND FORMULAS FOR SPECIAL MEDICAL PURPOSES INTENDED FOR INFANTS, CODEX STAN 72-1981, Formerly CAC/RS 72-1972. Adopted as a worldwide Standard in 1981. Amendment: 1983, 1985, 1987, 2011, 2015 and 2016. Revision: 2007. COMMISSION DELEGATED REGULATION (EU) 2016/127 of 25 September 2015COMMISSION DELEGATED REGULATION (EU) 2016/127 of 25 September 2015 Sakai F et al., Journal of Applied Glycoscience, 53(4), 249-254, 2006Sakai F et al., Journal of Applied Glycoscience, 53(4), 249-254, 2006. Qiao Y et al., The relationship between dietary vitamin A intake and the levels of sialic acid in the breast milk of lactating women. J Nutr Sci Vitaminol (Tokyo). 2013;59(4):347-51.Qiao Y et al., The relationship between dietary vitamin A intake and the levels of sialic acid in the breast milk of lactating women. J Nutr Sci Vitaminol (Tokyo). 2013;59(4):347-51. 井戸田正ほか:日本小児栄養消化器病学会雑誌、5:145-158, 1991.Tadashi Iwada et al.: Journal of Japanese Society of Pediatric Nutrition and Gastroenterology, 5:145-158, 1991. 井戸田正ほか:日本栄養・食糧学会誌、47:357-362, 1994.Tadashi Iwada et al.: Journal of Japan Society of Nutrition and Food Science, 47:357-362, 1994. 乳児用調製粉乳「すこやかM1」(雪印ビーンスターク株式会社)缶表示値Infant formula "Sukoyaka M1" (Snow Brand Bean Stark Co., Ltd.) can display value Fujita K et al., Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum. J Biol Chem. 2005; 280(45): 37415-22.Fujita K et al., Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum. J Biol Chem. 2005; 280(45): 37415-22 . Nakajima M et al., Identification of Lacto-N-Biose I Phosphorylase from Vibrio vulnificus CMCP6. Appl Environ Microbiol. 2008; 74(20): 6333-6337.Nakajima M et al., Identification of Lacto-N-Biose I Phosphorylase from Vibrio vulnificus CMCP6. Appl Environ Microbiol. 2008; 74(20): 6333-6337. 日高將文ほか:ビフィズス菌のヒトミルクオリゴ糖分解に関わるホスホリラーゼの結晶構造, PFNEWS、27:18-21, 2009.Hidaka, H. et al.: Crystal structure of phosphorylase involved in human milk oligosaccharide degradation in Bifidobacterium, PFNEWS, 27:18-21, 2009. Bruck WM et al., Effects of bovine alpha-lactalbumin and casein glycomacropeptide-enriched infant formulae on faecal microbiota in healthy term infants. J Pediatr Gastroenterol Nutr. 2006; 43(5): 673-9.Bruck WM et al., Effects of bovine alpha-lactalbumin and casein glycomacropeptide-enriched infant formulae on faecal microbiota in healthy term infants. J Pediatr Gastroenterol Nutr. 2006; 43(5): 673-9. Saito T, & Itoh T et al., Variations and distributions of O-glycosidically linked sugar chains in bovine kappa-casein. J Dairy Sci. 2006; 43(5): 673-9.Saito T, & Itoh T et al., Variations and distributions of O-glycosidically linked sugar chains in bovine kappa-casein. J Dairy Sci. 2006; 43(5): 673-9.

本発明は上記背景技術に記載した課題を鑑み、タンパク質量を母乳に近い2.4g/100kcal未満に収めつつ、シアル酸量を母乳レベルまで増加させた新たな乳幼児用栄養組成物、及びその製造方法を提供することを課題とする。 In view of the problems described in the above background art, the present invention provides a new nutritional composition for infants in which the amount of sialic acid is increased to the level of human milk while keeping the amount of protein at less than 2.4 g/100 kcal, which is close to that of human milk, and the production thereof. The challenge is to provide a method.

本発明者らは、上記課題を解決するために、GMPに着目し、これを酵素処理及び膜処理をすることで特定範囲のシアル酸含量及びタンパク質含量のシアリル糖ペプチドを調製し配合することでタンパク質量及びシアル酸量を母乳に近づけた新たな乳幼児用調製粉乳を調製することができることを見出し本発明を完成するに至った。
すなわち、本発明は以下の構成を含むものである。
(1)シアル酸が250mg/100g固形以上であり、かつタンパク質量が2.4g/100kcal未満であることを特徴とする乳幼児用栄養組成物。
(2)さらに、ガラクト−N−ビオースが90mg/100g固形以上である(1)に記載の乳幼児用栄養組成物。
(3)乳幼児用栄養組成物が乳幼児用調整粉乳である(1)又は(2)に記載の乳幼児用栄養組成物。
(4)シアリル糖ペプチドが配合された(1)〜(3)のいずれかに記載の乳幼児用栄養組成物。
(5)シアリル糖ペプチドが、シアル酸を8重量%以上含有し、ガラクト−N−ビオースを4重量%以上含有し、タンパク質量が86重量%以下である(1)〜(4)のいずれかに記載の乳幼児用栄養組成物。
(6)前記シアリル糖ペプチドの分子量が700以上3,000以下である(1)〜(5)のいずれかに記載の乳幼児用栄養組成物。
(7)シアリル糖ペプチドは、スレオニン及び/又はセリン残基を有するペプチドに糖鎖が結合した糖ペプチドであって、前記糖鎖が前記ペプチドのスレオニン又はセリン残基の水酸基に結合し、前記糖鎖の構成糖がシアル酸、N−アセチルガラクトサミン及びガラクトースからなる(1)〜(6)のいずれかに記載の乳幼児用栄養組成物。
(8)シアリル糖ペプチドを添加する工程を含む乳幼児用栄養組成物の製造方法であって、シアリル糖ペプチドが以下の構成を有することを特徴とする乳幼児用栄養組成物の製造方法。
スレオニン及び/又はセリン残基を有するペプチドに糖鎖が結合した糖ペプチドであって、
前記糖ペプチドの分子量が700以上3,000以下であり、
前記糖鎖が前記ペプチドのスレオニン又はセリン残基の水酸基に結合し、
前記糖鎖の構成糖がシアル酸、N−アセチルガラクトサミン及びガラクトースからなり
前記シアル酸を8重量%以上含有し、
前記ガラクト-N-ビオースを4重量%以上含有し、
前記ペプチド鎖のタンパク質量が86重量%以下である
In order to solve the above problems, the present inventors have focused on GMP, and by subjecting it to enzyme treatment and membrane treatment, a sialylic glycopeptide having a sialic acid content and a protein content in a specific range is prepared and blended. The inventors have found that a new infant formula can be prepared in which the amount of protein and the amount of sialic acid are close to those of breast milk, and have completed the present invention.
That is, the present invention includes the following configurations.
(1) A nutritional composition for infants, wherein sialic acid is 250 mg/100 g solid or more and the amount of protein is less than 2.4 g/100 kcal.
(2) The nutritional composition for infants according to (1), wherein the galacto-N-biose is 90 mg/100 g solid or more.
(3) The nutritional composition for infants according to (1) or (2), wherein the nutritional composition for infants is infant formula.
(4) The nutritional composition for infants according to any one of (1) to (3), which contains a sialylglycopeptide.
(5) Any of (1) to (4), wherein the sialylglycopeptide contains 8% by weight or more of sialic acid, 4% by weight or more of galacto-N-biose, and 86% by weight or less of protein. The nutritional composition for infants as described in 1.
(6) The nutritional composition for infants according to any one of (1) to (5), wherein the sialyl glycopeptide has a molecular weight of 700 or more and 3,000 or less.
(7) The sialylglycopeptide is a glycopeptide in which a sugar chain is bound to a peptide having a threonine and/or serine residue, the sugar chain being bound to a hydroxyl group of a threonine or serine residue of the peptide, The nutritional composition for infants according to any one of (1) to (6), wherein the sugar constituting the chain comprises sialic acid, N-acetylgalactosamine and galactose.
(8) A method for producing a nutritional composition for infants, which comprises the step of adding a sialylglycopeptide, wherein the sialylglycopeptide has the following constitution.
A glycopeptide in which a sugar chain is bound to a peptide having a threonine and/or serine residue,
The molecular weight of the glycopeptide is 700 or more and 3,000 or less,
The sugar chain binds to a hydroxyl group of a threonine or serine residue of the peptide,
The sugar constituting the sugar chain consists of sialic acid, N-acetylgalactosamine and galactose, and contains 8% by weight or more of the sialic acid,
Containing 4% by weight or more of the galacto-N-biose,
The protein amount of the peptide chain is 86% by weight or less

本発明は、タンパク質量を母乳に近い2.4g/100kcal未満に収めつつ、シアル酸量を母乳レベルまで増加させた新たな乳幼児用栄養組成物、及びその製造方法を提供することができる。また、さらにGNB量についても従来の乳幼児用栄養組成物より増加した新たな乳幼児用栄養組成物、及びその製造方法を提供することができる。 INDUSTRIAL APPLICABILITY The present invention can provide a new nutritional composition for infants in which the amount of sialic acid is increased to the level of human milk while keeping the amount of protein at less than 2.4 g/100 kcal, which is close to that of human milk, and a method for producing the same. Further, it is possible to provide a new nutritional composition for infants and a method for producing the same, in which the amount of GNB is also increased as compared with the conventional nutritional composition for infants.

(乳幼児用栄養組成物)
本発明の乳幼児用栄養組成物は、乳児用調製粉乳および調製液状乳、幼児用調製粉乳(フォローアップミルクおよびグローイングアップミルク)、低出生体重児用調製粉乳、牛乳アレルギー疾患用アレルゲン除去食品および乳糖不耐症用乳糖除去食品などであり、タンパク質、脂肪、糖質、ビタミン類及びミネラル類を主成分として構成されるものである。その他、さらに乳幼児用栄養組成物に配合することが可能な成分を含有しても良い。
本発明の乳幼児用栄養組成物は、シアル酸が250mg/100g固形以上、かつタンパク質量が2.4g/100 kcal未満であることを特徴とするものである。シアル酸量が、250mg/100g固形未満では、日本人の母乳中のシアル酸量の低値より低くなるため栄養価に乏しく、タンパク質量が2.4g/100 kcal以上では、乳児期の過剰なタンパク質摂取による生活習慣病発症リスクの増加の懸念から認可がされないため適当ではない。
本発明の乳幼児用栄養組成物中のシアル酸量は、さらに好ましくは330 mg/100g固形以上であり、よりいっそう好ましくは590mg/100 g固形以上である。
また、本発明の乳幼児用栄養組成物は、さらにGNBが一般的な乳幼児調整粉乳よりも多く含まれていることが望ましく、好ましくは90mg/100g固形以上であり、さらに好ましくは100mg/100g固形以上であり、よりいっそう好ましくは119mg/100g固形以上である。
シアル酸及びタンパク質以外の成分の含量は、食品の国際規格を定めるコーデックス委員会(CODEX)、欧州食品安全機関(EFSA)、又は厚生労働省等で定める母乳に近似したある一定の規格範囲量となるよう調整すればよい。
(Nutritional composition for infants)
The nutritional composition for infants of the present invention includes infant formula and formula liquid milk, infant formula (follow-up milk and glowing-up milk), low birth weight infant formula, milk allergen-relieving food and lactose. Lactose-removing foods for intolerance, etc., which are composed mainly of proteins, fats, sugars, vitamins and minerals. In addition, the composition may further contain components that can be added to the nutritional composition for infants.
The nutritional composition for infants of the present invention is characterized in that sialic acid is 250 mg/100 g solid or more and the amount of protein is less than 2.4 g/100 kcal. When the amount of sialic acid is less than 250 mg/100 g solid, the nutritional value is poor because it is lower than the low value of sialic acid in Japanese breast milk, and when the amount of protein is 2.4 g/100 kcal or more, it is excessive in the infancy. It is not appropriate because approval has not been granted due to concerns about increased risk of developing lifestyle-related diseases due to protein intake.
The amount of sialic acid in the nutritional composition for infants of the present invention is more preferably 330 mg/100 g solid or more, and even more preferably 590 mg/100 g solid or more.
Further, the nutritional composition for infants of the present invention preferably further contains GNB in a larger amount than general infant formula powder, preferably 90 mg/100 g solid or more, more preferably 100 mg/100 g solid or more. And even more preferably 119 mg/100 g solid or more.
The content of ingredients other than sialic acid and protein is within a certain standard range similar to that of breast milk as defined by the Codex Commission (CODEX) that establishes international food standards, the European Food Safety Agency (EFSA), or the Ministry of Health, Labor and Welfare. Adjust so that

Figure 2020124126
Figure 2020124126

(乳幼児用栄養組成物の製造方法)
本発明の乳幼児用栄養組成物の製造方法について、乳幼児用調製粉乳を例に以下説明する。まず、GMPを含む組成物を酵素処理及び膜処理をすることで特定範囲のシアル酸含量、GNB含量、及びタンパク質含量のシアリル糖ペプチドを調製する。これを一般的な乳幼児用調整粉乳に配合することでタンパク質量及びシアル酸量を母乳に近づけた新たな乳幼児用調製粉乳を調製することができる。
すなわち、タンパク質源、糖質源、および前記のようにして得られたシアリル糖ペプチドをタンク内で水に溶解した。次に脂肪源を混合し、均質化後、濃縮し、噴霧乾燥により粉末化する。ビタミンやミネラルなどの微量成分は乳糖と混合後、噴霧乾燥した粉末と粉混合し本発明の乳幼児用調製粉乳を得ることができる。
上記GMPの酵素処理及び膜処理により、タンパク質含量をGMPより低くしつつ、シアル酸含量及びGNB含量をGMPより増加させることができる。タンパク質含量の低下とシアル酸量及びGNBの増加とのバランスは、酵素処理の条件(酵素の種類、温度、時間等)や膜処理の条件(膜の分画分子量の違い等)により所望のシアリル糖ペプチドが得られるように適宜調整することができる。
一例としては、GMPを含む組成物をプロテアーゼまたは/およびペプチダーゼで処理した後に、酵素分解液を分画分子量500から1000の限外ろ過膜またはナノフィルトレーション膜で濃縮することで、シアル酸含量が8%以上、GNB含量が4%以上、タンパク質量が86%以下となるシアリル糖ペプチドを調製し、このシアリル糖ペプチドを一般的な乳幼児用調製粉乳(シアル酸:193mg/100g固形、GNB:82mg/100g、固形タンパク質:2.28g/100kcal)に配合することで、タンパク質量を母乳に近い量にしつつ、シアル酸および/又はGNBを強化した乳幼児用調製粉乳(シアル酸:250mg/100g固形以上、GNB:90mg/100g固形以上、タンパク質:2.4g/100kcal未満)を調製することができる。
なお、明細書中、シアリル糖ペプチドとは、シアル酸を糖鎖の構成として含む糖ペプチドをいう。
(Method for producing nutritional composition for infants)
The method for producing the nutritional composition for infants of the present invention will be described below by taking the infant formula as an example. First, a composition containing GMP is subjected to an enzyme treatment and a membrane treatment to prepare a sialylic glycopeptide having a sialic acid content, a GNB content and a protein content in a specific range. By blending this with a general infant formula, a new infant formula can be prepared in which the amount of protein and the amount of sialic acid are close to those of mother's milk.
That is, a protein source, a carbohydrate source, and the sialyl glycopeptide obtained as described above were dissolved in water in a tank. The fat source is then mixed, homogenized, concentrated and pulverized by spray drying. Minor components such as vitamins and minerals can be mixed with lactose and then powder-mixed with spray-dried powder to obtain the infant formula of the present invention.
By the enzyme treatment and membrane treatment of GMP, the sialic acid content and GNB content can be increased more than GMP while the protein content is lower than GMP. The balance between the decrease in protein content and the increase in sialic acid content and GNB depends on the conditions of enzyme treatment (enzyme type, temperature, time, etc.) and membrane treatment conditions (difference in molecular weight cutoff of membrane, etc.). It can be appropriately adjusted so as to obtain a glycopeptide.
As an example, a composition containing GMP is treated with a protease or/and a peptidase, and then the enzymatic decomposition solution is concentrated with an ultrafiltration membrane or a nanofiltration membrane having a molecular weight cutoff of 500 to 1000 to obtain a sialic acid content. Of 8% or more, GNB content of 4% or more, and protein content of 86% or less are prepared, and this sialylglycopeptide is used for general infant formula (sialic acid: 193 mg/100 g solid, GNB: 82 mg/100 g, solid protein: 2.28 g/100 kcal) to make the amount of protein close to that of breast milk, while enhancing sialic acid and/or GNB for infant formula (sialic acid: 250 mg/100 g solid As described above, GNB: 90 mg/100 g solid or more, protein: 2.4 g/100 kcal or less) can be prepared.
In the specification, the sialyl glycopeptide refers to a glycopeptide containing sialic acid as a sugar chain constituent.

(GMPの製造方法)
GMPを含む組成物は、特許第2673828号などに記載の方法により調製することができる。すなわち、GMPを含有する乳原料物質、例えばチーズホエイ、ホエイタンパク質濃縮物、除タンパク質チーズホエイ等を、まずpH4未満に調整した後、分画分子量10,000〜50,000の膜を用い、限外濾過処理をして透過液を得、好ましくは再度、該透過膜をpH4以上に調整した後、分画分子量50,000以下の膜を用いて脱塩し濃縮することによりGMPを調整する方法が挙げられる。また、乳質ホエイをpH6.0以上に調整し40〜79℃で加熱処理したものを膜処理に付して乳清たんぱく質を除去し、GMPを濃縮液側に回収し、得られた濃縮液をpH5.5以下にした後、再び膜処理に供してGMPを透過液側に回収することによりGMP含有量の高い組成物を調製する方法を挙げることができる。
得られた組成物中のGMP量は、例えば、特許第3372499号の実施例に示されるようなウレア−SDS電気泳動法により分析することができる。
(GMP manufacturing method)
A composition containing GMP can be prepared by the method described in Japanese Patent No. 2673828 and the like. That is, a dairy raw material containing GMP, such as cheese whey, whey protein concentrate, deproteinized cheese whey, etc., is first adjusted to a pH of less than 4, and then a membrane having a molecular weight cutoff of 10,000 to 50,000 is used. A method of adjusting GMP by external filtration treatment to obtain a permeate, and preferably again after adjusting the permeation membrane to pH 4 or higher, followed by desalting and concentration using a membrane having a molecular weight cutoff of 50,000 or less. Is mentioned. In addition, milk whey is adjusted to pH 6.0 or higher and heat-treated at 40 to 79° C. is subjected to a membrane treatment to remove whey protein, GMP is recovered on the side of the concentrated solution, and the obtained concentrated solution is After adjusting the pH to 5.5 or less, a method of preparing a composition having a high GMP content by subjecting it to membrane treatment again to recover GMP on the permeate side can be mentioned.
The amount of GMP in the obtained composition can be analyzed by, for example, a urea-SDS electrophoresis method as shown in Examples of Japanese Patent No. 3372499.

(シアリル糖ペプチドの製造方法)
GMPをエンド型プロテアーゼまたはエキソ型プロテアーゼで処理する工程と、前記工程で得られた処理物を分画分子量500以上3,000以下の限外ろ過に供する処理工程を経ることにより本発明のシアリル糖ペプチド組成物を製造することができる。
糖ペプチド製造に用いるプロテアーゼの種類は、ペプチド結合を加水分解し、上記(シアリル糖ペプチド組成物)で記載したような分子量と糖鎖を有する糖ペプチドを得ることができるものであれば特に限定されるものではなく、1種類、又は複数のエンド型プロテアーゼ、エキソ型プロテアーゼを用いることができる。好ましくは、食品や医薬品の製造に使用可能な酵素がよく、アクチナーゼE(科研ファルマ)、アクチナーゼAS(科研ファルマ)、ヌクレイシン(HBI)、オリエンターゼAY(HBI)、スミチームFP(新日本化学工業)、スミチームSPP−G(新日本化学工業)、プロテアーゼA(天野エンザイム)、ペプチダーゼR(天野エンザイム)、アルカラーゼ(ノボザイム)、フレーバザイム(ノボザイム)などを単独、あるいは組み合わせて使用することができる。
このようにして得られるシアリル糖ペプチドはどのようなものでも用いることができるが、以下の特徴を有するものを用いることが好ましい。
スレオニン及び/又はセリン残基を有するペプチドに糖鎖が結合した糖ペプチドであって、
(1)糖ペプチドの分子量が700以上3,000以下であり、
(2)糖鎖が前記ペプチドのスレオニン又はセリン残基の水酸基に結合し、
(3)糖鎖の構成糖がシアル酸、N-アセチルガラクトサミン及びガラクトースからなり
(4)シアル酸を8重量%以上含有し、
(5)GNBを4重量%以上含有し、
(6)タンパク質量が86重量%以下である
シアリル糖ペプチド。
(Method for producing sialyl glycopeptide)
The sialyl sugar of the present invention is obtained by undergoing a step of treating GMP with an endo-type protease or an exo-type protease, and a treatment step of subjecting the treated product obtained in the above step to ultrafiltration with a molecular weight cutoff of 500 or more and 3,000 or less. Peptide compositions can be manufactured.
The type of protease used for glycopeptide production is not particularly limited as long as it can hydrolyze the peptide bond to obtain a glycopeptide having a molecular weight and a sugar chain as described in (Sialyl glycopeptide composition) above. However, one or more endo-type proteases and exo-type proteases can be used. Preferably, an enzyme that can be used for the production of foods and pharmaceuticals is preferable, and actinase E (Kaken Pharma), actinase AS (Kaken Pharma), nuclysin (HBI), orientase AY (HBI), Sumiteam FP (Nippon Chemical) , Sumiteam SPP-G (Nippon Chemical Co., Ltd.), Protease A (Amano Enzyme), Peptidase R (Amano Enzyme), Alcalase (Novozyme), Flavorzyme (Novozyme) and the like can be used alone or in combination.
Any sialyl glycopeptide thus obtained can be used, but one having the following characteristics is preferably used.
A glycopeptide in which a sugar chain is bound to a peptide having a threonine and/or serine residue,
(1) The molecular weight of the glycopeptide is 700 or more and 3,000 or less,
(2) The sugar chain binds to the hydroxyl group of the threonine or serine residue of the peptide,
(3) The sugar constituting the sugar chain is composed of sialic acid, N-acetylgalactosamine and galactose. (4) Containing 8% by weight or more of sialic acid,
(5) Containing 4% by weight or more of GNB,
(6) A sialyl glycopeptide having a protein content of 86% by weight or less.

(タンパク質源)
タンパク質源としては、カゼイン、乳清タンパク質濃縮物(WPC)、乳清タンパク質分離物(WPI)、αs-カゼイン、β−カゼイン、α−ラクトアルブミン、及びβ−ラクトグロブリンなどの乳タンパク質分画物、あるいは大豆タンパク質や小麦タンパク質などの植物タンパク質、さらにはこれらを種々の分解度まで酵素的に分解したペプチド、あるいはアミノ酸などを用いることができる。
(Protein source)
Examples of protein sources include milk protein fractions such as casein, whey protein concentrate (WPC), whey protein isolate (WPI), αs-casein, β-casein, α-lactalbumin, and β-lactoglobulin. Alternatively, plant proteins such as soybean protein and wheat protein, as well as peptides or amino acids obtained by enzymatically degrading these to various degrees of degradation can be used.

(脂肪源)
脂肪源としては、乳脂肪、ラード、牛脂、又はカツオ油、マグロ油などを含む魚油などの動物性油脂、あるいは大豆油、菜種油、コーン油、ヤシ油、パーム油、パーム核油、サフラワー油、エゴマ油、アマニ油、月見草油、MCT、又は綿実油などの植物性油脂、さらにはこれらの分別油、水添油、エステル交換油などを用いることができる。
(Fat source)
As a fat source, animal fats and oils such as milk fat, lard, beef tallow, or bonito oil, fish oil including tuna oil, etc., or soybean oil, rapeseed oil, corn oil, palm oil, palm oil, palm kernel oil, safflower oil. , Vegetable oils such as perilla oil, linseed oil, evening primrose oil, MCT, or cottonseed oil, and fractionated oils thereof, hydrogenated oils, transesterified oils, and the like can be used.

(糖質源)
糖質源としては、乳糖、麦芽糖、ブドウ糖、ショ糖、デキストリン、ガラクトシルラクトース、フラクトオリゴ糖、ラクチュロースなどのオリゴ糖、人工甘味料、可溶性多糖類、又は澱粉などを用いることができる。
(Sugar source)
As the sugar source, lactose, maltose, glucose, sucrose, dextrin, galactosyl lactose, fructooligosaccharides, oligosaccharides such as lactulose, artificial sweeteners, soluble polysaccharides, starch and the like can be used.

(ビタミン及びミネラル源)
ビタミン及びミネラル源としては、『乳幼児食品を含む特殊用途食品のCODEX規格及び関連衛生作業規則、CAC/VOL. IX−第1版及びSupplement 1, 2, 3, 4』( 日本国際酪農連盟発行、1993年)、『1993年版指定品目食品添加物便覧(改訂第31版)( 食品と科学社発行、1993年) 』、又は『届け出制食品添加物・食品素材天然物便覧(第12版)』( 食品と科学社発行、1992年)に記載のミネラル及びビタミン類のうち乳幼児食品に使用可能なものを用いることができる。
ビタミン類としては、例えばビタミンA、B 、C 、D 、E 、K 類、葉酸、パントテン酸、β−カロチン、ニコチン酸アミドなどを挙げることができ、又、ミネラル類としてはカルシウム、マグネシウム、鉄、銅、亜鉛、ヨウ素、マンガン、セレンなどが挙げられる。
(Vitamin and mineral sources)
As a source of vitamins and minerals, "CODEX standard and special hygiene work rules for special purpose foods including infant foods, CAC/VOL. IX-1st edition and Supplement 1, 2, 3, 4" (issued by the Japan International Dairy Federation, 1993), "1993 Specified Items Food Additives Handbook (Revised 31st Edition) (Published by Food and Science Co., 1993)" or "Notification System Food Additives/Food Material Natural Products Handbook (12th Edition)" Among the minerals and vitamins described in (Food and Science Co., Ltd., 1992), those usable in infant foods can be used.
Examples of vitamins include vitamins A, B, C, D, E, K, folic acid, pantothenic acid, β-carotene, nicotinic acid amide, and the like, and minerals include calcium, magnesium, and iron. , Copper, zinc, iodine, manganese, selenium and the like.

(シアル酸含量の測定方法)
50μLの50mMリン酸カリウム緩衝液(pH5.0)に、シアリル糖ペプチド濃度が250μg/mL、シアリダーゼ(コスモバイオ)の濃度が0.2U/mLとなるように溶解する。溶液を37℃で24時間インキュベートした後に超純水で2〜10倍に希釈し、遊離したシアル酸の濃度をHPLCで分析する。
シアル酸の測定は、例えば、CarboPac PA1カラムを装着したDIONEX ICS−5000DPシステム(サーモフィッシャーサイエンティフィック株式会社)で行うことができる。検出器は電気化学検出器(パルスドアンペロメトリックモード)を用い、移動相には超純水(A液)、200mM水酸化ナトリウム溶液(B液)、および600mM 酢酸ナトリウムを含む100mM 水酸化ナトリウム溶液(C液)の3液を流速1mL/minで通液する。開始から7分間B液45%およびC液10%で通液し、その後10分までにB液を37.5%まで直線的に減少、C液を25%まで直線的に増加させる。10分から20分にかけてはB液37.5%、C液25%で通液し、20.1分から25分はB液45%およびC液10%で通液する。濃度既知の標準品を用いて作成した検量線から試料中のシアル酸量を算出することができる。
(Method for measuring sialic acid content)
It is dissolved in 50 μL of 50 mM potassium phosphate buffer (pH 5.0) so that the sialylglycopeptide concentration is 250 μg/mL and the sialidase (Cosmo Bio) concentration is 0.2 U/mL. The solution is incubated at 37° C. for 24 hours, diluted 2 to 10 times with ultrapure water, and the concentration of free sialic acid is analyzed by HPLC.
The measurement of sialic acid can be performed, for example, by a DIONEX ICS-5000DP system (Thermo Fisher Scientific Co., Ltd.) equipped with a CarboPac PA1 column. The detector uses an electrochemical detector (pulsed amperometric mode), and the mobile phase is ultrapure water (solution A), 200 mM sodium hydroxide solution (solution B), and 100 mM sodium hydroxide solution containing 600 mM sodium acetate. Three liquids (C liquid) are passed at a flow rate of 1 mL/min. The solution is allowed to flow for 45 minutes from the beginning with the solution B 45% and the solution C 10%, and then the solution B is linearly decreased to 37.5% and the solution C is linearly increased to 25% by 10 minutes. From 10 minutes to 20 minutes, 37.5% of solution B and 25% of solution C are passed, and from 20.1 minutes to 25 minutes, 45% of solution B and 10% of solution C are passed. The amount of sialic acid in a sample can be calculated from a calibration curve prepared using a standard product of known concentration.

(GNB含量の測定方法)
50μLの50mMリン酸カリウム緩衝液(pH5.0)に、シアリル糖ペプチド濃度が250μg/mL、シアリダーゼ(コスモバイオ)の濃度が0.2U/mL、O-グリカナーゼ(Prozyme)の濃度が0.125U/mLとなるように、酵素および基質を溶解する。
溶液をサーマルサイクラー(Takara)により37℃で24時間インキュベートした後、氷冷により反応を停止した。反応液を超純水で2〜10倍に希釈した後、遊離したシアル酸とGNBの濃度をHPLCで分析する。
GNBの測定は、CarboPac PA1カラムを装着したDIONEX ICS−5000DPシステム(サーモフィッシャーサイエンティフィック株式会社)で行うことができる。検出器は電気化学検出器(パルスドアンペロメトリックモード)を用い、移動相には超純水(A液)、200mM水酸化ナトリウム溶液(B液)、および600mM 酢酸ナトリウムを含む100mM 水酸化ナトリウム溶液(C液)の3液を流速1mL/minで通液する。開始から10分間B液50%で溶出した後、25分までにC液の割合を0%から100%まで直線的に増加させ、30分までC液100%で溶出する。次に30.1分でB液50%とし、その後45分までB液50%で溶出する。濃度既知の標準品を用いて作成した検量線から試料中のGNB量を算出する。
(Method of measuring GNB content)
In 50 μL of 50 mM potassium phosphate buffer (pH 5.0), the sialylglycopeptide concentration was 250 μg/mL, the sialidase (Cosmobio) concentration was 0.2 U/mL, and the O-glycanase (Prozyme) concentration was 0.125 U. Dissolve enzyme and substrate to give /mL.
The solution was incubated in a thermal cycler (Takara) at 37° C. for 24 hours, and then the reaction was stopped by cooling with ice. After diluting the reaction solution 2 to 10 times with ultrapure water, the concentrations of free sialic acid and GNB are analyzed by HPLC.
The measurement of GNB can be performed by DIONEX ICS-5000DP system (Thermo Fisher Scientific Co., Ltd.) equipped with the CarboPac PA1 column. The detector uses an electrochemical detector (pulsed amperometric mode), and the mobile phase is ultrapure water (solution A), 200 mM sodium hydroxide solution (solution B), and 100 mM sodium hydroxide solution containing 600 mM sodium acetate. Three liquids (C liquid) are passed at a flow rate of 1 mL/min. After elution with 50% solution B for 10 minutes from the start, the proportion of solution C is linearly increased from 0% to 100% by 25 minutes, and 100% solution C is eluted until 30 minutes. Then, the solution B is made 50% in 30.1 minutes, and then eluated with the solution B 50% until 45 minutes. The amount of GNB in the sample is calculated from a calibration curve prepared using a standard product of known concentration.

(アミノ酸分析の方法)
アルギニン、リジン、ヒスチジン、フェニルアラニン、チロシン、ロイシン、イソロイシン、バリン、アラニン、グリシン、プロリン、グルタミン酸、セリン、スレオニンおよびアスパラギン酸の15種類のアミノ酸は、塩酸で加水分解後、JLC−500/V全自動高速アミノ酸分析機により分析する。シスチンおよびメチオニンは、過ギ酸溶液により加水分解後、JLC−500/V全自動高速アミノ酸分析機により分析する。トリプトファンは試料溶液に水酸化バリウム八水和物およびチオジエチレングリコールを加え、加熱した後、塩酸で加水分解し、HPLCにより分析する。
(Method of amino acid analysis)
15 kinds of amino acids of arginine, lysine, histidine, phenylalanine, tyrosine, leucine, isoleucine, valine, alanine, glycine, proline, glutamic acid, serine, threonine and aspartic acid are hydrolyzed with hydrochloric acid, and then JLC-500/V fully automatic. Analyze with a high-speed amino acid analyzer. Cystine and methionine are hydrolyzed with a formic acid solution and then analyzed by a JLC-500/V fully automatic high speed amino acid analyzer. For tryptophan, barium hydroxide octahydrate and thiodiethylene glycol are added to a sample solution, heated, hydrolyzed with hydrochloric acid, and analyzed by HPLC.

(タンパク質量の算出)
GMPおよびシアリル糖ペプチドのタンパク質量は、アミノ酸分析から得られた総アミノ酸量の数値をタンパク質量とする。
(Calculation of protein amount)
Regarding the protein amount of GMP and sialylglycopeptide, the protein amount is the numerical value of the total amino acid amount obtained from amino acid analysis.

以下、本発明の実施例を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, examples of the present invention will be described in detail, but the present invention is not limited thereto.

〔実施例1〕本発明のシアリル糖ペプチド組成物の調製方法
1.GMPの製造方法
ホエイタンパク質濃縮物(サンラクトN−2、太陽化学製)1kgを50℃の水50Lに溶解し、濃塩酸によりpH3.5に調整した。これを、分画分子量20,000の限外ろ過膜(GR61PP、DDS製)を用い、50℃、圧力0.4MPa、平均透過液流速52.4L/m・hにて限外ろ過を行なった。透過液量が40Lに達した時点で濃縮液に50℃の水40Lを加え、連続して限外ろ過を行なった。以上の様にして連続運転を行い、透過液を160L得た。
得られた透過液に25%苛性ソーダを加え、pH7.0とし、再度同じ条件、同じ限外ろ過膜で濃縮液が5Lになるまで限外ろ過を行い、脱塩濃縮した。続いて50℃の水を加え、濃縮液量を常に10Lに保ちながら、これまでと同じ条件、同じ限外ろ過膜でダイアフィルトレーションを行い、さらに脱塩した。このダイアフィルトレーションにより透過液量が80Lに達した時点で濃縮液に水を加えるのをやめ、濃縮液量が2Lになるまで限外ろ過にて濃縮し、この濃縮液を乾燥し、GMP54gを得た。
[Example 1] Method for preparing sialylglycopeptide composition of the present invention Method for producing GMP 1 kg of whey protein concentrate (Sunlacto N-2, manufactured by Taiyo Kagaku) was dissolved in 50 L of water at 50°C, and the pH was adjusted to 3.5 with concentrated hydrochloric acid. This is subjected to ultrafiltration using an ultrafiltration membrane (GR61PP, manufactured by DDS) having a molecular weight cut off of 20,000 at 50° C., a pressure of 0.4 MPa, and an average permeate flow rate of 52.4 L/m 2 ·h. It was When the amount of the permeated liquid reached 40 L, 40 L of water at 50° C. was added to the concentrated liquid, and ultrafiltration was continuously performed. Continuous operation was performed as described above to obtain 160 L of permeated liquid.
25% caustic soda was added to the obtained permeated liquid to adjust the pH to 7.0, and ultrafiltration was performed again under the same conditions and the same ultrafiltration membrane until the concentrated liquid became 5 L, and desalted and concentrated. Subsequently, water at 50° C. was added, and diafiltration was performed under the same conditions and the same ultrafiltration membrane as before, while maintaining the concentrated liquid amount at 10 L, to further desalt. When the amount of permeated liquid reached 80 L by this diafiltration, stop adding water to the concentrated liquid, concentrated by ultrafiltration until the amount of concentrated liquid reached 2 L, dried this concentrated liquid, and GMP54g Got

2.シアリル糖ペプチド組成物の製造方法
上記1.で得られたGMPを用い、30kgの5%GMP溶液を調製した。これをアルカラーゼ(ノボザイム社製)およびフレーバザイム(ノボザイム社製)を添加して50℃で4時間反応させた。これを、分画分子量1,000の限外ろ過膜を用いて限外ろ過を行なった。濃縮液に水を加えて連続して限外ろ過を行なうことでダイアフィルトレーションを行ない、5倍の加水濃縮を行なった後に濃縮液画分を得た。この濃縮液を乾燥し、シアリル糖ペプチド組成物Aを300g得た。さらに、加水濃縮を10倍まで行なうことで得られたものをシアリル糖ペプチド組成物B(300g)とした。
2. Method for producing sialylglycopeptide composition 1. 30 kg of 5% GMP solution was prepared using the GMP obtained in (1). To this, Alcalase (manufactured by Novozyme) and Flavorzyme (manufactured by Novozyme) were added and reacted at 50° C. for 4 hours. This was subjected to ultrafiltration using an ultrafiltration membrane having a molecular weight cut off of 1,000. Water was added to the concentrated solution, and ultrafiltration was continuously performed to carry out diafiltration, and after performing 5-fold hydroconcentration, a concentrated solution fraction was obtained. The concentrated solution was dried to obtain 300 g of the sialylglycopeptide composition A. Furthermore, what was obtained by performing hydroconcentration up to 10 times was made into the sialyl glycopeptide composition B (300g).

3.シアル酸量、GNB量、およびアミノ酸組成の分析
調製したGMPおよびシアリル糖ペプチド組成物中のシアル酸量およびGNB量は、以下に記載した方法で測定した。
(1)すなわち、50μLの50mMリン酸カリウム緩衝液(pH5.0)に、シアリル糖ペプチド濃度が250μg/mL、シアリダーゼ(コスモバイオ)の濃度が0.2U/mL、O-グリカナーゼ(Prozyme)の濃度が0.125U/mLとなるように、酵素および基質を溶解した。溶液をサーマルサイクラー(Takara)により37℃で24時間インキュベートした後、氷冷により反応を停止した。反応液を超純水で2〜10倍に希釈した後、遊離したシアル酸とGNBの濃度をHPLCで分析した。CarboPac PA1カラムを装着したDIONEX ICS−5000DPシステム(サーモフィッシャーサイエンティフィック株式会社)で行った。検出器は電気化学検出器(パルスドアンペロメトリックモード)を用い、移動相には超純水(A液)、200mM水酸化ナトリウム溶液(B液)、および600mM 酢酸ナトリウムを含む100mM 水酸化ナトリウム溶液(C液)の3液を流速1mL/minで通液した。
(2)シアル酸の測定は、開始から7分間B液45%およびC液10%で通液し、その後10分までにB液を37.5%まで直線的に減少、C液を25%まで直線的に増加させた。10分から20分にかけてはB液37.5%、C液25%で通液し、20.1分から25分はB液45%およびC液10%で通液した。濃度既知の標準品を用いて作成した検量線から試料中のシアル酸量を算出した。シアル酸量は、N−アセチルノイラミン酸(Neu5Ac)量として算出した。
(3)GNBの測定は、開始から10分間B液50%で溶出した後、25分までにC液の割合を0%から100%まで直線的に増加させ、30分までC液100%で溶出した。次に30.1分でB液50%とし、その後45分までB液50%で溶出した。濃度既知の標準品を用いて作成した検量線から試料中のGNB量を算出した。
(4)調製したGMPおよびシアリル糖ペプチド組成物中のアミノ酸組成は、一般的な食品成分中のアミノ酸組成分析法により分析した。総アミノ酸量をタンパク質量とした。
(5)分析結果
シアリル糖ペプチド組成物Aは、シアル酸量が20重量%、GNB量が11重量%、タンパク質量は67重量%であり、シアリル糖ペプチド組成物Bは、シアル酸量が36重量%、GNB量が19.8重量%、タンパク質量は42重量%であった(表2)。また、調製したGMPはシアル酸量が6.0重量%、GNB量が5.0重量%、タンパク質量は84重量%であった(表2)。
LC/MS分析で得られたMSスペクトルおよびMS/MSスペクトルから、シアリル糖ペプチド組成物に含まれる糖ペプチドの糖鎖構造を推定した。検出した多くの糖ペプチドが、シアル酸を2分子結合したNeu5Acα2-3Galβ1-3(Neu5Acα2-6)GalNAcの糖鎖構造(Glycan type 3, 4, 5, 6, 7)を有していたが、シアル酸が1分子であるNeu5Acα2-3Galβ1-3GalNAc(Glycan type 1)やGalβ1-3(Neu5Acα2-6)GalNAc(Glycan type 2)も検出された。さらに、シアル酸のO−アセチル体であるN,O−ジアセチルノイラミン酸(O-Ac-Neu5Ac, Glycan type 4)、およびN,O,O−トリアセチルノイラミン酸(O- diAc-Neu5Ac, Glycan type 5)も検出された。また、一つのペプチド鎖に2本の糖鎖が結合した糖ペプチド(Glycan type 6, 7)も検出された。すなわち、検出したいずれの糖ペプチドもシアル酸を含む糖鎖が結合したペプチドであり、糖鎖が前記ペプチドのスレオニン又はセリン残基の水酸基に結合し、糖鎖の構成糖がシアル酸、N−アセチルガラクトサミン及びガラクトースからなるものであった。また、MS/MSスペクトル解析から検出したペプチド鎖の分子量は、745から2928の範囲であった。
3. Analysis of Sialic Acid Content, GNB Content, and Amino Acid Composition The sialic acid content and GNB content in the prepared GMP and sialylglycopeptide compositions were measured by the methods described below.
(1) That is, in 50 μL of 50 mM potassium phosphate buffer (pH 5.0), the sialylglycopeptide concentration was 250 μg/mL, the sialidase (Cosmobio) concentration was 0.2 U/mL, and O-glycanase (Prozyme) was added. The enzyme and the substrate were dissolved so that the concentration was 0.125 U/mL. The solution was incubated in a thermal cycler (Takara) at 37° C. for 24 hours, and then the reaction was stopped by cooling with ice. The reaction solution was diluted 2 to 10 times with ultrapure water, and the concentrations of free sialic acid and GNB were analyzed by HPLC. It was performed with a DIONEX ICS-5000DP system (Thermo Fisher Scientific Co., Ltd.) equipped with a CarboPac PA1 column. The detector uses an electrochemical detector (pulsed amperometric mode), and the mobile phase is ultrapure water (solution A), 200 mM sodium hydroxide solution (solution B), and 100 mM sodium hydroxide solution containing 600 mM sodium acetate. Three liquids (C liquid) were passed at a flow rate of 1 mL/min.
(2) For the measurement of sialic acid, the solution B was passed at 45% and the solution C at 10% for 7 minutes from the start, and then the solution B was linearly decreased to 37.5% and the solution C was 25% by 10 minutes. Increased linearly up to. From 10 minutes to 20 minutes, 37.5% of solution B and 25% of solution C were passed, and from 20.1 minutes to 25 minutes, 45% of solution B and 10% of solution C were passed. The amount of sialic acid in the sample was calculated from a calibration curve prepared using a standard product of known concentration. The amount of sialic acid was calculated as the amount of N-acetylneuraminic acid (Neu5Ac).
(3) GNB was measured by elution with 50% B solution for 10 minutes from the start, then linearly increasing the ratio of C solution from 0% to 100% by 25 minutes, and 100% C solution until 30 minutes. It eluted. Next, the solution B was adjusted to 50% in 30.1 minutes, and then the solution B was eluted at 50% until 45 minutes. The amount of GNB in the sample was calculated from a calibration curve prepared using a standard product of known concentration.
(4) The amino acid composition in the prepared GMP and sialylglycopeptide composition was analyzed by the general amino acid composition analysis method for food ingredients. The total amino acid amount was used as the protein amount.
(5) Analysis results The sialylglycopeptide composition A has a sialic acid content of 20% by weight, a GNB content of 11% by weight, and a protein content of 67% by weight. The sialylglycopeptide composition B has a sialic acid content of 36%. % By weight, GNB amount was 19.8% by weight, and protein amount was 42% by weight (Table 2). The prepared GMP had a sialic acid content of 6.0% by weight, a GNB content of 5.0% by weight, and a protein content of 84% by weight (Table 2).
From the MS spectrum and MS/MS spectrum obtained by LC/MS analysis, the sugar chain structure of the glycopeptide contained in the sialyl glycopeptide composition was estimated. Many of the detected glycopeptides had the sugar chain structure (Glycan type 3, 4, 5, 6, 7) of Neu5Acα2-3Galβ1-3(Neu5Acα2-6)GalNAc with two sialic acid molecules bound, Neu5Acα2-3Galβ1-3GalNAc (Glycan type 1) and Galβ1-3(Neu5Acα2-6)GalNAc (Glycan type 2) having one molecule of sialic acid were also detected. Further, N,O-diacetylneuraminic acid (O-Ac-Neu5Ac, Glycan type 4) which is an O-acetyl form of sialic acid, and N,O,O-triacetylneuraminic acid (O-diAc-Neu5Ac, Glycan type 5) was also detected. In addition, a glycopeptide (Glycan type 6, 7) in which two sugar chains were bound to one peptide chain was also detected. That is, any of the detected glycopeptides is a peptide to which a sugar chain containing sialic acid is bound, the sugar chain is bound to the hydroxyl group of the threonine or serine residue of the peptide, and the sugar constituting the sugar chain is sialic acid or N-. It was composed of acetylgalactosamine and galactose. The molecular weight of the peptide chain detected by MS/MS spectrum analysis was in the range of 745 to 2928.

Figure 2020124126
Figure 2020124126

〔実施例2〕シアリル糖ペプチド配合乳幼児用調製粉乳の調製
ホエイ粉52.7kg、脱脂乳239kg、および実施例1で調製したシアリル糖ペプチド組成物A340gを水500kgに溶解し、この溶液に植物油23.9kgを混合し、均質化した。得られた溶液を殺菌し、定法により濃縮、乾燥して粉乳99kgを得た。粉乳とビタミンとミネラル成分1kgを粉混合し、最終的に乳幼児用調製粉乳100kgを得た。得られた粉乳のシアル酸量は、250mg/100g固形であり、GNB量は114mg/100g固形以上、タンパク質量は2.29g/100 kcalであった。
[Example 2] Preparation of infant formula prepared with sialyl glycopeptides Whey powder (52.7 kg), skim milk (239 kg), and sialyl glycopeptide composition A (340 g) prepared in Example 1 were dissolved in water (500 kg). 0.9 kg was mixed and homogenized. The obtained solution was sterilized, concentrated and dried by a conventional method to obtain 99 kg of milk powder. Powdered milk, vitamins and 1 kg of mineral components were mixed by powder to finally obtain 100 kg of infant formula. The amount of sialic acid in the obtained milk powder was 250 mg/100 g solid, the amount of GNB was 114 mg/100 g solid or more, and the amount of protein was 2.29 g/100 kcal.

〔実施例3〕シアリル糖ペプチド配合乳幼児用調製粉乳の調製
ホエイ粉52.7kg、脱脂乳239kg、および実施例1で調製したシアリル糖ペプチド組成物B190gを水500kgに溶解し、この溶液に植物油23.9kgを混合し、均質化した。得られた溶液を殺菌し、定法により濃縮、乾燥して粉乳99kgを得た。粉乳とビタミンとミネラル成分1kgを粉混合し、最終的に乳幼児用調製粉乳100kgを得た。得られた粉乳のシアル酸量は、250mg/100g固形であり、GNB量は114mg/100g固形以上、タンパク質量は2.27g/100kcalであった。
[Example 3] Preparation of infant formula powder containing sialyl glycopeptide Whey powder (52.7 kg), skim milk (239 kg), and sialyl glycopeptide composition B (190 g) prepared in Example 1 were dissolved in water (500 kg). 0.9 kg was mixed and homogenized. The obtained solution was sterilized, concentrated and dried by a conventional method to obtain 99 kg of milk powder. Powdered milk, vitamins and 1 kg of mineral components were mixed by powder to finally obtain 100 kg of infant formula. The amount of sialic acid in the obtained milk powder was 250 mg/100 g solid, the amount of GNB was 114 mg/100 g solid or more, and the amount of protein was 2.27 g/100 kcal.

〔実施例4〕シアリル糖ペプチド配合乳幼児用調製粉乳の調製
ホエイ粉52.7kg、脱脂乳239kg、および実施例1で調製したシアリル糖ペプチド組成物B1100gを水500kgに溶解し、この溶液に植物油23.9kgを混合し、均質化した。得られた溶液を殺菌し、定法により濃縮、乾燥して粉乳99kgを得た。粉乳とビタミンとミネラル成分1kgを混合し、最終的に乳幼児用調製粉乳100kgを得た。得られた粉乳のシアル酸量は、590mg/100g固形であり、GNB量は300mg/100g固形以上、タンパク質量は2.35g/100kcalであった。
[Example 4] Preparation of infant formula containing sialyl glycopeptides Whey powder (52.7 kg), skim milk (239 kg), and the sialyl glycopeptide composition B (1100 g) prepared in Example 1 were dissolved in water (500 kg). 0.9 kg was mixed and homogenized. The obtained solution was sterilized, concentrated and dried by a conventional method to obtain 99 kg of milk powder. Powdered milk, vitamins and 1 kg of mineral components were mixed to finally obtain 100 kg of infant formula. The amount of sialic acid in the obtained milk powder was 590 mg/100 g solid, the amount of GNB was 300 mg/100 g solid or more, and the amount of protein was 2.35 g/100 kcal.

〔参考例1〕GMP配合乳幼児用調製粉乳の調製
ホエイ粉52.7kg、脱脂乳239kg、およびGMP1120gを水500kgに溶解し、この溶液に植物油23.9kgを混合し、均質化した。得られた溶液を殺菌し、定法により濃縮、乾燥して粉乳99kgを得た。粉乳とビタミンとミネラル成分1kgを粉混合し、最終的に乳幼児用調製粉乳100kgを得た。得られた粉乳のシアル酸量は、250mg/100g固形であり、GNB量は129mg/100g固形以上、タンパク質量は2.41g/100kcalであった。
[Reference Example 1] Preparation of GMP-containing infant formula 52.7 kg of whey powder, 239 kg of skim milk, and 1120 g of GMP were dissolved in 500 kg of water, and 23.9 kg of vegetable oil was mixed with this solution to homogenize. The obtained solution was sterilized, concentrated and dried by a conventional method to obtain 99 kg of milk powder. Powdered milk, vitamins and 1 kg of mineral components were mixed by powder to finally obtain 100 kg of infant formula. The amount of sialic acid in the obtained milk powder was 250 mg/100 g solid, the amount of GNB was 129 mg/100 g solid or more, and the amount of protein was 2.41 g/100 kcal.

〔参考例2〕GMP配合乳幼児用調製粉乳の調製
ホエイ粉52.7kg、脱脂乳239kg、およびGMP6620gを水500kgに溶解し、この溶液に植物油23.9kgを混合し、均質化した。得られた溶液を殺菌し、定法により濃縮、乾燥して粉乳99kgを得た。粉乳とビタミンとミネラル成分1kgを粉混合し、最終的に乳幼児用調製粉乳100kgを得た。得られた粉乳のシアル酸量は、590mg/100g固形であり、GNB量は413mg/100g固形以上、タンパク質量は3.35g/100kcalであった。
[Reference Example 2] Preparation of infant formula powdered milk containing GMP 52.7 kg of whey powder, 239 kg of skim milk, and 6620 g of GMP were dissolved in 500 kg of water, and 23.9 kg of vegetable oil was mixed with this solution to homogenize. The obtained solution was sterilized, concentrated and dried by a conventional method to obtain 99 kg of milk powder. Powdered milk, vitamins and 1 kg of mineral components were mixed by powder to finally obtain 100 kg of infant formula. The amount of sialic acid in the obtained milk powder was 590 mg/100 g solid, the amount of GNB was 413 mg/100 g solid or more, and the amount of protein was 3.35 g/100 kcal.

Figure 2020124126
Figure 2020124126

本発明は、タンパク質量を母乳に近い2.4g/100kcal未満に収めつつ、シアル酸量を母乳レベルまで増加させた新たな乳幼児用栄養組成物、及びその製造方法を提供することができる。また、さらにGNB量についても従来の乳幼児用栄養組成物より増加した新たな乳幼児用栄養組成物、及びその製造方法を提供することができる。


INDUSTRIAL APPLICABILITY The present invention can provide a new nutritional composition for infants in which the amount of sialic acid is increased to the level of human milk while keeping the amount of protein at less than 2.4 g/100 kcal, which is close to that of human milk, and a method for producing the same. Further, it is possible to provide a new nutritional composition for infants and a method for producing the same, in which the amount of GNB is also increased as compared with the conventional nutritional composition for infants.


Claims (8)

シアル酸が250mg/100g固形以上であり、かつタンパク質量が2.4g/100kcal未満であることを特徴とする乳幼児用栄養組成物。 A nutritional composition for infants, characterized in that sialic acid is 250 mg/100 g solid or more and the amount of protein is less than 2.4 g/100 kcal. さらに、ガラクト−N−ビオースが90mg/100g固形以上である請求項1に記載の乳幼児用栄養組成物。 Furthermore, the nutrition composition for infants according to claim 1, wherein the galacto-N-biose is 90 mg/100 g solid or more. 乳幼児用栄養組成物が乳幼児用調整粉乳である請求項1又は2に記載の乳幼児用栄養組成物。 The nutritional composition for infants according to claim 1 or 2, wherein the nutritional composition for infants is infant formula. シアリル糖ペプチドが配合された請求項1〜3のいずれかに記載の乳幼児用栄養組成物。 The nutritional composition for infants according to any one of claims 1 to 3, further comprising a sialylglycopeptide. シアリル糖ペプチドが、シアル酸を8重量%以上含有し、ガラクト−N−ビオースを4重量%以上含有し、タンパク質量が86重量%以下である請求項1〜4のいずれかに記載の乳幼児用栄養組成物。 The sialylglycopeptide contains 8% by weight or more of sialic acid, 4% by weight or more of galacto-N-biose, and has a protein amount of 86% by weight or less, for infants according to any one of claims 1 to 4. Nutrition composition. 前記シアリル糖ペプチドの分子量が700以上3,000以下である請求項1〜5のいずれかに記載の乳幼児用栄養組成物。 The nutritional composition for infants according to claim 1, wherein the sialylglycopeptide has a molecular weight of 700 or more and 3,000 or less. シアリル糖ペプチドは、スレオニン及び/又はセリン残基を有するペプチドに糖鎖が結合した糖ペプチドであって、前記糖鎖が前記ペプチドのスレオニン又はセリン残基の水酸基に結合し、前記糖鎖の構成糖がシアル酸、N−アセチルガラクトサミン及びガラクトースからなる請求項1〜6のいずれかに記載の乳幼児用栄養組成物。 The sialylglycopeptide is a glycopeptide in which a sugar chain is bound to a peptide having a threonine and/or serine residue, and the sugar chain binds to a hydroxyl group of the threonine or serine residue of the peptide to form the sugar chain. The nutritional composition for infants according to claim 1, wherein the sugar comprises sialic acid, N-acetylgalactosamine and galactose. シアリル糖ペプチドを添加する工程を含む乳幼児用栄養組成物の製造方法であって、シアリル糖ペプチドが以下の構成を有することを特徴とする乳幼児用栄養組成物の製造方法。
スレオニン及び/又はセリン残基を有するペプチドに糖鎖が結合した糖ペプチドであって、
前記糖ペプチドの分子量が700以上3,000以下であり、
前記糖鎖が前記ペプチドのスレオニン又はセリン残基の水酸基に結合し、
前記糖鎖の構成糖がシアル酸、N−アセチルガラクトサミン及びガラクトースからなり
前記シアル酸を8重量%以上含有し、
前記ガラクト-N-ビオースを4重量%以上含有し、
前記ペプチド鎖のタンパク質量が86重量%以下である
A method for producing a nutritional composition for infants, which comprises the step of adding a sialylglycopeptide, wherein the sialylglycopeptide has the following constitution.
A glycopeptide in which a sugar chain is bound to a peptide having a threonine and/or serine residue,
The molecular weight of the glycopeptide is 700 or more and 3,000 or less,
The sugar chain binds to a hydroxyl group of a threonine or serine residue of the peptide,
The sugar constituting the sugar chain consists of sialic acid, N-acetylgalactosamine and galactose, and contains 8% by weight or more of the sialic acid,
Containing 4% by weight or more of the galacto-N-biose,
The protein amount of the peptide chain is 86% by weight or less
JP2019016957A 2019-02-01 2019-02-01 Infant nutrition composition Active JP7338978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019016957A JP7338978B2 (en) 2019-02-01 2019-02-01 Infant nutrition composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019016957A JP7338978B2 (en) 2019-02-01 2019-02-01 Infant nutrition composition

Publications (2)

Publication Number Publication Date
JP2020124126A true JP2020124126A (en) 2020-08-20
JP7338978B2 JP7338978B2 (en) 2023-09-05

Family

ID=72083193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019016957A Active JP7338978B2 (en) 2019-02-01 2019-02-01 Infant nutrition composition

Country Status (1)

Country Link
JP (1) JP7338978B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349648A (en) * 1989-07-17 1991-03-04 Snow Brand Milk Prod Co Ltd Childcare powdered milk having neutralizing ability of bacterial toxin
JP2011504365A (en) * 2007-11-26 2011-02-10 ネステク ソシエテ アノニム Age-matched nutrition system for infants
JP2011073975A (en) * 2009-09-29 2011-04-14 Snow Brand Milk Prod Co Ltd Method for separating sialyl lactose material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349648A (en) * 1989-07-17 1991-03-04 Snow Brand Milk Prod Co Ltd Childcare powdered milk having neutralizing ability of bacterial toxin
JP2011504365A (en) * 2007-11-26 2011-02-10 ネステク ソシエテ アノニム Age-matched nutrition system for infants
JP2011073975A (en) * 2009-09-29 2011-04-14 Snow Brand Milk Prod Co Ltd Method for separating sialyl lactose material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
北岡本光: "ヒトミルクオリゴ糖によるビフィズス菌増殖促進作用の分子機構", MILK SCIENCE, vol. 61, no. 2, JPN6022045703, 2012, pages 115 - 124, ISSN: 0005028873 *
芦田久: "健康と長寿を指向したアミノ糖含有ヘテロ糖鎖による腸内環境改善技術の開発", 科学研究費助成事業研究成果報告書(2014.), JPN6022045702, 2015, pages 1 - 4, ISSN: 0005028872 *
須栗俊郎: "乳中の複合糖質について", 栄養生理研究会報, JPN6022045705, 1996, pages 81 - 91, ISSN: 0005028874 *

Also Published As

Publication number Publication date
JP7338978B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
US6777391B1 (en) Composition for an infant formula having a low threonine content
EP2154990B1 (en) Functional serum protein product for use in infant food and therapeutic compositions and methods for the preparation thereof
JP6234227B2 (en) Nutritional composition for improving intestinal flora
EP1220620B1 (en) Composition comprising casein protein and whey protein
TW201306759A (en) Use of nutritional compositions including lactoferrin in stimulating immune cells
US11647778B2 (en) Nutritional compositions containing milk-derived peptides and uses thereof
EP2257562B1 (en) Oligosaccharide ingredient
JP7338978B2 (en) Infant nutrition composition
Pandya et al. Bioactive components in buffalo milk
JP3789146B2 (en) Oligosaccharide-containing nutritional composition
JP3886915B2 (en) Peptide milk
RU2497827C2 (en) Oligosaccharide ingredient
WO2018221526A1 (en) Nutritional composition
EP3897213B1 (en) Protein compositions with high isoelectric proteins
JP2003113087A (en) Oligosaccharide-containing nutrient composition
Milk et al. Bioactive Components in

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230703

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230824

R150 Certificate of patent or registration of utility model

Ref document number: 7338978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150