JP2020121310A - Recovery method of hydrofluoric acid and nitric acid - Google Patents

Recovery method of hydrofluoric acid and nitric acid Download PDF

Info

Publication number
JP2020121310A
JP2020121310A JP2020072895A JP2020072895A JP2020121310A JP 2020121310 A JP2020121310 A JP 2020121310A JP 2020072895 A JP2020072895 A JP 2020072895A JP 2020072895 A JP2020072895 A JP 2020072895A JP 2020121310 A JP2020121310 A JP 2020121310A
Authority
JP
Japan
Prior art keywords
acid
hydrofluoric
nitric acid
distillation
hydrofluoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020072895A
Other languages
Japanese (ja)
Inventor
博孝 龍頭
Hirotaka Ryuto
博孝 龍頭
浩一 足立
Koichi Adachi
浩一 足立
耕史 本田
Yasushi Honda
耕史 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2020072895A priority Critical patent/JP2020121310A/en
Publication of JP2020121310A publication Critical patent/JP2020121310A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

To provide: a method for efficiently recovering both of hydrofluoric acid and nitric acid that are valuables from a nitrohydrofluoric acid waste containing a large amount of hydrosilicofluoric acid in high yield even in an industrial scale implementation; and further a method for producing a hydrofluoric acid salt and silica from hydrosilicofluoric acid.SOLUTION: The recovery method of hydrofluoric acid and nitric acid comprises: contacting an aqueous nitrohydrofluoric acid solution containing a large amount of hydrosilicofluoric acid with a nitrate salt to precipitate a hydrosilicofluoric acid salt; separating the hydrosilicofluoric acid salt by solid-liquid separation; supplying a residual liquid to a distillation column; and separating hydrofluoric acid and nitric acid in the presence of sulfuric acid to recover each of them.SELECTED DRAWING: Figure 1

Description

本発明は、半導体洗浄廃液に代表される、ケイフッ化水素酸を含むフッ硝酸水溶液(フッ化水素酸と硝酸の混合液)から、フッ化水素酸および硝酸を分離回収する方法に関し、より詳細には、ケイフッ化水素酸の固定化反応濾液から蒸留法にてフッ化水素酸、硝酸を回収すると共に、固定化反応物のケイフッ化水素酸塩からシリカ、フッ化水素酸塩を並行して分離回収する方法に関するものである。 The present invention relates to a method for separating and recovering hydrofluoric acid and nitric acid from a hydrofluoric nitric acid aqueous solution (hydrofluoric acid/nitric acid mixed solution) containing hydrosilicofluoric acid, which is represented by a semiconductor cleaning waste liquid. Recovers hydrofluoric acid and nitric acid from the hydrosilicofluoric acid immobilization reaction filtrate by a distillation method, and simultaneously separates silica and hydrofluoric acid from the immobilization reaction hydrofluorosilicic acid salt. It relates to a method of collecting.

近年、半導体や太陽電池関係のシリコンを基材とする産業分野において、シリコンの洗浄や加工にフッ硝酸が多量に使用されている。それに伴い、フッ硝酸廃液が増加しており、環境問題や資源回収の観点から、その廃液を原料としてフッ化水素酸および硝酸を回収する方法の開発が求められている。 In recent years, a large amount of hydrofluoric nitric acid has been used for cleaning and processing silicon in the industrial field where silicon is used as a base material for semiconductors and solar cells. Along with this, the waste liquid of hydrofluoric and nitric acid is increasing, and from the viewpoint of environmental problems and resource recovery, development of a method for recovering hydrofluoric acid and nitric acid using the waste liquid as a raw material is required.

特開平6−57466号公報JP, 6-57466, A 特開2007−254254号公報JP, 2007-254254, A 特開平9−302483号公報JP, 9-302483, A 特開2008−57043号公報JP, 2008-57043, A 特開2005−324164号公報JP, 2005-324164, A

前述したシリコンの洗浄やエッチングのような加工を行うため、濃度50wt%程度のフッ化水素酸(HF)と濃度70wt%程度の硝酸(HNO3)を混合し、適当な濃度に調整されたフッ硝酸が使用されている。そして、使用された後のフッ硝酸廃液中には、フッ硝酸とシリコンが反応して生成したケイフッ化水素酸(H2SiF6)が多く含まれている。具体的には、使用後のフッ硝酸廃液はフッ化水素酸、硝酸、ケイフッ化水素酸水溶液で形成されている。 In order to perform processing such as the above-mentioned cleaning and etching of silicon, hydrofluoric acid (HF) with a concentration of about 50 wt% and nitric acid (HNO 3 ) with a concentration of about 70 wt% are mixed and adjusted to an appropriate concentration. Nitric acid is used. The used hydrofluoric nitric acid waste liquid contains a large amount of hydrosilicofluoric acid (H 2 SiF 6 ) generated by the reaction of hydrofluoric nitric acid and silicon. Specifically, the used hydrofluoric/nitric acid waste liquid is formed of hydrofluoric acid, nitric acid, and a hydrosilicofluoric acid aqueous solution.

本発明は、このような廃液を原料として、フッ化水素酸および硝酸の両方を、再利用可能な初期の濃度(それぞれ約50wt%と約70wt%)で回収するとともに、ケイフッ化水素酸も再利用可能な形態に変換する方法に関する。ここで、シリコン洗浄・加工に用いられるフッ硝酸の典型的な組成は、フッ化水素酸30wt%、硝酸28wt%であり、この組成を調製するためには、濃度50wt%程度のフッ化水素酸と70wt%程度の硝酸が必要であり、本発明ではこのような濃度のフッ化水素酸と硝酸を回収することを目的としている。従来の技術では、ケイフッ化水素酸を含まないフッ化水素酸と硝酸の混合液からそれぞれを分離回収することは困難である。例えば特許文献1では蒸留法による回収方法が開示されているが、「硝酸−フッ化水素酸−水の3成分系では共沸混合物が生成し、各酸が共に所望濃度に濃縮することができない」と記載されており、各酸を高純度で分離回収できない。これに対し、特許文献2では、フッ硝酸液に金属塩を添加することで、各成分の気液平衡を変化させ、蒸留法でフッ化水素酸を分離する方法が開示されているが、回収されたフッ化水素酸の純度は低く、また、硝酸は回収できない問題がある。さらに本発明の課題となるケイフッ化水素酸が含まれるフッ硝酸液では、フッ化水素酸、硝酸、ケイフッ化水素酸の3成分が相互に干渉しあい複雑な気液平衡状態を形成するため蒸留分離はいっそうに困難になり、特許文献3,4に開示されている方法でも、硝酸だけが回収されている。一方、特許文献5では、炭素数8〜12のアルコールの酢酸エステル及び正リン酸エステルを抽剤に用い、酢酸、硝酸、フッ化水素酸の順に抽出する方法が開示されているが、それぞれの成分の剥離回収工程に大量の水を使用することや、硝酸を有機物である正リン酸エステルで抽出するので硝酸との混触危険性が考えられ、商業的なプロセスにおいては得策とは言い難い。 The present invention recovers both hydrofluoric acid and nitric acid at the reusable initial concentrations (about 50 wt% and about 70 wt%, respectively) from such waste liquid as a raw material, and also recovers hydrosilicofluoric acid. It relates to a method of converting into a usable form. Here, a typical composition of hydrofluoric nitric acid used for cleaning and processing silicon is 30 wt% of hydrofluoric acid and 28 wt% of nitric acid. To prepare this composition, hydrofluoric acid having a concentration of about 50 wt% is used. And nitric acid of about 70 wt% are required, and the present invention aims to recover such concentrations of hydrofluoric acid and nitric acid. According to the conventional technique, it is difficult to separate and collect each from a mixed solution of hydrofluoric acid and nitric acid that does not contain hydrofluoric acid. For example, Patent Document 1 discloses a recovery method by a distillation method, but "in the three-component system of nitric acid-hydrofluoric acid-water, an azeotropic mixture is formed, and each acid cannot be concentrated to a desired concentration. It is described that each acid cannot be separated and collected with high purity. On the other hand, Patent Document 2 discloses a method in which a gas-liquid equilibrium of each component is changed by adding a metal salt to a hydrofluoric nitric acid solution, and hydrofluoric acid is separated by a distillation method. The produced hydrofluoric acid has a low purity, and nitric acid cannot be recovered. Furthermore, in the hydrofluoric nitric acid solution containing hydrosilicofluoric acid, which is the subject of the present invention, the three components of hydrofluoric acid, nitric acid, and hydrosilicofluoric acid interfere with each other to form a complicated gas-liquid equilibrium state, so that distillation separation is performed. Becomes even more difficult, and even in the methods disclosed in Patent Documents 3 and 4, only nitric acid is recovered. On the other hand, Patent Document 5 discloses a method of extracting acetic acid, nitric acid, and hydrofluoric acid in this order using an acetate ester and an orthophosphate ester of an alcohol having 8 to 12 carbon atoms as an extractant. Since a large amount of water is used in the stripping and collecting step of the components, and nitric acid is extracted with orthophosphoric acid ester which is an organic substance, there is a risk of contact with nitric acid, and it is hard to say that it is a good idea in a commercial process.

本発明の課題は、ケイフッ化水素酸を多く含むフッ硝酸廃液から、工業的規模の実施においても、効率よく、有価物であるフッ化水素酸、硝酸の両方を高純度で回収し、更にはケイフッ化水素酸からフッ化水素酸塩及びシリカを製造する方法を提供することを目的とする。 An object of the present invention is to efficiently recover both hydrofluoric acid and nitric acid, which are valuable resources, in high purity from a hydrofluoric nitric acid waste liquid containing a large amount of hydrosilicofluoric acid, even on an industrial scale. An object of the present invention is to provide a method for producing hydrofluoric acid salt and silica from hydrosilicofluoric acid.

本発明者等は、鋭意研究した結果、フッ化水素酸、硝酸混合液に濃硫酸を添加すると、フッ化水素酸と硝酸の気液平衡が大きく変化し、気相組成がフッ化水素酸側に大きくシフトすることを発見し、更に気液平衡は硫酸添加量にも大きく影響していることを見出した。 As a result of earnest studies, the present inventors have found that when concentrated sulfuric acid is added to a mixed solution of hydrofluoric acid and nitric acid, the gas-liquid equilibrium of hydrofluoric acid and nitric acid is significantly changed, and the gas phase composition is on the hydrofluoric acid side. It was found that the gas-liquid equilibrium greatly affects the amount of sulfuric acid added.

本発明によれば、まず、フッ硝酸廃液中のケイフッ化水素酸を硝酸塩と接触させ(固定化反応と言う)、固体として廃液から析出除去し、残ったフッ化水素酸、硝酸混合液から精留により、高濃度フッ化水素酸と高濃度硝酸を得ることが可能となった。 According to the present invention, first, hydrosilicofluoric acid in a hydrofluoric nitric acid waste liquid is brought into contact with a nitrate (referred to as an immobilization reaction), precipitated and removed from the waste liquid as a solid, and the remaining hydrofluoric acid/nitric acid mixture is purified. Distillation made it possible to obtain high-concentration hydrofluoric acid and high-concentration nitric acid.

本発明の実施の一態様を示す図である。It is a figure which shows the one aspect|mode of implementation of this invention. 本発明の実施の一態様を示す図である。It is a figure which shows the one aspect|mode of implementation of this invention.

以下、本発明について実施形態及び例示物(図1、2)を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施することができる。
<原料>
本発明の原料となるケイフッ化水素酸を含むフッ硝酸水溶液中のケイフッ化水素酸、フッ化水素酸、硝酸および水の含有量は、特に限定されないが、以下の通りである。ケイフッ化水素酸は、1〜30wt%が好ましく、より好ましくは、5〜15wt%である。フッ化水素酸は、5〜40wt%が好ましく、より好ましくは、20〜40wt%である。硝酸の含有量は、10〜50wt%が好ましく、より好ましくは、20〜40wt%である。水は、30〜65wt%が好ましく、より好ましくは、35〜45wt%である。また、本発明の分離回収プロセスに実質影響を与えない程度の含有量で上記以外の成分が含まれてもかまわない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the embodiments and exemplifications (Figs. 1 and 2), but the present invention is not limited to the embodiments and exemplifications shown below, and the gist of the present invention It can be implemented by arbitrarily changing it without departing from the scope.
<raw material>
The content of hydrosilicofluoric acid, hydrofluoric acid, nitric acid and water in the hydrofluoric nitric acid aqueous solution containing hydrofluorosilicic acid, which is a raw material of the present invention, is not particularly limited, but is as follows. The hydrosilicofluoric acid content is preferably 1 to 30 wt %, and more preferably 5 to 15 wt %. Hydrofluoric acid is preferably 5 to 40 wt%, more preferably 20 to 40 wt%. The content of nitric acid is preferably 10 to 50 wt%, more preferably 20 to 40 wt%. The water content is preferably 30 to 65 wt %, and more preferably 35 to 45 wt %. Further, components other than the above may be contained in a content that does not substantially affect the separation and recovery process of the present invention.

<ケイフッ化水素酸の固定化 図1>
ケイフッ化水素酸を含むフッ硝酸水溶液を、そのまま蒸留にかけると、フッ化水素酸、ケイフッ化水素酸、水は共沸組成を形成するため、蒸留による分離は極めて困難となる。本発明では、予め、ケイフッ化水素酸は除去しておくため、硝酸塩にて難溶性のケイフッ化水素酸塩に転換し(固定化反応)、固形物として析出させ、それを分離、回収する。すなわち、ケイフッ化水素酸を含むフッ硝酸水溶液と硝酸塩とを接触させることにより、下記式(1)のように、ケイフッ化水素酸を硝酸塩と反応させ、ケイフッ化水素酸塩と硝酸を生成することができる(式(1)では、硝酸カリウムの例を挙げる)。
<Immobilization of hydrosilicofluoric acid>
When a hydrofluoric nitric acid aqueous solution containing hydrosilicofluoric acid is directly subjected to distillation, hydrofluoric acid, hydrosilicofluoric acid, and water form an azeotropic composition, so that separation by distillation becomes extremely difficult. In the present invention, since hydrosilicofluoric acid is previously removed, it is converted into a sparingly soluble hydrofluoric acid salt with a nitrate (immobilization reaction), precipitated as a solid, and separated and recovered. That is, by contacting a hydrofluoric nitric acid aqueous solution containing hydrosilicofluoric acid with a nitrate, as shown in the following formula (1), hydrosilicofluoric acid is reacted with a nitrate to produce a hydrosilicofluoride and nitric acid. (Formula (1) gives an example of potassium nitrate).

H2SiF6 + 2KNO3 → K2SiF6 ↓ + 2HNO3 ・・・(1)
硝酸塩としては、硝酸カリウム、硝酸ナトリウム、硝酸カルシウム、硝酸バリウム等が挙げられるが、生じるケイフッ化水素酸塩の溶解度が最も低い硝酸カリウムの使用が好ましい。
本発明にケイフッ化水素酸を含むフッ硝酸水溶液に接触させる硝酸塩の量は、特に限定されないが、好ましくは、ケイフッ化水素酸の1モルに対し、2モル以上であることが好ましく、更に好ましくは、3モル以上が望ましい。過剰の硝酸塩はこの後の工程で硝酸を蒸留分離(第四蒸留塔)して、再度、リサイクル使用することが経済上好ましい。
H 2 SiF 6 + 2KNO 3 → K 2 SiF 6 ↓ + 2HNO 3・・・(1)
Examples of the nitrate include potassium nitrate, sodium nitrate, calcium nitrate, barium nitrate, and the like, and it is preferable to use potassium nitrate having the lowest solubility of hydrofluorosilicic acid salt formed.
The amount of the nitrate to be brought into contact with the hydrofluoric nitric acid aqueous solution containing hydrosilicofluoric acid in the present invention is not particularly limited, but it is preferably 2 mol or more, and more preferably 1 mol of hydrosilicofluoric acid. 3 mol or more is desirable. It is economically preferable that excess nitrate is separated from the nitric acid by distillation in the subsequent step (fourth distillation column) and reused again.

ケイフッ化水素酸を含むフッ硝酸水溶液と硝酸塩との接触の態様は、特に限定されないが、回分式の場合、硝酸塩水溶液を敷液下、ケイフッ化水素酸を含むフッ硝酸水溶液を滴下させる方法が好ましい。更に好ましくは、硝酸塩水溶液を撹拌しながら、ケイフッ化水素酸を含むフッ硝酸水溶液を滴下する方法である。反応装置としては、温度制御のためのジャケット付き撹拌槽が好ましい。(図1の(1))。 The mode of contact between the hydrofluoric nitric acid aqueous solution containing hydrosilicofluoric acid and the nitrate is not particularly limited, but in the case of the batch method, a method of dropping the hydrofluoric nitric acid aqueous solution containing hydrofluoric nitric acid under the liquid is preferable. .. More preferably, it is a method of dropping a hydrofluoric nitric acid aqueous solution containing hydrosilicofluoric acid while stirring the nitrate aqueous solution. The reactor is preferably a jacketed stirring tank for temperature control. ((1) in Figure 1).

ケイフッ化水素酸を含むフッ硝酸水溶液と硝酸塩との接触の温度としては、僅かな吸熱反応を示すため、35℃以下で反応するのが経済的に望ましい。ケイフッ化水素酸を含むフッ硝酸水溶液と硝酸塩との接触で析出したケイフッ化水素酸塩は、固液分離によりケイフッ化水素酸塩と、フッ化水素酸および硝酸を含む液に分離される。固液分離方法としては、濾過、遠心分離等が挙げられる(図1の(2))。固液分離で得られた濾液は、蒸留分離工程の第一蒸留塔(図1)へ送られる。一方、固体のケイフッ化水素酸塩は、必要に応じて乾燥し(図1の(3))、次工程のシリカ及びフッ化水素酸塩製造工程(図2)へと供給される。 The temperature of the contact between the aqueous solution of hydrofluoric nitric acid containing hydrosilicofluoric acid and the nitrate shows a slight endothermic reaction, so that it is economically desirable to react at 35° C. or lower. The hydrofluorosilicic acid salt deposited by contact between the hydrofluoric nitric acid aqueous solution containing hydrosilicofluoric acid and the nitrate is separated into a hydrosilicofluoric acid salt and a liquid containing hydrofluoric acid and nitric acid by solid-liquid separation. Examples of the solid-liquid separation method include filtration and centrifugation ((2) in FIG. 1). The filtrate obtained by the solid-liquid separation is sent to the first distillation column (FIG. 1) in the distillation separation step. On the other hand, the solid hydrosilicofluoride is dried if necessary ((3) in FIG. 1) and supplied to the next step of producing silica and hydrofluoride (FIG. 2).

<蒸留分離工程 図1>
次に、フッ硝酸の蒸留分離工程について説明する(図1)。
ケイフッ化水素酸塩を分離して得られた濾液中(図1の濾液A)には、フッ化水素酸、硝酸及び過剰の硝酸塩が含まれているので、還流器付第一蒸留塔に供給することで、塔頂より硝酸を数パーセン含む約30wt%のフッ化水素酸を得ることができる。蒸留塔の理論段数は、10段以上が好ましく、より好ましくは20〜40段である。還流比は、1以上が好ましく、より好ましいのは3以上である。蒸留方法は、回分式でも連続式でもよいが、回分式では適宜、還流比を変更しながら蒸留することとなる。
<Distillation separation process Figure 1>
Next, the step of distilling and separating hydrofluoric acid will be described (FIG. 1).
Since the filtrate obtained by separating the hydrosilicofluoride salt (filtrate A in FIG. 1) contains hydrofluoric acid, nitric acid and an excess of nitrate, the filtrate is supplied to the first distillation column with a reflux condenser. By doing so, about 30 wt% hydrofluoric acid containing several percent of nitric acid can be obtained from the top of the tower. The theoretical plate number of the distillation column is preferably 10 or more, and more preferably 20 to 40. The reflux ratio is preferably 1 or more, more preferably 3 or more. The distillation method may be a batch method or a continuous method, but in the batch method, distillation is performed while appropriately changing the reflux ratio.

第一蒸留塔で留出した留出液(塔頂液)は、硫酸と混合され、第二蒸留塔へ供給することで、塔頂より濃度数wt%の硝酸を含む濃度50wt%以上のフッ化水素酸(本発明の目的物)を留出させることができる。蒸留塔の理論段数は、10段以上が好ましく、より好ましくは20〜40段である。還流比は、1以上が好ましく、より好ましいのは3以上である。硫酸添加後の蒸留塔供給液硫酸濃度は、45wt%以上が好ましく、より好ましくは60wt%以上である。第二蒸留塔供給液中の硫酸濃度によって、気相中のフッ化水素酸濃度がフッ化水素酸側に大きくシフトするので、硫酸濃度と留出率を選択することによって、任意のフッ化水素酸濃度で留出させることできる。なお、硫酸を第一蒸留塔に添加しない理由は、ケイフッ化水素酸塩分離後の残液中には未反応の硝酸塩が含まれているため、硫酸添加では下記の反応(2)が起こり(カリウム塩の例を示す)、硝酸塩と硫酸の損失が起こるとともに、硫酸塩が系内へ蓄積し、運転上トラブルに繋がるので硝酸塩が存在しない系(第一蒸留塔塔頂液)に硫酸を添加した方が経済的に有利である。 The distillate (column top liquid) distilled in the first distillation column is mixed with sulfuric acid and supplied to the second distillation column, so that the concentration of 50 wt% or more containing nitric acid at a concentration of 50 wt% or more from the top of the column. Hydrofluoric acid (the object of the present invention) can be distilled off. The theoretical plate number of the distillation column is preferably 10 or more, and more preferably 20 to 40. The reflux ratio is preferably 1 or more, more preferably 3 or more. The concentration of sulfuric acid supplied to the distillation column after the addition of sulfuric acid is preferably 45 wt% or more, more preferably 60 wt% or more. The concentration of hydrofluoric acid in the gas phase greatly shifts to the side of hydrofluoric acid depending on the concentration of sulfuric acid in the feed liquid of the second distillation column. It can be distilled at an acid concentration. The reason why sulfuric acid is not added to the first distillation column is that the unreacted nitrate is contained in the residual liquid after the hydrosilicofluoride separation, and therefore the following reaction (2) occurs when sulfuric acid is added ( (Examples of potassium salts are shown), nitrates and sulfuric acid are lost, and sulfate accumulates in the system, leading to operational troubles, so sulfuric acid is added to the system where there is no nitrate (top distillation column top liquid). Doing so is economically advantageous.

KNO3 + H2SO4 → KHSO4 + HNO3 ・・・(2)
第二蒸留塔塔底液は、フッ化水素酸、硝酸及び硫酸を含んでいるため、還流器付第五蒸留塔へ供給することで、塔頂より希フッ化水素酸と希硝酸を回収し、必要に応じて一部をパージしたのち、ケイフッ化水素酸の固定化反応(図1の(1))へリサイクルされる。蒸留塔の理論段数は、10段以上が好ましく、より好ましくは20〜40段である。還流比は、1以上が好ましく、より好ましいのは3以上である。
KNO 3 + H 2 SO 4 → KHSO 4 + HNO 3・・・(2)
Since the bottom liquid of the second distillation column contains hydrofluoric acid, nitric acid and sulfuric acid, the diluted hydrofluoric acid and dilute nitric acid are recovered from the top of the column by supplying to the fifth distillation column with a reflux device. After partly purging as required, it is recycled to the hydrosilicofluoric acid immobilization reaction ((1) in FIG. 1). The theoretical plate number of the distillation column is preferably 10 or more, and more preferably 20 to 40. The reflux ratio is preferably 1 or more, more preferably 3 or more.

第五蒸留塔の塔底液は、希硫酸を含んでおり、濃縮槽(図1の(4))へ供給して水を留去し、槽底より75wt%以上の濃硫酸が排出され、第二蒸留塔供給液へリサイクルされる。希硫酸濃縮の圧力は、6.7kPa以下が好ましく、より好ましくは、3.3kPa以下である。加熱温度は、100℃以上が好ましく、より好ましくは、150℃以上である。槽底の硫酸濃度は、75wt%以上が好ましく、より好ましい濃度は85wt%以上である。 The bottom liquid of the fifth distillation column contains dilute sulfuric acid, is supplied to a concentration tank ((4) in FIG. 1) to distill off water, and 75 wt% or more concentrated sulfuric acid is discharged from the bottom of the tank. It is recycled to the feed liquid of the second distillation column. The pressure for dilute sulfuric acid concentration is preferably 6.7 kPa or less, more preferably 3.3 kPa or less. The heating temperature is preferably 100° C. or higher, more preferably 150° C. or higher. The sulfuric acid concentration at the bottom of the tank is preferably 75 wt% or more, more preferably 85 wt% or more.

濃縮槽の形式としては、自然循環型、カランドリア型、強制循環型などの一般的な蒸発装置が使用できる。一方、第一蒸留塔塔底液は、硝酸のほかに低濃度のフッ化水素酸、及び過剰の硝酸塩を含んでおり、第三蒸留塔へ供給することで、塔頂より希硝酸を留出させ、必要に応じて一部をパージしたのち、ケイフッ化水素酸の固定化反応(図1の(1))へリサイクルされる。蒸留塔の理論段数は、10段以上が好ましく、より好ましくは20〜40段である。還流比は、1以上が好ましく、より好ましいのは3以上である。 As the type of concentrating tank, a general evaporator such as a natural circulation type, a calandria type, or a forced circulation type can be used. On the other hand, the bottom liquid of the first distillation column contains low-concentration hydrofluoric acid and excess nitrate in addition to nitric acid.By supplying it to the third distillation column, dilute nitric acid is distilled from the top of the column. Then, after partly purging as required, it is recycled to the immobilization reaction of hydrosilicofluoric acid ((1) in FIG. 1). The theoretical plate number of the distillation column is preferably 10 or more, and more preferably 20 to 40. The reflux ratio is preferably 1 or more, more preferably 3 or more.

第三蒸留塔塔底液中には高濃度硝酸と過剰の硝酸塩を含んでおり、第四蒸留塔へ供給することで、塔頂より65wt%以上の硝酸を留出させることができる(本発明の目的物)。第四蒸留塔塔底液は、過剰の硝酸塩及び極少量の硝酸を含んでおり、必要に応じて一部をパージして、ケイフッ化水素酸の固定化反応(図1の(1))へリサイクルされる。蒸留塔の理論段数は、10段以上が好ましく、より好ましくは20〜40段である。還流比は、1以上が好ましく、より好ましいのは3以上である。 The bottom liquid of the third distillation column contains high-concentration nitric acid and excess nitrate, and by supplying the nitric acid to the fourth distillation column, 65 wt% or more of nitric acid can be distilled from the top of the column (the present invention. Object). The bottom liquid of the fourth distillation column contains an excess amount of nitrate and a very small amount of nitric acid, and if necessary, a part of it may be purged to the hydrofluoric acid immobilization reaction ((1) in FIG. 1). Be recycled. The theoretical plate number of the distillation column is preferably 10 or more, and more preferably 20 to 40. The reflux ratio is preferably 1 or more, more preferably 3 or more.

<シリカ及びフッ化水素酸塩製造工程 図2>
この工程は、固定化反応で得られたケイフッ化水素酸塩をさらに産業上の有用性が高いシリカとフッ化水素酸塩に分解し、再利用しやすくするための処理工程である。なお、経済的理由などにより、ケイフッ化水素酸塩をそのまま再利用するプロセスも考えられる。この工程では、式(3)および(4)で例示するように、ケイフッ化水素酸塩をアルカリ性物質で分解処理を行う(カリウム塩の例を示す)。
<Silica and hydrofluoric acid salt manufacturing process FIG. 2>
This step is a processing step for decomposing the hydrosilicofluoride salt obtained by the immobilization reaction into silica and hydrofluoric acid salt, which are more industrially useful, and making them easier to reuse. Note that for economic reasons, a process of reusing the hydrosilicofluoride as it is conceivable. In this step, as exemplified by the formulas (3) and (4), the hydrofluorosilicic acid salt is decomposed with an alkaline substance (an example of a potassium salt is shown).

K2SiF + 2K2CO3 → SiO2 + 6KF + 2CO2↑ ・・・・(3)
K2SiF6 + 4KOH → SiO2+ 6KF + 2H2O ・・・・(4)
アルカリ性物質としては、各種金属炭酸塩や水酸化物が使用できるが、なかでもNa、K塩が好ましく、さらには、生じるフッ化水素酸塩の水溶解度が高いK塩が好適である。
アルカリ/ケイフッ化水素酸塩の反応モル比は、4.00〜4.25が好ましく、より好ましくは、4.05〜4.20である。上限のモル比範囲を逸脱させると、下記の反応(4)が起こり、水溶性のケイ酸塩が生成し、シリカは得られないばかりではなく、フッ化水素酸塩の品質にも影響する。
K 2 SiF + 2K 2 CO 3 → SiO 2 + 6KF + 2CO 2 ↑ ・・・・(3)
K 2 SiF 6 + 4KOH → SiO 2 + 6KF + 2H 2 O ··· (4)
As the alkaline substance, various metal carbonates and hydroxides can be used. Among them, Na and K salts are preferable, and further, K salt, which has high water solubility of the hydrofluoride salt to be generated, is preferable.
The reaction molar ratio of alkali/hydrosilicofluoride is preferably 4.00 to 4.25, more preferably 4.05 to 4.20. If the molar ratio exceeds the upper limit, the following reaction (4) occurs, water-soluble silicate is formed, silica is not obtained, and the quality of hydrofluoride is affected.

SiO2 + 2KOH → K2SiO3 + H2O ・・・(4)
分解反応装置としては、温度制御のためのジャケット付き撹拌槽が好ましい(図2の(5))。接触方法はケイフッ化水素酸塩スラリーにアルカリ水溶液を滴下する方法が好ましく、逆の場合やモル比が上限を超えると、シリカの固着現象が起こり、シリカの取り出しができなくなる。ケイフッ化水素酸塩の水スラリー濃度は、30wt%以下が好ましく、より好ましいのは25wt%以下である。ケイフッ化水素酸塩のスラリー濃度が高いと、シリカの凝集固着が起こり、反応装置からシリカを取り出すことが困難となる。反応時間は、1時間以上が好ましく、より好ましいのは2時間以上である。アルカリ濃度は50wt%以下が好ましい。
SiO 2 + 2KOH → K 2 SiO 3 + H 2 O ・・・(4)
As the decomposition reactor, a jacketed stirring tank for temperature control is preferred ((5) in FIG. 2). The contact method is preferably a method in which an aqueous alkali solution is dropped into a hydrosilicofluoride slurry. In the opposite case or when the molar ratio exceeds the upper limit, the phenomenon of silica sticking occurs and silica cannot be taken out. The water slurry concentration of hydrosilicofluoride is preferably 30 wt% or less, more preferably 25 wt% or less. If the slurry concentration of hydrofluorosilicic acid salt is high, agglomeration and sticking of silica occur, and it becomes difficult to take out silica from the reactor. The reaction time is preferably 1 hour or longer, more preferably 2 hours or longer. The alkali concentration is preferably 50 wt% or less.

析出した粗シリカの固液分離法は、濾過または遠心分離(図2の(6))が好ましい。一方、固体側の粗シリカには、フッ化水素酸塩が付着しているので、熱水懸洗槽(図2の(7))に供給され、熱水で懸濁洗浄を行った後、濾過又は遠心分離(図2の(8))により固液分離することで、フッ化水素酸塩を溶解除去し、高純度のシリカを得ることができる。熱水懸洗温度は、80℃以上が好ましく、より好ましい95℃以上である。懸洗時シリカスラリー濃度は20wt%以下が好ましく、より好ましいのは10wt%以下である。懸洗時間は、0.5時間以上が好ましく、より好ましいのは1時間以上である。懸洗装置としては、温度制御のためのジャケット付き撹拌槽が好ましい(図2の(7))。 The solid-liquid separation method of the precipitated crude silica is preferably filtration or centrifugation ((6) in FIG. 2). On the other hand, since the hydrofluoric acid salt is attached to the crude silica on the solid side, it is supplied to the hot water suspension washing tank ((7) in FIG. 2) and, after suspension washing with hot water, By performing solid-liquid separation by filtration or centrifugation ((8) in FIG. 2), the hydrofluoric acid salt can be dissolved and removed, and high-purity silica can be obtained. The hot water suspension washing temperature is preferably 80°C or higher, more preferably 95°C or higher. The silica slurry concentration during suspension washing is preferably 20 wt% or less, and more preferably 10 wt% or less. The suspension washing time is preferably 0.5 hours or more, more preferably 1 hour or more. A stirring tank with a jacket for temperature control is preferable as the suspension washing device ((7) in FIG. 2).

このようにして得られたフッ化水素酸塩を含む濾液は、減圧濃縮晶析槽(図2の(9))へ供給し、水を蒸発させる(濃縮)とフッ化水素酸塩が析出するため、濾過または遠心分離(図2の(10))で固液分離後、乾燥することで高純度フッ化水素塩を得ることができる。減圧濃縮晶析槽としては、温度制御のためのジャケット付き撹拌槽が好ましい(図2の(9))。フッ化水素酸塩の濃縮では内温を管理温度以上に上げないことが重要となる。管理温度以上に上げると、フッ化水素酸塩が凝集し、スラリーを形成しないばかりではなく、固着する場合がある。そのためには、減圧下において、内温を監視しながら、適宜圧力を調節して内温を上限値以下に保持することが重要となる。管理温度は80〜100℃、好ましくは85〜95℃である。特にフッ化カリウムの場合には、水への溶解度が約50wt%と大きく、60wt%以上に濃縮させないと、結晶の析出は起こらない。そうなると、濃縮と共に沸点上昇が起こり、内温が上昇、フッ化カリウムの凝集固着が発生する。固着現象を回避するには、減圧系で濃縮することで内温上昇防止を図る必要がある。圧力は、26.7kPa以下が好ましく、より好ましいのは13.3kPa以下である。 The hydrofluoric acid salt-containing filtrate thus obtained is supplied to a vacuum concentration crystallization tank ((9) in FIG. 2) to evaporate water (concentration) to precipitate hydrofluoric acid salt. Therefore, a high-purity hydrogen fluoride salt can be obtained by solid-liquid separation by filtration or centrifugation ((10) in FIG. 2) and then drying. The vacuum concentration crystallization tank is preferably a jacketed stirring tank for temperature control ((9) in FIG. 2). In concentrating hydrofluoric acid salts, it is important not to raise the internal temperature above the control temperature. If the temperature is higher than the control temperature, the hydrofluoric acid salt may aggregate and not only form a slurry, but also stick. For that purpose, it is important to keep the internal temperature below the upper limit value by appropriately adjusting the pressure while monitoring the internal temperature under reduced pressure. The control temperature is 80 to 100°C, preferably 85 to 95°C. Particularly, in the case of potassium fluoride, the solubility in water is as large as about 50 wt %, and crystal precipitation does not occur unless it is concentrated to 60 wt% or more. When this happens, the boiling point rises with concentration, the internal temperature rises, and the cohesion and fixation of potassium fluoride occurs. In order to avoid the sticking phenomenon, it is necessary to prevent the internal temperature from rising by concentrating in a reduced pressure system. The pressure is preferably 26.7 kPa or less, more preferably 13.3 kPa or less.

濃縮後のフッ化カリウム濃度は、65〜80wt%が好ましく、より好ましいのは70〜75wt%である。濾過温度は、40〜70℃が好ましく、より好ましいのは50〜60℃である。フッ化カリウム固液分離後の濾液は、高濃度のフッ化カリウムを含有しているので、粗シリカを固液分離して得られた濾液中にリサイクルされ、減圧濃縮晶析槽(図2の(9))へ供給される。 The concentration of potassium fluoride after concentration is preferably 65 to 80 wt%, more preferably 70 to 75 wt%. The filtration temperature is preferably 40 to 70°C, and more preferably 50 to 60°C. Since the filtrate after solid-liquid separation of potassium fluoride contains a high concentration of potassium fluoride, it is recycled into the filtrate obtained by solid-liquid separation of crude silica, and the concentrated solution in a vacuum concentration crystallization tank (see FIG. 2). (9)).

(実験例1)
攪拌機付フッ素樹脂製反応器に40wt%硝酸カリウム水溶液184gを仕込み温度30℃で撹拌下保持した。次に重量組成HF/HNO3/H2SiF6/水=25/25/7/43のフッ硝酸廃液500gをフッ素樹脂製滴下ロートに入れ、内温30℃を維持しながら反応器に滴下し、硝酸カリウムと反応させた。硝酸カリウムはケイフッ化水素酸のモル数に対して、3倍モルに相当する。滴下と同時に析出したケイフッ化水素酸カリウム塩を濾過、洗浄して回収した。回収されたケイフッ化水素酸カリウム量は53gで、そのうちフッ素、シリコンおよびカリウムの含有率分析値は、それぞれ51.9wt%、12.7wt%、35.5wt%でありケイフッ化水素酸カリウムの理論組成値に近い値を示した。なお、フッ素及び硝酸濃度はダイオニクス社製イオンクロマト装置(ICS-1500)、カリウム及びシリコン濃度はICP発光装置にて測定した。
(Experimental example 1)
A fluororesin reactor equipped with a stirrer was charged with 184 g of a 40 wt% potassium nitrate aqueous solution and maintained at a temperature of 30° C. with stirring. Next, 500 g of a hydrofluoric nitric acid waste liquid having a weight composition of HF/HNO 3 /H 2 SiF 6 /water=25/25/7/43 was placed in a fluororesin dropping funnel and dropped into the reactor while maintaining the internal temperature at 30°C. , Reacted with potassium nitrate. Potassium nitrate corresponds to 3 times the molar number of hydrosilicofluoric acid. The potassium hydrosilicofluoride salt deposited at the same time as the dropping was filtered, washed and collected. The amount of recovered potassium hydrosilicofluoride was 53 g, of which the content analysis values of fluorine, silicon, and potassium were 51.9 wt%, 12.7 wt%, and 35.5 wt%, respectively. The value was close to the composition value. The fluorine and nitric acid concentrations were measured by an ion chromatograph (ICS-1500) manufactured by Dionix, and the potassium and silicon concentrations were measured by an ICP light emitting device.

<測定条件>
イオンクロマト装置
分析カラム:IonPacAG23(4mm×50mm)、IonPacAS23(4mm×250mm)
カラム温度:30℃、サプレッサー:ARRS-300 4mm、
溶離液 :4.5mmol/L Na2CO3, 0.8mmol/NaHCO3 流量:1.0ml/min
検出器 :電気伝導度検出器
ICP発光分析装置
Agilent製 ICP VISTAPRO、パワー:1.2kw
測定波長 Si:251.611n K:766.491nm
<Measurement conditions>
Ion chromatograph analysis column: IonPacAG23(4mm×50mm), IonPacAS23(4mm×250mm)
Column temperature: 30℃, suppressor: ARRS-300 4mm,
Eluent: 4.5 mmol/L Na2CO3, 0.8 mmol/NaHCO3 Flow rate: 1.0 ml/min
Detector: Electrical conductivity detector
ICP emission analyzer
Agilent ICP VISTAPRO, power: 1.2kw
Measurement wavelength Si: 251.611n K: 766.491nm

(実験例2)
第一精留塔
実験例1でケイフッ化水素酸カリウムを濾別した後の濾液組成の液(重量組成HF/HNO3/KNO3/水=19.8/24.6/3.9/51.6)と同様の組成の液を1500g調製して、フッ素樹脂製の撹拌槽、還流器を備えた回分式の常圧精留塔(直径26mm×高さ1200mmH、充填物:フッ素樹脂製ラシヒリング)を用いて、蒸留を実施した。塔底温度は115〜120℃、塔頂圧力は常圧の101.3kPaであり、還流比は3であった。調製した液量に対し、塔頂からの留出率63%時の留出液の混合液組成は重量組成でHF/HNO3/水=28.4/6.7/64.9であった。この時の精留塔の塔底に残った液組成は重量組成でHF/HNO3/KNO3/水=5.1/55.3/29.0/10.6であった。この時点で蒸留を終了した。
(Experimental example 2)
The same composition as the liquid (weight composition HF/HNO 3 /KNO 3 /water=19.8/24.6/3.9/51.6) of the filtrate composition after filtering off the potassium hydrofluoride in Experimental Example 1 of the first rectification column 1500 g of the liquid was prepared, and distillation was carried out using a batch type atmospheric pressure rectification column (diameter 26 mm x height 1200 mmH, packing: fluororesin Raschig ring) equipped with a fluororesin stirring tank and a reflux condenser. did. The column bottom temperature was 115 to 120° C., the column top pressure was 101.3 kPa at atmospheric pressure, and the reflux ratio was 3. The mixed liquid composition of the distillate at a distillation rate of 63% from the top of the prepared liquid was HF/HNO 3 /water=28.4/6.7/64.9 by weight. The liquid composition remaining at the bottom of the rectification column at this time was HF/HNO 3 /KNO 3 /water=5.1/55.3/29.0/10.6 by weight. At this point the distillation was complete.

(実験例3)
第二蒸留塔
実験例2で得られた留出液と同等の組成を持つ液を600g調整し、その液中に98wt%硫酸540g添加し、実験例2と同様の形状を持つ精留塔で、常圧、塔底温度126〜167℃、還流比3.0で蒸留を行った。調製した液量(600g)に対して、塔頂からの留出率10%(60g)の時点での留出液重量組成はHF/HNO3/水=75/10/15であった。更に蒸留を継続し、留出率45%(269g)時で混合した留出液重量組成はHF/HNO3/水=55/10/35であった(フッ化水素酸濃度55wt%)。この留出液は硝酸を10wt%含むフッ化水素酸であるが、濃硝酸と混合することでシリコン基材の洗浄・加工に用いる濃度のフッ硝酸として十分再使用できる濃度と純度である(本発明の目的物)。一方、留出率45%時の精留塔の塔底の残留液の重量組成はHF/HNO3/H2SO4/水=3.4/3.2/61.2/32.2であった。
(Experimental example 3)
Second distillation column 600 g of a liquid having the same composition as the distillate obtained in Experimental Example 2 was prepared, 540 g of 98 wt% sulfuric acid was added to the liquid, and a rectification column having the same shape as in Experimental Example 2 was used. Distillation was carried out at a normal pressure, a bottom temperature of 126 to 167° C., and a reflux ratio of 3.0. With respect to the prepared liquid amount (600 g), the distillate weight composition at the time when the distillation rate from the top of the column was 10% (60 g) was HF/HNO 3 /water=75/10/15. Further, the distillation was continued, and the weight composition of the distillate mixed at a distillation rate of 45% (269 g) was HF/HNO 3 /water=55/10/35 (hydrofluoric acid concentration 55 wt%). This distillate is hydrofluoric acid containing 10 wt% of nitric acid, but when mixed with concentrated nitric acid, it has sufficient concentration and purity to be reused as hydrofluoric nitric acid having a concentration used for cleaning and processing silicon substrates ( Object of invention). On the other hand, the weight composition of the residual liquid at the bottom of the rectification column at a distillation rate of 45% was HF/HNO 3 /H 2 SO 4 /water=3.4/3.2/61.2/32.2.

(実験例4)
第二蒸留塔
実験例2で得られた留出液と同等の組成を持つ液を600g調整し、この中に98wt%硫酸270g添加し、実験例2と同様の形状を持つ精留塔で、常圧、塔底温度117〜164℃、還流比3.0で蒸留を行った。調製した液量(600g)に対して、塔頂からの留出率10%(60g)の時点での留出液重量組成はHF/HNO3/水=64/8/28であった。更に蒸留を継続し、留出率33%(198g)時で混合した留出液重量組成はHF/HNO3/水=50/4/46であった。この留出液もフッ硝酸として十分再使用できる濃度と純度である。一方、留出率33%時の精留塔の塔底の残留液の重量組成はHF/HNO3/H2SO4/水=9.5/4.5/46/40であった。
(Experimental example 4)
In a rectification column having the same shape as in Experimental Example 2, 600 g of a liquid having the same composition as the distillate obtained in Experimental Example 2 of the second distillation column was prepared, and 270 g of 98 wt% sulfuric acid was added. Distillation was carried out at normal pressure, a bottom temperature of 117 to 164° C., and a reflux ratio of 3.0. With respect to the prepared liquid amount (600 g), the distillate weight composition at the time of the distillation rate from the column top being 10% (60 g) was HF/HNO 3 /water=64/8/28. Further, the distillation was continued, and the weight composition of the distillate mixed at a distillation rate of 33% (198 g) was HF/HNO 3 /water=50/4/46. This distillate also has such a concentration and purity that it can be reused as hydrofluoric nitric acid. On the other hand, the weight composition of the residual liquid at the bottom of the rectification column at a distillation rate of 33% was HF/HNO 3 /H 2 SO 4 /water=9.5/4.5/46/40.

(実験例5)
第二蒸留塔
実験例2で得られた留出液と同等の組成を持つ液を600g調製し、硫酸を添加せず、実験例2と同様の形状を持つ精留塔で、常圧、塔底温度111〜112℃、還流比3.0で蒸留を行った。調整液(600g)に対して、塔頂から留出率25%(150g)時点までの留出液組成は、HF/HNO3/水=12.0/0.3/86.7であった。更に蒸留を継続し、留出率40%時点(240g)での留出液組成はHF/HNO3/水=20.6/0.3/79.0であった。
この留出液のフッ化水素酸濃度は低濃度であり、フッ硝酸としての再使用には不適当である。
(Experimental example 5)
Second distillation column 600 g of a liquid having the same composition as the distillate obtained in Experimental Example 2 was prepared, sulfuric acid was not added, and a rectification column having the same shape as in Experimental Example 2 was used under normal pressure and Distillation was performed at a bottom temperature of 111 to 112°C and a reflux ratio of 3.0. With respect to the adjusted liquid (600 g), the distillate composition from the top of the column to the time when the distillation rate was 25% (150 g) was HF/HNO 3 /water=12.0/0.3/86.7. Distillation was further continued, and the distillate composition at a distillate rate of 40% (240 g) was HF/HNO 3 /water=20.6/0.3/79.0.
The hydrofluoric acid concentration of this distillate is low, and is not suitable for reuse as hydrofluoric nitric acid.

(実験例6)
第三精留塔
実験例2の精留塔処理の実施後に得られた蒸留塔の塔底の残液と同様の重量組成(HF/HNO3/KNO3/水=5.1/55.3/29.0/10.6)を1500g調整し、実験例2と同様の形状を持つ精留塔で、常圧、塔底温度119〜123℃、還流比3.0で蒸留を行った。塔頂からの留出液の重量組成は留出率36%までの混合液(540g)でHF/HNO3/水=14/53/33、釜残組成は重量組成HF/HNO3/KNO3/水=0.4/64.0/16.6/19.0であった。
(Experimental example 6)
The same weight composition (HF/HNO 3 /KNO 3 /water=5.1/55.3/29.0/10.6) as the residual liquid at the bottom of the distillation column obtained after performing the treatment of the rectification column of the third rectification column experimental example 2. ) Was adjusted to 1500 g, and distillation was carried out in a rectification column having the same shape as in Experimental Example 2 at atmospheric pressure, a column bottom temperature of 119 to 123° C., and a reflux ratio of 3.0. The weight composition of the distillate from the top of the tower is HF/HNO 3 /water=14/53/33 with a mixed solution (540 g) up to a distillation rate of 36%, and the bottom residue composition is the weight composition HF/HNO 3 /KNO 3 /Water=0.4/64.0/16.6/19.0.

(実験例7)
第四精留塔
実験例6で得られた蒸留釜残と同様の重量組成(HF/HNO3/KNO3/水=0.4/64.0/16.6/19.0)を960g調整し、実施例2と同様の形状を持つ精留塔で常圧、塔底温度123〜126℃、還流比3で蒸留を行った。塔頂からの留出率56%までの混合液468gの重量組成は、HF/HNO3/水=0.6/67/32.4であった(67%硝酸)。これは、本発明の目的物であり、52wt%のフッ化水素酸と混合すれば、元のフッ硝酸水溶液が調整可能である。
(Experimental example 7)
The same weight composition (HF/HNO 3 /KNO 3 /water=0.4/64.0/16.6/19.0) as in the distillation still residue obtained in Experimental Example 6 of the fourth rectification column was adjusted to 960 g, and the same as in Example 2. Distillation was carried out in a rectification column having a shape at atmospheric pressure, a column bottom temperature of 123 to 126° C., and a reflux ratio of 3. The weight composition of 468 g of the mixed liquid up to the distillation rate of 56% from the column top was HF/HNO 3 /water=0.6/67/32.4 (67% nitric acid). This is the object of the present invention, and the original hydrofluoric nitric acid aqueous solution can be prepared by mixing with 52 wt% of hydrofluoric acid.

(実験例8)
第五精留塔
実験例3の精留塔処理において蒸留終了後の蒸留塔の塔底液の重量組成(HF/HNO3/H2SO4/水=3.4/3.2/61.2/32.2)と同等の組成を持つ液1155g調製し、温度123〜126℃、圧力33.3kPaで単蒸留を実施した。仕込み量から硫酸を除く量から求めた留出率55%(246g)時点の留出液重量組成はHF/HNO3/水=16/13/71を取得できた。その時の釜残の重量組成はHF/HNO3/H2SO4/水=0.014/0.20/75/24.8であった。
(Experimental example 8)
Equal to the weight composition (HF/HNO 3 /H 2 SO 4 /water=3.4/3.2/61.2/32.2) of the bottom liquid of the distillation column after the distillation in the rectification column treatment of the fifth rectification column experimental example 3 1155 g of a liquid having the composition of was prepared and subjected to simple distillation at a temperature of 123 to 126° C. and a pressure of 33.3 kPa. The distillate weight composition at a distillation rate of 55% (246 g) calculated from the amount excluding sulfuric acid from the charged amount was HF/HNO 3 /water=16/13/71. The weight composition of the residue at that time was HF/HNO 3 /H 2 SO 4 /water=0.014/0.20/75/24.8.

(実験例9)
硫酸濃縮
実験例8の精留塔処理による蒸留終了後に塔底に残った液の重量組成(HF/HNO3/H2SO4/水=0.014/0.20/75/24.8)と同等の組成を持つ液を500g調整してフラスコに仕込み、温度150〜199℃、圧力3.3kPa減圧下で水分を留去した。水分留去と共に釜内温は上昇し、釜内温が199℃到達時の硫酸濃度92wt%を得ることができた。
(Experimental example 9)
It has the same composition as the weight composition (HF/HNO 3 /H 2 SO 4 /water=0.014/0.20/75/24.8) of the liquid remaining at the bottom of the column after the completion of the distillation by the rectification column treatment in the sulfuric acid concentration experiment example 8. The liquid was adjusted to 500 g and charged into a flask, and water was distilled off under a reduced pressure of 150 to 199° C. and a pressure of 3.3 kPa. The temperature inside the kettle increased as the water was distilled off, and a sulfuric acid concentration of 92 wt% could be obtained when the temperature inside the kettle reached 199°C.

ケイフッ化水素酸カリウムからシリカの製造
実験例1と同様の方法で得られたケイフッ化水素酸カリウム塩88.0gと水350gを攪拌機付500mlフラスコに仕込み、スラリー状態とし、温度100℃に昇温後、50wt%水酸化カリウム水溶液184g(KOH/K2SiF6モル比:4.10)を30分かけて滴下した。滴下終了後、内温100℃で3時間反応を継続した。内温を常温まで冷却し、減圧濾過によりシリカを取得した。取得した含水シリカ45gを100℃の水300g中に投入し、水懸洗操作を30分実施後、100℃で熱濾過して回収、乾燥品として23g取得した。回収シリカのシリコン及び酸素分析した結果、シリコン46.3wt%、酸素53.2wt%であり、ほぼ理論値の数値を得た。なお、シリカ中のフッ素が500wtppm以下、カリウムが0.5wt%以下を示し、純度99wt%以上、平均粒子径約25μmの高純度シリカを回収できた。シリコンはICP発光装置、 酸素は不活性ガス融解法で分析した。平均粒子径は、レーザー回折/散乱式で測定した。
Preparation of Silica from Potassium Hydrofluorosilicate 88.0 g of potassium hydrofluorofluoride obtained in the same manner as in Experimental Example 1 and 350 g of water were placed in a 500 ml flask equipped with a stirrer and made into a slurry state, and the temperature was raised to 100°C. Then, 184 g of 50 wt% potassium hydroxide aqueous solution (KOH/K 2 SiF 6 molar ratio: 4.10) was added dropwise over 30 minutes. After the dropwise addition was completed, the reaction was continued at an internal temperature of 100° C. for 3 hours. The internal temperature was cooled to room temperature, and silica was obtained by vacuum filtration. 45 g of the obtained hydrous silica was put into 300 g of water at 100° C., and after water suspension washing was carried out for 30 minutes, it was collected by hot filtration at 100° C. to obtain 23 g as a dried product. As a result of analyzing silicon and oxygen of the recovered silica, the silicon content was 46.3 wt% and the oxygen content was 53.2 wt %, which were almost theoretical values. In addition, fluorine in the silica was 500 wtppm or less, potassium was 0.5 wt% or less, and high purity silica having a purity of 99 wt% or more and an average particle diameter of about 25 μm could be recovered. Silicon was analyzed by an ICP light emitting device, and oxygen was analyzed by an inert gas melting method. The average particle diameter was measured by a laser diffraction/scattering method.

<分析条件>
フッ素:イオンクロマト装置(前記、分析法に準じる)
カリウム:ICP発光装置(前記、分析法に準じる)
酸素 :不活性ガス融解法
型式LECO−TC−436AR、検出器:赤外線吸収検出器
平均粒子径:分散溶媒:エタノール、測定範囲:0.12〜704μm
<Analysis conditions>
Fluorine: Ion chromatograph (according to the above analysis method)
Potassium: ICP light emitting device (according to the above analysis method)
Oxygen: Inert gas melting method
Model LECO-TC-436AR, Detector: Infrared absorption detector Average particle size: Dispersing solvent: Ethanol, Measuring range: 0.12 to 704 μm

(実施例10)
フッ化水素酸カリウムの製造
実施例9で得られたフッ化カリウム(フッ化水素酸カリウムKF)水溶液を攪拌機付500mlガラス製反応器に仕込み、バス温度90℃以下の温度で減圧系にてフッ化カリウム濃度が60wt%以上になるまで水留去を実施した。濃度が上昇するとフッ化カリウム結晶が析出するので40℃〜60℃の温度の範囲でフッ化カリウムを濾過にて取得した。
(Example 10)
Potassium fluoride obtained in Example 9 of hydrofluoric potassium (hydrofluoric acid potassium KF) solution were charged to a 500ml glass reactor equipped with a stirrer, fluoride under reduced pressure system at a bath temperature of 90 ° C. below the temperature Water was distilled off until the concentration of potassium iodide was 60 wt% or more. Since potassium fluoride crystals are precipitated when the concentration is increased, potassium fluoride was obtained by filtration in the temperature range of 40°C to 60°C.

温度100℃で減圧乾燥し、ドライフッ化カリウムを取得した。水分量をカールフイッシャー法で測定すると0.5%以下を示し、含水フッ化カリウムが無水物であることが分かった。フッ素、カリウム濃度を分析すると理論値に近い値を示した。更に不純物のシリコン量を分析すると400wtppm以下を示し、99wt%以上の高純度フッ化カリウムを回収することができた。 It was dried under reduced pressure at a temperature of 100° C. to obtain dry potassium fluoride. When the water content was measured by the Karl Fischer method, it was 0.5% or less, and it was found that the hydrous potassium fluoride was an anhydride. Analysis of fluorine and potassium concentrations showed values close to theoretical values. Furthermore, when the amount of silicon as an impurity was analyzed, it was 400 wtppm or less, and 99 wt% or more of high-purity potassium fluoride could be recovered.

(実験例11)
装置は実験例2での精留塔を用いた。実験例2で得られた留出液組成を600g調整し、常圧系にて還流比3.0で留出させた。留出率8%(48g)の時点での留出液重量組成はHF/HNO3/水=1/0.5/98.5であった。留出を続けて留出率24%(144g)時で混合した留出液重量組成はHF/HNO3/水=6/0.3/35/93.7、留出率24%の時点で混合した留出液重量組成はHF/HNO3/水=12/0.3/87.7、留出率32%(192g)時点で混合した留出液重量組成はHF/HNO3/H2SO4/水=17/.3/82.7であった。更に蒸留を続けて留出率40%時点での留出混合液重量組成はHF/HNO3/水=21/0.3/78.7であり、高濃度のフッ化水素酸は得ることができなかった。
(Experimental example 11)
The apparatus used the rectification column in Experimental Example 2. 600 g of the distillate composition obtained in Experimental Example 2 was adjusted and distilled at a reflux ratio of 3.0 in a normal pressure system. The weight composition of the distillate at a distillation rate of 8% (48 g) was HF/HNO 3 /water=1/0.5/98.5. The distillate weight composition which was continuously distilled and was mixed at a distillation rate of 24% (144 g) was HF/HNO 3 /water=6/0.3/35/93.7, and the distillation was mixed at the time of a distillation rate of 24%. The liquid weight composition is HF/HNO 3 /water=12/0.3/87.7, and the distillate weight composition mixed at the time of the distillation rate of 32% (192 g) is HF/HNO 3 /H 2 SO 4 /water=17/. It was 3/82.7. When the distillation was further continued and the distillation rate was 40%, the weight composition of the distillate mixture was HF/HNO 3 /water=21/0.3/78.7, and high-concentration hydrofluoric acid could not be obtained.

(実験例12)
実験例1と同様の方法で得られたケイフッ化水素酸カリウム塩88.0gと水350gを攪拌機付500mlフラスコ仕込み、スラリー状態とし、温度100℃に昇温後、50wt%水酸化カリウム水溶液224g(KOH/K2SiF6モル比:5.00)を30分かけて滴下した。滴下終了後、析出していたシリカが溶解し始め、30分後に完全溶解して回収することはできなかった。
(Experimental example 12)
88.0 g of potassium hydrofluorosilicic acid salt obtained by the same method as in Experimental Example 1 and 350 g of water were charged into a 500 ml flask equipped with a stirrer to prepare a slurry state, and after raising the temperature to 100° C., 224 g of 50 wt% potassium hydroxide aqueous solution ( KOH/K 2 SiF 6 molar ratio: 5.00) was added dropwise over 30 minutes. After the dropping was completed, the precipitated silica began to dissolve, and after 30 minutes, it could not be completely dissolved and recovered.

(実験例13)
実験例1と同様の方法で得られたケイフッ化水素酸カリウム塩88.0gと水350gを攪拌機付500mlフラスコに仕込み、スラリー状態とし、温度100℃に昇温後、50wt%水酸化カリウム水溶液202g(KOH/K2SiF6モル比:4.50)を30分かけて滴下した。滴下終了後、析出していたシリカが一部溶解し始め、残りのシリカはフラスコ壁に凝集して固着、取り出し不可となり回収することはできなかった。
(Experimental example 13)
Into a 500 ml flask equipped with a stirrer, 88.0 g of potassium hydrosilicofluoride salt obtained by the same method as in Experimental Example 1 was charged into a 500 ml flask with a stirrer, and the temperature was raised to 100° C., and then 202 g of 50 wt% potassium hydroxide aqueous solution. (KOH/K 2 SiF 6 molar ratio: 4.50) was added dropwise over 30 minutes. After completion of the dropping, a part of the precipitated silica began to dissolve, and the remaining silica was agglomerated and fixed on the flask wall and could not be taken out and could not be recovered.

(実験例14)
実験例1と同様の方法で得られたケイフッ化水素酸カリウム塩88.0gと水132gを攪拌機付500mlフラスコに仕込み、スラリー濃度40wt%状態とし、温度100℃に昇温後、50wt%水酸化カリウム水溶液184g(KOH/K2SiF6モル比:4.10)を30分かけて滴下した。滴下終了後、シリカはフラスコ内で凝集固着して取り出し回収不能となった。
(Experimental example 14)
88.0 g of potassium hydrofluorosilicic acid salt obtained by the same method as in Experimental Example 1 and 132 g of water were charged into a 500 ml flask equipped with a stirrer to make a slurry concentration of 40 wt% and heated to 100° C., and then 50 wt% hydroxylated. 184 g of potassium aqueous solution (KOH/K 2 SiF 6 molar ratio: 4.10) was added dropwise over 30 minutes. After the completion of the dropping, the silica was aggregated and fixed in the flask and could not be collected and recovered.

(実験例15)
攪拌機付500mlフラスコに50wt%水酸化カリウム水溶液184gと水132gを仕込み均一溶液とし、温度100℃に昇温後、実験例1と同様の方法で得られたケイフッ化水素酸カリウム塩88gを30分かけて分割投入した(KOH/K2SiF6モル比:4.10)。投入直後はシリカは生成せず、投入終了後、シリカはフラスコ内で凝集固着して取り出し回収不能となった。
(Experimental example 15)
A 500 ml flask equipped with a stirrer was charged with 184 g of 50 wt% potassium hydroxide aqueous solution and 132 g of water to form a uniform solution, and after raising the temperature to 100° C., 88 g of potassium hydrosilicofluoride salt obtained by the same method as in Experimental Example 1 was used for 30 minutes. (KOH/K 2 SiF 6 molar ratio: 4.10). Immediately after the addition, silica was not generated, and after the completion of the addition, the silica was agglomerated and fixed in the flask and could not be taken out and recovered.

(実験例16)
実験例9と同様の方法で得られたフッ化カリウム水溶液を攪拌機付500mlガラス製反応器に仕込み、バス温度150℃の温度で常圧系にてフッ化カリウム濃度が60wt%以上になるまで水留去を実施した。濃度が上昇するとフッ化カリウムはスラリー化せず、撹拌翼、フラスコ壁に固着し、取り出し回収不能となった。
(Experimental example 16)
An aqueous potassium fluoride solution obtained by the same method as in Experimental Example 9 was charged into a 500 ml glass reactor equipped with a stirrer, and water was added at a bath temperature of 150° C. under a normal pressure system until the potassium fluoride concentration reached 60 wt% or more. Distillation was carried out. When the concentration increased, potassium fluoride did not form a slurry and adhered to the stirring blade and the flask wall, and could not be taken out and recovered.

(実験例17)
実験例9と同様の方法で得られたフッ化カリウム水溶液を攪拌機付500mlガラス製反応器に仕込み、バス温度135℃、圧力42.6kPa(320Torr)の減圧下、内温110〜120℃でフッ化カリウム濃度が60wt%以上になるまで水留去を実施した。フッ化カリウムは析出したが、一部フラスコ壁に付着し、回収が容易ではなかった。
(Experimental Example 17)
An aqueous potassium fluoride solution obtained in the same manner as in Experimental Example 9 was charged into a 500 ml glass reactor equipped with a stirrer, and the bath temperature was 135° C. and the pressure was 42.6 kPa (320 Torr) under reduced pressure at an internal temperature of 110 to 120° C. Water was distilled off until the concentration of potassium iodide was 60 wt% or more. Although potassium fluoride was deposited, it partially adhered to the flask wall and was not easy to collect.

Claims (4)

フッ化水素酸と硝酸の混合物を蒸留塔に供給し、硫酸の存在下でフッ化水素酸と硝酸とを分離し、それぞれ回収する、フッ化水素酸と硝酸の回収方法。 A method for recovering hydrofluoric acid and nitric acid, which comprises supplying a mixture of hydrofluoric acid and nitric acid to a distillation column, separating hydrofluoric acid and nitric acid in the presence of sulfuric acid, and recovering each. フッ化水素酸と硝酸の混合物を蒸留塔に供給し、硫酸の存在下でフッ化水素酸と硝酸とを分離する工程を含む、フッ化水素酸の製造方法。 A method for producing hydrofluoric acid, comprising the step of supplying a mixture of hydrofluoric acid and nitric acid to a distillation column and separating hydrofluoric acid and nitric acid in the presence of sulfuric acid. フッ化水素酸と硝酸の混合物を蒸留塔に供給し、硫酸の存在下でフッ化水素酸と硝酸とを分離する工程を含む、硝酸の製造方法。 A method for producing nitric acid, comprising the step of supplying a mixture of hydrofluoric acid and nitric acid to a distillation column and separating hydrofluoric acid and nitric acid in the presence of sulfuric acid. ケイフッ化水素酸を含むフッ硝酸水溶液と硝酸塩とを接触させ、ケイフッ化水素酸塩を析出させ、固液分離にて該ケイフッ化水素酸塩を分離し、得られる残液を蒸留塔に供給し、硫酸の存在下でフッ化水素酸と硝酸とを分離し、それぞれ回収する、フッ化水素酸と硝酸の回収方法。 A hydrofluoric nitric acid aqueous solution containing hydrosilicofluoric acid is brought into contact with a nitrate to precipitate a hydrofluorosilicic acid salt, and the hydrofluorosilicic acid salt is separated by solid-liquid separation, and the obtained residual liquid is supplied to a distillation column. , A method for recovering hydrofluoric acid and nitric acid, in which hydrofluoric acid and nitric acid are separated in the presence of sulfuric acid and recovered respectively.
JP2020072895A 2020-04-15 2020-04-15 Recovery method of hydrofluoric acid and nitric acid Pending JP2020121310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020072895A JP2020121310A (en) 2020-04-15 2020-04-15 Recovery method of hydrofluoric acid and nitric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072895A JP2020121310A (en) 2020-04-15 2020-04-15 Recovery method of hydrofluoric acid and nitric acid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016019945A Division JP6728731B2 (en) 2016-02-04 2016-02-04 Method for recovering hydrofluoric acid and nitric acid

Publications (1)

Publication Number Publication Date
JP2020121310A true JP2020121310A (en) 2020-08-13

Family

ID=71991824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072895A Pending JP2020121310A (en) 2020-04-15 2020-04-15 Recovery method of hydrofluoric acid and nitric acid

Country Status (1)

Country Link
JP (1) JP2020121310A (en)

Similar Documents

Publication Publication Date Title
US7208641B2 (en) Method for producing 2,2,2-trifluoroethanol
JP6728731B2 (en) Method for recovering hydrofluoric acid and nitric acid
US7268238B2 (en) Manufacturing method and apparatus of 4-fluoroethylene carbonate
JP4848684B2 (en) Method for producing high-purity 4-fluoro-1,3-dioxolan-2-one
JP4848683B2 (en) Method for producing high-purity 4-fluoro-1,3-dioxolan-2-one
CN110637002B (en) Process for producing hexafluoro-1, 3-butadiene
US4927962A (en) Process of preparing fluorocarbon carboxylic or sulfonic acid from its fluoride
US5852211A (en) Process for the conversion of the sodium salt of 2-keto-L-gulonic acid to the free acid
KR101004976B1 (en) Potassium perfluoroalkanesulfonates and process for production thereof
JP2009019019A (en) Method for producing 4-fluoro-1,3-dioxolan-2-one
CN113816827B (en) Purification method of electronic grade trifluoromethane
JP2020121310A (en) Recovery method of hydrofluoric acid and nitric acid
JP2974540B2 (en) Purification method of fluoroalkylsulfonic acid
RU2424187C1 (en) Method of producing high-purity barium fluoride
JP2011126720A (en) Method for producing valuable material and hydrochloric acid from waste liquid
CN108220625A (en) A kind of method that lithium is recycled from waste liquid containing lithium
KR20130103742A (en) Purification of fluoroalkanesulfonate salts
JP2012219037A (en) Method for producing bis(perfluoroalkanesulfone)imide salt
JP5318437B2 (en) Method for purifying metal fluorides
JPH05382B2 (en)
JP2006232561A (en) Apparatus and method for producing hydrogen
JPH11310413A (en) Production of highly pure lithium carbonate
CN113880066B (en) Method for preparing lithium difluorophosphate by flow chemistry method
JP5811671B2 (en) Method for producing fluoroalkanesulfonic acid
CN113415785B (en) Method for separating and recovering hydrofluoric acid from fluorine-containing mixed acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210818