JP2020123466A - 容器内の加熱構造および温度スイング吸着装置 - Google Patents

容器内の加熱構造および温度スイング吸着装置 Download PDF

Info

Publication number
JP2020123466A
JP2020123466A JP2019013754A JP2019013754A JP2020123466A JP 2020123466 A JP2020123466 A JP 2020123466A JP 2019013754 A JP2019013754 A JP 2019013754A JP 2019013754 A JP2019013754 A JP 2019013754A JP 2020123466 A JP2020123466 A JP 2020123466A
Authority
JP
Japan
Prior art keywords
container
heater
heating
fluid
heating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019013754A
Other languages
English (en)
Other versions
JP7233231B2 (ja
Inventor
貴紀 貝川
Takanori KAIGAWA
貴紀 貝川
玲央奈 郷田
Reona Goda
玲央奈 郷田
末長 純也
Junya Suenaga
純也 末長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2019013754A priority Critical patent/JP7233231B2/ja
Publication of JP2020123466A publication Critical patent/JP2020123466A/ja
Application granted granted Critical
Publication of JP7233231B2 publication Critical patent/JP7233231B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

【課題】エネルギーロスが少なく、容器内を均一に加熱できる容器内の加熱構造を提供する。【解決手段】内部に流体が流通しうる容器10と、上記容器10内に配置されるヒーター30とを備え、上記ヒーター30は、長手方向Xと幅方向Yがあるシート状の加熱体32を含んで構成され、上記加熱体32が、上記幅方向Yには曲がらず、上記長手方向Xにおいてシート面同士が互いに平行に対面する部分を有するよう曲がっており、上記加熱体32の上記幅方向Yが、上記容器10内を上流側から下流側に向かう上記流体の流れに対し、実質的に沿うように配置されている。容器10と別の加熱器が不要でコンパクト化し、加熱器と容器10を連絡する配管に熱を奪われないため熱のロスが少ない。上記加熱体32の上記シート面が流体の流れに対して実質的に平行で、圧力損失が少ない。【選択図】図1

Description

本発明は、容器内の加熱構造および温度スイング吸着装置に関するものである。
各種の工業分野において、流体が流通する容器内を加熱することが行われる。たとえば、吸着剤が充填された容器内を加熱して上記吸着剤の再生を行ったり、触媒が充填された容器内を加熱して触媒反応を促進させたりする。
このような容器内の加熱に関する先行技術文献として、本出願人は、下記の非特許文献1および特許文献1〜2を把握している。
吸着技術便覧,株式会社エヌ・ティー・エス,平成11年,初版,第245〜246頁
特開2003−269865号公報 特開平11−197456号公報
◆非特許文献1
上記非特許文献1は、吸着剤が充填された容器と別に加熱器を設け、上記加熱器で加熱した流体を上記容器内へ流通させるものである。上記非特許文献1にはつぎの記載がある。
1.4.1 TSA式脱湿装置
TSA式脱湿装置は,吸着剤を充填した固定床式の脱湿塔2基と再生機器,自動弁,配管,計装品,制御盤および架台などで構成される。
脱湿塔の1基が水分吸着を行っている間に,他の1基は水分脱着の再生を行い,これを交互に切り替えて,連続的に運転する装置である。TSA式脱湿装置のフローシートと外観を図2,3に示す。
・・・中略・・・
(5)再生用機器
主要な再生用機器は,再生用空気の送風機および加熱器などである。
再生用送風機は、再生系の圧力損失をまかなう機種を選定する必要がある。一般には,ルーツブロアーを使用するケースが多い。また,場合によると,圧縮空気の一部を使用して外気を吸引し,空気量を増加(利得)させる方式のインジェクタをブロワーの代わりに使用することがある。
再生用の加熱器には,電気式ステンレスシーズヒーターまたは蒸気式ヒーターが多く使用される。
◆特許文献1
上記特許文献1は、容器に直接加熱器を搭載して加熱する方式である。具体的には、容器の内部にカートリッジ型加熱器を、さらに容器の外部にバンド型加熱器を設置するものである。上記特許文献1にはつぎの記載がある。
[要約]
[課題]円周方向に複数の溶融室を有する溶融装置において、熱ひずみを低減できる溶融装置を提供することにある。
[解決手段]溶融塔1は、外筒13と中筒14とから構成される。溶融塔1の外筒と中筒で構成された空間は、円周方向に複数に溶融室15cが配置された上・中段と、この下であって、円周方向に連続的に溶融室15dが配置された下段とを備える。溶融塔1の上段・中の円周方向に複数配置された溶融室15cを集中的に加熱する集中加熱手段であるカートリッジヒータ2aと、溶融塔1の下段の円周方向に連続して配置された溶融室15dを均一に加熱する均一加熱手段であるバンドヒータ2bと誘導コイル2cとから構成され、溶融塔1の外筒と中筒との間に構成された空間に供給された金属材料のチップを溶融する。
◆特許文献2
上記特許文献2も、容器に直接加熱器を搭載して加熱する方式である。具体的には、シースヒータにメッシュ状の加熱器を一体に形成し、容器の内部に設置するものである。上記特許文献2にはつぎの記載がある。
[要約]
[課題]触媒と空気との接触面積の拡大すると共に、触媒を均一に加熱して活性化させ、該触媒ヒータ(41)で臭気物質等を確実に分解する。
[解決手段]複数本のシースヒータ(42)と複数枚のメッシュシート(43)とを、伝熱促進板(44)を介して接合して一体に形成する。この状態で、シースヒータ(42)を台座部(45)に立設して触媒ヒータ(41)を構成する。上記メッシュシート(43)は、銅製の網状に形成された平らなシートであって、空気が貫通して流通可能なものである。このメッシュシート(43)の表面には、空気中の臭気物質又は有害物質を分解して無臭化又は無害化する脱臭触媒が分散担持されている。この脱臭触媒は、Ag,Pd,Pt,Mn,Rh,Fe,Co及びCeのうちから選ばれた1種以上の金属又は該金属の酸化物である。
◆上記非特許文献1の技術には、つぎの問題がある。
1)容器と別に加熱器を設置するため、そのスペースが必要である。
2)加熱器と容器のあいだに存在する配管の熱容量を無視できない。つまり、加熱器から容器に届く前に、流体の熱が配管に奪われてしまう。このため、エネルギーがロスし、消費エネルギーが大きくなる。
3)加熱と冷却を繰り返し行う場合、加熱器の不要な冷却を避けようとすると、加熱器をバイパスする必要がある。そうすると、そのためのバイパス配管や弁が必要となり、設備数が多く複雑になる。
4)容器を直接加熱できないため、加熱するためだけに加熱用の流体が必要となる。非特許文献1のように、空気の除湿装置では、再生用のブロワが必要となる。もしくは、除湿後の乾燥空気を一部利用することで、得られる乾燥空気が目減りしてしまう。
◆上記特許文献1の技術には、つぎの問題がある。
1)溶融室15cを集中的に加熱するカートリッジヒータ2aを容器の内部に設けると、上記カートリッジヒータ2aの近辺だけが高温になって、それ以外の場所とのあいだに温度差が生じてしまい、容器内を均一な温度に加熱することができない。
2)上記バンドヒータ2bのように、容器の外周に巻き付ける加熱手段では、外側の温度が高くなり、容器の外部と内部で温度差が生じ、容器内を均一な温度に加熱することができない。
◆上記特許文献2の技術には、つぎの問題がある。
1)メッシュシート(43)のようなメッシュ状の加熱器を容器内部に設置すると、流体の流れに対して抵抗となり、圧力損失が大きくなる。その損失を補う動力が必要で、消費エネルギーが大きくなる。
〔目的〕
本発明は、上記の課題を解決するため、つぎの目的をもってなされたものである。
エネルギーロスが少なく、容器内を均一に加熱できる容器内の加熱構造および温度スイング吸着装置を提供する。
請求項1記載の容器内の加熱構造は、上記目的を達成するため、つぎの構成を採用した。
内部に流体が流通しうる容器と、上記容器内に配置されるヒーターとを備え、
上記ヒーターは、
互いに直交する第1方向と第2方向が定められるシート状の加熱体を含んで構成され、
上記加熱体が、上記第2方向には曲がらず、上記第1方向においてシート面同士が互いに平行に対面する部分を有するよう曲がっており、
上記加熱体の上記第2方向が、上記容器内を上流側から下流側に向かう上記流体の流れに対し、実質的に沿うように配置されている。
請求項2記載の容器内の加熱構造は、請求項1記載の構成に加え、つぎの構成を採用した。
上記ヒーターは、上記加熱体の上記第1方向の両端部にそれぞれ取り付けられた電極をさらに含んで構成されている。
請求項3記載の容器内の加熱構造は、請求項1または2記載の構成に加え、つぎの構成を採用した。
上記加熱体が、上記シート面同士が平行に対面する部分を複数有し、
上記シート面同士の対面したクリアランスが実質的に等しくなるよう構成されている。
請求項4記載の容器内の加熱構造は、請求項1〜3のいずれか一項に記載の構成に加え、つぎの構成を採用した。
上記加熱体は、渦巻状に曲がっている。
請求項5記載の容器内の加熱構造は、請求項1〜4のいずれか一項に記載の構成に加え、つぎの構成を採用した。
上記加熱体に、上記流体を通過させる通過孔が形成されている。
請求項6記載の容器内の加熱構造は、請求項1〜5のいずれか一項に記載の構成に加え、つぎの構成を採用した。
上記加熱体の上流側と下流側の少なくともいずれかに、上記流体の偏流を緩和する偏流緩和構造が設けられている。
請求項7記載の容器内の加熱構造は、請求項1〜6のいずれか一項に記載の構成に加え、つぎの構成を採用した。
上記容器内において、上記ヒーターが上記流体の流れる方向に複数、直列状に配置され、
上記複数のヒーターが、それぞれ独立して温度制御される。
請求項8記載の容器内の加熱構造は、請求項1〜7のいずれか一項に記載の構成に加え、つぎの構成を採用した。
上記容器内において、上記ヒーターが上記流体の流れる方向を横切る仮想面上に複数、並列状に配置され、
上記複数のヒーターが、それぞれ独立して温度制御される。
請求項9記載の容器内の加熱構造は、請求項1〜6のいずれか一項に記載の構成に加え、つぎの構成を採用した。
上記容器内に、上記流体とのあいだで界面現象を伴う複数種類の粒状体が、種類ごとに異なる充填層を形成するように充填され、
上記複数の充填層に対応してそれぞれ上記ヒーターが配置され、
上記複数のヒーターが、それぞれ独立して温度制御される。
請求項10記載の温度スイング吸着装置は、上記目的を達成するため、つぎの構成を採用した。
吸着剤が充填された内部に流体が流通しうる容器と、上記容器内に配置されるヒーターとを有し、吸着工程と再生工程を行うことができる吸着塔を備えた温度スイング吸着装置であって、
上記ヒーターは、
互いに直交する第1方向と第2方向が定められるシート状の加熱体を含んで構成され、
上記加熱体が、上記第2方向には曲がらず、上記第1方向においてシート面同士が互いに平行に対面する部分を有するよう曲がっており、
上記加熱体の上記第2方向が、上記容器内を上流側から下流側に向かう上記流体の流れに対し、実質的に沿うように配置されている。
請求項1記載の容器内の加熱構造は、容器とヒーターとを備えている。上記ヒーターが上記容器内に配置され、その容器は内部に流体が流通する。このように、上記容器内にヒーターを配置し、容器と別に加熱器を設ける必要がなく、コンパクト化できる。また、加熱器と容器を連絡する配管に熱を奪われることがなく、熱のロスすなわち消費エネルギーを節減できる。
本発明の加熱構造では、上記ヒーターの構成に含まれる加熱体は、互いに直交する第1方向と第2方向が定められるシート状である。上記加熱体は、上記第2方向には曲がらず、上記第1方向においてシート面同士が互いに平行に対面する部分を有するよう曲がっている。そして、上記加熱体は、上記容器内を上流側から下流側に向かう上記流体の流れに対し、上記第2方向が実質的に沿うように配置される。これにより、上記加熱体の上記シート面が、上記流体の流れに対して実質的に平行になる。したがって、メッシュ状の加熱器に比べて圧力損失が大幅に低減し、消費エネルギーを節減できる。
請求項2記載の容器内の加熱構造は、上記ヒーターが、上記加熱体の上記第1方向の両端部にそれぞれ取り付けられた電極をさらに含んで構成されている。
これにより、上記加熱体は、上記第1方向の全体が発熱する。このため、容器内を効率よく加熱できる。
請求項3記載の容器内の加熱構造は、上記加熱体が、上記シート面同士が平行に対面する部分を複数有している。また、上記シート面同士の対面したクリアランスが実質的に等しくなっている。
これにより、カートリッジヒータや外巻き型のバンドヒータを使用する場合と比べ、容器内を均一に加熱でき、容器内の温度ばらつきを軽減できる。
請求項4記載の容器内の加熱構造は、上記加熱体が渦巻状に曲がっている。
これにより、カートリッジヒータや外巻き型のバンドヒータを使用する場合と比べ、容器内を均一に加熱でき、容器内の温度ばらつきを軽減できる。
請求項5記載の容器内の加熱構造は、上記加熱体に、上記流体を通過させる通過孔が形成されている。
これにより、上記加熱体で隔てられて形成される流路間で、圧力や流量に偏りが生じたときに、上記流体が上記通過孔を通過することにより、上記圧力や流量の偏りが緩和される。
請求項6記載の容器内の加熱構造は、上記加熱体の上流側と下流側の少なくともいずれかに、上記流体の偏流を緩和する偏流緩和構造が設けられている。
これにより、上記容器内での流体の偏流が緩和され、容器内での温度ばらつきが軽減される。
請求項7記載の容器内の加熱構造は、上記容器内において上記ヒーターが上記流体の流れる方向に複数、直列状に配置される。そして、上記複数のヒーターが、それぞれ独立して温度制御される。つまり、容器内の上流側と下流側を独立した温度制御で加熱することができる。これにより、たとえば上流側にくらべて下流側が高温になるような、容器内の温度ばらつきを軽減できる。
請求項8記載の容器内の加熱構造は、上記容器内において、上記ヒーターが上記流体の流れる方向を横切る仮想面上に複数、並列状に配置される。そして、上記複数のヒーターが、それぞれ独立して温度制御される。つまり、流体の流れに対する横方向の複数エリアを独立した温度制御で加熱することができる。これにより、たとえば容器の外側にくらべて内側が高温になるような、容器内の温度ばらつきを軽減できる。
請求項9記載の容器内の加熱構造は、上記容器内に、上記流体とのあいだで界面現象を伴う複数種類の粒状体が、種類ごとに異なる充填層を形成するように充填される。上記複数の充填層に対応してそれぞれ上記ヒーターが配置される。そして、上記複数のヒーターが、それぞれ独立して温度制御される。充填層ごと、すなわち種類の異なる粒状体ごとに、独立した温度制御で加熱することができる。これにより、たとえば粒状体ごとに適正な温度での加熱制御を行うことができ。各粒状体の界面現象を最適化できる。粒状体の種類によって不必要な高温加熱を避けることができ、消費エネルギーも節減できる。
請求項10記載の温度スイング吸着装置は、容器とヒーターとを有する吸着塔を備えている。上記容器には吸着剤が充填されるとともにヒーターが配置され、その内部に流体が流通する。上記吸着塔では、吸着工程と再生工程を行うことができる。このように、上記容器内にヒーターを配置し、容器と別に加熱器を設ける必要がなく、コンパクト化できる。また、加熱器と容器を連絡する配管に熱を奪われることがなく、熱のロスすなわち消費エネルギーを節減できる。
本発明の温度スイング吸着装置では、上記ヒーターの構成に含まれる加熱体は、互いに直交する第1方向と第2方向が定められるシート状である。上記加熱体は、上記第2方向には曲がらず、上記第1方向においてシート面同士が互いに平行に対面する部分を有するよう曲がっている。そして、上記加熱体は、上記容器内を上流側から下流側に向かう上記流体の流れに対し、上記第2方向が実質的に沿うように配置される。これにより、上記加熱体の上記シート面が、上記流体の流れに対して実質的に平行になる。したがって、メッシュ状の加熱器に比べて圧力損失が大幅に低減し、消費エネルギーを節減できる。
また、ヒーターで容器内を直接加熱するため、加熱するためだけの加熱用の流体の必要量を削減できる。たとえば空気を除湿するときにも、再生用のブロワをサイズダウンし、消費エネルギーを削減できる。また、除湿後の乾燥空気を加熱用として利用しなくてすむため、得られる乾燥空気が目減りしない。
本発明の容器内の加熱構造の第1実施形態を説明する構成図である。 第2実施形態であり、加熱体に通過孔を設けた例である。 第3実施形態であり、容器の変形例である。 第4実施形態であり、偏流緩和構造の第1例である。 第5実施形態であり、偏流緩和構造の第2例である。 第6実施形態であり、複数のヒーターを直列状に配置した例である。 第7実施形態であり、複数のヒーターを並列状に配置した例である。 第8実施形態であり、複数の充填層に対応してヒーターを配置した例である。 第9実施形態であり、加熱体の渦巻状の第2例である。 第10実施形態であり、加熱体の渦巻状の第3例である。 第11実施形態であり、加熱体の変形例である。 本発明の温度スイング吸着装置の一実施形態を説明する構成図である。
つぎに、本発明を実施するための形態を説明する。
◆第1実施形態
図1は、本発明が適用された容器内の加熱構造を示す第1実施形態である。(A)は縦端面図、(B)は横断面図、(C)はヒーターを広げた図である。
〔全体構造〕
本実施形態の容器内の加熱構造は、容器10とヒーター30とを備えている。
上記容器10は、内部に流体が流通する。上記ヒーター30は、上記容器10内に配置される。
〔容器10〕
上記容器10は、この例では、円筒体10Cの両端部が鏡板10A,10Bで塞がれたタンク状を呈している、上部の鏡板10Aの中央に流体の流入口11が設けられ、下部の鏡板10Bの中央に流体の流出口12が設けられている。したがって、この例では、容器10の上部が流体の上流側、下部が流体の下流側である。
〔ヒーター30〕
上記ヒーター30は、加熱体32と電極31とを含んで構成されている。
上記加熱体32は、互いに直交する第1方向と第2方向が定められるシート状に形成されたものである。以下の説明では、上記第1方向を長手方向Xとし、上記第2方向を幅方向Yとした例について述べる。したがって、この例では、上記加熱体32は、長手方向Xに長尺の長方形、いわば帯状を呈している。上記ヒーター30は、上記加熱体32の長手方向Xの両端部にそれぞれ、電極31が取り付けられている。上記電極31に電圧を印加することにより、上記加熱体32が発熱する。
上記シート状の加熱体32は、シート状で、電圧をかけることにより発熱するものを使用することができる。たとえば、銅や鉄、チタン、ニッケル、ステンレス等の金属を使用することができる。これらにメッキやフッ素樹脂加工などの表面処理加工を施したものを使うこともできる。あるいは、金属を繊維状とし、抄紙処理したものを使用することもできる。
本実施形態では、上記加熱体32が、上記幅方向Yには曲がらず、上記長手方向Xにおいてシート面同士が互いに平行に対面する部分を有するよう曲がっている。この状態で、上記加熱体32は、上記シート面同士が平行に対面する部分を複数有している。具体的には、この例では、上記加熱体32は渦巻状に曲がっている。
この例では、上記シート面同士の対面したクリアランスが実質的に等しくなるよう構成されている。つまり、上記渦巻状の渦巻は、等間隔の渦巻であり、いわゆるアルキメデスの螺旋状を呈している。渦巻の巻き回数は特に限定されない。
上記加熱体32の上記幅方向Yが、上記容器10内を上流側から下流側に向かう上記流体の流れに対し、実質的に沿うように配置されている。したがって、上記加熱体32の渦巻は、流体が流れる方向に見て渦巻状を呈している。これにより、上記加熱体32のシート面が、流体の流れる方向に対して平行となる。
また、この例では、上記容器10の流入口11と流出口12が上記渦巻の中心に位置するよう、上記ヒーター30が上記容器10内に配置される。つまり、加熱体32の渦巻の中心が容器10の中心に位置するよう、上記ヒーター30が配置されている。
上記容器10内には、上記流体とのあいだで界面現象を伴う粒状体を充填することができる(図1に粒状体は図示していない)。上記界面現象とは、具体的には吸着や触媒反応等があげられる。したがって、上記粒状体としては、具体的には吸着剤や触媒等である。上記粒状体は、上記ヒーター31の加熱領域に充填することができる。上記加熱領域とは、具体的には、加熱体32のシート面同士が対面したクリアランスの領域や、容器10の内面と上記シート面との隙間等の領域である。このようにすることにより、上記加熱体32の発熱により、充填された吸着剤や触媒を、温度ばらつきが少ない状態で、均一に加熱することができる。
〔第1実施形態の効果〕
上記第1実施形態は、容器10とヒーター30とを備えている。上記ヒーター30が上記容器10内に配置され、その容器10は内部に流体が流通する。このように、上記容器10内にヒーター30を配置し、容器10と別に加熱器を設ける必要がなく、コンパクト化できる。また、加熱器と容器10を連絡する配管に熱を奪われることがなく、熱のロスすなわち消費エネルギーを節減できる。
本発明の加熱構造では、上記ヒーター30の構成に含まれる加熱体32は、長手方向Xと幅方向Yがあるシート状である。上記加熱体32は、上記幅方向Yには曲がらず、上記長手方向Xにおいてシート面同士が互いに平行に対面する部分を有するよう曲がっている。そして、上記加熱体32は、上記容器10内を上流側から下流側に向かう上記流体の流れに対し、上記幅方向Yが実質的に沿うように配置される。これにより、上記加熱体32の上記シート面が、上記流体の流れに対して実質的に平行になる。したがって、メッシュ状の加熱器に比べて圧力損失が大幅に低減し、消費エネルギーを節減できる。
上記第1実施形態は、上記ヒーター30が、上記加熱体32の長手方向Xの両端部にそれぞれ取り付けられた電極31をさらに含んで構成されている。
これにより、上記加熱体32は、長手方向Xの全体が発熱する。このため、容器30内を効率よく加熱できる。
上記第1実施形態は、上記加熱体32が、上記シート面同士が平行に対面する部分を複数有している。また、上記シート面同士の対面したクリアランスが実質的に等しくなっている。
これにより、カートリッジヒータや外巻き型のバンドヒータを使用する場合と比べ、容器10内を均一に加熱でき、容器10内の温度ばらつきを軽減できる。
上記第1実施形態は、上記加熱体32が渦巻状に曲がっている。
これにより、カートリッジヒータや外巻き型のバンドヒータを使用する場合と比べ、容器10内を均一に加熱でき、容器10内の温度ばらつきを軽減できる。
◆第2実施形態
図2は、第2実施形態に用いるヒーター30を広げた図である。
この例では、上記加熱体32に、上記流体を通過させる通過孔33が形成されている。上記通過孔33は、上記加熱体32のシート面に一様に分布するよう、多数形成されている。
本実施形態において、加熱体32を渦巻状にしたときに、中心付近になる領域と、周辺付近になる領域とで、上記通過孔33の分布が異なるようにすることもできる。また、流体の上流側と下流側で、上記通過孔33の分布が異なるようにすることもできる。
〔第2実施形態の効果〕
上記第2実施形態は、上記加熱体32に、上記流体を通過させる通過孔33が形成されている。
これにより、上記加熱体32で隔てられて形成される流路間で、圧力や流量に偏りが生じたときに、上記流体が上記通過孔33を通過することにより、上記圧力や流量の偏りが緩和される。
それ以外は、上記実施形態と同様であり、同様の作用効果を奏する。
◆第3実施形態
図3は、第3実施形態の横断面図である。
この例では、容器10の上部の鏡板10Aに複数の流入口11が設けられ、下部の鏡板10Bにも複数の流出口12が設けられている(図では下部の鏡板10Bしか示していない)。この例では、流入口11および流出口12の数はそれぞれ4つである。4つの流入口11と4つの流出口12は、加熱体32の渦巻状の中心(つまり容器10の中心)から等間隔に離れた位置に配置されている。
〔第3実施形態の効果〕
第3実施形態は、容器10内を流れる流体の圧力や流量の偏りが緩和される。
それ以外は、上記各実施形態と同様であり、同様の作用効果を奏する。
◆第4実施形態
図4は、第4実施形態の横断面図である。
この例は、上記加熱体32の上流側と下流側の少なくともいずれかに、上記流体の偏流を緩和する偏流緩和構造が設けられている。
図4の例は、上記偏流緩和構造として、渦巻状にした加熱体32の上流側を、中心よりも周辺が低くなるように形成し、上部の鏡板10Aの内面とのあいだに形成される空間が、中心よりも周辺が広くなるようにしている。このようにすることにより、上部の鏡板10Aの中心に設けられた流入口11から流入した流体は、容器10内の周辺に向かって流れやすくなる。
渦巻状にした加熱体32の下流側も同様に、中心よりも周辺が低くなるように形成し、下部の鏡板10Bの内面とのあいだに形成される空間が、中心よりも周辺が広くなるようにしている。このようにすることにより、渦巻状の加熱体32のクリアランスを通過した流体は、下部の鏡板10Bの中心にある流出口12に向かって流れやすくなる。
〔第4実施形態の効果〕
第4実施形態は、上記加熱体32の上流側と下流側の少なくともいずれかに、上記流体の偏流を緩和する偏流緩和構造が設けられている。
これにより、上記容器10内での流体の偏流が緩和され、容器10内での温度ばらつきが軽減される。
それ以外は、上記各実施形態と同様であり、同様の作用効果を奏する。
◆第5実施形態
図5は、第5実施形態の横断面図である。
この例は、上記加熱体32の上流側と下流側の少なくともいずれかに、上記流体の偏流を緩和する偏流緩和構造が設けられている。
図5の例は、上記偏流緩和構造として、渦巻状にした加熱体32の上流側に、流体の流れを中心から周辺に向かうように整流する整流板34Aが設けられている。このようにすることにより、上部の鏡板10Aの中心に設けられた流入口11から流入した流体は、容器10内の周辺に向かって流れやすくなる。
渦巻状にした加熱体32の下流側にも同様に、流体の流れを周辺から中心に向かうように整流する整流板34Bが設けられている。このようにすることにより、渦巻状の加熱体32のクリアランスを通過した流体は、下部の鏡板10Bの中心にある流出口12に向かって流れやすくなる。
〔第5実施形態の効果〕
第5実施形態は、上記加熱体32の上流側と下流側の少なくともいずれかに、上記流体の偏流を緩和する偏流緩和構造が設けられている。
これにより、上記容器10内での流体の偏流が緩和され、容器10内での温度ばらつきが軽減される。
それ以外は、上記各実施形態と同様であり、同様の作用効果を奏する。
◆第6実施形態
図6は、第6実施形態の横断面図である。
この例は、上記容器10内において、上記ヒーター30が上記流体の流れる方向に複数、直列状に配置されている。そして、上記複数のヒーター30が、それぞれ独立して温度制御される。
図示した例では、上流側に配置されるヒーター30Aと下流側に配置されるヒーター30Bの2つのヒーター30A,30Bを備えている。上流側のヒーター30Aと下流側のヒーター30Bは、加熱体32の渦巻構造や電極31の取付け構造など、同様の構造のものを用いることができる。
この状態で、たとえば、上流側のヒーター30Aを下流側のヒーター30Bよりも高温になるよう温度制御すれば、流入口11側でまだ温度が低い流体を比較的高温で加熱し、ある程度加熱されて温度が上がってきた流出口12側の流体を比較的低温で加熱することができる。このようにすることにより、上流側から下流側まで一律の温度制御で加熱するのに比べ、容器10内における上流側と下流側の温度差を少なくできる。
本実施形態において、上流側のヒーター30Aと下流側のヒーター30Bで、渦巻の巻き数を変えるようにしてもよい。たとえば、上流側のヒーター30Aの渦巻の巻き数を下流側のヒーター30Bに比べて多くして、加熱体32の長手方向Xを長くすることもできる。
また、渦巻の巻き数を上流側のヒーター30Aと下流側のヒーター30Bで同じにして、加熱体32の幅方向Yの寸法が異なるようにすることもできる。たとえば、上流側のヒーター30Aについて、加熱体32の幅方向Yの寸法を、下流側のヒーター30Bに比べて大きくすることもできる。
〔第6実施形態の効果〕
第6実施形態は、上記容器10内において上記ヒーター30A,30Bが上記流体の流れる方向に複数、直列状に配置される。そして、上記複数のヒーター30A,30Bが、それぞれ独立して温度制御される。つまり、容器10内の上流側と下流側を独立した温度制御で加熱することができる。これにより、たとえば上流側にくらべて下流側が高温になるような、容器10内の温度ばらつきを軽減できる。
それ以外は、上記各実施形態と同様であり、同様の作用効果を奏する。
◆第7実施形態
図7は、第7実施形態の横断面図である。
この例は、上記容器10内において、上記ヒーター30が上記流体の流れる方向を横切る仮想面上に複数、並列状に配置されている。そして、上記複数のヒーター30が、それぞれ独立して温度制御される。
図示した例では、容器10の外周側で渦巻を形成する外側のヒーター30Cと、容器10の中心側で渦巻を形成する内側のヒーター30Dとを備えている。外側のヒーター30Cと内側のヒーター30Dは、加熱体32や電極31は、おなじものを用いることができる。
この状態で、たとえば、外側のヒーター30Cを内側のヒーター30Dよりも高温になるよう温度制御すれば、容器10の外に熱が逃げやすい外側付近を通る流体を比較的高温で加熱し、熱の逃げにくい中心付近を通る流体を比較的低温で加熱することができる。また、たとえば、流入口11と流出口12を通る軸に近くて流速の高い中心付近を通る流体を比較的高温で加熱し、流入口11と流出口12から遠くて流速の低い外側付近を通る流体を比較的低温で加熱することもできる。このようにすることにより、内側から外側まで一律の温度制御で加熱するのに比べ、容器10内における内側と外側の温度差を少なくできる。
本実施形態において、外側のヒーター30Cと内側のヒーター30Dで、加熱体32の長手方向Xを変え、いずれか一方を他方よりも長くすることもできる。
〔第7実施形態の効果〕
第7実施形態は、上記容器10内において、上記ヒーター30C,30Dが上記流体の流れる方向を横切る仮想面上に複数、並列状に配置される。そして、上記複数のヒーター30C,30Dが、それぞれ独立して温度制御される。つまり、流体の流れに対する横方向の複数エリアを独立した温度制御で加熱することができる。これにより、たとえば容器10の外側にくらべて内側が高温になるような、容器10内の温度ばらつきを軽減できる。
それ以外は、上記各実施形態と同様であり、同様の作用効果を奏する。
◆第8実施形態
図8は、第8実施形態の縦断面図である。
この例は、上記容器10内に、上記流体とのあいだで界面現象を伴う複数種類の粒状体が、種類ごとに異なる充填層を形成するように充填されている。上記複数の充填層に対応してそれぞれ上記ヒーター30が配置されている。そして、上記複数のヒーター30が、それぞれ独立して温度制御される。
図示した例では、容器10の流入口11側から流出口12側に向かって順に、P剤が充填されたP剤充填層37P、Q剤が充填されたQ剤充填層37Q、R剤が充填されたR剤充填層37Rが設けられている。P剤,Q剤,R剤は、それぞれ上記流体とのあいだで界面現象を伴う粒状体である。具体的には吸着剤や触媒である。この例では、P剤充填層37P,Q剤充填層37Q,R剤充填層37Rに対応して、それぞれヒーター30P,ヒーター30Q,ヒーター30Rが配置されている。上記ヒーター30P,ヒーター30Q,ヒーター30Rは、加熱体32の渦巻構造や電極31の取付け構造など、同様の構造のものを用いることができる。そして、上記ヒーター30P,ヒーター30Q,ヒーター30Rがそれぞれ独立して温度制御される。
この状態で、たとえば、上記ヒーター30PをP剤の界面現象に適切な温度に制御し、上記ヒーター30QをQ剤の界面現象に適切な温度に制御し、上記ヒーター30RをR剤の界面現象に適切な温度に制御することができる。
本実施形態において、上記ヒーター30P,ヒーター30Q,ヒーター30Rそれぞれの渦巻の巻き数が異なるようにしてもよい。また、上記ヒーター30P,ヒーター30Q,ヒーター30Rそれぞれの加熱体32の幅方向Xの寸法が異なるようにすることもできる。
〔第8実施形態の効果〕
第8実施形態は、上記容器10内に、上記流体とのあいだで界面現象を伴う複数種類の粒状体が、種類ごとに異なる充填層を形成するように充填される。上記複数の充填層に対応してそれぞれ上記ヒーター30P,30Q,30Rが配置される。そして、上記複数のヒーター30P,30Q,30Rが、それぞれ独立して温度制御される。充填層ごと、すなわち種類の異なる粒状体ごとに、独立した温度制御で加熱することができる。これにより、たとえば粒状体ごとに適正な温度での加熱制御を行うことができ、各粒状体の界面現象を最適化できる。粒状体の種類によって不必要な高温加熱を避けることができ、消費エネルギーも節減できる。
それ以外は、上記各実施形態と同様であり、同様の作用効果を奏する。
◆第9実施形態
図9は、第9実施形態の横断面図である。
この例は、加熱体32の渦巻が、原点で滑らかにつながる2本のらせんからなるもので、いわゆるフェルマーの螺旋を呈している。
それ以外は、上記各実施形態と同様であり、同様の作用効果を奏する。
◆第10実施形態
図10は、第10実施形態の横断面図である。
この例は、加熱体32が、仮想同心円に沿うように配置される。上記加熱体32は、周回ごとに段差部35を形成してつぎの仮想同心円上に移行する。
それ以外は、上記各実施形態と同様であり、同様の作用効果を奏する。
◆第11実施形態
図11は、第11実施形態の横断面図である。
この例は、加熱体32が、仮想同心円に沿うように配置される。上記加熱体32は、周回ごとに反転部36を形成してつぎの仮想同心円上に移行する。
それ以外は、上記各実施形態と同様であり、同様の作用効果を奏する。
◆温度スイング吸着装置
図12は、本発明の温度スイング吸着装置の一実施形態である。
この例では、多湿空気中の水分を吸着除去して乾燥空気を得るものを説明する。
〔全体構成〕
本実施形態の温度スイング吸着装置は、複数(この例では2つ)の吸着塔41A,41Bを備えている。
上記各吸着塔41A,41Bはそれぞれ、容器10とヒーター30を備えている。
上記容器10は、吸着剤(図示していない)が充填された内部に流体が流通する。
上記ヒーター30は、上記容器10内に配置される。
上記各吸着塔41A,41Bでは、吸着工程と再生工程を行うことができる。
この温度スイング吸着装置は、上記各吸着塔41A,41Bにおいて、上記吸着工程と上記再生工程を交互に切り替えて運転する。
〔配管構造〕
上記各吸着塔41A,41Bの下端には流入口11が設けられ、この流入口11に、多湿空気を導入する多湿空気導入路42が連通している。上記多湿空気導入路42には、各吸着塔41A,41Bに対応して分岐する分岐路に開閉弁が設けられている。
上記各吸着塔41A,41Bの上端には流出口12が設けられ、この流出口12に、乾燥空気を排出する乾燥空気排出路43が連通している。上記乾燥空気排出路43には、各吸着塔41A,41Bに対応して分岐する分岐路に逆止弁が設けられている。
上記流出口12には、吸着剤を再生するための再生用空気を導入する再生用空気導入路44が連通している。上記再生用空気導入路44には、再生用空気を送るブロア46が設けられている。また、上記再生用空気導入路44には、各吸着塔41A,41Bに対応して分岐する分岐路に開閉弁が設けられている。
上記流入口11には、吸着剤が再生されたときに出てくる再生排気を排出する再生排気路45が連通している。上記再生排気路45には、各吸着塔41A,41Bに対応して分岐する分岐路に開閉弁が設けられている。
〔ヒーター30〕
上記ヒーター30は、上記第1〜第11の実施形態に示したものを適用することができる。
つまり、長手方向Xと幅方向Yがあるシート状の加熱体32を含んで構成される。
上記加熱体32が、上記幅方向Yには曲がらず、上記長手方向Xにおいてシート面同士が互いに平行に対面する部分を有するよう曲がっている。
上記加熱体32の上記幅方向Yが、上記容器10内を上流側から下流側に向かう上記流体の流れに対し、実質的に沿うように配置されている。
〔本実施形態の効果〕
本実施形態は、容器10とヒーター30とを有する吸着塔41A,41Bを複数備えている。上記容器10には吸着剤が充填されるとともにヒーター30が配置され、その内部に流体が流通する。上記各吸着塔41A,41Bでは、吸着工程と再生工程を行うことができ、上記吸着工程と上記再生工程を交互に切り替えて運転する。このように、上記容器10内にヒーター30を配置し、容器10と別に加熱器を設ける必要がなく、コンパクト化できる。また、加熱器と容器10を連絡する配管に熱を奪われることがなく、熱のロスすなわち消費エネルギーを節減できる。
本実施形態では、上記ヒーター30の構成に含まれる加熱体32は、長手方向Xと幅方向Yがあるシート状である。上記加熱体32は、上記幅方向Yには曲がらず、上記長手方向Xにおいてシート面同士が互いに平行に対面する部分を有するよう曲がっている。そして、上記加熱体32は、上記容器10内を上流側から下流側に向かう上記流体の流れに対し、上記幅方向Yが実質的に沿うように配置される。これにより、上記加熱体32の上記シート面が、上記流体の流れに対して実質的に平行になる。したがって、メッシュ状の加熱器に比べて圧力損失が大幅に低減し、消費エネルギーを節減できる。
また、ヒーター30で容器10内を直接加熱するため、加熱するためだけの加熱用の流体の必要量を削減できる。たとえば空気を除湿するときにも、再生用のブロワをサイズダウンし、消費エネルギーを削減できる。また、除湿後の乾燥空気を加熱用として利用しなくてすむため、得られる乾燥空気が目減りしない。
〔運転例〕
上述した容器10内に吸着剤としてゼオライト(東ソー製ゼオラムF−9)を充填し、水分飽和の空気を下部から上部方向に流通させ、容器10上部から露点−72℃以下の乾燥空気を得ることができた。その後、容器10の上部から下部方向に乾燥窒素を流通させ、さらに加熱体32に電圧を印加することで、容器10内を250℃まで加熱し、吸着剤の再生処理を行うことができた。
また、容器10内にゼオライト(東ソー製ゼオラムF−9)を充填し、COを400molppm含む窒素ガスを下部から上部方向に流通させ、容器上部からCO濃度0.1ppm以下の窒素ガスを得ることができた。その後、容器の上部から下部方向に窒素ガスを流通させ、更に加熱体32に電圧を印加することで、容器10内を150℃まで加熱し、吸着剤の再生処理を行うことができた。
なお、このような渦巻形状のヒーターを温度スイング吸着(TSA)に用いる場合、渦巻形状のヒーターに用いるシート状の金属膜等は、常温〜+250℃の温度スイングに耐えることが必要であり、また、吸着剤を渦巻の間に充填する必要があることから、吸着剤で破れない程度の強度が必要である。
◆その他の変形例
以上は本発明の特に好ましい実施形態について説明したが、本発明は図示した実施形態に限定する趣旨ではなく、各種の態様に変形して実施することができ、本発明は各種の変形例を包含する趣旨である。
たとえば、上記第1方向を幅方向とし、上記第1方向を長手方向とすることもできる。
10:容器
10A:鏡板(上部)
10B:鏡板(下部)
10C:円筒体
11:流入口
12:流出口
30:ヒーター
30A:ヒーター(上流側)
30B:ヒーター(下流側)
30C:ヒーター(外側)
30D:ヒーター(内側)
30P:ヒーター(P剤充填層)
30Q:ヒーター(Q剤充填層)
30R:ヒーター(R剤充填層)
31:電極
32:加熱体
33:通過孔
34A:整流板
34B:整流板
35:段差部
36:反転部
37P:P剤充填層
37Q:Q剤充填層
37R:R剤充填層
41A:吸着塔
41B:吸着塔
42:多湿空気導入路
43:乾燥空気排出路
44:再生用空気導入路
45:再生排気路
46:ブロア

Claims (10)

  1. 内部に流体が流通しうる容器と、上記容器内に配置されるヒーターとを備え、
    上記ヒーターは、
    互いに直交する第1方向と第2方向が定められるシート状の加熱体を含んで構成され、
    上記加熱体が、上記第2方向には曲がらず、上記第1方向においてシート面同士が互いに平行に対面する部分を有するよう曲がっており、
    上記加熱体の上記第2方向が、上記容器内を上流側から下流側に向かう上記流体の流れに対し、実質的に沿うように配置されている
    ことを特徴とする容器内の加熱構造。
  2. 上記ヒーターは、上記加熱体の上記第1方向の両端部にそれぞれ取り付けられた電極をさらに含んで構成されている
    請求項1記載の容器内の加熱構造。
  3. 上記加熱体が、上記シート面同士が平行に対面する部分を複数有し、
    上記シート面同士の対面したクリアランスが実質的に等しくなるよう構成されている
    請求項1または2記載の容器内の加熱構造。
  4. 上記加熱体は、渦巻状に曲がっている
    請求項1〜3のいずれか一項に記載の容器内の加熱構造。
  5. 上記加熱体に、上記流体を通過させる通過孔が形成されている
    請求項1〜4のいずれか一項に記載の容器内の加熱構造。
  6. 上記加熱体の上流側と下流側の少なくともいずれかに、上記流体の偏流を緩和する偏流緩和構造が設けられている
    請求項1〜5のいずれか一項に記載の容器内の加熱構造。
  7. 上記容器内において、上記ヒーターが上記流体の流れる方向に複数、直列状に配置され、
    上記複数のヒーターが、それぞれ独立して温度制御される
    請求項1〜6のいずれか一項に記載の容器内の加熱構造。
  8. 上記容器内において、上記ヒーターが上記流体の流れる方向を横切る仮想面上に複数、並列状に配置され、
    上記複数のヒーターが、それぞれ独立して温度制御される
    請求項1〜7のいずれか一項に記載の容器内の加熱構造。
  9. 上記容器内に、上記流体とのあいだで界面現象を伴う複数種類の粒状体が、種類ごとに異なる充填層を形成するように充填され、
    上記複数の充填層に対応してそれぞれ上記ヒーターが配置され、
    上記複数のヒーターが、それぞれ独立して温度制御される
    請求項1〜6のいずれか一項に記載の容器内の加熱構造。
  10. 吸着剤が充填された内部に流体が流通しうる容器と、上記容器内に配置されるヒーターとを有し、吸着工程と再生工程を行うことができる吸着塔を備えた温度スイング吸着装置であって、
    上記ヒーターは、
    互いに直交する第1方向と第2方向が定められるシート状の加熱体を含んで構成され、
    上記加熱体が、上記第2方向には曲がらず、上記第1方向においてシート面同士が互いに平行に対面する部分を有するよう曲がっており、
    上記加熱体の上記第2方向が、上記容器内を上流側から下流側に向かう上記流体の流れに対し、実質的に沿うように配置されている
    ことを特徴とする温度スイング吸着装置。
JP2019013754A 2019-01-30 2019-01-30 容器内の加熱構造および温度スイング吸着装置 Active JP7233231B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019013754A JP7233231B2 (ja) 2019-01-30 2019-01-30 容器内の加熱構造および温度スイング吸着装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019013754A JP7233231B2 (ja) 2019-01-30 2019-01-30 容器内の加熱構造および温度スイング吸着装置

Publications (2)

Publication Number Publication Date
JP2020123466A true JP2020123466A (ja) 2020-08-13
JP7233231B2 JP7233231B2 (ja) 2023-03-06

Family

ID=71993004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019013754A Active JP7233231B2 (ja) 2019-01-30 2019-01-30 容器内の加熱構造および温度スイング吸着装置

Country Status (1)

Country Link
JP (1) JP7233231B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140701A (en) * 1979-04-17 1980-11-04 Toshiba Corp Air dehumidifier for ozonizer
JPS63116993U (ja) * 1987-01-20 1988-07-28
JPH10258216A (ja) * 1997-03-18 1998-09-29 Hoshizaki Electric Co Ltd 空気の浄化装置
JP2002047915A (ja) * 2000-08-02 2002-02-15 Opaatsu Kk 排気微粒子除去装置
JP2009525570A (ja) * 2006-01-30 2009-07-09 ライスター プロセス テクノロジーズ 熱風装置の加熱素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140701A (en) * 1979-04-17 1980-11-04 Toshiba Corp Air dehumidifier for ozonizer
JPS63116993U (ja) * 1987-01-20 1988-07-28
JPH10258216A (ja) * 1997-03-18 1998-09-29 Hoshizaki Electric Co Ltd 空気の浄化装置
JP2002047915A (ja) * 2000-08-02 2002-02-15 Opaatsu Kk 排気微粒子除去装置
JP2009525570A (ja) * 2006-01-30 2009-07-09 ライスター プロセス テクノロジーズ 熱風装置の加熱素子

Also Published As

Publication number Publication date
JP7233231B2 (ja) 2023-03-06

Similar Documents

Publication Publication Date Title
CN102893112B (zh) 用于干燥散装物料的装置及其使用方法
JP5130008B2 (ja) 揮発性有機化合物の処理装置
JP2012151144A (ja) 吸湿呼吸器及び吸湿呼吸装置
US4054428A (en) Method and apparatus for removing carbon monoxide from compressed air
EP3455559B1 (en) Air treatment system for managing the condition of air in an enclosed environment
US9463414B2 (en) Dehumidifying unit, layered temperature control dehumidifying element, drying device and method for temperature controlling the same
WO2013191097A1 (ja) ガス分離装置およびガス分離方法
JP5896429B2 (ja) 再生型圧縮空気乾燥装置及び除湿再生ユニット
JP4754358B2 (ja) ガス精製用の吸着塔および吸着塔内の吸着剤の再生処理方法
CN216894826U (zh) 一种用于干燥压缩气体的装置以及一种压缩机设备
JP2012166128A5 (ja)
JP2012166128A (ja) 除湿装置
JP2020123466A (ja) 容器内の加熱構造および温度スイング吸着装置
SG183110A1 (en) A dehumidifier and a method of dehumidification
EP3108953B1 (en) Method for compressing and drying a gas
KR100642520B1 (ko) 다공성 형태의 충돌판인 1차 가이드 베인을 장착한 고효율 흡착식 드라이어
CN112691474B (zh) 一种一体式催化燃烧废气处理装置
JP2010201373A (ja) ガス処理装置
JP2019100626A (ja) 排ガス処理システム
JP2013043131A (ja) 除湿装置
KR102360332B1 (ko) 마이크로웨이브를 이용한 제습시스템
JP2014198279A (ja) 除湿装置
JP4997527B2 (ja) 排気ガス処理方法及び処理装置
JP2020089858A (ja) 空気浄化装置
US8297045B2 (en) Exhaust gas treating apparatus and treating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230221

R150 Certificate of patent or registration of utility model

Ref document number: 7233231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150