JP2020122673A - Substrate inspection apparatus, substrate processing apparatus, substrate inspection method, and substrate processing method - Google Patents

Substrate inspection apparatus, substrate processing apparatus, substrate inspection method, and substrate processing method Download PDF

Info

Publication number
JP2020122673A
JP2020122673A JP2019013393A JP2019013393A JP2020122673A JP 2020122673 A JP2020122673 A JP 2020122673A JP 2019013393 A JP2019013393 A JP 2019013393A JP 2019013393 A JP2019013393 A JP 2019013393A JP 2020122673 A JP2020122673 A JP 2020122673A
Authority
JP
Japan
Prior art keywords
substrate
line
light
image data
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019013393A
Other languages
Japanese (ja)
Other versions
JP7294818B2 (en
Inventor
勇 羅
Yong Luo
勇 羅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2019013393A priority Critical patent/JP7294818B2/en
Publication of JP2020122673A publication Critical patent/JP2020122673A/en
Application granted granted Critical
Publication of JP7294818B2 publication Critical patent/JP7294818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

To provide a substrate inspection apparatus, a substrate processing apparatus, a substrate inspection method, and a substrate processing method, by which a defect in a substrate can be detected with high accuracy.SOLUTION: A plurality of line beams irradiated to a substrate are respectively received by a plurality of line sensors 241 and 242, and a light receiving signal corresponding to a received light quantity is output. The line sensors 241 and 242 respectively have a plurality of light receiving areas arranged in an X direction, and output the light receiving signal corresponding to the received light quantity from each light receiving area. The line sensor 241 is arranged so as to be shifted in the X direction with respect to the line sensor 242 by a non-integer multiple of a length of one light receiving area in the X direction. The light receiving areas are virtually divided into a plurality of partial areas arranged in the X direction, and each pixel is constituted by a partial area where the line sensors 241 and 242 overlap each other when viewed in a direction orthogonal to the X direction. Imaging data indicating an image of the substrate is generated by calculating pixel values based on the light receiving signals of the plurality of light receiving areas respectively including the plurality of partial areas.SELECTED DRAWING: Figure 4

Description

本発明は、基板の検査を行う基板検査装置、基板処理装置、基板検査方法および基板処理方法に関する。 The present invention relates to a substrate inspection apparatus, a substrate processing apparatus, a substrate inspection method, and a substrate processing method for inspecting a substrate.

基板に対する種々の処理工程において、基板の検査が行われる。例えば、特許文献1には、表面検査処理ユニットを有する基板処理装置が記載されている。表面検査処理ユニットにおいては、基板上の半径領域に継続的に照明光が照射され、基板からの反射光がCCD(電荷結合素子)ラインセンサにより受光される。この状態で、基板が1回転することにより、基板の表面の全体に照明光が照射され、CCDラインセンサの受光量分布に基づいて、基板の表面全体での反射光の明るさの分布が表面画像データとして得られる。表面画像データに基づいて基板が検査される。 Inspection of a substrate is performed in various processing steps for the substrate. For example, Patent Document 1 describes a substrate processing apparatus having a surface inspection processing unit. In the surface inspection processing unit, the radial region on the substrate is continuously irradiated with the illumination light, and the reflected light from the substrate is received by the CCD (charge coupled device) line sensor. In this state, when the substrate rotates once, the entire surface of the substrate is irradiated with the illumination light, and the brightness distribution of the reflected light on the entire surface of the substrate is based on the received light amount distribution of the CCD line sensor. Obtained as image data. The substrate is inspected based on the surface image data.

特許文献2には、基板検査装置を有する基板処理装置が記載されている。基板検査装置においては、一方向において基板の直径よりも大きい帯状の光が投光部から下方に出射される。この状態で、検査対象の基板が、投光部の下方を通過するように、一方向に直交する他方向に移動される。これにより、帯状の光が基板の各部に順次照射される。その後、帯状の光は、基板の各部により順次反射され、CCDラインセンサにより受光される。CCDラインセンサの受光量に基づいて、基板の表面全体の画像を示す画像データが生成される。生成された画像データに基づいて、基板が検査される。 Patent Document 2 describes a substrate processing apparatus having a substrate inspection apparatus. In the board inspection apparatus, band-shaped light larger than the diameter of the board in one direction is emitted downward from the light projecting portion. In this state, the substrate to be inspected is moved in the other direction orthogonal to the one direction so as to pass below the light projecting unit. Thereby, the strip-shaped light is sequentially applied to each part of the substrate. Thereafter, the band-shaped light is sequentially reflected by each part of the substrate and received by the CCD line sensor. Image data representing an image of the entire surface of the substrate is generated based on the amount of light received by the CCD line sensor. The substrate is inspected based on the generated image data.

特開2011−66049号公報JP, 2011-66049, A 特開2018−36235号公報JP, 2018-36235, A

特許文献1に記載された表面検査処理ユニット(以下、回転式基板検査装置と呼ぶ。)においては、基板の中心付近の欠陥を検出できないことがある。これに対し、特許文献2の基板検査装置(以下、リニア式基板検査装置と呼ぶ。)によれば、基板の中心付近の欠陥も適切に検出することが可能である。 The surface inspection processing unit described in Patent Document 1 (hereinafter referred to as a rotary substrate inspection device) may not be able to detect a defect near the center of the substrate. On the other hand, according to the board inspection apparatus of Patent Document 2 (hereinafter, referred to as a linear board inspection apparatus), it is possible to appropriately detect a defect near the center of the board.

しかしながら、回転式基板検査装置においては基板の半径分の領域が撮像されるのに対し、リニア式基板検査装置においては基板の直径分の領域が撮像される。したがって、同一のCCDラインセンサを用いて撮像を行う場合、リニア式基板検査装置における画像の解像度は、回転式基板検査装置における画像の解像度の半分程度となる。そのため、基板の欠陥の検出精度が低下する。 However, in the rotary substrate inspection apparatus, an area corresponding to the radius of the substrate is imaged, whereas in the linear substrate inspection apparatus, an area corresponding to the diameter of the substrate is imaged. Therefore, when imaging is performed using the same CCD line sensor, the resolution of the image in the linear substrate inspection device is about half the resolution of the image in the rotary substrate inspection device. Therefore, the accuracy of detecting a defect on the substrate is reduced.

本発明の目的は、基板の欠陥を高い精度で検出することが可能な基板検査装置、基板処理装置、基板検査方法および基板処理方法を提供することである。 An object of the present invention is to provide a substrate inspection apparatus, a substrate processing apparatus, a substrate inspection method, and a substrate processing method capable of detecting a substrate defect with high accuracy.

(1)第1の発明に係る基板検査装置は、検査対象の基板を保持する保持部と、第1の方向に平行でかつ互いに並行に延びるN個(Nは2以上の整数)のライン光を出射する投光部と、投光部により出射されたN個のライン光が保持部により保持された基板の表面に照射されるように、投光部と保持部とを第1の方向に交差する第2の方向に相対的に移動させる移動部と、基板に照射されたN個のライン光をそれぞれ受光し、受光量に対応する受光信号を出力するN個のラインセンサと、N個のラインセンサから出力される受光信号に基づいて基板の画像を示す画像データを生成する画像データ生成部とを備え、各ラインセンサは、第1の方向に並ぶ複数の受光領域を有し、各受光領域から受光量に対応する受光信号を出力し、N個のラインセンサのうち少なくとも1つのラインセンサは、第1の方向における1つの受光領域の長さの非整数倍だけ他のラインセンサに対して第1の方向にずれるように配置され、各ラインセンサの各受光領域は、第1の方向に並ぶ複数の部分領域に仮想的に分割され、第1の方向に直交する第3の方向視において、N個のラインセンサの重なるN個の部分領域により各画素が構成され、画像データ生成部は、N個の部分領域をそれぞれ含むN個の受光領域の受光信号に基づいて各画素値を算出する。 (1) A substrate inspection apparatus according to a first aspect of the present invention includes a holding unit that holds a substrate to be inspected and N line lights (N is an integer of 2 or more) extending in parallel with each other in the first direction. The light projecting section and the holding section are arranged in the first direction so that the light projecting section emitting the light and the N line lights emitted by the light projecting section are applied to the surface of the substrate held by the holding section. A moving unit that relatively moves in the intersecting second direction, N line sensors that respectively receive N line lights emitted to the substrate and output a light reception signal corresponding to the amount of received light, and N line sensors. And an image data generation unit that generates image data showing an image of the substrate based on a light reception signal output from the line sensor, each line sensor having a plurality of light reception regions arranged in the first direction. A light receiving signal corresponding to the amount of light received is output from the light receiving area, and at least one line sensor of the N line sensors is connected to another line sensor by a non-integer multiple of the length of one light receiving area in the first direction. On the other hand, the light-receiving areas of the line sensors, which are arranged so as to be displaced in the first direction, are virtually divided into a plurality of partial areas arranged in the first direction, and the third direction orthogonal to the first direction. In the visual observation, each pixel is configured by N partial regions where N line sensors overlap each other, and the image data generation unit determines each pixel value based on the light reception signals of the N light receiving regions including the N partial regions. To calculate.

この基板検査装置においては、第1の方向に平行でかつ互いに並行に延びるN個(Nは2以上の整数)のライン光が投光部により出射される。投光部により出射されたN個のライン光が保持部により保持された検査対象の基板の表面に照射されるように、投光部と保持部とが移動部により第1の方向に交差する第2の方向に相対的に移動される。基板に照射されたN個のライン光がN個のラインセンサによりそれぞれ受光される。 In this substrate inspection apparatus, N (N is an integer of 2 or more) line lights that are parallel to the first direction and extend parallel to each other are emitted by the light projecting unit. The light projecting unit and the holding unit intersect with each other in the first direction by the moving unit so that the N line lights emitted by the light projecting unit are applied to the surface of the inspection target substrate held by the holding unit. It is relatively moved in the second direction. The N line lights emitted to the substrate are received by the N line sensors, respectively.

ここで、各ラインセンサは、第1の方向に並ぶ複数の受光領域を有する。また、N個のラインセンサのうち少なくとも1つのラインセンサは、第1の方向における1つの受光領域の長さの非整数倍だけ他のラインセンサに対して第1の方向にずれるように配置される。 Here, each line sensor has a plurality of light receiving regions arranged in the first direction. Further, at least one line sensor among the N line sensors is arranged so as to be displaced from the other line sensors in the first direction by a non-integer multiple of the length of one light receiving region in the first direction. It

各ラインセンサの各受光領域は、第1の方向に並ぶ複数の部分領域に仮想的に分割され、各ラインセンサの各受光領域からは、受光量に対応する受光信号が出力される。第1の方向に直交する第3の方向視において、N個のラインセンサの重なるN個の部分領域をそれぞれ含むN個の受光領域の受光信号に基づいて各画素値が算出されることにより、基板の画像を示す画像データが生成される。 Each light receiving area of each line sensor is virtually divided into a plurality of partial areas arranged in the first direction, and a light receiving signal corresponding to the amount of light received is output from each light receiving area of each line sensor. In the third direction view orthogonal to the first direction, each pixel value is calculated based on the light receiving signals of the N light receiving areas including the N overlapping partial areas of the N line sensors. Image data showing an image of the substrate is generated.

この場合、第3の方向視において、N個のラインセンサの重なるN個の部分領域により各画素が構成される。第1の方向において、少なくとも一部の画素の長さは、各ラインセンサの各受光領域の長さよりも小さい。そのため、基板検査装置により生成される画像データが示す画像の解像度は、いずれか1つのラインセンサからの受光信号に基づいて生成された場合の画像データが示す画像の解像度よりも高い。したがって、高い解像度を有する基板の画像に基づいて、基板の欠陥を高い精度で検出することができる。 In this case, in the third directional view, each pixel is configured by N partial regions where N line sensors overlap. In the first direction, the length of at least some of the pixels is smaller than the length of each light receiving region of each line sensor. Therefore, the resolution of the image represented by the image data generated by the board inspection apparatus is higher than the resolution of the image represented by the image data generated based on the light reception signal from any one of the line sensors. Therefore, the defect of the substrate can be detected with high accuracy based on the image of the substrate having high resolution.

(2)第1の方向における他のラインセンサに対する少なくとも1つのラインセンサのずれ量は、第1の方向における1つの受光領域の長さよりも小さくてもよい。この場合、各ラインセンサの全部の受光領域を用いて画像データを生成することができる。これにより、より高い解像度を有する基板の画像を示す画像データを生成することができる。 (2) The shift amount of at least one line sensor with respect to the other line sensor in the first direction may be smaller than the length of one light receiving region in the first direction. In this case, the image data can be generated using the entire light receiving area of each line sensor. As a result, it is possible to generate image data showing an image of the substrate having a higher resolution.

(3)N個のラインセンサは、第1の方向における1つの受光領域の長さのN分の1ずつ互いに第1の方向にずれるように配置されてもよい。この場合、第1の方向において、各画素の長さを、各ラインセンサの各受光領域の長さよりも容易に小さくすることができる。これにより、高い解像度を有する基板の画像を示す画像データを容易に生成することができる。 (3) The N line sensors may be arranged so as to be offset from each other in the first direction by 1/N of the length of one light receiving region in the first direction. In this case, the length of each pixel in the first direction can be easily made smaller than the length of each light receiving region of each line sensor. As a result, it is possible to easily generate image data showing an image of a substrate having high resolution.

(4)画像データ生成部は、異なる時点で基板の同じライン状領域または一定範囲内のライン状領域に照射されたときのN個のライン光に基づくN個のラインセンサからの受光信号に基づいて画像データを生成してもよい。この場合、簡単な構成でN個のライン光をN個のラインセンサにそれぞれ受光させることができる。 (4) The image data generation unit is based on the light reception signals from the N line sensors based on the N line lights when the same line region or the line region within a certain range is irradiated on the substrate at different times. The image data may be generated by generating the image data. In this case, N line lights can be respectively received by the N line sensors with a simple configuration.

(5)画像データ生成部は、N個の受光領域の受光信号の値を平均することにより各画素値を算出してもよい。この場合、各画素値を容易に算出することができる。 (5) The image data generation unit may calculate each pixel value by averaging the values of the light reception signals of the N light receiving regions. In this case, each pixel value can be easily calculated.

(6)基板検査装置は、画像データ生成部により生成された画像データに基づいて基板を検査する検査部をさらに備えてもよい。この場合、画像データに基づいて基板に欠陥が存在するか否かを検査することができる。 (6) The board inspection device may further include an inspection unit that inspects the board based on the image data generated by the image data generation unit. In this case, it is possible to inspect whether there is a defect on the substrate based on the image data.

(7)第2の発明に係る基板処理装置は、基板上に処理膜を形成する膜形成部と、膜形成部による処理膜の形成後の基板の画像を示す画像データを生成する第1の発明に係る基板検査装置とを備える。 (7) A substrate processing apparatus according to a second aspect of the present invention is a film forming unit that forms a processing film on a substrate, and first image data that represents an image of the substrate after the processing film is formed by the film forming unit. And a substrate inspection device according to the invention.

この基板処理装置においては、膜形成部による処理膜の形成後の基板の画像を示す画像データが上記の基板検査装置により生成される。これにより、高い解像度を有する基板の画像を示す画像データを生成することができる。したがって、高い解像度を有する基板の画像に基づいて、基板の欠陥を高い精度で検出することができる。 In this substrate processing apparatus, image data showing an image of the substrate after the processing film is formed by the film forming unit is generated by the substrate inspection apparatus. As a result, it is possible to generate image data showing an image of the substrate having high resolution. Therefore, the defect of the substrate can be detected with high accuracy based on the image of the substrate having high resolution.

(8)第3の発明に係る基板検査方法は、第1の方向に平行でかつ互いに並行に延びるN個(Nは2以上の整数)のライン光を投光部により出射するステップと、投光部により出射されたN個のライン光が保持部により保持された検査対象の基板の表面に照射されるように、投光部と保持部とを移動部により第1の方向に交差する第2の方向に相対的に移動させるステップと、基板に照射されたN個のライン光をN個のラインセンサによりそれぞれ受光し、受光量に対応する受光信号を出力するステップと、N個のラインセンサから出力される受光信号に基づいて基板の画像を示す画像データを生成するステップとを含み、各ラインセンサは、第1の方向に並ぶ複数の受光領域を有し、各受光領域から受光量に対応する受光信号を出力し、N個のラインセンサのうち少なくとも1つのラインセンサは、第1の方向における1つの受光領域の長さの非整数倍だけ他のラインセンサに対して第1の方向にずれるように配置され、各ラインセンサの各受光領域は、第1の方向に並ぶ複数の部分領域に仮想的に分割され、第1の方向に直交する第3の方向視において、N個のラインセンサの重なるN個の部分領域により各画素が構成され、画像データを生成するステップは、N個の部分領域をそれぞれ含むN個の受光領域の受光信号に基づいて各画素値を算出することを含む。 (8) A substrate inspection method according to a third aspect of the present invention includes a step of emitting N (N is an integer of 2 or more) line lights parallel to the first direction and parallel to each other by a light projecting unit. The moving unit intersects the light projecting unit and the holding unit in the first direction so that the N line lights emitted by the light unit are irradiated onto the surface of the inspection target substrate held by the holding unit. 2 relative movement, a step of receiving N line lights irradiated onto the substrate by N line sensors, respectively, and outputting a light reception signal corresponding to the amount of received light, and N lines And a step of generating image data showing an image of the substrate based on a light receiving signal output from the sensor, each line sensor having a plurality of light receiving regions arranged in the first direction, and the amount of light received from each light receiving region. And outputs at least one line sensor of the N line sensors to the other line sensors by a non-integer multiple of the length of one light receiving region in the first direction. The light receiving areas of the line sensors, which are arranged so as to be displaced in the direction, are virtually divided into a plurality of partial areas lined up in the first direction, and are N in the third direction view orthogonal to the first direction. Each pixel is composed of N partial areas overlapping with each other of the line sensor, and in the step of generating image data, each pixel value is calculated based on the light receiving signals of the N light receiving areas including the N partial areas. Including that.

この方法によれば、高い解像度を有する基板の画像を示す画像データを生成することができる。したがって、高い解像度を有する基板の画像に基づいて、基板の欠陥を高い精度で検出することができる。 According to this method, it is possible to generate image data showing an image of a substrate having high resolution. Therefore, the defect of the substrate can be detected with high accuracy based on the image of the substrate having high resolution.

(9)第1の方向における他のラインセンサに対する少なくとも1つのラインセンサのずれ量は、第1の方向における1つの受光領域の長さよりも小さくてもよい。この場合、各ラインセンサの全部の受光領域を用いて画像データを生成することができる。これにより、より高い解像度を有する基板の画像を示す画像データを生成することができる。 (9) The shift amount of at least one line sensor with respect to the other line sensor in the first direction may be smaller than the length of one light receiving region in the first direction. In this case, the image data can be generated using the entire light receiving area of each line sensor. As a result, it is possible to generate image data showing an image of the substrate having a higher resolution.

(10)N個のラインセンサは、第1の方向における1つの受光領域の長さのN分の1ずつ互いに第1の方向にずれるように配置されてもよい。この場合、第1の方向において、各画素の長さを、各ラインセンサの各受光領域の長さよりも容易に小さくすることができる。これにより、高い解像度を有する基板の画像を示す画像データを容易に生成することができる。 (10) The N line sensors may be arranged so as to be displaced from each other in the first direction by 1/N of the length of one light receiving region in the first direction. In this case, the length of each pixel in the first direction can be easily made smaller than the length of each light receiving region of each line sensor. As a result, it is possible to easily generate image data showing an image of a substrate having high resolution.

(11)画像データを生成するステップは、異なる時点で基板の同じライン状領域または一定範囲内のライン状領域に照射されたときのN個のライン光に基づくN個のラインセンサからの受光信号に基づいて画像データを生成することを含んでもよい。この場合、簡単な構成でN個のライン光をN個のラインセンサにそれぞれ受光させることができる。 (11) The step of generating image data is a light reception signal from N line sensors based on N line lights when the same line region or a line region within a certain range is irradiated on the substrate at different times. Generating image data based on the. In this case, N line lights can be respectively received by the N line sensors with a simple configuration.

(12)画像データを生成するステップは、N個の受光領域の受光信号の値を平均することにより各画素値を算出することを含んでもよい。この場合、各画素値を容易に算出することができる。 (12) The step of generating image data may include calculating each pixel value by averaging the values of the light reception signals of the N light receiving regions. In this case, each pixel value can be easily calculated.

(13)基板検査方法は、生成された画像データに基づいて基板を検査するステップをさらに含んでもよい。この場合、画像データに基づいて基板に欠陥が存在するか否かを検査することができる。 (13) The board inspection method may further include a step of inspecting the board based on the generated image data. In this case, it is possible to inspect whether there is a defect on the substrate based on the image data.

(14)第4の発明に係る基板処理方法は、膜形成部により基板上に処理膜を形成するステップと、膜形成部による処理膜の形成後の基板の画像を示す画像データを第3の発明に係る基板検査方法により生成するステップとを含む。 (14) In the substrate processing method according to the fourth aspect of the present invention, the step of forming a processing film on the substrate by the film forming unit, and the image data indicating the image of the substrate after the formation of the processing film by the film forming unit is processed by the third method. Generating by the substrate inspection method according to the invention.

この基板処理方法によれば、膜形成部による処理膜の形成後の基板の画像を示す画像データが上記の基板検査方法により生成される。これにより、高い解像度を有する基板の画像を示す画像データを生成することができる。したがって、高い解像度を有する基板の画像に基づいて、基板の欠陥を高い精度で検出することができる。 According to this substrate processing method, image data indicating an image of the substrate after the processing film is formed by the film forming unit is generated by the above-described substrate inspection method. As a result, it is possible to generate image data showing an image of the substrate having high resolution. Therefore, the defect of the substrate can be detected with high accuracy based on the image of the substrate having high resolution.

本発明によれば、基板の欠陥を高い精度で検出することが可能になる。 According to the present invention, it becomes possible to detect a defect in a substrate with high accuracy.

本発明の一実施の形態に係る基板検査装置の外観斜視図である。FIG. 1 is an external perspective view of a board inspection device according to an embodiment of the present invention. 図1の基板検査装置の内部の構成を示す模式的側面図である。It is a typical side view which shows the internal structure of the board|substrate inspection apparatus of FIG. 図2のラインセンサの配置を説明するための図である。It is a figure for demonstrating arrangement|positioning of the line sensor of FIG. 図2のラインセンサの配置を説明するための図である。It is a figure for demonstrating arrangement|positioning of the line sensor of FIG. 制御部の機能的な構成を示すブロック図である。It is a block diagram which shows the functional structure of a control part. 第1のケースにおける基板の移動の過程を示す図である。It is a figure which shows the process of the movement of the board|substrate in a 1st case. 第2のケースにおける基板の移動の過程を示す図である。It is a figure which shows the process of the movement of the board|substrate in a 2nd case. 第3のケースにおける基板の移動の過程を示す図である。It is a figure which shows the process of the movement of the board|substrate in a 3rd case. 第4のケースにおける基板の移動の過程を示す図である。It is a figure which shows the process of the movement of the board|substrate in a 4th case. 図5の制御部により行われる検査処理を示すフローチャートである。6 is a flowchart showing an inspection process performed by the control unit of FIG. 図1および図2の基板検査装置を備える基板処理装置の全体構成を示す模式的ブロック図である。It is a schematic block diagram which shows the whole structure of the substrate processing apparatus provided with the substrate inspection apparatus of FIG. 1 and FIG. 撮像部の他の例を示す図である。It is a figure which shows the other example of an imaging part.

以下、本発明の実施の形態に係る基板検査装置、基板処理装置、基板検査方法および基板処理方法について図面を用いて説明する。以下の説明において、基板とは、半導体基板、液晶表示装置もしくは有機EL(Electro Luminescence)表示装置等のFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板または太陽電池用基板等をいう。 A substrate inspection apparatus, a substrate processing apparatus, a substrate inspection method, and a substrate processing method according to embodiments of the present invention will be described below with reference to the drawings. In the following description, a substrate is a semiconductor substrate, an FPD (Flat Panel Display) substrate such as a liquid crystal display device or an organic EL (Electro Luminescence) display device, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, A photomask substrate, a ceramic substrate, a solar cell substrate, or the like.

(1)基板検査装置の構成
図1は、本発明の一実施の形態に係る基板検査装置の外観斜視図である。図2は、図1の基板検査装置200の内部の構成を示す模式的側面図である。図1に示すように、基板検査装置200は、筐体部210、投光部220、反射部230、撮像部240、基板保持装置250、移動部260、方向検出部270および制御部280を含む。
(1) Configuration of Substrate Inspection Apparatus FIG. 1 is an external perspective view of the substrate inspection apparatus according to one embodiment of the present invention. FIG. 2 is a schematic side view showing an internal configuration of the board inspection apparatus 200 of FIG. As shown in FIG. 1, the board inspection apparatus 200 includes a housing section 210, a light projecting section 220, a reflecting section 230, an imaging section 240, a board holding device 250, a moving section 260, a direction detecting section 270, and a control section 280. ..

筐体部210の側部には、基板Wを搬入および搬出するためのスリット状の開口部211が形成される。投光部220、反射部230、撮像部240、基板保持装置250、移動部260および方向検出部270は、筐体部210内に収容される。制御部280は、例えばCPU(中央演算処理装置)およびメモリ、またはマイクロコンピュータを含み、投光部220、撮像部240、基板保持装置250、移動部260および方向検出部270の動作を制御する。 A slit-shaped opening 211 for loading and unloading the substrate W is formed on the side of the housing 210. The light projecting section 220, the reflecting section 230, the imaging section 240, the substrate holding device 250, the moving section 260, and the direction detecting section 270 are housed in the housing section 210. The control unit 280 includes, for example, a CPU (central processing unit) and a memory, or a microcomputer, and controls the operations of the light projecting unit 220, the imaging unit 240, the substrate holding device 250, the moving unit 260, and the direction detecting unit 270.

投光部220は、例えば1または複数の光源を含み、基板Wの直径よりも大きい帯状の複数個のライン光を出射面から斜め下方に出射する。図2に示すように、本実施の形態においては、投光部220は、所定のピッチだけ離間しかつ互いに平行な2個のライン光L1,L2を出射する。各ライン光L1,L2は、X方向に延びる長尺状の水平断面を有する。 The light projecting unit 220 includes, for example, one or a plurality of light sources, and emits a plurality of strip-shaped line lights larger than the diameter of the substrate W obliquely downward from the emission surface. As shown in FIG. 2, in the present embodiment, the light projecting unit 220 emits two line lights L1 and L2 that are separated by a predetermined pitch and are parallel to each other. Each of the line lights L1 and L2 has a long horizontal cross section that extends in the X direction.

反射部230は、例えばミラーを含む。撮像部240は、複数のラインセンサ、および1以上の集光レンズを含む。本実施の形態においては、撮像部240は、互いにピッチだけ離間しかつ互いに平行な2個のラインセンサ241,242を含む。各ラインセンサ241,242は、X方向に線状に並ぶ複数の画素を有する。ラインセンサ241,242の配置の詳細については後述する。 The reflector 230 includes, for example, a mirror. The imaging unit 240 includes a plurality of line sensors and one or more condenser lenses. In the present embodiment, the image pickup unit 240 includes two line sensors 241 and 242 that are separated from each other by a pitch and are parallel to each other. Each of the line sensors 241 and 242 has a plurality of pixels lined up in the X direction. Details of the arrangement of the line sensors 241 and 242 will be described later.

基板保持装置250は、例えばスピンチャックであり、駆動装置251および回転保持部252を含む。駆動装置251は、例えば電動モータであり、回転軸253を有する。回転保持部252は、駆動装置251の回転軸253の先端に取り付けられ、検査対象の基板Wを保持した状態で鉛直軸の周りで回転駆動される。 The substrate holding device 250 is, for example, a spin chuck, and includes a driving device 251 and a rotation holding unit 252. The drive device 251 is, for example, an electric motor and has a rotating shaft 253. The rotation holding unit 252 is attached to the tip of the rotation shaft 253 of the drive device 251, and is rotationally driven around the vertical axis while holding the substrate W to be inspected.

移動部260は、一対のガイド部材261および移動保持部262を含む。一対のガイド部材261は、互いに平行にY方向に延びるように設けられる。Y方向は、水平面上でX方向と直交する。移動保持部262は、基板保持装置250を保持しつつ一対のガイド部材261に沿ってY方向に移動可能に構成される。基板保持装置250が基板Wを保持する状態で移動保持部262がY方向に移動することにより、基板Wが投光部220および反射部230の下方を通過する。 The moving unit 260 includes a pair of guide members 261 and a moving holding unit 262. The pair of guide members 261 are provided so as to extend in the Y direction in parallel with each other. The Y direction is orthogonal to the X direction on the horizontal plane. The moving holding unit 262 is configured to be movable in the Y direction along the pair of guide members 261 while holding the substrate holding device 250. The movement holding unit 262 moves in the Y direction while the substrate holding device 250 holds the substrate W, so that the substrate W passes below the light projecting unit 220 and the reflecting unit 230.

方向検出部270は、例えば投光素子および受光素子を含む反射型光電センサであり、検査対象の基板Wが基板保持装置250により回転される状態で、基板Wの外周部に向けて光を出射するとともに基板Wからの反射光を受光する。方向検出部270は、基板Wからの反射光の受光量に基づいて基板Wのオリエーションフラットを検出する。方向検出部270として透過型光電センサが用いられてもよい。 The direction detection unit 270 is, for example, a reflective photoelectric sensor including a light projecting element and a light receiving element, and emits light toward the outer peripheral portion of the substrate W while the substrate W to be inspected is rotated by the substrate holding device 250. In addition, the reflected light from the substrate W is received. The direction detection unit 270 detects the orientation flat of the substrate W based on the amount of received reflected light from the substrate W. A transmissive photoelectric sensor may be used as the direction detection unit 270.

図1の基板検査装置200における基板Wの撮像動作について説明する。検査対象の基板Wは、後述する図11の搬送装置120により開口部211を通して筐体部210内に搬入され、基板保持装置250により保持される。続いて、基板保持装置250により基板Wが回転されつつ方向検出部270により基板Wの周縁部に光が出射され、その反射光が方向検出部270により受光される。これにより、基板Wのオリエーションフラットが検出され、基板Wの向きが判定される。その判定の結果に基づいて、基板保持装置250により基板Wのオリエーションフラットが一定の方向を向くように基板Wの回転位置が調整される。 An image pickup operation of the substrate W in the substrate inspection apparatus 200 of FIG. 1 will be described. The substrate W to be inspected is carried into the housing 210 through the opening 211 by the carrier device 120 of FIG. 11 described later, and is held by the substrate holding device 250. Subsequently, while the substrate W is rotated by the substrate holding device 250, the direction detection unit 270 emits light to the peripheral portion of the substrate W, and the reflected light is received by the direction detection unit 270. Thus, the orientation flat of the substrate W is detected and the orientation of the substrate W is determined. Based on the result of the determination, the substrate holding device 250 adjusts the rotational position of the substrate W so that the orientation flat of the substrate W faces a certain direction.

次に、投光部220から斜め下方にライン光L1,L2が出射されつつ移動部260により基板Wが投光部220の下方を通るように一方向に移動される。これにより、投光部220から基板Wの表面の全体にライン光L1が順次照射されるとともに、投光部220から基板Wの表面の全体にライン光L2が順次照射される。基板Wの表面で反射されたライン光L1,L2は反射部230によりさらに反射されて撮像部240に導かれる。 Next, while the line lights L1 and L2 are emitted obliquely downward from the light projecting unit 220, the substrate W is moved in one direction by the moving unit 260 so as to pass below the light projecting unit 220. As a result, the light projecting unit 220 sequentially irradiates the entire surface of the substrate W with the line light L1, and the light projecting unit 220 sequentially irradiates the entire surface of the substrate W with the line light L2. The line lights L1 and L2 reflected on the surface of the substrate W are further reflected by the reflecting section 230 and guided to the imaging section 240.

撮像部240のラインセンサ241は、基板Wの表面から反射されるライン光L1を所定のスキャン周期でそれぞれ受光することにより、基板Wの表面を順次撮像する。同様に、撮像部240のラインセンサ242は、基板Wの表面から反射されるライン光L2を所定のスキャン周期でそれぞれ受光することにより、基板Wの表面を順次撮像する。ラインセンサ241,242は、各画素の受光量に対応する受光信号に基づいて画素値を示す画素データを出力する。 The line sensor 241 of the imaging unit 240 sequentially captures the surface of the substrate W by receiving the line light L1 reflected from the surface of the substrate W at a predetermined scan cycle. Similarly, the line sensor 242 of the imaging unit 240 sequentially captures the surface of the substrate W by receiving the line light L2 reflected from the surface of the substrate W at a predetermined scan cycle. The line sensors 241 and 242 output pixel data indicating a pixel value based on the light receiving signal corresponding to the light receiving amount of each pixel.

撮像部240のラインセンサ241,242から出力される複数の画素データに基づいて、基板Wの表面上の全体の画像を示す画像データが制御部280により生成される。その後、移動部260により基板Wが所定の位置に戻され、後述する図11の搬送装置120により基板Wが開口部211を通して筐体部210の外部に搬出される。生成された画像データに基づいて基板Wが制御部280により検査される。 Based on the plurality of pixel data output from the line sensors 241 and 242 of the image pickup unit 240, the control unit 280 generates image data indicating the entire image on the surface of the substrate W. After that, the substrate W is returned to a predetermined position by the moving unit 260, and the substrate W is carried out of the housing unit 210 through the opening 211 by the transfer device 120 of FIG. The substrate W is inspected by the controller 280 based on the generated image data.

(2)ラインセンサ
図3および図4は、図2のラインセンサ241,242の配置を説明するための図である。本実施の形態においては、ラインセンサ241,242は、例えばCCD(電荷結合素子)ラインセンサまたはCMOS(相補性金属酸化膜半導体)ラインセンサであり、同一の構成を有する。
(2) Line Sensor FIGS. 3 and 4 are diagrams for explaining the arrangement of the line sensors 241 and 242 of FIG. In this embodiment, the line sensors 241 and 242 are, for example, CCD (charge coupled device) line sensors or CMOS (complementary metal oxide semiconductor) line sensors and have the same configuration.

ラインセンサ241とラインセンサ242とは、ラインセンサ241の各画素の中心とラインセンサ242の各画素の中心とがX方向に直交する方向に所定のピッチだけ離間するように配置される。また、ラインセンサ241とラインセンサ242とは、X方向に直交する方向においてラインセンサ242の各画素(一方の端部の画素を除く。)がラインセンサ241の隣り合う2個の画素と重なるように、互いにX方向にずれた状態で配置される。 The line sensor 241 and the line sensor 242 are arranged such that the center of each pixel of the line sensor 241 and the center of each pixel of the line sensor 242 are separated by a predetermined pitch in the direction orthogonal to the X direction. Further, in the line sensor 241 and the line sensor 242, each pixel of the line sensor 242 (excluding the pixel at one end) is overlapped with two adjacent pixels of the line sensor 241 in the direction orthogonal to the X direction. Are arranged in a state of being displaced from each other in the X direction.

本例では、各ラインセンサ241,242は、X方向に並ぶn個(nは2以上の整数)の画素を含む。ラインセンサ241のn個の画素をそれぞれ画素a〜aと呼ぶ。ラインセンサ242のn個の画素をそれぞれ画素b〜bと呼ぶ。ラインセンサ242は、ラインセンサ241に対してX方向における各画素a〜a,b〜bの長さの2分の1だけX方向にずれた状態で配置される。これにより、X方向に直交する方向において、画素aは画素b,bと重なり、画素aは画素b,bと重なり、画素aは画素bn−1,bと重なる。 In this example, each of the line sensors 241 and 242 includes n (n is an integer of 2 or more) pixels arranged in the X direction. The n pixels of the line sensor 241 are referred to as pixels a 1 ~a n. The n pixels of the line sensor 242 are referred to as pixels b 1 to b n , respectively. The line sensor 242 is arranged with a shift with respect to the line sensor 241 pixels a 1 ~a n in the X direction, the b 1 ~b 1 only X direction half the length of n. Thus, in the direction perpendicular to the X direction, the pixel a 2 overlaps with the pixel b 1, b 2, pixel a 3 overlaps with the pixel b 2, b 3, pixel a n is the pixel b n-1, b n Overlap.

図4に示すように、各画素a,b(kは1〜nの整数)は、X方向に並ぶ2個の部分領域に仮想的に分割される。各画素aのX方向における半分の領域を部分領域ak,1と呼び、各画素aのX方向における他の半分の領域を部分領域ak,2と呼ぶ。同様に、各画素bのX方向における半分の領域を部分領域bk,1と呼び、各画素bのX方向における他の半分の領域を部分領域bk,2と呼ぶ。 As shown in FIG. 4, each pixel a k , b k (k is an integer of 1 to n) is virtually divided into two partial regions arranged in the X direction. Called half region in the X direction of each pixel a k a partial area a k, 1, referred to as the region of the other half and partial area a k, 2 in the X direction of each pixel a k. Similarly, calling the half region in the X direction of each pixel b k the partial region b k, 1, referred to as the region of the other half and partial region b k, 2 in the X direction of each pixel b k.

各部分領域ak,1,ak,2,bk,1,bk,2から出力される画素値を用いた演算を行うことにより、1個の仮想的なラインセンサ(以下、仮想ラインセンサと呼ぶ。)LSを導入することができる。本例では、上記の演算は、X方向に直交する方向に重なる2個の部分領域からそれぞれ出力される2個の画素値を平均することを含む。 By performing calculation using the pixel values output from the partial regions a k,1 , a k,2 , b k,1 , b k,2 , one virtual line sensor (hereinafter, virtual line sensor) will be described. It is called a sensor.) LS can be introduced. In the present example, the above calculation includes averaging two pixel values respectively output from the two partial regions overlapping in the direction orthogonal to the X direction.

具体的には、仮想ラインセンサLSは、X方向に並ぶ2n+1個の画素を含む。仮想ラインセンサLSの2n+1個の画素をそれぞれ画素x〜x2n+1と呼ぶ。基板Wの所定のライン状領域にライン光L1が照射されたときに部分領域a1,1〜an,2からそれぞれ出力される画素値をA1,1〜An,2とする。また、基板Wの上記のライン状領域と同一のライン状領域またはその近傍のライン状領域にライン光L2が照射されたときに部分領域b1,1〜bn,2からそれぞれ出力される画素値をB1,1〜Bn,2とする。画素値Ak,1と画素値Ak,2とは互いに等しく、画素値Bk,1と画素値Bk,2とは互いに等しい。 Specifically, the virtual line sensor LS includes 2n+1 pixels arranged in the X direction. The 2n+1 pixels of the virtual line sensor LS are referred to as pixels x 1 to x 2n+1 , respectively. Pixel values output from the partial regions a 1,1 to a n,2 when the predetermined line-shaped region of the substrate W is irradiated with the line light L 1 are A 1,1 to A n,2 . Pixels output from the partial regions b 1,1 to b n,2 when the line light L2 is applied to the same line-shaped region as the above-described line-shaped region of the substrate W or a line-shaped region in the vicinity thereof. The values are B 1,1 to B n,2 . The pixel value A k,1 and the pixel value A k,2 are equal to each other, and the pixel value B k,1 and the pixel value B k,2 are equal to each other.

ここで、仮想ラインセンサLSの画素x〜x2n+1からそれぞれ出力される画素値をX〜X2n+1とする。この場合、部分領域a1,2および部分領域b1,1に重なる画素xから出力される画素値Xは、画素値A1,2と画素値B1,1との平均により算出される。部分領域a2,1および部分領域b1,2に重なる画素xから出力される画素値Xは、画素値A2,1と画素値B1,2との平均により算出される。部分領域a2,2および部分領域b2,1に重なる画素xから出力される画素値Xは、画素値A2,2と画素値B2,1との平均により算出される。 Here, it is assumed that the pixel values output from the pixels x 1 to x 2n+1 of the virtual line sensor LS are X 1 to X 2n+1 . In this case, the pixel value X 2 output from the pixel x 2 overlapping the partial area a 1,2 and the partial area b 1,1 is calculated by the average of the pixel value A 1,2 and the pixel value B 1,1. It The pixel value X 3 output from the pixel x 3 overlapping the partial area a 2,1 and the partial areas b 1,2 is calculated by the average of the pixel value A 2,1 and the pixel value B 1,2 . The pixel value X 4 output from the pixel x 4 overlapping the partial area a 2,2 and the partial area b 2,1 is calculated by the average of the pixel value A 2,2 and the pixel value B 2,1 .

同様にして、各画素xから出力される画素値X(mは1〜2n+1の整数)は、下記式(1)により算出される。式(1)において、画素値Xを算出する際に、画素値B0,2として任意の値(例えばダミーの値)を用いてもよい。同様に、画素値X2n+1を算出する際に、画素値An+1,1として任意の値を用いてもよい。 Similarly, the pixel value X m (m is an integer of 1 to 2n+1) output from each pixel x m is calculated by the following formula (1). In formula (1), when calculating the pixel value X 1 , any value (for example, a dummy value) may be used as the pixel value B 0,2 . Similarly, when calculating the pixel value X 2n+1 , any value may be used as the pixel value A n+1,1 .

Figure 2020122673
Figure 2020122673

なお、ラインセンサ241,242のX方向における長さは基板Wの直径よりもわずかに大きい。そのため、通常、ラインセンサ241における端部の画素aには、基板Wにより反射されたライン光L1は入射せず、ラインセンサ242における端部の画素bには、基板Wにより反射されたライン光L2は入射しない。すなわち、端部の部分領域a1,1,bn,2は基板Wの検査には寄与せず、これらの部分領域にそれぞれ重なる仮想ラインセンサLSの両端の画素x,x2n+1も基板Wの検査には寄与しない。したがって、画素x,x2n+1からそれぞれ出力される画素値X,X2n+1は任意の値であってもよい。 The lengths of the line sensors 241 and 242 in the X direction are slightly larger than the diameter of the substrate W. Therefore, normally, the line light L1 reflected by the substrate W does not enter the pixel a 1 at the end of the line sensor 241, and the pixel b n at the end of the line sensor 242 reflects by the substrate W. The line light L2 does not enter. That is, the partial areas a 1 , 1 , b n, 2 at the end portions do not contribute to the inspection of the substrate W, and the pixels x 1 , x 2n+1 at both ends of the virtual line sensor LS which respectively overlap these partial areas are also substrate W. Does not contribute to the inspection. Therefore, the pixel values X 1 and X 2n+1 output from the pixels x 1 and x 2n+1 may be arbitrary values.

上記の構成によれば、仮想ラインセンサLSは、X方向において、ラインセンサ241またはラインセンサ242と略同一の長さを有する。これに対し、仮想ラインセンサLSの画素x〜x2n+1の数は、ラインセンサ241の画素a〜aの数またはラインセンサ242の画素b〜bの数の約2倍である。そのため、仮想ラインセンサLSによる画像の解像度を、擬似的にラインセンサ241またはラインセンサ242による画像の解像度の約2倍にすることができる。これにより、高い解像度を有する画像を用いて基板Wの欠陥を高い精度で検出することができる。 According to the above configuration, the virtual line sensor LS has substantially the same length as the line sensor 241 or the line sensor 242 in the X direction. On the other hand, the number of pixels x 1 to x 2n+1 of the virtual line sensor LS is about twice the number of pixels a 1 to a n of the line sensor 241 or the number of pixels b 1 to b n of the line sensor 242. .. Therefore, the resolution of the image by the virtual line sensor LS can be approximately doubled as the resolution of the image by the line sensor 241 or the line sensor 242 in a pseudo manner. Thereby, the defect of the substrate W can be detected with high accuracy using an image having a high resolution.

(3)制御部
図5は、制御部280の機能的な構成を示すブロック図である。図5に示すように、制御部280は、機能部として、装置制御部1、画素データ取得部2,3、画像データ生成部4、サンプル画像データ取得部5および検査部6を含む。制御部280の機能部は、例えば制御部280のCPUがメモリに記憶されたコンピュータプログラムを実行することにより実現される。なお、制御部280の機能部の一部または全部が電子回路等のハードウエアにより実現されてもよい。
(3) Control Unit FIG. 5 is a block diagram showing the functional configuration of the control unit 280. As shown in FIG. 5, the control unit 280 includes a device control unit 1, pixel data acquisition units 2 and 3, an image data generation unit 4, a sample image data acquisition unit 5, and an inspection unit 6 as functional units. The functional unit of the control unit 280 is realized by, for example, the CPU of the control unit 280 executing a computer program stored in the memory. Note that part or all of the functional units of the control unit 280 may be realized by hardware such as an electronic circuit.

装置制御部1は、ラインセンサ241,242が所定のスキャン周期Δtでライン光L1,L2をそれぞれ受光するように撮像部240の動作を制御する。また、装置制御部1は、基板Wが所定の速度vでY方向に移動するように移動部260の動作を制御する。さらに、装置制御部1は、図1の投光部220、基板保持装置250および方向検出部270の動作も制御する。画素データ取得部2は、ラインセンサ241から画素データを取得する。画素データ取得部3は、ラインセンサ242から画素データを取得する。 The device control unit 1 controls the operation of the imaging unit 240 so that the line sensors 241 and 242 respectively receive the line lights L1 and L2 at a predetermined scan cycle Δt. Further, the apparatus control unit 1 controls the operation of the moving unit 260 so that the substrate W moves in the Y direction at a predetermined speed v. Further, the device control unit 1 also controls the operations of the light projecting unit 220, the substrate holding device 250, and the direction detecting unit 270 of FIG. The pixel data acquisition unit 2 acquires pixel data from the line sensor 241. The pixel data acquisition unit 3 acquires pixel data from the line sensor 242.

画像データ生成部4は、画素データ取得部2により取得された画素値Ak,1,Ak,2および画素データ取得部3により取得された画素値Bk,1,Bk,2を上記式(1)に適用することにより、基板Wの画像を示す画像データを取得する。具体的には、所定の時点における画素値Ak,1,Ak,2と、他の時点における画素値Bk,1,Bk,2とを用いた演算が行われることにより、基板Wの所定のライン状領域の画像を示すライン画像データが生成される。X方向に平行な複数のライン画像データが合成されることにより画像データが生成される。 The image data generation unit 4 uses the pixel values A k,1 , A k,2 acquired by the pixel data acquisition unit 2 and the pixel values B k,1 , B k,2 acquired by the pixel data acquisition unit 3 as described above. By applying the formula (1), the image data indicating the image of the substrate W is acquired. Specifically, the substrate values are calculated by using the pixel values A k,1 , A k,2 at a predetermined time point and the pixel values B k,1 , B k,2 at other time points. The line image data indicating the image of the predetermined line-shaped area is generated. Image data is generated by combining a plurality of line image data parallel to the X direction.

ここで、各ライン画像データの生成に用いられる画素値Ak,1,Ak,2と画素値Bk,1,Bk,2との対応関係は、撮像部240のスキャン周期Δtおよび移動部260による基板の移動の速度vにより異なる。スキャン周期Δtおよび速度vに応じた画素値Ak,1,Ak,2と画素値Bk,1,Bk,2との対応関係については後述する。 Here, the correspondence between the pixel values A k,1 , A k,2 and the pixel values B k,1 , B k,2 used to generate each line image data is determined by the scan cycle Δt of the imaging unit 240 and the movement. It depends on the speed v of movement of the substrate by the section 260. The correspondence between the pixel values A k,1 , A k,2 and the pixel values B k,1 , B k,2 according to the scan cycle Δt and the speed v will be described later.

サンプル画像データ取得部5は、外観上の欠陥がないサンプル基板の画像を表すサンプル画像データを取得する。サンプル基板は、例えば予め高い精度で検査が行われ、その検査で欠陥がないと判定された基板Wであってもよい。サンプル画像データは、基板検査装置200において取得されてもよく、他の装置において取得されてもよい。また、サンプル画像データとして、予め生成された設計データが用いられてもよい。検査部6は、画像データ生成部4により生成された画像データとサンプル画像データ取得部5により取得されたサンプル画像データとを比較することにより基板Wに欠陥があるか否かを検査する。 The sample image data acquisition unit 5 acquires sample image data representing an image of a sample substrate having no external defect. The sample substrate may be, for example, a substrate W that has been inspected in advance with high accuracy and determined to have no defect in the inspection. The sample image data may be acquired by the board inspection apparatus 200 or may be acquired by another apparatus. Further, design data generated in advance may be used as the sample image data. The inspection unit 6 inspects whether or not the substrate W has a defect by comparing the image data generated by the image data generation unit 4 with the sample image data acquired by the sample image data acquisition unit 5.

(4)画像データ生成部の動作
図2のラインセンサ241,242間のピッチp0に対応する基板Wのライン状領域間のY方向におけるピッチを画素ピッチp1と呼ぶ。なお、反射部230がラインセンサ241,242に向けて水平にライン光L1,L2を反射する場合、画素ピッチp1は、下記式(2)により算出される。式(2)において、θは基板Wへのライン光L1,L2の照射角度である。
(4) Operation of Image Data Generation Unit The pitch in the Y direction between the linear regions of the substrate W corresponding to the pitch p0 between the line sensors 241 and 242 in FIG. 2 is called the pixel pitch p1. When the reflection unit 230 horizontally reflects the line lights L1 and L2 toward the line sensors 241 and 242, the pixel pitch p1 is calculated by the following equation (2). In Expression (2), θ is the irradiation angle of the line lights L1 and L2 onto the substrate W.

Figure 2020122673
Figure 2020122673

また、上記のように、図2の撮像部240は、スキャン周期Δtで動作し、基板Wは速度vでY方向に移動する。この場合、各スキャン周期ΔtにおけるY方向の基板Wの移動ピッチをp2とすると、移動ピッチp2は下記式(3)で与えられる。図5の画像データ生成部4の動作は、画素ピッチp1と移動ピッチp2との関係により異なる。以下、画素ピッチp1と移動ピッチp2との関係に対応した画像データ生成部4の動作を説明する。 Further, as described above, the imaging unit 240 of FIG. 2 operates at the scan cycle Δt, and the substrate W moves in the Y direction at the speed v. In this case, when the movement pitch of the substrate W in the Y direction in each scan cycle Δt is p2, the movement pitch p2 is given by the following equation (3). The operation of the image data generation unit 4 in FIG. 5 differs depending on the relationship between the pixel pitch p1 and the movement pitch p2. Hereinafter, the operation of the image data generation unit 4 corresponding to the relationship between the pixel pitch p1 and the movement pitch p2 will be described.

Figure 2020122673
Figure 2020122673

(a)第1のケース
図6は、第1のケースにおける基板Wの移動の過程を示す図である。第1のケースにおいては、画素ピッチp1と移動ピッチp2とが等しい。図6(a)に示すように、時点t1で、基板Wのライン状領域(以下、単に領域と呼ぶ。後述するライン状領域についても同様である。)R1にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。
(A) First Case FIG. 6 is a diagram showing a process of moving the substrate W in the first case. In the first case, the pixel pitch p1 and the movement pitch p2 are equal. As shown in FIG. 6A, at time t1, a line-shaped region (hereinafter, simply referred to as a region. The same also applies to a line-shaped region described later) R1 of the substrate W is irradiated with the line light L1 and reflected. The line light L1 thus obtained is received by the line sensor 241.

図6(b)に示すように、時点t1のスキャン周期Δt後の時点t2で、基板Wが移動ピッチp2だけY方向に移動する。この時点で、領域R2にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R3にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。 As shown in FIG. 6B, the substrate W moves in the Y direction by the movement pitch p2 at the time point t2 after the scan cycle Δt at the time point t1. At this time point, the region R2 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R3 is irradiated with the line light L1, and the reflected line light L1 is received by the line sensor 241.

図6(c)に示すように、時点t2のスキャン周期Δt後の時点t3で、基板Wが移動ピッチp2だけY方向にさらに移動する。この時点で、領域R4にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R5にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。 As shown in FIG. 6C, the substrate W further moves in the Y direction by the movement pitch p2 at the time point t3 after the scan cycle Δt at the time point t2. At this point, the region R4 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R5 is irradiated with the line light L1, and the reflected line light L1 is received by the line sensor 241.

図6(d)に示すように、時点t3のスキャン周期Δt後の時点t4で、基板Wが移動ピッチp2だけY方向にさらに移動する。この時点で、領域R6にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R7にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。 As shown in FIG. 6D, the substrate W further moves in the Y direction by the movement pitch p2 at time t4 after the scan cycle Δt at time t3. At this point, the region R6 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R7 is irradiated with the line light L1 and the reflected line light L1 is received by the line sensor 241.

図6(e)に示すように、時点t4のスキャン周期Δt後の時点t5で、基板Wが移動ピッチp2だけY方向にさらに移動する。この時点で、領域R8にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R9にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。同様の動作が繰り返されることにより、基板Wの表面の全体にライン光L1,L2が照射され、反射されたライン光L1,L2がそれぞれラインセンサ241,242により受光される。 As shown in FIG. 6E, at the time point t5 after the scan cycle Δt at the time point t4, the substrate W further moves in the Y direction by the movement pitch p2. At this point, the region R8 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R9 is irradiated with the line light L1 and the reflected line light L1 is received by the line sensor 241. By repeating the same operation, the entire surface of the substrate W is irradiated with the line lights L1 and L2, and the reflected line lights L1 and L2 are received by the line sensors 241 and 242, respectively.

このケースにおいては、画素ピッチp1と移動ピッチp2とが等しいので、時点t1にライン光L1が照射された領域R1と、時点t2にライン光L2が照射された領域R2とは同一である。同様に、領域R3と領域R4とは同一であり、領域R5と領域R6とは同一であり、領域R7と領域R8とは同一である。 In this case, since the pixel pitch p1 is equal to the movement pitch p2, the region R1 irradiated with the line light L1 at the time point t1 and the region R2 irradiated with the line light L2 at the time point t2 are the same. Similarly, the regions R3 and R4 are the same, the regions R5 and R6 are the same, and the regions R7 and R8 are the same.

すなわち、所定の時点にライン光L1が照射された領域と、その時点のスキャン周期Δt後の時点にライン光L2が照射された領域とが対応する。したがって、画像データ生成部4は、所定の時点に画素データ取得部2により取得された画素値Ak,1,Ak,2と、その時点のスキャン周期Δt後の時点に画素データ取得部3により取得された画素値Bk,1,Bk,2とに基づいて画像データを生成する。 That is, the area irradiated with the line light L1 at a predetermined time point corresponds to the area irradiated with the line light L2 at the time point after the scan cycle Δt at that time point. Therefore, the image data generation unit 4 determines the pixel values A k,1 , A k,2 acquired by the pixel data acquisition unit 2 at a predetermined time point and the pixel data acquisition unit 3 at a time point after the scan cycle Δt at that time point. Image data is generated based on the pixel values B k,1 , B k,2 acquired by.

(b)第2のケース
図7は、第2のケースにおける基板Wの移動の過程を示す図である。第2のケースにおいては、移動ピッチp2が画素ピッチp1よりも大きい。図7(a)に示すように、時点t1で、領域R11にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。
(B) Second Case FIG. 7 is a diagram showing a process of moving the substrate W in the second case. In the second case, the movement pitch p2 is larger than the pixel pitch p1. As shown in FIG. 7A, at time t1, the region R11 is irradiated with the line light L1 and the reflected line light L1 is received by the line sensor 241.

図7(b)に示すように、時点t1のスキャン周期Δt後の時点t2で、基板Wが移動ピッチp2だけY方向に移動する。この時点で、領域R12にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R13にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。 As shown in FIG. 7B, the substrate W moves in the Y direction by the movement pitch p2 at time t2 after the scan cycle Δt at time t1. At this time point, the region R12 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R13 is irradiated with the line light L1 and the reflected line light L1 is received by the line sensor 241.

図7(c)に示すように、時点t2のスキャン周期Δt後の時点t3で、基板Wが移動ピッチp2だけY方向にさらに移動する。この時点で、領域R14にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R15にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。 As shown in FIG. 7C, the substrate W further moves in the Y direction by the movement pitch p2 at the time point t3 after the scan cycle Δt at the time point t2. At this point, the region R14 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R15 is irradiated with the line light L1 and the reflected line light L1 is received by the line sensor 241.

図7(d)に示すように、時点t3のスキャン周期Δt後の時点t4で、基板Wが移動ピッチp2だけY方向にさらに移動する。この時点で、領域R16にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R17にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。 As shown in FIG. 7D, the substrate W further moves in the Y direction by the movement pitch p2 at the time point t4 after the scan cycle Δt at the time point t3. At this point, the region R16 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R17 is irradiated with the line light L1 and the reflected line light L1 is received by the line sensor 241.

図7(e)に示すように、時点t4のスキャン周期Δt後の時点t5で、基板Wが移動ピッチp2だけY方向にさらに移動する。この時点で、領域R18にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R19にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。同様の動作が繰り返されることにより、基板Wの表面の全体にライン光L1,L2が照射され、反射されたライン光L1,L2がそれぞれラインセンサ241,242により受光される。 As shown in FIG. 7E, at time t5 after the scan cycle Δt at time t4, the substrate W further moves in the Y direction by the movement pitch p2. At this point, the region R18 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R19 is irradiated with the line light L1, and the reflected line light L1 is received by the line sensor 241. By repeating the same operation, the entire surface of the substrate W is irradiated with the line lights L1 and L2, and the reflected line lights L1 and L2 are received by the line sensors 241 and 242, respectively.

このケースにおいては、時点t2にライン光L2が照射された領域R12は、時点t1にライン光L1が照射された領域R11と同一ではないが、他の領域よりも領域R11に最も近い。同様に、領域R14は領域R13に最も近く、領域R16は領域R15に最も近く、領域R18は領域R17に最も近い。 In this case, the region R12 irradiated with the line light L2 at the time point t2 is not the same as the region R11 irradiated with the line light L1 at the time point t1, but is closest to the region R11 than the other regions. Similarly, region R14 is closest to region R13, region R16 is closest to region R15, and region R18 is closest to region R17.

すなわち、所定の時点にライン光L1が照射された領域と、その時点のスキャン周期Δt後の時点にライン光L2が照射された領域とが対応する。したがって、画像データ生成部4は、所定の時点に画素データ取得部2により取得された画素値Ak,1,Ak,2と、その時点のスキャン周期Δt後の時点に画素データ取得部3により取得された画素値Bk,1,Bk,2とに基づいて画像データを生成する。 That is, the area irradiated with the line light L1 at a predetermined time point corresponds to the area irradiated with the line light L2 at the time point after the scan cycle Δt at that time point. Therefore, the image data generation unit 4 determines the pixel values A k,1 , A k,2 acquired by the pixel data acquisition unit 2 at a predetermined time point and the pixel data acquisition unit 3 at a time point after the scan cycle Δt at that time point. Image data is generated based on the pixel values B k,1 , B k,2 acquired by.

(c)第3のケース
図8は、第3のケースにおける基板Wの移動の過程を示す図である。第3のケースにおいては、移動ピッチp2が画素ピッチp1よりも小さくかつ画素ピッチp1が移動ピッチp2のM倍(Mは2以上の整数)である。なお、図8の例では、倍率Mは2である。図8(a)に示すように、時点t1で、領域R21にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。
(C) Third Case FIG. 8 is a diagram showing a process of moving the substrate W in the third case. In the third case, the movement pitch p2 is smaller than the pixel pitch p1 and the pixel pitch p1 is M times the movement pitch p2 (M is an integer of 2 or more). In the example of FIG. 8, the magnification M is 2. As shown in FIG. 8A, at time t1, the region R21 is irradiated with the line light L1 and the reflected line light L1 is received by the line sensor 241.

図8(b)に示すように、時点t1のスキャン周期Δt後の時点t2で、基板Wが移動ピッチp2だけY方向に移動する。この時点で、領域R22にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R23にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。 As shown in FIG. 8B, the substrate W moves in the Y direction by the movement pitch p2 at time t2 after the scan cycle Δt at time t1. At this point, the region R22 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R23 is irradiated with the line light L1 and the reflected line light L1 is received by the line sensor 241.

図8(c)に示すように、時点t2のスキャン周期Δt後の時点t3で、基板Wが移動ピッチp2だけY方向にさらに移動する。この時点で、領域R24にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R25にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。 As shown in FIG. 8C, the substrate W further moves in the Y direction by the movement pitch p2 at the time point t3 after the scan cycle Δt at the time point t2. At this point, the region R24 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R25 is irradiated with the line light L1, and the reflected line light L1 is received by the line sensor 241.

図8(d)に示すように、時点t3のスキャン周期Δt後の時点t4で、基板Wが移動ピッチp2だけY方向にさらに移動する。この時点で、領域R26にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R27にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。 As shown in FIG. 8D, the substrate W further moves in the Y direction by the movement pitch p2 at time t4 after the scan cycle Δt at time t3. At this point, the region R26 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R27 is irradiated with the line light L1 and the reflected line light L1 is received by the line sensor 241.

図8(e)に示すように、時点t4のスキャン周期Δt後の時点t5で、基板Wが移動ピッチp2だけY方向にさらに移動する。この時点で、領域R28にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R29にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。同様の動作が繰り返されることにより、基板Wの表面の全体にライン光L1,L2が照射され、反射されたライン光L1,L2がそれぞれラインセンサ241,242により受光される。 As shown in FIG. 8E, the substrate W further moves in the Y direction by the movement pitch p2 at time t5 after the scan cycle Δt at time t4. At this point, the region R28 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R29 is irradiated with the line light L1 and the reflected line light L1 is received by the line sensor 241. By repeating the same operation, the entire surface of the substrate W is irradiated with the line lights L1 and L2, and the reflected line lights L1 and L2 are received by the line sensors 241 and 242, respectively.

このケースにおいては、画素ピッチp1が移動ピッチp2の2倍であるので、時点t1にライン光L1が照射された領域R21と、時点t3にライン光L2が照射された領域R24とは同一である。同様に、領域R23と領域R26とは同一であり、領域R25と領域R28とは同一である。 In this case, since the pixel pitch p1 is twice the movement pitch p2, the region R21 irradiated with the line light L1 at the time t1 and the region R24 irradiated with the line light L2 at the time t3 are the same. .. Similarly, the region R23 and the region R26 are the same, and the region R25 and the region R28 are the same.

すなわち、所定の時点にライン光L1が照射された領域と、その時点のMスキャン周期Δt(M×Δt)後の時点にライン光L2が照射された領域とが対応する。したがって、画像データ生成部4は、所定の時点に画素データ取得部2により取得された画素値Ak,1,Ak,2と、その時点のMスキャン周期Δt後の時点に画素データ取得部3により取得された画素値Bk,1,Bk,2とに基づいて画像データを生成する。 That is, the area irradiated with the line light L1 at a predetermined time point corresponds to the area irradiated with the line light L2 at a time point after the M scan cycle Δt (M×Δt) at that time point. Therefore, the image data generation unit 4 determines the pixel values A k,1 , A k,2 acquired by the pixel data acquisition unit 2 at a predetermined time point and the pixel data acquisition unit at a time point after the M scan cycle Δt at that time point. The image data is generated based on the pixel values B k,1 , B k,2 acquired in 3.

(d)第4のケース
図9は、第4のケースにおける基板Wの移動の過程を示す図である。第4のケースにおいては、移動ピッチp2が画素ピッチp1よりも小さくかつ画素ピッチp1が移動ピッチp2のM倍(Mは1よりも大きい非整数)である。なお、図9の例では、倍率Mは1.2である。図9(a)に示すように、時点t1で、領域R31にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。
(D) Fourth Case FIG. 9 is a diagram showing a process of moving the substrate W in the fourth case. In the fourth case, the movement pitch p2 is smaller than the pixel pitch p1 and the pixel pitch p1 is M times the movement pitch p2 (M is a non-integer larger than 1). In the example of FIG. 9, the magnification M is 1.2. As shown in FIG. 9A, at time t1, the region R31 is irradiated with the line light L1 and the reflected line light L1 is received by the line sensor 241.

図9(b)に示すように、時点t1のスキャン周期Δt後の時点t2で、基板Wが移動ピッチp2だけY方向に移動する。この時点で、領域R32にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R33にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。 As shown in FIG. 9B, the substrate W moves in the Y direction by the movement pitch p2 at a time point t2 after the scan cycle Δt at the time point t1. At this point in time, the region R32 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R33 is irradiated with the line light L1 and the reflected line light L1 is received by the line sensor 241.

図9(c)に示すように、時点t2のスキャン周期Δt後の時点t3で、基板Wが移動ピッチp2だけY方向にさらに移動する。この時点で、領域R34にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R35にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。 As shown in FIG. 9C, the substrate W further moves in the Y direction by the movement pitch p2 at the time point t3 after the scan cycle Δt at the time point t2. At this point, the region R34 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R35 is irradiated with the line light L1, and the reflected line light L1 is received by the line sensor 241.

図9(d)に示すように、時点t3のスキャン周期Δt後の時点t4で、基板Wが移動ピッチp2だけY方向にさらに移動する。この時点で、領域R36にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R37にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。 As shown in FIG. 9D, the substrate W further moves in the Y direction by the movement pitch p2 at time t4 after the scan cycle Δt at time t3. At this point, the region R36 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R37 is irradiated with the line light L1 and the reflected line light L1 is received by the line sensor 241.

図9(e)に示すように、時点t4のスキャン周期Δt後の時点t5で、基板Wが移動ピッチp2だけY方向にさらに移動する。この時点で、領域R38にライン光L2が照射され、反射されたライン光L2がラインセンサ242により受光される。同時に、領域R39にライン光L1が照射され、反射されたライン光L1がラインセンサ241により受光される。同様の動作が繰り返されることにより、基板Wの表面の全体にライン光L1,L2が照射され、反射されたライン光L1,L2がそれぞれラインセンサ241,242により受光される。 As shown in FIG. 9E, at time t5 after the scan cycle Δt at time t4, the substrate W further moves in the Y direction by the movement pitch p2. At this point, the region R38 is irradiated with the line light L2, and the reflected line light L2 is received by the line sensor 242. At the same time, the region R39 is irradiated with the line light L1, and the reflected line light L1 is received by the line sensor 241. By repeating the same operation, the entire surface of the substrate W is irradiated with the line lights L1 and L2, and the reflected line lights L1 and L2 are received by the line sensors 241 and 242, respectively.

このケースにおいては、画素ピッチp1が移動ピッチp2の1.2倍(約1倍)であるので、時点t2にライン光L2が照射された領域R32は、時点t1にライン光L1が照射された領域R11と同一ではないが、他の領域よりも領域R11に最も近い。同様に、領域R34は領域R33に最も近く、領域R36は領域R35に最も近く、領域R38は領域R37に最も近い。 In this case, since the pixel pitch p1 is 1.2 times (about 1 time) the movement pitch p2, the region R32 irradiated with the line light L2 at the time point t2 is irradiated with the line light L1 at the time point t1. Although not the same as the region R11, it is closest to the region R11 than other regions. Similarly, region R34 is closest to region R33, region R36 is closest to region R35, and region R38 is closest to region R37.

すなわち、倍率Mを四捨五入した値をM’とした場合、所定の時点にライン光L1が照射された領域と、その時点のM’スキャン周期Δt(M’×Δt)後の時点にライン光L2が照射された領域とが対応する。したがって、画像データ生成部4は、所定の時点に画素データ取得部2により取得された画素値Ak,1,Ak,2と、その時点のM’スキャン周期Δt後の時点に画素データ取得部3により取得された画素値Bk,1,Bk,2とに基づいて画像データを生成する。 That is, when the value obtained by rounding off the magnification M is M′, the area irradiated with the line light L1 at a predetermined time point and the line light L2 at the time point after the M′ scan cycle Δt (M′×Δt). Corresponds to the area irradiated with. Therefore, the image data generation unit 4 acquires the pixel values A k,1 , A k,2 acquired by the pixel data acquisition unit 2 at a predetermined time point and the pixel data acquisition time point after the M′ scan cycle Δt at that time point. Image data is generated based on the pixel values B k,1 , B k,2 acquired by the unit 3.

(5)検査処理
図10は、図5の制御部280により行われる検査処理を示すフローチャートである。以下、図5および図10を用いて検査処理を説明する。まず、サンプル画像データ取得部5は、サンプル画像データを取得する(ステップS1)。なお、サンプル画像データ取得部5は、サンプル画像データを予め記憶していてもよいし、図示しない記憶装置等から取得してもよい。次に、装置制御部1は、基板検査装置200の各部の動作を制御する(ステップS2)。
(5) Inspection Processing FIG. 10 is a flowchart showing the inspection processing performed by the control unit 280 of FIG. The inspection process will be described below with reference to FIGS. First, the sample image data acquisition unit 5 acquires sample image data (step S1). The sample image data acquisition unit 5 may store the sample image data in advance, or may acquire the sample image data from a storage device (not shown) or the like. Next, the device control unit 1 controls the operation of each unit of the substrate inspection device 200 (step S2).

続いて、画素データ取得部2は、ラインセンサ241から画素値A1,1〜An,2を取得する(ステップS3)。また、画素データ取得部3は、ラインセンサ242から画素値B1,1〜Bn,2を取得する(ステップS4)。画像データ生成部4は、ステップS3,S4で取得された画素値A1,1〜An,2,B1,1〜Bn,2のうち、対応する画素値Ak,1,Ak,2と画素値Bk,1,Bk,2とに基づいて画像データを生成する(ステップS5)。 Subsequently, the pixel data acquisition unit 2 acquires the pixel values A 1,1 to An,2 from the line sensor 241 (step S3). In addition, the pixel data acquisition unit 3 acquires the pixel values B 1,1 to B n,2 from the line sensor 242 (step S4). Image data generating unit 4, step S3, pixel values acquired in S4 A 1,1 ~A n, 2, B 1,1 ~B n, 2 of the corresponding pixel value A k, 1, A k , 2 and the pixel values B k,1 , B k,2 are generated (step S5).

その後、検査部6は、ステップS1で取得されたサンプル画像データとステップS5で生成された画像データとを比較する(ステップS6)。ここで、検査部6は、サンプル画像データと画像データとの間で、全ての画素の値の乖離が所定のしきい値以下であるか否かを判定する(ステップS7)。 After that, the inspection unit 6 compares the sample image data acquired in step S1 with the image data generated in step S5 (step S6). Here, the inspection unit 6 determines whether the difference between the values of all the pixels between the sample image data and the image data is less than or equal to a predetermined threshold value (step S7).

全ての画素の値の乖離がしきい値以下である場合、検査部6は、画像により示される基板Wは正常であると判定し(ステップS8)、ステップS10に進む。一方、いずれかの画素の値の乖離がしきい値を超える場合、検査部6は、画像により示される基板Wは異常であると判定し(ステップS9)、ステップS10に進む。 When the deviations of the values of all the pixels are equal to or less than the threshold value, the inspection unit 6 determines that the substrate W shown by the image is normal (step S8), and proceeds to step S10. On the other hand, when the deviation of the values of any of the pixels exceeds the threshold value, the inspection unit 6 determines that the substrate W shown by the image is abnormal (step S9), and proceeds to step S10.

ステップS10で、検査部6は、全ての基板Wが検査されたか否かを判定する(ステップS10)。全ての基板Wが検査されていない場合、検査部6はステップS2に戻る。全ての基板Wが検査されるまでステップS2〜S10が繰り返される。全ての基板Wが検査された場合、検査部6は検査処理を終了する。 In step S10, the inspection unit 6 determines whether all the substrates W have been inspected (step S10). When all the substrates W have not been inspected, the inspection unit 6 returns to step S2. Steps S2 to S10 are repeated until all the substrates W have been inspected. When all the substrates W have been inspected, the inspection unit 6 ends the inspection process.

(6)基板処理装置
図11は、図1および図2の基板検査装置200を備える基板処理装置の全体構成を示す模式的ブロック図である。図11に示すように、基板処理装置100は、露光装置300に隣接して設けられ、基板検査装置200を備えるとともに、制御装置110、搬送装置120、膜形成部130、現像部140および熱処理部150を備える。
(6) Substrate Processing Apparatus FIG. 11 is a schematic block diagram showing the overall configuration of a substrate processing apparatus including the substrate inspection apparatus 200 of FIGS. 1 and 2. As shown in FIG. 11, the substrate processing apparatus 100 is provided adjacent to the exposure apparatus 300, includes a substrate inspection apparatus 200, and includes a control device 110, a transfer device 120, a film forming unit 130, a developing unit 140, and a heat treatment unit. It comprises 150.

制御装置110は、例えばCPUおよびメモリ、またはマイクロコンピュータを含み、搬送装置120、膜形成部130、現像部140および熱処理部150の動作を制御する。また、制御装置110は、基板Wを検査するための指令を基板検査装置200の図1の制御部280に与える。 The control device 110 includes, for example, a CPU and a memory, or a microcomputer, and controls the operations of the transport device 120, the film forming unit 130, the developing unit 140, and the heat treatment unit 150. Further, the control device 110 gives a command for inspecting the substrate W to the control unit 280 of the substrate inspection device 200 in FIG.

搬送装置120は、基板Wを膜形成部130、現像部140、熱処理部150、基板検査装置200および露光装置300の間で搬送する。膜形成部130は、基板Wの表面にレジスト液を塗布することにより基板Wの表面上にレジスト膜を形成する(膜形成処理)。膜形成処理後の基板Wには、露光装置300において露光処理が行われる。現像部140は、露光装置300による露光処理後の基板Wに現像液を供給することにより、基板Wの現像処理を行う。熱処理部150は、膜形成部130による膜形成処理、現像部140による現像処理、および露光装置300による露光処理の前後に基板Wの熱処理を行う。 The transport device 120 transports the substrate W between the film forming unit 130, the developing unit 140, the heat treatment unit 150, the substrate inspection apparatus 200, and the exposure apparatus 300. The film forming unit 130 forms a resist film on the surface of the substrate W by applying a resist solution to the surface of the substrate W (film forming process). The substrate W after the film forming process is subjected to the exposure process in the exposure apparatus 300. The developing unit 140 performs a developing process on the substrate W by supplying a developing solution to the substrate W after the exposure process by the exposure device 300. The thermal processing section 150 performs thermal processing on the substrate W before and after the film forming processing by the film forming section 130, the developing processing by the developing section 140, and the exposure processing by the exposure apparatus 300.

基板検査装置200は、膜形成部130によりレジスト膜が形成された後の基板Wの検査処理を行う。例えば、基板検査装置200は、膜形成部130による膜形成処理後であって現像部140による現像処理後の基板Wの検査を行う。あるいは、基板検査装置200は、膜形成部130による膜形成処理後であって露光装置300による露光処理前の基板Wの検査を行ってもよい。また、基板検査装置200は、膜形成部130による膜形成処理後かつ露光装置300による露光処理後であって現像部140による現像処理前の基板Wの検査を行ってもよい。 The substrate inspection apparatus 200 performs an inspection process on the substrate W after the resist film is formed by the film forming unit 130. For example, the substrate inspection apparatus 200 inspects the substrate W after the film forming process by the film forming unit 130 and the developing process by the developing unit 140. Alternatively, the substrate inspection apparatus 200 may inspect the substrate W after the film forming processing by the film forming unit 130 and before the exposure processing by the exposure apparatus 300. Further, the substrate inspection apparatus 200 may inspect the substrate W after the film forming process by the film forming unit 130 and after the exposure process by the exposure device 300 and before the developing process by the developing unit 140.

膜形成部130に、基板Wに反射防止膜を形成する処理ユニットが設けられてもよい。この場合、熱処理部150は、基板Wと反射防止膜との密着性を向上させるための密着強化処理を行ってもよい。また、膜形成部130に、基板W上に形成されたレジスト膜を保護するためのレジストカバー膜を形成する処理ユニットが設けられてもよい。 The film forming unit 130 may be provided with a processing unit that forms an antireflection film on the substrate W. In this case, the heat treatment section 150 may perform an adhesion strengthening process for improving the adhesion between the substrate W and the antireflection film. Further, the film forming unit 130 may be provided with a processing unit that forms a resist cover film for protecting the resist film formed on the substrate W.

基板Wの表面に反射防止膜およびレジストカバー膜が形成される場合には、各膜の形成の後に基板検査装置200により基板Wの検査が行われてもよい。本実施の形態に係る基板処理装置100においては、レジスト膜、反射防止膜またはレジストカバー膜等の膜が形成された基板Wが基板検査装置200により高い信頼性で検査される。 When the antireflection film and the resist cover film are formed on the surface of the substrate W, the substrate W may be inspected by the substrate inspection device 200 after forming each film. In the substrate processing apparatus 100 according to the present embodiment, the substrate W on which a film such as a resist film, an antireflection film or a resist cover film is formed is inspected by the substrate inspection device 200 with high reliability.

本例では、露光処理の前後に基板Wの処理を行う基板処理装置100に基板検査装置200が設けられるが、他の基板処理装置に基板検査装置200が設けられてもよい。例えば、基板Wに洗浄処理を行う基板処理装置に基板検査装置200が設けられてもよく、または基板Wのエッチング処理を行う基板処理装置に基板検査装置200が設けられてもよい。あるいは、基板検査装置200が単独で用いられてもよい。 In this example, the substrate inspection apparatus 200 is provided in the substrate processing apparatus 100 that processes the substrate W before and after the exposure processing, but the substrate inspection apparatus 200 may be provided in another substrate processing apparatus. For example, the substrate inspection apparatus 200 that performs the cleaning process on the substrate W may be provided with the substrate inspection apparatus 200, or the substrate inspection apparatus 200 that performs the etching process on the substrate W may be provided with the substrate inspection apparatus 200. Alternatively, the board inspection apparatus 200 may be used alone.

(7)効果
本実施の形態に係る基板検査装置200においては、X方向に平行でかつ互いに並行に延びる2個のライン光L1,L2が投光部220により出射される。投光部220により出射された2個のライン光L1,L2が基板保持装置250により保持された検査対象の基板Wの表面に照射されるように、基板保持装置250が移動部260によりY方向に移動される。基板Wに照射された2個のライン光L1,L2が2個のラインセンサ241,242によりそれぞれ受光される。
(7) Effect In the substrate inspection apparatus 200 according to the present embodiment, the two light beams L1 and L2 that are parallel to the X direction and extend in parallel with each other are emitted by the light projecting unit 220. The substrate holding device 250 is moved by the moving part 260 in the Y direction so that the two line lights L1 and L2 emitted by the light projecting part 220 are applied to the surface of the substrate W to be inspected held by the substrate holding device 250. Be moved to. The two line lights L1 and L2 applied to the substrate W are received by the two line sensors 241 and 242, respectively.

ここで、各ラインセンサ241,242は、X方向に並ぶ複数の画素を有する。また、ラインセンサ241は、X方向における1つの画素の長さの2分の1だけラインセンサ242に対してX方向にずれるように配置される。2個のラインセンサ241,242により、1個の仮想ラインセンサLSが導入される。 Here, each of the line sensors 241 and 242 has a plurality of pixels arranged in the X direction. Further, the line sensor 241 is arranged so as to be displaced in the X direction with respect to the line sensor 242 by ½ of the length of one pixel in the X direction. One virtual line sensor LS is introduced by the two line sensors 241 and 242.

各ラインセンサ241,242の各画素は、X方向に並ぶ複数の部分領域に仮想的に分割され、各ラインセンサ241,242の各画素からは、受光量に対応する受光信号が出力される。X方向に直交する方向視において、2個のラインセンサ241,242の重なる2個の部分領域をそれぞれ含む2個の画素の受光信号に基づいて仮想ラインセンサLSの各画素値が算出されることにより、基板Wの画像を示す画像データが生成される。 Each pixel of each line sensor 241 and 242 is virtually divided into a plurality of partial regions arranged in the X direction, and each pixel of each line sensor 241 and 242 outputs a light reception signal corresponding to the amount of light received. In the direction view orthogonal to the X direction, each pixel value of the virtual line sensor LS is calculated based on the light reception signals of two pixels each including two partial regions where the two line sensors 241 and 242 overlap. Thereby, image data showing an image of the substrate W is generated.

この場合、X方向に直交する方向視において、2個のラインセンサ241,242の重なる2個の部分領域により仮想ラインセンサLSの各画素が構成される。X方向において、仮想ラインセンサLSの各画素の長さは、各ラインセンサ241,242の各画素の長さよりも小さい。そのため、基板検査装置200により生成される画像データが示す画像の解像度は、ラインセンサ241またはラインセンサ242からの受光信号に基づいて生成された場合の画像データが示す画像の解像度よりも高い。したがって、高い解像度を有する基板Wの画像に基づいて、基板Wの欠陥を高い精度で検出することができる。 In this case, each pixel of the virtual line sensor LS is constituted by two overlapping partial areas of the two line sensors 241 and 242 when viewed in the direction orthogonal to the X direction. In the X direction, the length of each pixel of the virtual line sensor LS is smaller than the length of each pixel of each line sensor 241 and 242. Therefore, the resolution of the image represented by the image data generated by the board inspection apparatus 200 is higher than the resolution of the image represented by the image data generated based on the light reception signal from the line sensor 241 or the line sensor 242. Therefore, the defect of the substrate W can be detected with high accuracy based on the image of the substrate W having high resolution.

また、X方向におけるラインセンサ241に対するラインセンサ242のずれ量は、X方向における1つの画素の長さよりも小さいので、各ラインセンサ241,242の全部の画素を用いて画像データを生成することができる。これにより、より高い解像度を有する基板Wの画像を示す画像データを生成することができる。 Further, since the shift amount of the line sensor 242 with respect to the line sensor 241 in the X direction is smaller than the length of one pixel in the X direction, image data can be generated using all the pixels of each line sensor 241 and 242. it can. Thereby, image data showing an image of the substrate W having a higher resolution can be generated.

(8)他の実施の形態
(a)上記実施の形態において、基板Wの検査として基板Wの外観検査が行われるが、本発明はこれに限定されない。基板Wの検査として他の検査が行われてもよい。例えば、画像データに基づいて、基板Wの外周部と基板W上に形成された膜の外周部との間の距離(エッジ幅)が適正であるか否かの検査が行われてもよい。この場合、画像データが用いられることにより、エッジ幅を適切に検出することができる。それにより、エッジ幅が適正であるか否かの判定の精度を向上させることができる。
(8) Other Embodiments (a) In the above embodiment, the appearance inspection of the substrate W is performed as the inspection of the substrate W, but the present invention is not limited to this. Other inspections may be performed as the inspection of the substrate W. For example, based on the image data, it may be tested whether the distance (edge width) between the outer peripheral portion of the substrate W and the outer peripheral portion of the film formed on the substrate W is appropriate. In this case, the edge width can be properly detected by using the image data. As a result, the accuracy of determining whether or not the edge width is appropriate can be improved.

また、この構成においては、検査処理時にサンプル画像データが用いられないので、制御部280はサンプル画像データ取得部5を含まない。さらに、検査処理時のステップS1,S7は実行されず、ステップS7においてエッジ幅が適正であるか否かが判定される。エッジ幅が適正である場合には基板Wは正常であると判定され、エッジ幅が適正でない場合には基板Wは異常であると判定される。 Further, in this configuration, since the sample image data is not used during the inspection process, the control unit 280 does not include the sample image data acquisition unit 5. Furthermore, steps S1 and S7 during the inspection process are not executed, and it is determined in step S7 whether the edge width is appropriate. When the edge width is proper, the substrate W is determined to be normal, and when the edge width is not proper, the substrate W is determined to be abnormal.

(b)上記実施の形態において、制御部280は検査部6を含むが、本発明はこれに限定されない。基板検査装置200により生成された画像データに基づいて基板検査装置200の外部装置により基板Wの検査が行われる場合には、制御部280は検査部6を含まなくてもよい。 (B) In the above embodiment, the control unit 280 includes the inspection unit 6, but the present invention is not limited to this. When the substrate W is inspected by an external device of the substrate inspection apparatus 200 based on the image data generated by the substrate inspection apparatus 200, the control unit 280 does not have to include the inspection unit 6.

(c)上記実施の形態において、仮想ラインセンサLSの各画素値として、X方向に直交する方向視においてラインセンサ241,242の重なる2個の部分領域の画素値の平均が算出されるが、本発明はこれに限定されない。仮想ラインセンサLSの各画素値として、上記の2個の部分領域の画素値の合計が算出されてもよい。あるいは、ライン光L1とライン光L2との強度が異なる場合には、ライン光L1,L2の強度に応じて、仮想ラインセンサLSの各画素値として、上記の2個の部分領域の画素値の重み付き合計が算出されてもよい。 (C) In the above-described embodiment, as each pixel value of the virtual line sensor LS, an average of pixel values of two overlapping partial areas of the line sensors 241 and 242 in the direction view orthogonal to the X direction is calculated. The present invention is not limited to this. As each pixel value of the virtual line sensor LS, the sum of the pixel values of the above two partial areas may be calculated. Alternatively, when the line light L1 and the line light L2 have different intensities, the pixel values of the above-mentioned two partial regions are set as the pixel values of the virtual line sensor LS according to the intensities of the line lights L1 and L2. A weighted sum may be calculated.

(d)上記実施の形態において、ラインセンサ242は、ラインセンサ241に対してX方向における各画素の長さの2分の1だけX方向にずれた状態で配置されるが、本発明はこれに限定されない。ラインセンサ242は、ラインセンサ241に対してX方向における各画素の長さの非整数倍だけX方向にずれた状態で配置されてもよい。 (D) In the above-described embodiment, the line sensor 242 is arranged in a state of being displaced from the line sensor 241 by ½ of the length of each pixel in the X direction in the X direction. Not limited to. The line sensor 242 may be arranged in a state shifted from the line sensor 241 in the X direction by a non-integer multiple of the length of each pixel in the X direction.

例えば、ラインセンサ242は、ラインセンサ241に対してX方向における各画素の長さの1.5倍だけX方向にずれた状態で配置されてもよい。この場合、ラインセンサ241における端部の画素aは、画像データの生成に用いられなくてもよい。同様に、ラインセンサ242における端部の画素bは、画像データの生成に用いられなくてもよい。 For example, the line sensor 242 may be arranged in a state of being displaced from the line sensor 241 in the X direction by 1.5 times the length of each pixel in the X direction. In this case, the pixel a 1 at the end of the line sensor 241 does not have to be used for generating image data. Similarly, the pixel b n at the end of the line sensor 242 may not be used for generating image data.

(e)上記実施の形態において、基板Wに2個のライン光L1,L2が照射され、撮像部240はライン光L1,L2にそれぞれ対応する2個のラインセンサ241,242を含むが、本発明はこれに限定されない。基板WにN個(Nは2以上の整数)のライン光が照射され、撮像部240はN個のライン光にそれぞれ対応するN個のラインセンサを含んでもよい。この場合、N個のラインセンサは、X方向における1つの画素の長さのN分の1ずつ互いにX方向にずれるように配置されることが好ましい。 (E) In the above embodiment, the substrate W is irradiated with the two line lights L1 and L2, and the imaging unit 240 includes two line sensors 241 and 242 corresponding to the line lights L1 and L2, respectively. The invention is not limited to this. The substrate W may be irradiated with N line lights (N is an integer of 2 or more), and the imaging unit 240 may include N line sensors corresponding to the N line lights. In this case, the N line sensors are preferably arranged so as to be displaced from each other in the X direction by 1/N of the length of one pixel in the X direction.

図12は、撮像部240の他の例を示す図である。図12の例においては、基板Wに3個のライン光が照射される。したがって、撮像部240は、3個のライン光にそれぞれ対応する3個のラインセンサ241〜243を含む。ラインセンサ243は、ラインセンサ241,242と同一の構成を有する。ここで、図3(a),(b)の例のように、ラインセンサ241〜243は、X方向における1つの画素の長さの3分の1ずつ互いにX方向にずれるように配置されることが好ましい。 FIG. 12 is a diagram showing another example of the imaging unit 240. In the example of FIG. 12, the substrate W is irradiated with three line lights. Therefore, the imaging unit 240 includes three line sensors 241 to 243 respectively corresponding to the three line lights. The line sensor 243 has the same configuration as the line sensors 241 and 242. Here, as in the example of FIGS. 3A and 3B, the line sensors 241 to 243 are arranged so as to be offset from each other in the X direction by one-third of the length of one pixel in the X direction. It is preferable.

具体的には、図3(a)の撮像部240においては、ラインセンサ242は、ラインセンサ241に対してX方向における各画素の長さの3分の1だけX方向にずれた状態で配置される。ラインセンサ243は、ラインセンサ242に対してX方向における各画素の長さの3分の1だけX方向にずれた状態、すなわちラインセンサ241に対してX方向における各画素の長さの3分の2だけX方向にずれた状態で配置される。 Specifically, in the imaging unit 240 of FIG. 3A, the line sensor 242 is arranged in a state of being displaced from the line sensor 241 in the X direction by a third of the length of each pixel in the X direction. To be done. The line sensor 243 is shifted from the line sensor 242 in the X direction by one-third of the length of each pixel in the X direction, that is, three minutes of the length of each pixel in the X direction with respect to the line sensor 241. No. 2 is displaced in the X direction.

図3(b)の撮像部240は、X方向に直交する方向におけるラインセンサ241〜243の並び順が異なる点を除き、図3(a)の撮像部240と同様の構成を有する。図3(a),(b)の例においては、X方向に直交する方向視においてラインセンサ241〜243の重なる3個の部分領域の画素値の平均または合計を行うことにより、仮想ラインセンサLSの各画素値を算出することができる。 The imaging unit 240 of FIG. 3B has the same configuration as the imaging unit 240 of FIG. 3A, except that the line sensors 241 to 243 are arranged in a different order in the direction orthogonal to the X direction. In the example of FIGS. 3A and 3B, the virtual line sensor LS is obtained by averaging or summing the pixel values of the three partial regions where the line sensors 241 to 243 overlap each other in the direction view orthogonal to the X direction. Each pixel value of can be calculated.

一方で、ラインセンサ241〜243の配置は、図3(a),(b)の例に限定されない。図3(c)の撮像部240においては、ラインセンサ241,242は、互いにX方向にずれることなく配置される。ラインセンサ243は、ラインセンサ241またはラインセンサ242に対してX方向における各画素の長さの2分の1だけX方向にずれた状態で配置される。 On the other hand, the arrangement of the line sensors 241 to 243 is not limited to the examples of FIGS. 3(a) and 3(b). In the imaging unit 240 of FIG. 3C, the line sensors 241 and 242 are arranged without being displaced from each other in the X direction. The line sensor 243 is arranged in a state of being displaced from the line sensor 241 or the line sensor 242 by ½ of the length of each pixel in the X direction in the X direction.

図3(d)の撮像部240においては、ラインセンサ242は、ラインセンサ241に対してX方向における各画素の長さだけX方向にずれた状態で配置される。ラインセンサ243は、ラインセンサ241およびラインセンサ242に対してX方向における各画素の長さの2分の1だけX方向にずれた状態で配置される。 In the imaging unit 240 of FIG. 3D, the line sensor 242 is arranged in the state of being displaced in the X direction by the length of each pixel in the X direction with respect to the line sensor 241. The line sensor 243 is arranged in a state of being displaced from the line sensor 241 and the line sensor 242 in the X direction by ½ of the length of each pixel in the X direction.

図3(c),(d)の例においては、X方向に直交する方向視においてラインセンサ241〜243の重なる3個の部分領域の画素値の重み付き合計を行うことにより、仮想ラインセンサLSの各画素値を算出することができる。なお、この場合においては、ラインセンサ241に対応する画素値の重みは例えば0.25であり、ラインセンサ242に対応する画素値の重みは例えば0.25であり、ラインセンサ243に対応する画素値の重みは例えば0.5である。 In the example of FIGS. 3C and 3D, the virtual line sensor LS is obtained by performing the weighted sum of the pixel values of the three partial areas where the line sensors 241 to 243 overlap each other in the direction view orthogonal to the X direction. Each pixel value of can be calculated. In this case, the weight of the pixel value corresponding to the line sensor 241 is 0.25, the weight of the pixel value corresponding to the line sensor 242 is 0.25, and the pixel corresponding to the line sensor 243 is, for example. The value weight is 0.5, for example.

(9)請求項の各構成要素と実施の形態の各要素との対応関係
以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
(9) Correspondence between each component of the claims and each element of the embodiment Hereinafter, an example of the correspondence between each component of the claims and each element of the embodiment will be described, but the present invention is as follows. It is not limited to the example. As each constituent element of the claims, various other elements having the configurations or functions described in the claims may be used.

上記の実施の形態では、基板Wが基板の例であり、基板保持装置250が保持部の例であり、X方向およびY方向がそれぞれ第1および第2の方向の例である。ライン光L1,L2がライン光の例であり、投光部220が投光部の例であり、移動部260が移動部の例であり、ラインセンサ241〜243がラインセンサの例である。 In the above embodiment, the substrate W is an example of the substrate, the substrate holding device 250 is an example of the holding unit, and the X direction and the Y direction are examples of the first and second directions, respectively. The line lights L1 and L2 are examples of line lights, the light projecting unit 220 is an example of a light projecting unit, the moving unit 260 is an example of a moving unit, and the line sensors 241 to 243 are examples of line sensors.

画像データ生成部4が画像データ生成部の例であり、画素a〜a,b〜bが受光領域の例であり、部分領域a1,1〜an,2,b1,1〜bn,2が部分領域の例であり、画素x〜x2n+1が画素の例である。基板検査装置200が基板検査装置の例であり、検査部6が検査部の例であり、膜形成部130が膜形成部の例であり、基板処理装置100が基板処理装置の例である。 The image data generation unit 4 is an example of the image data generation unit, the pixels a 1 to a n , b 1 to b n are examples of the light receiving region, and the partial regions a 1,1 to a n,2 ,b 1, 1 to b n,2 are examples of partial regions, and pixels x 1 to x 2n+1 are examples of pixels. The substrate inspection apparatus 200 is an example of the substrate inspection apparatus, the inspection unit 6 is an example of the inspection unit, the film forming unit 130 is an example of the film forming unit, and the substrate processing apparatus 100 is an example of the substrate processing apparatus.

1…装置制御部,2…画素データ取得部,3…画素データ取得部,4…画像データ生成部,5…サンプル画像データ取得部,6…検査部,100…基板処理装置,110…制御装置,120…搬送装置,130…膜形成部,140…現像部,150…熱処理部,200…基板検査装置,210…筐体部,211…開口部,220…投光部,230…反射部,240…撮像部,241〜243,250…基板保持装置,251…駆動装置,252…回転保持部,253…回転軸,260…移動部,261…ガイド部材,262…移動保持部,270…方向検出部,280…制御部,300…露光装置,a〜a,b〜b,x〜x2n+1…画素,a1,1〜an,2,b1,1〜bn,2…部分領域,p0…ピッチ,p1…画素ピッチ,p2…移動ピッチ,L1,L2…ライン光,LS…仮想ラインセンサ,R1〜R9,R11〜R19,R21〜R29,R31〜R39…領域,W…基板 DESCRIPTION OF SYMBOLS 1... Device control part, 2... Pixel data acquisition part, 3... Pixel data acquisition part, 4... Image data generation part, 5... Sample image data acquisition part, 6... Inspection part, 100... Substrate processing device, 110... Control device , 120... Conveying device, 130... Film forming part, 140... Developing part, 150... Thermal processing part, 200... Substrate inspection device, 210... Housing part, 211... Opening part, 220... Light projecting part, 230... Reflecting part, 240... Imaging unit, 241-243, 250... Substrate holding device, 251... Driving device, 252... Rotation holding unit, 253... Rotation shaft, 260... Moving unit, 261... Guide member, 262... Moving holding unit, 270... Direction Detection unit, 280... Control unit, 300... Exposure device, a 1 to a n , b 1 to b n , x 1 to x 2n+1 ... Pixel, a 1 , 1 to a n, 2 , b 1 , 1 to b n , 2 ... Partial region, p0... Pitch, p1... Pixel pitch, p2... Moving pitch, L1, L2... Line light, LS... Virtual line sensor, R1 to R9, R11 to R19, R21 to R29, R31 to R39... Region , W... Substrate

Claims (14)

検査対象の基板を保持する保持部と、
第1の方向に平行でかつ互いに並行に延びるN個(Nは2以上の整数)のライン光を出射する投光部と、
前記投光部により出射された前記N個のライン光が前記保持部により保持された基板の表面に照射されるように、前記投光部と前記保持部とを前記第1の方向に交差する第2の方向に相対的に移動させる移動部と、
基板に照射された前記N個のライン光をそれぞれ受光し、受光量に対応する受光信号を出力するN個のラインセンサと、
前記N個のラインセンサから出力される受光信号に基づいて基板の画像を示す画像データを生成する画像データ生成部とを備え、
各ラインセンサは、前記第1の方向に並ぶ複数の受光領域を有し、各受光領域から受光量に対応する受光信号を出力し、
前記N個のラインセンサのうち少なくとも1つのラインセンサは、前記第1の方向における1つの受光領域の長さの非整数倍だけ他のラインセンサに対して前記第1の方向にずれるように配置され、
各ラインセンサの各受光領域は、前記第1の方向に並ぶ複数の部分領域に仮想的に分割され、前記第1の方向に直交する第3の方向視において、前記N個のラインセンサの重なるN個の部分領域により各画素が構成され、
前記画像データ生成部は、前記N個の部分領域をそれぞれ含むN個の受光領域の受光信号に基づいて各画素値を算出する、基板検査装置。
A holding unit that holds the board to be inspected,
A light projecting unit that emits N (N is an integer of 2 or more) line lights that are parallel to the first direction and extend parallel to each other;
The light projecting unit and the holding unit are crossed in the first direction so that the N line lights emitted by the light projecting unit are irradiated onto the surface of the substrate held by the holding unit. A moving unit that relatively moves in the second direction,
N line sensors that respectively receive the N line lights emitted to the substrate and output a light reception signal corresponding to the amount of received light;
An image data generation unit that generates image data indicating an image of the substrate based on the light reception signals output from the N line sensors,
Each line sensor has a plurality of light receiving regions arranged in the first direction, and outputs a light receiving signal corresponding to the amount of light received from each light receiving region,
At least one line sensor of the N line sensors is arranged so as to be displaced in the first direction with respect to other line sensors by a non-integer multiple of the length of one light receiving region in the first direction. Was
Each light receiving area of each line sensor is virtually divided into a plurality of partial areas arranged in the first direction, and the N line sensors overlap each other in a third direction view orthogonal to the first direction. Each pixel is composed of N partial regions,
The substrate inspection apparatus, wherein the image data generation unit calculates each pixel value based on the light receiving signals of N light receiving areas including the N partial areas.
前記第1の方向における前記他のラインセンサに対する前記少なくとも1つのラインセンサのずれ量は、前記第1の方向における1つの受光領域の長さよりも小さい、請求項1記載の基板検査装置。 The substrate inspection apparatus according to claim 1, wherein a shift amount of the at least one line sensor with respect to the other line sensor in the first direction is smaller than a length of one light receiving region in the first direction. 前記N個のラインセンサは、前記第1の方向における1つの受光領域の長さのN分の1ずつ互いに前記第1の方向にずれるように配置される、請求項1または2記載の基板検査装置。 3. The substrate inspection according to claim 1, wherein the N line sensors are arranged so as to be displaced from each other in the first direction by 1/N of a length of one light receiving region in the first direction. apparatus. 前記画像データ生成部は、異なる時点で基板の同じライン状領域または一定範囲内のライン状領域に照射されたときの前記N個のライン光に基づく前記N個のラインセンサからの受光信号に基づいて画像データを生成する、請求項1〜3のいずれか一項に記載の基板検査装置。 The image data generation unit is based on received light signals from the N line sensors based on the N line lights when the same line region or a line region within a certain range is irradiated on the substrate at different times. The board inspection apparatus according to any one of claims 1 to 3, wherein the board inspection apparatus generates image data. 前記画像データ生成部は、前記N個の受光領域の受光信号の値を平均することにより各画素値を算出する、請求項1〜4のいずれか一項に記載の基板検査装置。 The board inspection device according to claim 1, wherein the image data generation unit calculates each pixel value by averaging values of light reception signals of the N light receiving regions. 前記画像データ生成部により生成された画像データに基づいて基板を検査する検査部をさらに備える、請求項1〜5のいずれか一項に記載の基板検査装置。 The substrate inspection apparatus according to claim 1, further comprising an inspection unit that inspects the substrate based on the image data generated by the image data generation unit. 基板上に処理膜を形成する膜形成部と、
前記膜形成部による処理膜の形成後の基板の画像を示す画像データを生成する請求項1〜6のいずれか一項に記載の基板検査装置とを備える、基板処理装置。
A film forming unit for forming a processing film on the substrate,
A substrate processing apparatus comprising: the substrate inspection apparatus according to claim 1, which generates image data indicating an image of the substrate after the processing film is formed by the film forming unit.
第1の方向に平行でかつ互いに並行に延びるN個(Nは2以上の整数)のライン光を投光部により出射するステップと、
前記投光部により出射された前記N個のライン光が保持部により保持された検査対象の基板の表面に照射されるように、前記投光部と前記保持部とを移動部により前記第1の方向に交差する第2の方向に相対的に移動させるステップと、
基板に照射された前記N個のライン光をN個のラインセンサによりそれぞれ受光し、受光量に対応する受光信号を出力するステップと、
前記N個のラインセンサから出力される受光信号に基づいて基板の画像を示す画像データを生成するステップとを含み、
各ラインセンサは、前記第1の方向に並ぶ複数の受光領域を有し、各受光領域から受光量に対応する受光信号を出力し、
前記N個のラインセンサのうち少なくとも1つのラインセンサは、前記第1の方向における1つの受光領域の長さの非整数倍だけ他のラインセンサに対して前記第1の方向にずれるように配置され、
各ラインセンサの各受光領域は、前記第1の方向に並ぶ複数の部分領域に仮想的に分割され、前記第1の方向に直交する第3の方向視において、前記N個のラインセンサの重なるN個の部分領域により各画素が構成され、
前記画像データを生成するステップは、前記N個の部分領域をそれぞれ含むN個の受光領域の受光信号に基づいて各画素値を算出することを含む、基板検査方法。
A step of emitting N (N is an integer of 2 or more) line lights parallel to the first direction and parallel to each other by the light projecting unit;
The light projecting unit and the holding unit are moved by the moving unit so that the N line lights emitted by the light projecting unit are applied to the surface of the inspection target substrate held by the holding unit. Moving relative to a second direction intersecting the direction of
Receiving the N line lights irradiated on the substrate by the N line sensors and outputting a light reception signal corresponding to the amount of received light;
Generating image data showing an image of the substrate based on the received light signals output from the N line sensors,
Each line sensor has a plurality of light receiving regions arranged in the first direction, and outputs a light receiving signal corresponding to the amount of light received from each light receiving region,
At least one line sensor of the N line sensors is arranged so as to be displaced in the first direction with respect to other line sensors by a non-integer multiple of the length of one light receiving region in the first direction. Was
Each light receiving area of each line sensor is virtually divided into a plurality of partial areas arranged in the first direction, and the N line sensors overlap each other in a third direction view orthogonal to the first direction. Each pixel is composed of N partial regions,
The substrate inspecting method, wherein the step of generating the image data includes calculating each pixel value based on light reception signals of N light receiving regions including the N partial regions.
前記第1の方向における前記他のラインセンサに対する前記少なくとも1つのラインセンサのずれ量は、前記第1の方向における1つの受光領域の長さよりも小さい、請求項8記載の基板検査方法。 9. The substrate inspection method according to claim 8, wherein a shift amount of the at least one line sensor with respect to the other line sensor in the first direction is smaller than a length of one light receiving region in the first direction. 前記N個のラインセンサは、前記第1の方向における1つの受光領域の長さのN分の1ずつ互いに前記第1の方向にずれるように配置される、請求項8または9記載の基板検査方法。 The board inspection according to claim 8 or 9, wherein the N line sensors are arranged so as to be displaced from each other in the first direction by 1/N of a length of one light receiving region in the first direction. Method. 前記画像データを生成するステップは、異なる時点で基板の同じライン状領域または一定範囲内のライン状領域に照射されたときの前記N個のライン光に基づく前記N個のラインセンサからの受光信号に基づいて画像データを生成することを含む、請求項8〜10のいずれか一項に記載の基板検査方法。 The step of generating the image data includes receiving light signals from the N line sensors based on the N line lights when the same line region or a line region within a certain range is irradiated on the substrate at different times. The board inspection method according to claim 8, further comprising: generating image data based on the above. 前記画像データを生成するステップは、前記N個の受光領域の受光信号の値を平均することにより各画素値を算出することを含む、請求項8〜11のいずれか一項に記載の基板検査方法。 The substrate inspection according to any one of claims 8 to 11, wherein the step of generating the image data includes calculating each pixel value by averaging values of light reception signals of the N light receiving regions. Method. 生成された画像データに基づいて基板を検査するステップをさらに含む、請求項8〜12のいずれか一項に記載の基板検査方法。 The board inspection method according to claim 8, further comprising a step of inspecting the board based on the generated image data. 膜形成部により基板上に処理膜を形成するステップと、
前記膜形成部による処理膜の形成後の基板の画像を示す画像データを請求項8〜13のいずれか一項に記載の基板検査方法により生成するステップとを含む、基板処理方法。
Forming a treatment film on the substrate by the film forming unit,
A substrate processing method, comprising: generating image data showing an image of the substrate after the processing film is formed by the film forming unit by the substrate inspection method according to any one of claims 8 to 13.
JP2019013393A 2019-01-29 2019-01-29 Substrate inspection device, substrate processing device, substrate inspection method, and substrate processing method Active JP7294818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019013393A JP7294818B2 (en) 2019-01-29 2019-01-29 Substrate inspection device, substrate processing device, substrate inspection method, and substrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019013393A JP7294818B2 (en) 2019-01-29 2019-01-29 Substrate inspection device, substrate processing device, substrate inspection method, and substrate processing method

Publications (2)

Publication Number Publication Date
JP2020122673A true JP2020122673A (en) 2020-08-13
JP7294818B2 JP7294818B2 (en) 2023-06-20

Family

ID=71993516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019013393A Active JP7294818B2 (en) 2019-01-29 2019-01-29 Substrate inspection device, substrate processing device, substrate inspection method, and substrate processing method

Country Status (1)

Country Link
JP (1) JP7294818B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241744A (en) * 1993-02-22 1994-09-02 Hitachi Ltd Circuit pattern defect detecting device, its method, and image sensor
JP2006112912A (en) * 2004-10-14 2006-04-27 Toshiba Corp Defect inspection device
JP2009008468A (en) * 2007-06-27 2009-01-15 Toppan Printing Co Ltd Image acquisition method, imaging device, and inspection device
JP2009523228A (en) * 2005-12-27 2009-06-18 ケーエルエー−テンカー テクノロジィース コーポレイション Method and apparatus for simultaneous high-speed acquisition of multiple images
US7623229B1 (en) * 2008-10-07 2009-11-24 Kla-Tencor Corporation Systems and methods for inspecting wafers
JP2017062252A (en) * 2011-07-12 2017-03-30 ケーエルエー−テンカー コーポレイション Wafer inspection system
JP2018036235A (en) * 2016-09-02 2018-03-08 株式会社Screenホールディングス Substrate checkup device, substrate processing device, substrate checkup method, and substrate processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241744A (en) * 1993-02-22 1994-09-02 Hitachi Ltd Circuit pattern defect detecting device, its method, and image sensor
JP2006112912A (en) * 2004-10-14 2006-04-27 Toshiba Corp Defect inspection device
JP2009523228A (en) * 2005-12-27 2009-06-18 ケーエルエー−テンカー テクノロジィース コーポレイション Method and apparatus for simultaneous high-speed acquisition of multiple images
JP2009008468A (en) * 2007-06-27 2009-01-15 Toppan Printing Co Ltd Image acquisition method, imaging device, and inspection device
US7623229B1 (en) * 2008-10-07 2009-11-24 Kla-Tencor Corporation Systems and methods for inspecting wafers
JP2017062252A (en) * 2011-07-12 2017-03-30 ケーエルエー−テンカー コーポレイション Wafer inspection system
JP2018036235A (en) * 2016-09-02 2018-03-08 株式会社Screenホールディングス Substrate checkup device, substrate processing device, substrate checkup method, and substrate processing method

Also Published As

Publication number Publication date
JP7294818B2 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
JP5780659B2 (en) 3D shape measuring device
TWI660167B (en) Substrate inspection device, substrate processing apparatus, substrate inspection method and substrate processing method
JP4692892B2 (en) Surface inspection device
KR20190106690A (en) Substrate inspection device, substrate processing apparatus and substrate inspection method
JP2006162335A (en) X-ray inspection device, x-ray inspection method and x-ray inspection program
JP7089381B2 (en) Board inspection equipment, board processing equipment and board inspection method
JP7294818B2 (en) Substrate inspection device, substrate processing device, substrate inspection method, and substrate processing method
WO2020044784A1 (en) Substrate inspection device, substrate processing device, substrate inspection method, and substrate processing method
JP2004235671A (en) Electronic component mounting device
JP4552202B2 (en) Surface inspection device
JPWO2019016978A1 (en) Imaging device, bump inspection device, and imaging method
JP4926734B2 (en) Radiation inspection apparatus, radiation inspection method, and radiation inspection program
JP6884082B2 (en) Film thickness measuring device, substrate inspection device, film thickness measuring method and substrate inspection method
US20230221262A1 (en) Substrate inspection apparatus, substrate inspection method, and recording medium
JP2021071359A (en) Substrate inspection device, substrate processing device and substrate inspection method
JP2019168232A (en) Substrate inspection device, substrate processing device, substrate inspection method, and substrate processing method
JP2019168233A (en) Substrate inspection device, substrate processing device, substrate inspection method, and substrate processing method
JP2006310768A (en) Part shape measuring method and part mounting method
JP2019045208A (en) Substrate inspection device and substrate processing device equipped with the same
JP2020153854A (en) Substrate inspection device, substrate processing device, substrate inspection method, and substrate processing method
WO2019058772A1 (en) Substrate inspection device, substrate processing device, substrate inspection method, and substrate processing method
JP2019066207A (en) Inspection method and inspection device
JP2008281502A (en) Surface inspection apparatus
JPH10275841A (en) Test method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230608

R150 Certificate of patent or registration of utility model

Ref document number: 7294818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150