JP2020120555A - Control device, battery module, and electric vehicle - Google Patents

Control device, battery module, and electric vehicle Download PDF

Info

Publication number
JP2020120555A
JP2020120555A JP2019012266A JP2019012266A JP2020120555A JP 2020120555 A JP2020120555 A JP 2020120555A JP 2019012266 A JP2019012266 A JP 2019012266A JP 2019012266 A JP2019012266 A JP 2019012266A JP 2020120555 A JP2020120555 A JP 2020120555A
Authority
JP
Japan
Prior art keywords
secondary battery
load
strain
control device
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019012266A
Other languages
Japanese (ja)
Other versions
JP7171462B2 (en
Inventor
光敏 渡部
Mitsutoshi Watabe
光敏 渡部
貴子 西田
Takako Nishida
貴子 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2019012266A priority Critical patent/JP7171462B2/en
Priority to CN202010026422.1A priority patent/CN111490300B/en
Publication of JP2020120555A publication Critical patent/JP2020120555A/en
Application granted granted Critical
Publication of JP7171462B2 publication Critical patent/JP7171462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

To provide a control device capable of performing charge and discharge control suitable for a determined state by determining a local state of an electrode.SOLUTION: The control device includes: an acquisition unit (20) for acquiring a measured value of load or strain at a plurality of positions on a predetermined surface of a housing of a secondary battery (2); and a control unit (25) for controlling charge and discharge of the secondary battery based on a change in the load or the strain with respect to a charging rate of the secondary battery in each of the positions.SELECTED DRAWING: Figure 1

Description

本発明は、制御装置、バッテリモジュール、および電動車両に関する。 The present invention relates to a control device, a battery module, and an electric vehicle.

従来、組電池を構成するリチウムイオン二次電池間に面圧分布センサを設置し、この面圧分布センサの計測値に基づいて、リチウムの析出の有無や、リチウムイオン二次電池の劣化状態を検知するものが知られている(例えば、特許文献1参照)。 Conventionally, a surface pressure distribution sensor is installed between the lithium ion secondary batteries that make up the assembled battery, and based on the measured value of this surface pressure distribution sensor, the presence or absence of lithium deposition and the deterioration state of the lithium ion secondary battery are detected. What is detected is known (for example, refer to Patent Document 1).

特開2013−020826号公報JP, 2013-020826, A

リチウムイオン二次電池の状態は、電極の厚さの個体差等の電極の構造に起因する電流密度分布により、SOC(State Of Charge)、SOH(States Of Health)が面内分布を持つことが知られている。一方で、従来のOCV(Open Circuit Voltage)−SOC特性に基づくSOCの推定方法は、SOC分布を持つ電極の全体を平均化してとらえるものであるため、電極の局所的なSOC、SOHの管理を行うことができなかった。 Regarding the state of the lithium-ion secondary battery, SOC (State Of Charge) and SOH (States Of Health) may have an in-plane distribution due to the current density distribution due to the structure of the electrode such as the individual difference in the thickness of the electrode. Are known. On the other hand, the conventional SOC estimation method based on the OCV (Open Circuit Voltage)-SOC characteristic is to average the entire electrode having the SOC distribution, and therefore to manage the local SOC and SOH of the electrode. I couldn't do it.

本発明の態様は、このような事情を考慮してなされたものであり、電極の局所的な状態を判定し、判定した状態に適した充放電制御を行うことができる制御装置、バッテリモジュール、および電動車両を提供することを目的の一つとする。 Aspects of the present invention have been made in consideration of such circumstances, and a control device, a battery module, which can determine a local state of an electrode and can perform charge/discharge control suitable for the determined state, Another object is to provide an electric vehicle.

この発明に係る制御装置、バッテリモジュール、および電動車両は、以下の構成を採用した。
(1):この発明の一態様に係る制御装置は、二次電池の筐体の所定の面における複数の位置で、荷重又は歪みの計測値を取得する取得部と、前記複数の位置のそれぞれにおける、前記二次電池の充電率に対する前記荷重又は前記歪みの変化に基づいて、前記二次電池の充放電を制御する制御部と、を備える制御装置である。
The control device, the battery module, and the electric vehicle according to the present invention have the following configurations.
(1): A control device according to an aspect of the present invention includes an acquisition unit that acquires a measured value of load or strain at a plurality of positions on a predetermined surface of a casing of a secondary battery, and each of the plurality of positions. And a control unit that controls charging and discharging of the secondary battery based on a change in the load or the strain with respect to the charging rate of the secondary battery.

(2):上記(1)の態様において、前記複数の位置での前記荷重又は前記歪みの計測値は、前記二次電池の筐体に接触して配置された圧力分布センサによって計測されるものである。 (2): In the aspect of (1) above, the measured values of the load or the strain at the plurality of positions are measured by a pressure distribution sensor arranged in contact with the casing of the secondary battery. Is.

(3):上記(2)の態様において、前記圧力分布センサの検出素子ごとに、前記荷重又は前記歪みの前記充電率に対する変化量を算出する算出部をさらに備えるものである。 (3): In the aspect of (2) above, a calculation unit that calculates the amount of change in the load or the strain with respect to the charging rate is further provided for each detection element of the pressure distribution sensor.

(4):上記(2)の態様において、前記圧力分布センサの複数の検出素子を含む集合ごとに、前記荷重又は前記歪みを積算して、前記荷重又は前記歪みの前記充電率に対する変化量を算出する算出部をさらに備えるものである。 (4): In the aspect of the above (2), the load or the strain is integrated for each set including a plurality of detection elements of the pressure distribution sensor, and a change amount of the load or the strain with respect to the charging rate is calculated. It further comprises a calculating unit for calculating.

(5):上記(1)から(4)の態様において、前記荷重又は前記歪みの変化は、前記荷重又は前記歪みの電気量ごとの差分、または前記荷重又は前記歪みの充電率ごとの差分であるものである。 (5): In the aspects of (1) to (4), the change in the load or the strain is a difference of the load or the strain for each amount of electricity, or a difference of the load or the strain for each charging rate. There is something.

(6):上記(1)から(5)の態様において、前記制御部は、前記二次電池の充放電における、電流、電圧、および電力の少なくとも1つを制御するものである。 (6): In the above aspects (1) to (5), the control unit controls at least one of current, voltage, and electric power during charging/discharging of the secondary battery.

(7):上記(1)から(6)の態様において、前記荷重又は前記歪みの変化に基づいて、前記二次電池の状態を判定する判定部をさらに備えるものである。 (7): In the above aspects (1) to (6), a determination unit that determines the state of the secondary battery based on the change in the load or the strain is further provided.

(8):上記(7)の態様において、前記判定部は、前記荷重又は前記歪みの変化の増加傾向の違いに基づいて、前記二次電池の状態を判定するものである。 (8): In the above aspect (7), the determination unit determines the state of the secondary battery based on a difference in increasing tendency of the change in the load or the strain.

(9):上記(1)から(8)の態様において、前記二次電池は、リチウムイオン電池であるものである。 (9): In the above aspects (1) to (8), the secondary battery is a lithium ion battery.

(10):上記(1)から(9)の態様において、前記取得部は、前記二次電池が組電池である場合、前記組電池に含まれる複数のセルのうち、温度が最も高いセルにおける前記荷重又は前記歪みの計測値を取得するものである。 (10): In the above aspects (1) to (9), in the case where the secondary battery is an assembled battery, the acquisition unit is a cell having the highest temperature among a plurality of cells included in the assembled battery. The measurement value of the load or the strain is acquired.

(11):この発明の一態様に係るバッテリモジュールは、二次電池と、前記二次電池の筐体に接触して配置された圧力センサと、前記二次電池の充放電を制御する制御装置と、を備え、前記制御装置は、前記圧力センサにより計測された前記二次電池の筐体の所定の面における複数の位置での、荷重又は歪みの計測値を取得する取得部と、前記複数の位置のそれぞれにおける、前記二次電池の充電率に対する前記荷重又は前記歪みの変化に基づいて、前記二次電池の充放電を制御する制御部と、を備えるものである。 (11): A battery module according to an aspect of the present invention includes a secondary battery, a pressure sensor arranged in contact with a casing of the secondary battery, and a control device for controlling charging/discharging of the secondary battery. And an acquisition unit that acquires measured values of load or strain at a plurality of positions on a predetermined surface of the casing of the secondary battery measured by the pressure sensor, and And a control unit that controls charging and discharging of the secondary battery based on a change in the load or the strain with respect to the charging rate of the secondary battery at each position.

(12):この発明の一態様に係る電動車両は、上記(11)のバッテリモジュールを備えるものである。 (12): An electric vehicle according to an aspect of the present invention includes the battery module according to (11) above.

(1)〜(12)によれば、電極の局所的な状態を判定し、判定した状態に適した充放電制御を行うことができる。また、上記の充放電制御により、判定した状態に基づく電流、電圧、および電力の制御を行うことで、二次電池の局所的な劣化状態に応じた制御を行うことができる。また、捲回体または積層体の電極面内の分布(最大/最小SOC、最大/最小負極劣化率)に基づいた電池制御が可能となる。 According to (1) to (12), it is possible to determine the local state of the electrode and perform charge/discharge control suitable for the determined state. In addition, by controlling the current, voltage, and power based on the determined state by the above charge/discharge control, it is possible to perform control according to the local deterioration state of the secondary battery. Further, battery control based on the distribution (maximum/minimum SOC, maximum/minimum negative electrode deterioration rate) within the electrode surface of the wound body or the laminated body becomes possible.

第1実施形態の充放電制御システムSの構成の一例を示す図である。It is a figure which shows an example of a structure of the charging/discharging control system S of 1st Embodiment. 第1実施形態の面圧分布センサ3の構成の一例を示す図である。It is a figure which shows an example of a structure of the surface pressure distribution sensor 3 of 1st Embodiment. 第1実施形態の負極材として用いられたグラファイトの層間距離と、SOCとの関係を示すグラフである。It is a graph which shows the relationship between the interlayer distance of the graphite used as the negative electrode material of 1st Embodiment, and SOC. 第1実施形態の負極における歪みεおよびSOCの関係を示すグラフと、歪みの電気量差分dε/dQおよびSOCの関係を示すグラフとを示す図である。FIG. 5 is a graph showing a relationship between strain ε and SOC in the negative electrode of the first embodiment and a graph showing a relationship between strain electric quantity difference dε/dQ and SOC. 第1実施形態の負極における荷重FおよびSOCの関係を示すグラフと、荷重Fの電気量差分dF/dQおよびSOCの関係を示すグラフとを示す図である。FIG. 5 is a diagram showing a graph showing a relationship between a load F and SOC in the negative electrode of the first embodiment and a graph showing a relationship between an electric quantity difference dF/dQ of the load F and SOC. 第1実施形態の基準状態の非水二次電池および電池容量劣化状態の非水二次電池の歪みεの変化量を比較したグラフである。It is a graph which compared the amount of change of the strain ε of the non-aqueous secondary battery in the reference state and the non-aqueous secondary battery in the battery capacity deterioration state of the first embodiment. 第1実施形態の基準状態の非水二次電池および電池容量劣化状態の非水二次電池の荷重Fの変化量を比較したグラフである。It is a graph which compared the amount of change of the load F of the non-aqueous secondary battery of the reference state of the first embodiment and the non-aqueous secondary battery of the battery capacity deterioration state. 第1実施形態の基準状態の非水二次電池およびステージずれ状態の非水二次電池の歪みεの変化量を比較したグラフである。It is a graph which compared the amount of change of the strain ε of the non-aqueous secondary battery in the reference state and the non-aqueous secondary battery in the stage shift state of the first embodiment. 第1実施形態の基準状態の非水二次電池およびステージずれ状態の非水二次電池の荷重Fの変化量を比較したグラフである。It is a graph which compared the amount of change of the load F of the non-aqueous secondary battery of the standard state and the non-aqueous secondary battery of the stage shift state of the first embodiment. 第1実施形態のECU1による処理の一例を示すフローチャートである。It is a flow chart which shows an example of processing by ECU1 of a 1st embodiment. 第1実施形態の放電許可電力の設定値を説明する図である。It is a figure explaining the setting value of discharge permission electric power of 1st Embodiment. 第2実施形態のECU1による処理の一例を示すフローチャートである。It is a flow chart which shows an example of processing by ECU1 of a 2nd embodiment. 第2実施形態のクラスタごとに算出されたSOCと荷重Fの変化量との関係を示す図である。It is a figure which shows the relationship between SOC calculated for every cluster of 2nd Embodiment, and the amount of change of the load F.

以下、図面を参照し、本発明の制御装置、バッテリモジュール、および電動車両の実施形態について説明する。本発明の制御装置は、例えば、電気自動車に搭載され、電気自動車の非水二次電池を制御する。これに限られず、本発明の制御装置は、非水二次電池を動力源とする様々な装置に搭載されてよい。 Hereinafter, embodiments of a control device, a battery module, and an electric vehicle of the present invention will be described with reference to the drawings. The control device of the present invention is installed in, for example, an electric vehicle and controls a non-aqueous secondary battery of the electric vehicle. The invention is not limited to this, and the control device of the present invention may be mounted on various devices powered by a non-aqueous secondary battery.

<第1実施形態>
図1は、第1実施形態の充放電制御システムSの構成の一例を示す図である。充放電制御システムSは、例えば、ECU(Electronic Control Unit)1(制御装置)と、非水二次電池2(二次電池の一例)と、面圧分布センサ3(圧力分布センサの一例)と、筐体バインドバー4と、電流センサ5と、電圧センサ6と、出力部7とを備える。
<First Embodiment>
FIG. 1 is a diagram showing an example of the configuration of the charge/discharge control system S of the first embodiment. The charge/discharge control system S includes, for example, an ECU (Electronic Control Unit) 1 (control device), a non-aqueous secondary battery 2 (an example of a secondary battery), a surface pressure distribution sensor 3 (an example of a pressure distribution sensor). The housing bind bar 4, the current sensor 5, the voltage sensor 6, and the output unit 7 are provided.

非水二次電池2は、例えば、正極と負極とを有するリチウムイオン電池である。非水二次電池2は、角型、ラミネート型、丸形等の電池である。非水二次電池2の正極および負極の各々は、電線を介してECU1と接続されている。 The non-aqueous secondary battery 2 is, for example, a lithium ion battery having a positive electrode and a negative electrode. The non-aqueous secondary battery 2 is a prismatic type, a laminated type, a round type, or the like. Each of the positive electrode and the negative electrode of the non-aqueous secondary battery 2 is connected to the ECU 1 via an electric wire.

面圧分布センサ3は、非水二次電池2の筐体の一面に接触して配置される。面圧分布センサ3は、非水二次電池2との接触面における面圧分布を計測する。図2は、第1実施形態の面圧分布センサ3の構成の一例を示す図である。図2に示すように、面圧分布センサ3は、複数の圧力センサ素子30(以下、「ピクセル」とも言う)(検出素子の一例)を含む。複数の圧力センサ素子30の各々は、各々の素子に作用する圧力、すなわち面積当りの荷重を検出する。面圧分布センサ3は、これらの圧力センサ素子30の検知面が非水二次電池2の筐体の一面に接触するように配置される。面圧分布センサ3は、複数の圧力センサ素子30の各々により計測された計測値を、入出力部32を介して、ECU1に出力する。例えば、面圧分布センサ3は、角型リチウムイオン電池の捲回体または積層体の積層方法に電池ケースに配置される。 The surface pressure distribution sensor 3 is arranged in contact with one surface of the casing of the non-aqueous secondary battery 2. The surface pressure distribution sensor 3 measures the surface pressure distribution on the contact surface with the non-aqueous secondary battery 2. FIG. 2 is a diagram showing an example of the configuration of the surface pressure distribution sensor 3 of the first embodiment. As shown in FIG. 2, the surface pressure distribution sensor 3 includes a plurality of pressure sensor elements 30 (hereinafter, also referred to as “pixels”) (an example of detection elements). Each of the plurality of pressure sensor elements 30 detects the pressure acting on each element, that is, the load per area. The surface pressure distribution sensor 3 is arranged so that the detection surfaces of these pressure sensor elements 30 contact one surface of the casing of the non-aqueous secondary battery 2. The surface pressure distribution sensor 3 outputs the measurement value measured by each of the plurality of pressure sensor elements 30 to the ECU 1 via the input/output unit 32. For example, the surface pressure distribution sensor 3 is arranged in the battery case in the stacking method of the wound body or the stacked body of the prismatic lithium ion battery.

筐体バインドバー4は、非水二次電池2の被検知面と、面圧分布センサ3の圧力センサ素子30の検知面とが接触状態を維持するように固定する。筐体バインドバー4は、例えば、対向して配置されている第1基材4aと第2基材4bとを備える。第1基材4aと第2基材4bとは、連結部材4c,4dにより連結されている。筐体バインドバー4は、第1基材4aと第2基材4bとの間に、非水二次電池2と面圧分布センサ3とを挟持した状態で連結部材4c,4dにより固定されている。 The housing bind bar 4 is fixed so that the surface to be detected of the non-aqueous secondary battery 2 and the detection surface of the pressure sensor element 30 of the surface pressure distribution sensor 3 are kept in contact with each other. The housing bind bar 4 includes, for example, a first base material 4a and a second base material 4b that are arranged to face each other. The first base material 4a and the second base material 4b are connected by connecting members 4c and 4d. The housing bind bar 4 is fixed by the connecting members 4c and 4d in a state where the non-aqueous secondary battery 2 and the surface pressure distribution sensor 3 are sandwiched between the first base material 4a and the second base material 4b. There is.

電流センサ5は、非水二次電池2と駆動部側とを接続する電力線に接続されている。電流センサ5は、非水二次電池2により放電される電力の電流値や、非水二次電池2に充電される電力の電流値を検出し、ECU1に出力する。 The current sensor 5 is connected to a power line that connects the non-aqueous secondary battery 2 and the drive unit side. The current sensor 5 detects a current value of electric power discharged by the non-aqueous secondary battery 2 and a current value of electric power charged in the non-aqueous secondary battery 2, and outputs it to the ECU 1.

電圧センサ6は、非水二次電池2とECU1とを接続する電線に接続されている。電圧センサ6は、非水二次電池2の正極および負極の各々と接続される電線における電圧を検出し、ECU1に出力する。 The voltage sensor 6 is connected to an electric wire that connects the non-aqueous secondary battery 2 and the ECU 1. The voltage sensor 6 detects a voltage on an electric wire connected to each of the positive electrode and the negative electrode of the non-aqueous secondary battery 2 and outputs the voltage to the ECU 1.

ECU1は、非水二次電池2の状態を判定し、判定した状態に基づいて、非水二次電池2の充放電制御を行う。ECU1の構成の詳細については、後述する。 The ECU 1 determines the state of the non-aqueous secondary battery 2 and controls the charging/discharging of the non-aqueous secondary battery 2 based on the determined state. Details of the configuration of the ECU 1 will be described later.

[ECU1の構成]
ECU1は、例えば、制御部10と、記憶部12とを備える。制御部10は、例えば、取得部20と、充電電気量算出部21と、SOC算出部22と、変化量算出部23(算出部)と、状態判定部24(判定部)と、充放電制御部25(制御部)と、報知部26とを備える。制御部10の構成要素は、例えば、CPU(Central Processing Unit)等のコンピュータプロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、制御部10の構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)等のハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予め記憶部12に格納されていてもよいし、DVDやCD−ROM等の着脱可能な記憶媒体に格納されており、記憶媒体がドライブ装置に装着されることで記憶部12にインストールされてもよい。
[Configuration of ECU 1]
The ECU 1 includes, for example, a control unit 10 and a storage unit 12. The control unit 10 includes, for example, an acquisition unit 20, a charge electricity amount calculation unit 21, an SOC calculation unit 22, a change amount calculation unit 23 (calculation unit), a state determination unit 24 (determination unit), and charge/discharge control. The unit 25 (control unit) and the notification unit 26 are provided. The components of the control unit 10 are realized, for example, by a computer processor such as a CPU (Central Processing Unit) executing a program (software). Some or all of the components of the control unit 10 are hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). It may be realized by (including a circuit portion), or may be realized by cooperation of software and hardware. The program may be stored in the storage unit 12 in advance, or may be stored in a removable storage medium such as a DVD or a CD-ROM, and installed in the storage unit 12 by mounting the storage medium in the drive device. May be done.

取得部20は、面圧分布センサ3の複数の圧力センサ素子30の各々により計測された圧力値と、電流センサ5により計測された電流値、電圧センサ6により計測された電圧値等を取得する。取得部20は、面圧分布センサ3から取得した圧力値を時刻情報と関連付けして、面圧分布情報12Aとして、記憶部12に記憶させる。また、取得部20は、取得した電流値および電圧値を時刻情報と関連付けして、電流電圧情報12Bとして、記憶部12に記憶させる。 The acquisition unit 20 acquires the pressure value measured by each of the plurality of pressure sensor elements 30 of the surface pressure distribution sensor 3, the current value measured by the current sensor 5, the voltage value measured by the voltage sensor 6, and the like. .. The acquisition unit 20 stores the pressure value acquired from the surface pressure distribution sensor 3 in the storage unit 12 as the surface pressure distribution information 12A in association with the time information. In addition, the acquisition unit 20 associates the acquired current value and voltage value with the time information and stores the current value and the voltage value in the storage unit 12 as the current-voltage information 12B.

充電電気量算出部21は、取得部20により取得された電流値および電圧値に基づいて、非水二次電池2に充電された充電電力量を算出する。充電電気量算出部21は、算出した充電電力量を充電時の時刻情報と関連付けして、充電電気量情報12Cとして、記憶部12に記憶させる。尚、充電電気量算出部21は、取得部20により取得された電流値および電圧値に基づいて、非水二次電池2から放電された放電電力量を算出してもよい。 The charged electricity amount calculation unit 21 calculates the amount of charging power charged in the non-aqueous secondary battery 2 based on the current value and the voltage value acquired by the acquisition unit 20. The charged electricity amount calculation unit 21 associates the calculated amount of charged electricity with the time information at the time of charging and stores it in the storage unit 12 as the charged electricity amount information 12C. The charge electricity amount calculation unit 21 may calculate the discharge power amount discharged from the non-aqueous secondary battery 2 based on the current value and the voltage value acquired by the acquisition unit 20.

SOC算出部22は、例えば、電流積算、RLS法等に基づいて非水二次電池2のSOC(充電率)を算出する。例えば、SOC算出部22は、非水二次電池2の容量と、初期SOCと、非水二次電池2に充放電される電力の電流値とに基づいて、非水二次電池のSOCを算出する。非水二次電池2の容量は、非水二次電池2のある充電状態から放電を開始し、放電終止電圧に達するまでに非水二次電池2が放出する電気量(電流×時間)[Ah]である。初期SOCは、非水二次電池2の初期状態におけるSOCである。非水二次電池2に充放電される電力の電流値は、電流センサ5によって検出された検出値である。 The SOC calculation unit 22 calculates the SOC (charge rate) of the non-aqueous secondary battery 2 based on, for example, current integration, the RLS method, or the like. For example, the SOC calculation unit 22 determines the SOC of the non-aqueous secondary battery based on the capacity of the non-aqueous secondary battery 2, the initial SOC, and the current value of the electric power charged and discharged in the non-aqueous secondary battery 2. calculate. The capacity of the non-aqueous secondary battery 2 is the amount of electricity (current×time) that the non-aqueous secondary battery 2 discharges from the certain charged state of the non-aqueous secondary battery 2 until it reaches the discharge end voltage. Ah]. The initial SOC is the SOC in the initial state of the non-aqueous secondary battery 2. The current value of the electric power charged and discharged in the non-aqueous secondary battery 2 is the detection value detected by the current sensor 5.

変化量算出部23は、非水二次電池2の状態の判定に利用可能な特性情報を算出する。一般的に、非水二次電池2の正極および負極は、充電により膨張することが知られている。また、例えば、負極に用いられるグラファイトの膨張率は、正極よりも大きい。このため、充電による非水二次電池2の膨張は負極に起因するものであると考えられる。 The change amount calculation unit 23 calculates characteristic information that can be used to determine the state of the non-aqueous secondary battery 2. It is generally known that the positive electrode and the negative electrode of the non-aqueous secondary battery 2 are expanded by charging. Further, for example, the expansion coefficient of graphite used for the negative electrode is larger than that of the positive electrode. Therefore, the expansion of the non-aqueous secondary battery 2 due to charging is considered to be caused by the negative electrode.

図3は、負極材として用いられたグラファイトの層間距離と、SOCとの関係を示すグラフである。図3に示すように、SOCが増大するにつれて、すなわち、グラファイトの構造内にLiが導入されるにつれて、グラファイトの層間距離は増大する。ここで、グラファイトの層間距離は、SOC(Liにおけるxに相当)が増大するにつれて、線形に増大するのではなく、ステージ構造に応じた不連続な増加挙動を示す。図3に示す例では、層間距離の増加傾向が異なる、すなわち、SOCに対する層間距離の傾きが互いに異なる3つのステージ(ステージ1から3)が存在する。このような、充電時における負極の膨張に起因する非水二次電池2の膨張、若しくは、膨張に応じて面圧分布センサ3に印加され検出される荷重の変化を監視することで、負極の状態(ステージ)を推定することができる。 FIG. 3 is a graph showing the relationship between the interlayer distance of graphite used as the negative electrode material and SOC. As shown in FIG. 3, as the SOC increases, that is, as Li is introduced into the structure of graphite, the interlayer distance of graphite increases. Here, the interlayer distance of graphite does not increase linearly as SOC (corresponding to x in Li x C 6 ) increases, but shows discontinuous increase behavior according to the stage structure. In the example shown in FIG. 3, there are three stages (stages 1 to 3) in which the increasing tendency of the interlayer distance is different, that is, the inclinations of the interlayer distance with respect to the SOC are different from each other. By monitoring the expansion of the non-aqueous secondary battery 2 caused by the expansion of the negative electrode during charging, or the change in the load applied to and detected by the surface pressure distribution sensor 3 in response to the expansion, the negative electrode The state (stage) can be estimated.

そこで、変化量算出部23は、非水二次電池2の充電時において、取得部20により取得された面圧分布センサ3の圧力値を用いて非水二次電池2の負極の膨張(歪み)を算出し、算出した歪みの電気量差分dε/dQを算出する。図4は、負極における歪みεおよびSOCの関係を示すグラフと、歪みの電気量差分dε/dQおよびSOCの関係を示すグラフとを示す図である。図4に示す例は、図3に示すようなSOCに対する層間距離の増加傾向が3つのステージを含む場合に対応するものである。図4に示すように、SOCが増大するにつれて、負極における歪みεは3つのステージ構造に応じた不連続な増加挙動を示す。これら3つのステージ構造に応じた不連続な増加挙動を示す歪みεの電気量差分dε/dQを算出すると、3つのステージ構造の各々と関連付けられる値を得ることができる。このような電気量差分dε/dQを算出することで、歪みの変化量の大きい領域と、小さい領域との判別が可能なり、負極の内部を推定することが可能となる。 Therefore, when the non-aqueous secondary battery 2 is charged, the change amount calculation unit 23 uses the pressure value of the surface pressure distribution sensor 3 acquired by the acquisition unit 20 to expand (strain) the negative electrode of the non-aqueous secondary battery 2. ) Is calculated, and the calculated electric quantity difference dε/dQ of the strain is calculated. FIG. 4 is a graph showing a relationship between the strain ε and the SOC in the negative electrode and a graph showing a relationship between the strain difference electric quantity difference dε/dQ and the SOC. The example shown in FIG. 4 corresponds to the case where the increasing tendency of the interlayer distance with respect to the SOC as shown in FIG. 3 includes three stages. As shown in FIG. 4, as the SOC increases, the strain ε in the negative electrode exhibits a discontinuous increase behavior according to the three-stage structure. By calculating the electrical quantity difference dε/dQ of the strain ε that exhibits discontinuous increase behavior according to these three stage structures, it is possible to obtain values associated with each of the three stage structures. By calculating such an electric amount difference dε/dQ, it is possible to discriminate between a region in which the amount of change in strain is large and a region in which the amount of strain is small, and it is possible to estimate the inside of the negative electrode.

また、変化量算出部23は、非水二次電池2の弾性定数Eが一定と仮定すると、応力σ(=荷重F/面積S)は歪みεに比例するため、図4に示すような歪みεおよびSOCの関係を、荷重FおよびSOCの関係に置き換えて、荷重Fの電気量差分dF/dQにより負極の状態を推定することが可能となる。図5は、負極における荷重FおよびSOCの関係を示すグラフと、荷重Fの電気量差分dF/dQおよびSOCの関係を示すグラフとを示す図である。図5に示すように、SOCが増大するにつれて、負極における荷重Fは3つのステージ構造に応じた不連続な増加挙動を示す。これら3つのステージ構造に応じた不連続な増加挙動を示す荷重Fの電気量差分dF/dQを算出すると、3つのステージ構造の各々と関連付けられる値を得ることができる。このような電気量差分dF/dQを算出することで、荷重Fの変化量の大きい領域と、小さい領域との判別が可能になり、負極の状態を推定することが可能となる。 Further, assuming that the elastic constant E of the non-aqueous secondary battery 2 is constant, the change amount calculation unit 23 determines that the stress σ (=load F/area S) is proportional to the strain ε, and thus the strain as shown in FIG. By replacing the relationship between ε and SOC with the relationship between the load F and SOC, it becomes possible to estimate the state of the negative electrode from the difference in electric quantity dF/dQ of the load F. FIG. 5 is a diagram showing a graph showing the relationship between the load F and the SOC at the negative electrode, and a graph showing the relationship between the electric quantity difference dF/dQ of the load F and the SOC. As shown in FIG. 5, as the SOC increases, the load F on the negative electrode exhibits a discontinuous increase behavior according to the three-stage structure. When the electric quantity difference dF/dQ of the load F that exhibits discontinuous increase behavior corresponding to these three stage structures is calculated, it is possible to obtain values associated with each of the three stage structures. By calculating such an electric amount difference dF/dQ, it is possible to distinguish between a region in which the amount of change in the load F is large and a region in which the amount of change in the load F is small, and it is possible to estimate the state of the negative electrode.

尚、変化量算出部23は、歪みεまたは荷重FのSOCの差分に対する変化量であるdε/dSOCまたはdF/dSOC等の充電状態を示す指標値を算出してもよい。 The change amount calculation unit 23 may calculate an index value indicating the state of charge such as dε/dSOC or dF/dSOC, which is the change amount with respect to the difference between the SOC of the strain ε or the load F.

状態判定部24は、変化量算出部23により算出された歪みεの変化量または荷重Fの変化量に基づいて、非水二次電池2の状態を判定する。例えば、状態判定部24は、非水二次電池2の容量劣化状態、ステージずれ状態等を判定する。 The state determination unit 24 determines the state of the non-aqueous secondary battery 2 based on the change amount of the strain ε or the change amount of the load F calculated by the change amount calculation unit 23. For example, the state determination unit 24 determines the capacity deterioration state, the stage shift state, etc. of the non-aqueous secondary battery 2.

(容量劣化状態の判定)
非水二次電池は、経年劣化等により容量が減少する。状態判定部24は、このような非水二次電池の容量減少を判定する。図6は、基準状態の非水二次電池および電池容量劣化状態の非水二次電池の歪みεの変化量を比較したグラフである。基準状態とは、非水二次電池の健全性が保たれていること(劣化していないこと)が想定される状態である。基準状態には、例えば、非水二次電池の使用前の初期状態を含む。また、基準状態における歪みまたは荷重の変化量は、複数のピクセルの計測値に基づく歪みまたは荷重の平均値であってもよい。図6においては、基準状態の非水二次電池のグラフと、容量劣化状態の非水二次電池のグラフとの挙動の違いを見易くするために、容量劣化状態の非水二次電池のグラフの縦軸(歪み)をオフセットして表している。図6においては、基準状態の非水二次電池の負極の状態をステージ1から3で示し、容量劣化状態の非水二次電池の負極の状態をステージ1Aから3Aで示している。負極の容量が減少した場合、同じSOCに対して、負極の充電深度の変化量が増大する。このため、図6に示すように、基準状態の非水二次電池のステージ2と比較して、容量劣化状態の非水二次電池のステージ2Aの幅であるSOCstg2A[Ah]が、ステージ1Aとの切り替え点側とステージ3Aとの切り替え点側においてそれぞれΔSOC1、ΔSOC2またはΔQ1、ΔQ2だけ狭くなる。すなわち、ステージ2Aの幅であるSOCstg2A[Ah]が、ΔSOC1+ΔSOC2(またはΔQ1+ΔQ2)だけ狭くなる。従来は、単純に歪みまたは荷重を計測するだけでは劣化状態、温度等によりその絶対値が変動するため、上述のステージの推定には使用できなかった。一方、本実施形態の状態判定部24は、上述の傾向に基づいて、負極の容量減少を検知することができる。
(Determining the capacity deterioration state)
The capacity of the non-aqueous secondary battery decreases due to deterioration over time. The state determination unit 24 determines such a capacity decrease of the non-aqueous secondary battery. FIG. 6 is a graph comparing the amount of change in strain ε of the non-aqueous secondary battery in the reference state and the non-aqueous secondary battery in the state of deteriorated battery capacity. The reference state is a state in which it is assumed that the soundness of the non-aqueous secondary battery is maintained (not deteriorated). The reference state includes, for example, an initial state before using the non-aqueous secondary battery. Further, the amount of change in strain or load in the reference state may be an average value of strain or load based on measured values of a plurality of pixels. In FIG. 6, in order to make it easier to see the difference in behavior between the graph of the non-aqueous secondary battery in the reference state and the graph of the non-aqueous secondary battery in the deteriorated capacity, a graph of the non-aqueous secondary battery in the deteriorated capacity is shown. The vertical axis (distortion) of is offset. In FIG. 6, the states of the negative electrode of the non-aqueous secondary battery in the standard state are shown by stages 1 to 3, and the states of the negative electrode of the non-aqueous secondary battery in the state of capacity deterioration are shown by stages 1A to 3A. When the capacity of the negative electrode decreases, the amount of change in the charging depth of the negative electrode increases for the same SOC. Therefore, as shown in FIG. 6, as compared with the stage 2 of the non-aqueous secondary battery in the standard state, the SOCstg2A[Ah], which is the width of the stage 2A of the non-aqueous secondary battery in the deteriorated capacity, is equal to the stage 1A. On the side of the switching point between and and on the side of the switching point between stage 3A, the distance becomes narrower by ΔSOC1, ΔSOC2 or ΔQ1, ΔQ2, respectively. That is, SOCstg2A[Ah], which is the width of the stage 2A, is narrowed by ΔSOC1+ΔSOC2 (or ΔQ1+ΔQ2). Conventionally, simply measuring strain or load cannot be used for estimation of the above-mentioned stage because the absolute value thereof varies depending on the deterioration state, temperature, and the like. On the other hand, the state determination unit 24 of the present embodiment can detect the decrease in the capacity of the negative electrode based on the above tendency.

図7は、基準状態の非水二次電池および電池容量劣化状態の非水二次電池の荷重Fの変化量を比較したグラフである。図7においては、基準状態の非水二次電池のグラフと、容量劣化状態の非水二次電池のグラフとの挙動の違いを見易くするために、容量劣化状態の非水二次電池のグラフの縦軸(荷重)をオフセットして表している。図7においては、基準状態の非水二次電池のステージをステージ1から3で示し、容量劣化状態の非水二次電池のステージをステージ1Aから3Aで示している。負極の容量が劣化した場合、同じSOCに対して、負極の充電深度の変化量が増大する。このため、図7に示すように、基準状態の非水二次電池のステージ2と比較して、容量劣化状態の非水二次電池のステージ2Aの幅であるSOCstg2A[Ah]が、ステージ1Aとの切り替え点側とステージ3Aとの切り替え点側においてそれぞれΔSOC1、ΔSOC2またはΔQ1、ΔQ2だけ狭くなる。すなわち、ステージ2Aの幅であるSOCstg2A[Ah]が、ΔSOC1+ΔSOC2(またはΔQ1+ΔQ2)だけ狭くなる。状態判定部24は、この傾向に基づいて、負極の容量減少を検知することができる。 FIG. 7 is a graph comparing the amount of change in the load F of the non-aqueous secondary battery in the reference state and the non-aqueous secondary battery in the state of deteriorated battery capacity. In FIG. 7, in order to make it easier to see the difference in behavior between the graph of the non-aqueous secondary battery in the reference state and the graph of the non-aqueous secondary battery in the deteriorated capacity, a graph of the non-aqueous secondary battery in the deteriorated capacity is shown. The vertical axis (load) of is offset. In FIG. 7, the stages of the non-aqueous secondary battery in the standard state are shown by stages 1 to 3, and the stages of the non-aqueous secondary battery in the capacity deteriorated state are shown by stages 1A to 3A. When the capacity of the negative electrode deteriorates, the amount of change in the charging depth of the negative electrode increases for the same SOC. Therefore, as shown in FIG. 7, the SOCstg2A[Ah], which is the width of the stage 2A of the non-aqueous secondary battery in the capacity deteriorated state, is smaller than that of the stage 1A of the non-aqueous secondary battery in the standard state, as shown in FIG. On the side of the switching point between and, and on the side of the switching point between stage 3A, ΔSOC1 and ΔSOC2 or ΔQ1 and ΔQ2, respectively. That is, SOCstg2A[Ah], which is the width of the stage 2A, is narrowed by ΔSOC1+ΔSOC2 (or ΔQ1+ΔQ2). The state determination unit 24 can detect the decrease in the capacity of the negative electrode based on this tendency.

状態判定部24は、例えば、ステージ2の幅の大きさを検知するために、ステージ1(1A)とステージ2(2A)との切り替え点のSOCと、ステージ2(2A)とステージ3(3A)との切り替え点のSOCを判定する。 For example, the state determination unit 24 detects the width of the stage 2 by detecting the SOC of the switching point between the stage 1 (1A) and the stage 2 (2A), the stage 2 (2A), and the stage 3 (3A). ) And the SOC of the switching point.

(ステージずれ状態の判定)
非水二次電池は、N/P比のずれ等に起因して、SOC−ステージ関係にずれ(以下、「ステージずれ」とも言う)が生じる場合がある。状態判定部24は、このような非水二次電池のステージずれを判定する。図8は、基準状態の非水二次電池およびステージずれ状態の非水二次電池の歪みεの変化量を比較したグラフである。図8においては、基準状態の非水二次電池のグラフと、ステージずれ状態の非水二次電池のグラフとの挙動の違いを見易くするために、ステージずれ状態の非水二次電池のグラフの縦軸(歪み)をオフセットして表している。図8においては、基準状態の非水二次電池のステージをステージ1から3で示し、ステージずれ状態の非水二次電池のステージをステージ1Bから3Bで示している。図8に示すように、基準状態の非水二次電池と比較して、ステージずれ状態の非水二次電池のステージが変化する位置(ステージ3Bからステージ2Bに変化する位置、ステージ2Bからステージ1Bに変化する位置)がΔSOC%だけずれることになる。状態判定部24は、このずれの有無に基づいて、ステージずれを検知することができる。
(Determination of stage misalignment)
In the non-aqueous secondary battery, a shift in the SOC-stage relationship (hereinafter, also referred to as “stage shift”) may occur due to a shift in the N/P ratio or the like. The state determination unit 24 determines such a stage shift of the non-aqueous secondary battery. FIG. 8 is a graph comparing the amounts of change in strain ε of the non-aqueous secondary battery in the reference state and the non-aqueous secondary battery in the displaced state. In FIG. 8, in order to make it easier to see the difference in behavior between the graph of the non-aqueous secondary battery in the standard state and the graph of the non-aqueous secondary battery in the stage shifted state, a graph of the non-aqueous secondary battery in the stage shifted state is shown. The vertical axis (strain) of is offset. In FIG. 8, the stages of the non-aqueous secondary battery in the reference state are shown by stages 1 to 3, and the stages of the non-aqueous secondary battery in the stage shift state are shown by stages 1B to 3B. As shown in FIG. 8, as compared with the non-aqueous secondary battery in the standard state, the position of the non-aqueous secondary battery in the stage shift state is changed (the position changed from the stage 3B to the stage 2B, the stage 2B to the stage). The position (change to 1B) is shifted by ΔSOC%. The state determination unit 24 can detect the stage shift based on the presence or absence of the shift.

図9は、基準状態の非水二次電池およびステージずれ状態の非水二次電池の荷重Fの変化量を比較したグラフである。図9においては、基準状態の非水二次電池のグラフと、ステージずれ状態の非水二次電池のグラフとの挙動の違いを見易くするために、ステージずれ状態の非水二次電池のグラフの縦軸(荷重)をオフセットして表している。図9においては、基準状態の非水二次電池のステージをステージ1から3で示し、ステージずれ状態の非水二次電池のステージをステージ1Bから3Bで示している。図9に示すように、基準状態の非水二次電池と比較して、ステージずれ状態の非水二次電池のステージが変化する位置(ステージ3Bからステージ2Bに変化する位置、ステージ2Bからステージ1Bに変化する位置)がΔSOC%だけずれることになる。状態判定部24は、このずれの有無に基づいて、ステージずれを検知することができる。 FIG. 9 is a graph comparing the amount of change in the load F of the non-aqueous secondary battery in the standard state and the non-aqueous secondary battery in the stage-shifted state. In FIG. 9, in order to make it easier to see the difference in behavior between the graph of the non-aqueous secondary battery in the standard state and the graph of the non-aqueous secondary battery in the displaced state, a graph of the non-aqueous secondary battery in the displaced state is shown. The vertical axis (load) of is offset. In FIG. 9, the stages of the non-aqueous secondary battery in the standard state are shown by stages 1 to 3, and the stages of the non-aqueous secondary battery in the stage shift state are shown by stages 1B to 3B. As shown in FIG. 9, as compared with the non-aqueous secondary battery in the standard state, the position of the stage of the non-aqueous secondary battery in the stage shift state changes (the position changing from the stage 3B to the stage 2B, the stage 2B to the stage). The position (change to 1B) is shifted by ΔSOC%. The state determination unit 24 can detect the stage shift based on the presence or absence of the shift.

状態判定部24は、例えば、上記のずれの有無を検知するために、ステージ1(1B)とステージ2(2B)との切り替え点のSOCと、ステージ2(2B)とステージ3(3B)との切り替え点のSOCを判定する。 For example, in order to detect the presence or absence of the above deviation, the state determination unit 24 determines the SOC of the switching point between the stage 1 (1B) and the stage 2 (2B), the stage 2 (2B) and the stage 3 (3B). SOC of the switching point of is determined.

充放電制御部25は、状態判定部24により判定された非水二次電池の状態に基づいて、非水二次電池2の充放電を制御する。例えば、充放電制御部25は、充電制御において、利用可能な電力の上限値である充電許可電力、利用可能な電圧の上限値である充電許可電圧、利用可能な電流の上限値である充電許可電流の設定に利用されるSOCの基準値を、上述のΔSOC%に基づいて変更する。また、例えば、充放電制御部25は、放電制御において、利用可能な電力の上限値である放電許可電力、利用可能な電圧の上限値である放電許可電圧、利用可能な電流の上限値である放電許可電流の設定に利用されるSOCの基準値を、上述のΔSOC%に基づいて変更する。 The charge/discharge control unit 25 controls charging/discharging of the non-aqueous secondary battery 2 based on the state of the non-aqueous secondary battery determined by the state determination unit 24. For example, the charge/discharge control unit 25, in the charge control, the charge permission power that is the upper limit value of the usable power, the charge permission voltage that is the upper limit value of the usable voltage, and the charge permission that is the upper limit value of the usable current. The SOC reference value used for setting the current is changed based on the above-mentioned ΔSOC%. In addition, for example, the charge/discharge control unit 25, in the discharge control, the discharge permission power that is the upper limit value of the usable power, the discharge permission voltage that is the upper limit value of the usable voltage, and the upper limit value of the usable current. The SOC reference value used for setting the discharge permission current is changed based on the above-mentioned ΔSOC%.

報知部26は、出力部7を制御して、状態判定部24の判定結果や、充放電制御部25の制御内容の変更に関する情報を報知する。出力部7は、例えば、車内に設置されたディスプレイやスピーカ等である。例えば、報知部26は、非水二次電池2の容量が劣化していることや、充放電制御における条件(SOCの基準値)が変更されたことを報知するメッセージやイメージをディスプレイに表示させる。また、報知部26は、非水二次電池2の容量が劣化していることや、充放電制御における条件(SOCの基準値)が変更されたことを報知するメッセージやエラー音などをスピーカから出力させてもよい。 The notification unit 26 controls the output unit 7 to notify the determination result of the state determination unit 24 and the information regarding the change of the control content of the charge/discharge control unit 25. The output unit 7 is, for example, a display or a speaker installed in the vehicle. For example, the notification unit 26 causes the display to display a message or an image notifying that the capacity of the non-aqueous secondary battery 2 has deteriorated or that the condition (SOC reference value) in charge/discharge control has been changed. .. In addition, the notification unit 26 outputs a message, an error sound, or the like from the speaker to notify that the capacity of the non-aqueous secondary battery 2 has deteriorated or that the condition (reference value of SOC) in charge/discharge control has been changed. You may output it.

記憶部12は、例えば、HDD(Hard Disc Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、ROM(Read Only Memory)、またはRAM(Random Access Memory)等により実現される。 The storage unit 12 is realized by, for example, an HDD (Hard Disc Drive), a flash memory, an EEPROM (Electrically Erasable Programmable Read Only Memory), a ROM (Read Only Memory), a RAM (Random Access Memory), or the like.

(ECU1の処理)
図10は、ECU1による処理の一例を示すフローチャートである。まず、ECU1が搭載されている電気自動車のイグニッションがオンされる(ステップS101)。ここでは、非水二次電池2の充電処理が既に行われており、充電時に取得された面圧分布、電流、および電圧の情報が記憶部12に記憶されているものとして説明する。
(Processing of ECU 1)
FIG. 10 is a flowchart showing an example of processing by the ECU 1. First, the ignition of the electric vehicle equipped with the ECU 1 is turned on (step S101). Here, it is assumed that the charging process of the non-aqueous secondary battery 2 has already been performed, and the information on the surface pressure distribution, the current, and the voltage acquired at the time of charging is stored in the storage unit 12.

次に、充電電気量算出部21は、記憶部12に記憶されている電流電圧情報12Bに基づいて、充電電気量を算出する(ステップS103)。ここで、充電電気量算出部21は、充電時における充電電気量を積算することで、充電電気量の経時変化を算出する。 Next, the charged electricity amount calculation unit 21 calculates the charged electricity amount based on the current-voltage information 12B stored in the storage unit 12 (step S103). Here, the charged electricity amount calculation unit 21 calculates the change with time of the charged electricity amount by integrating the charged electricity amount during charging.

次に、変化量算出部23は、記憶部12に記憶されている面圧分布情報12Aに基づいて、圧力センサ素子30ごとに(ピクセルごとに)非水二次電池2の歪みまたは荷重を算出する(ステップS105)。次に、変化量算出部23は、算出した歪みまたは荷重と、充電電気量算出部21により算出された充電電気量とに基づいて、ピクセルごとに、歪みまたは荷重の変化量を算出する(S107)。歪みまたは荷重の変化量は、例えば、歪みεの電気量差分dε/dQまたは荷重Fの電気量差分dF/dQである。 Next, the change amount calculation unit 23 calculates the strain or load of the non-aqueous secondary battery 2 for each pressure sensor element 30 (for each pixel) based on the surface pressure distribution information 12A stored in the storage unit 12. Yes (step S105). Next, the change amount calculation unit 23 calculates the change amount of the strain or load for each pixel based on the calculated strain or load and the charged electricity amount calculated by the charged electricity amount calculation unit 21 (S107). ). The amount of change in strain or load is, for example, the difference in electric amount dε/dQ of the strain ε or the difference in electric amount dF/dQ of the load F.

次に、SOC算出部22は、記憶部12に記憶されている電流電圧情報12Bに基づいて、非水二次電池2のSOCを算出する(ステップS109)。ここで、SOC算出部22は、充電時におけるSOCの経時変化を算出する。次に、状態判定部24は、変化量算出部23により算出された歪みまたは荷重の変化量と、SOC算出部22により算出されたSOCとに基づいて、非水二次電池2の状態を判定する(ステップS111)。例えば、状態判定部24は、ピクセルごとに、SOCと、歪みまたは荷重の変化量との関係を示すグラフを生成し、ステージの切り替え点のSOCを判定する。例えば、状態判定部24は、図8に示すようなステージ1からステージ2への切り替え点のSOCを判定する。そして、状態判定部24は、ピクセルごとに判定されたステージの切り替え点のSOCの平均値(以下、「平均ステージ切り替え点」と呼ぶ)を算出する。そして、状態判定部24は、例えば、以下の式(1)に基づいて、算出した平均ステージ切り替え点と、各ピクセルの切り替え点との差分の最大値ΔSOCmaxを算出する。 Next, the SOC calculation unit 22 calculates the SOC of the non-aqueous secondary battery 2 based on the current/voltage information 12B stored in the storage unit 12 (step S109). Here, the SOC calculation unit 22 calculates the change with time of SOC during charging. Next, the state determination unit 24 determines the state of the non-aqueous secondary battery 2 based on the strain or load change amount calculated by the change amount calculation unit 23 and the SOC calculated by the SOC calculation unit 22. Yes (step S111). For example, the state determination unit 24 generates a graph showing the relationship between the SOC and the amount of change in strain or load for each pixel, and determines the SOC at the switching point of the stage. For example, the state determination unit 24 determines the SOC at the switching point from stage 1 to stage 2 as shown in FIG. Then, the state determination unit 24 calculates the average value of the SOC of the stage switching points determined for each pixel (hereinafter, referred to as “average stage switching point”). Then, the state determination unit 24 calculates the maximum value ΔSOC max of the difference between the calculated average stage switching point and the switching point of each pixel based on the following equation (1), for example.

ΔSOCmax=max(|各ピクセルのステージ1切り替え点SOC−平均ステージ切り替え点SOC|)・・・式(1) ΔSOC max =max(|stage 1 switching point SOC of each pixel−average stage switching point SOC|) Equation (1)

次に、状態判定部24は、算出したΔSOCmaxが予め設定された閾値以上であるか否かを判定する(ステップS113)。状態判定部24によりΔSOCmaxが閾値以上ではないと判定された場合、充電電気量算出部21は、他の充電時における充電電気量を算出し(ステップS103)、以降の処理を繰り返す。 Next, the state determination unit 24 determines whether or not the calculated ΔSOC max is greater than or equal to a preset threshold value (step S113). When the state determination unit 24 determines that ΔSOC max is not equal to or more than the threshold value, the charged electricity amount calculation unit 21 calculates the charged electricity amount during another charging (step S103) and repeats the subsequent processing.

状態判定部24によりΔSOCmaxが閾値以上であると判定された場合、充放電制御部25は、状態判定部24により判定された非水二次電池の状態に基づいて、非水二次電池2の充放電を制御する(ステップS115)。例えば、充放電制御部25は、充電制御における、充電許可電力、充電許可電圧、および充電許可電流の設定に利用されるSOCの基準値SOCを、「SOC+ΔSOCmax」に更新する。また、充放電制御部25は、放電制御における、放電許可電力、放電許可電圧、および放電許可電流の設定に利用されるSOCの基準値SOCを、「SOC−ΔSOCmax」に更新する。 When the state determination unit 24 determines that ΔSOC max is greater than or equal to the threshold value, the charge/discharge control unit 25 determines the non-aqueous secondary battery 2 based on the state of the non-aqueous secondary battery determined by the state determination unit 24. The charging/discharging is controlled (step S115). For example, the charge/discharge control unit 25 updates the SOC reference value SOC used for setting the charge permitted power, the charge permitted voltage, and the charge permitted current in the charge control to “SOC+ΔSOC max ”. Further, the charge/discharge control unit 25 updates the SOC reference value SOC used for setting the discharge permitting power, the discharge permitting voltage, and the discharge permitting current in the discharge control to “SOC−ΔSOC max ”.

図11は、放電許可電力の設定値を説明する図である。図11に示すように、従来においては、上記のような局所的なSOCのステージずれが生じている場合であっても、考慮されず、SOCの平均値SOCaveが放電許可電力の基準値として採用されていた。一方、本実施形態では、荷重Fの変化量等から算出された局所的なSOCを考慮し、平均よりもSOCが低い電極面領域を考慮して、平均値SOCaveよりも低い「SOC−ΔSOCmax」に放電許可電力の基準値として採用する。これにより、局所的なSOCを考慮した充放電制御が可能となる。 FIG. 11 is a diagram for explaining the set value of the discharge permission power. As shown in FIG. 11, conventionally, even when the above-described local SOC stage deviation occurs, it is not taken into consideration, and the average value SOC ave of the SOC is used as the reference value of the discharge permission power. Was adopted. On the other hand, in the present embodiment, in consideration of the local SOC calculated from the amount of change in the load F, etc., and in consideration of the electrode surface region whose SOC is lower than the average, “SOC P − lower than the average value SOC ave ” is considered. ΔSOC max ” is adopted as the reference value of the discharge permitted power. This enables charge/discharge control in consideration of local SOC.

次に、報知部26は、出力部7を制御して、例えば、充電制御における、充電許可電力、充電許可電圧、および充電許可電流の設定が変更されたこと、放電電制御における、放電許可電力、放電許可電圧、および放電許可電流の設定が変更されたこと等を報知する(ステップS117)。以上により、本フローチャートの処理を終了する。 Next, the notification unit 26 controls the output unit 7 to, for example, change the settings of the charging permission power, the charging permission voltage, and the charging permission current in the charging control, and the discharging permission power in the discharging control. , The discharge permission voltage and the discharge permission current have been changed (step S117). With the above, the processing of this flowchart is completed.

以上説明した第1実施形態によれば、電極の局所的な状態を判定し、判定した状態に適した充放電制御を行うことができる。 According to the first embodiment described above, it is possible to determine the local state of the electrode and perform charge/discharge control suitable for the determined state.

<第2実施形態>
以下、第2実施形態について説明する。第1実施形態と比較して、第2実施形態のECU1は、面圧分布センサ3の複数の圧力センサ素子30ごとに(ピクセルごとに)非水二次電池2の歪みまたは荷重を算出する代わりに、複数のピクセルをまとめてクラスタとして処理する点が異なる。このため、構成などについては第1実施形態で説明した図および関連する記載を援用し、詳細な説明を省略する。
<Second Embodiment>
The second embodiment will be described below. Compared to the first embodiment, the ECU 1 of the second embodiment calculates strain or load of the non-aqueous secondary battery 2 for each of the plurality of pressure sensor elements 30 of the surface pressure distribution sensor 3 (for each pixel). The difference is that a plurality of pixels are collectively processed as a cluster. Therefore, for the configuration and the like, the drawings described in the first embodiment and the related description are used, and the detailed description is omitted.

(ECU1の処理)
図12は、ECU1による処理の一例を示すフローチャートである。まず、ECU1が搭載されている電気自動車のイグニッションがオンされる(ステップS201)。ここでは、非水二次電池2の充電処理が既に行われており、充電時に取得された面圧分布、電流、および電圧の情報が記憶部12に記憶されているものとして説明する。
(Processing of ECU 1)
FIG. 12 is a flowchart showing an example of processing by the ECU 1. First, the ignition of the electric vehicle equipped with the ECU 1 is turned on (step S201). Here, it is assumed that the charging process of the non-aqueous secondary battery 2 has already been performed, and the information on the surface pressure distribution, the current, and the voltage acquired at the time of charging is stored in the storage unit 12.

次に、充電電気量算出部21は、記憶部12に記憶されている電流電圧情報12Bに基づいて、充電電気量を算出する(ステップS203)。ここで、充電電気量算出部21は、充電時における充電電気量を積算することで、充電電気量の経時変化を算出する。 Next, the charged electricity amount calculation unit 21 calculates the charged electricity amount based on the current-voltage information 12B stored in the storage unit 12 (step S203). Here, the charged electricity amount calculation unit 21 calculates the change with time of the charged electricity amount by integrating the charged electricity amount during charging.

次に、変化量算出部23は、記憶部12に記憶されている面圧分布情報12Aに基づいて、面圧分布センサ3の複数のピクセルをクラスタ化し、クラスタごとに非水二次電池2の歪みまたは荷重を算出する(ステップS205)。次に、変化量算出部23は、算出した歪みまたは荷重と、充電電気量算出部21により算出された充電電気量とに基づいて、クラスタごとに、歪みまたは荷重の変化量を算出する(S207)。歪みまたは荷重の変化量は、例えば、歪みεの電気量差分dε/dQまたは荷重Fの電気量差分dF/dQである。 Next, the change amount calculation unit 23 clusters a plurality of pixels of the surface pressure distribution sensor 3 based on the surface pressure distribution information 12A stored in the storage unit 12, and the clusters of the non-aqueous secondary battery 2 are clustered. The strain or load is calculated (step S205). Next, the change amount calculation unit 23 calculates the change amount of the strain or load for each cluster based on the calculated strain or load and the charged electricity amount calculated by the charged electricity amount calculation unit 21 (S207). ). The amount of change in strain or load is, for example, the difference in electric amount dε/dQ of the strain ε or the difference in electric amount dF/dQ of the load F.

次に、SOC算出部22は、記憶部12に記憶されている電流電圧情報12Bに基づいて、非水二次電池2のSOCを算出する(ステップS209)。ここで、SOC算出部22は、充電時におけるSOCの経時変化を算出する。次に、状態判定部24は、変化量算出部23により算出された歪みまたは荷重の変化量と、SOC算出部22により算出されたSOCとに基づいて、非水二次電池2の状態を判定する(ステップS211)。例えば、状態判定部24は、クラスタごとに、SOCと、歪みまたは荷重の変化量との関係を示すグラフを生成し、ステージの切り替え点のSOCを判定する。そして、状態判定部24は、クラスタごとに判定されたステージの切り替え点のSOCの平均値(以下、「平均ステージ切り替え点」と呼ぶ)を算出する。次に、状態判定部24は、例えば、以下の式(1)に基づいて、算出した平均ステージ切り替え点と、各ピクセルの切り替え点との差分の最大値ΔSOCmaxを算出する。 Next, the SOC calculation unit 22 calculates the SOC of the non-aqueous secondary battery 2 based on the current/voltage information 12B stored in the storage unit 12 (step S209). Here, the SOC calculation unit 22 calculates the change with time of SOC during charging. Next, the state determination unit 24 determines the state of the non-aqueous secondary battery 2 based on the strain or load change amount calculated by the change amount calculation unit 23 and the SOC calculated by the SOC calculation unit 22. Yes (step S211). For example, the state determination unit 24 generates a graph showing the relationship between the SOC and the amount of change in strain or load for each cluster, and determines the SOC at the stage switching point. Then, the state determination unit 24 calculates the average value of the SOC of the switching points of the stages determined for each cluster (hereinafter, referred to as “average stage switching point”). Next, the state determination unit 24 calculates the maximum value ΔSOC max of the difference between the calculated average stage switching point and the switching point of each pixel based on the following equation (1), for example.

ΔSOCmax=max(|各クラスタのステージ1切り替え点SOC−平均ステージ切り替え点SOC|)・・・式(1) ΔSOC max =max(|stage 1 switching point SOC-average stage switching point SOC| of each cluster) Equation (1)

次に、状態判定部24は、算出したΔSOCmaxが予め設定された閾値以上であるか否かを判定する(ステップS213)。状態判定部24によりΔSOCmaxが閾値以上ではないと判定された場合、充電電気量算出部21は、他の充電時における充電電気量を算出し(ステップS203)、以降の処理を繰り返す。 Next, the state determination unit 24 determines whether or not the calculated ΔSOC max is greater than or equal to a preset threshold value (step S213). When the state determination unit 24 determines that ΔSOC max is not equal to or more than the threshold value, the charged electricity amount calculation unit 21 calculates the charged electricity amount during another charging (step S203) and repeats the subsequent processing.

状態判定部24によりΔSOCmaxが閾値以上であると判定された場合、充放電制御部25は、状態判定部24により判定された非水二次電池の状態に基づいて、非水二次電池2の充放電を制御する(ステップS215)。例えば、充放電制御部25は、充電制御における、充電許可電力、充電許可電圧、および充電許可電流の設定に利用されるSOCの基準値SOCを、「SOC+ΔSOCmax」に更新する。また、充放電制御部25は、放電制御における、放電許可電力、放電許可電圧、および放電許可電流の設定に利用されるSOCの基準値SOCを、「SOC−ΔSOCmax」に更新する。 When the state determination unit 24 determines that ΔSOC max is greater than or equal to the threshold value, the charge/discharge control unit 25 determines the non-aqueous secondary battery 2 based on the state of the non-aqueous secondary battery determined by the state determination unit 24. The charging/discharging is controlled (step S215). For example, the charge/discharge control unit 25 updates the SOC reference value SOC used for setting the charge permitted power, the charge permitted voltage, and the charge permitted current in the charge control to “SOC+ΔSOC max ”. Further, the charge/discharge control unit 25 updates the SOC reference value SOC used for setting the discharge permitting power, the discharge permitting voltage, and the discharge permitting current in the discharge control to “SOC−ΔSOC max ”.

次に、報知部26は、出力部7を制御して、例えば、充電制御における、充電許可電力、充電許可電圧、および充電許可電流の設定が変更されたこと、放電電制御における、放電許可電力、放電許可電圧、および放電許可電流の設定が変更されたこと等を報知する(ステップS217)。以上により、本フローチャートの処理を終了する。 Next, the notification unit 26 controls the output unit 7 to, for example, change the settings of the charging permission power, the charging permission voltage, and the charging permission current in the charging control, and the discharging permission power in the discharging control. , The discharge permission voltage and the discharge permission current have been changed (step S217). With the above, the processing of this flowchart is completed.

図13は、クラスタごとに算出されたSOCと荷重Fの変化量との関係を示す図である。図13では、面圧分布センサ3における複数のピクセルを行ごとに集合化して積算した場合の例を示す。図13に示すように、非水二次電池2の初期におけるステージ2の幅D1と比較して、非水二次電池2の所定サイクル利用後における負極の缶底側および缶蓋側にステージ2の幅が減少している領域(幅がD1a、D1b)が確認できる。このステージ2の幅の減少により、該所定サイクル利用後においては、負極劣化が進行していることを推定することができる。 FIG. 13 is a diagram showing the relationship between the SOC calculated for each cluster and the amount of change in the load F. FIG. 13 shows an example in which a plurality of pixels in the surface pressure distribution sensor 3 are collected for each row and integrated. As shown in FIG. 13, as compared with the width D1 of the stage 2 in the initial stage of the non-aqueous secondary battery 2, the stage 2 is provided on the can bottom side and the can lid side of the negative electrode after the non-aqueous secondary battery 2 has been used for a predetermined cycle. Areas (widths D1a and D1b) in which the width of the area is reduced can be confirmed. Due to the decrease in the width of the stage 2, it can be estimated that the negative electrode deterioration has progressed after the use of the predetermined cycle.

以上説明した第2実施形態によれば、電極の局所的な状態を判定し、判定した状態に適した充放電制御を行うことができる。 According to the second embodiment described above, it is possible to determine the local state of the electrode and perform charge/discharge control suitable for the determined state.

尚、ECU1は、面圧分布センサ3のピクセルごとの処理と、クラスタごとの処理との双方を行うようにしてもよい。また、非水二次電池2が組電池である場合、この組電池に含まれる複数のセルの各々に温度センサを設置して温度を計測し、計測した温度が最も高いセルにおける面圧分布の計測値を取得して処理するようにしてもよい。また、ECU1は、負極にグラファイトだけでなくシリコン系材料をグラファイトに添加したリチウムイオン二次電池にも適用可能である。 The ECU 1 may perform both the process for each pixel of the surface pressure distribution sensor 3 and the process for each cluster. When the non-aqueous secondary battery 2 is an assembled battery, a temperature sensor is installed in each of a plurality of cells included in the assembled battery to measure the temperature, and the surface pressure distribution of the cell having the highest measured temperature is measured. You may make it acquire and process a measured value. The ECU 1 is also applicable to a lithium ion secondary battery in which not only graphite but also a silicon-based material is added to graphite in the negative electrode.

以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形および置換を加えることができる。 As described above, the embodiments for carrying out the present invention have been described by using the embodiments, but the present invention is not limited to such embodiments, and various modifications and substitutions are made without departing from the gist of the present invention. Can be added.

1…ECU、2…非水二次電池、3…面圧分布センサ、4…筐体バインドバー、5…電流センサ、6…電圧センサ、7…出力部、10…制御部、12…記憶部、20…取得部、21…充電電気量算出部、22…SOC算出部、23…変化量算出部、24…状態判定部、25…充放電制御部、26…報知部 DESCRIPTION OF SYMBOLS 1... ECU, 2... Non-aqueous secondary battery, 3... Surface pressure distribution sensor, 4... Housing bind bar, 5... Current sensor, 6... Voltage sensor, 7... Output part, 10... Control part, 12... Storage part , 20... Acquisition unit, 21... Charging electricity amount calculation unit, 22... SOC calculation unit, 23... Change amount calculation unit, 24... State determination unit, 25... Charge/discharge control unit, 26... Notification unit

Claims (12)

二次電池の筐体の所定の面における複数の位置で、荷重又は歪みの計測値を取得する取得部と、
前記複数の位置のそれぞれにおける、前記二次電池の充電率に対する前記荷重又は前記歪みの変化に基づいて、前記二次電池の充放電を制御する制御部と、
を備える制御装置。
An acquisition unit that acquires a measured value of load or strain at a plurality of positions on a predetermined surface of the housing of the secondary battery,
In each of the plurality of positions, based on the change of the load or the strain with respect to the charging rate of the secondary battery, a control unit that controls the charging and discharging of the secondary battery,
A control device including.
前記複数の位置での前記荷重又は前記歪みの計測値は、前記二次電池の筐体に接触して配置された圧力分布センサによって計測される、
請求項1に記載の制御装置。
The measured values of the load or the strain at the plurality of positions are measured by a pressure distribution sensor arranged in contact with the casing of the secondary battery,
The control device according to claim 1.
前記圧力分布センサの検出素子ごとに、前記荷重又は前記歪みの前記充電率に対する変化量を算出する算出部をさらに備える、
請求項2に記載の制御装置。
For each detection element of the pressure distribution sensor, further comprising a calculation unit that calculates a change amount of the load or the strain with respect to the charging rate,
The control device according to claim 2.
前記圧力分布センサの複数の検出素子を含む集合ごとに、前記荷重又は前記歪みを積算して、前記荷重又は前記歪みの前記充電率に対する変化量を算出する算出部をさらに備える、
請求項2に記載の制御装置。
For each set including a plurality of detection elements of the pressure distribution sensor, the load or the strain is integrated, further comprising a calculation unit for calculating a change amount of the load or the strain with respect to the charging rate,
The control device according to claim 2.
前記荷重又は前記歪みの変化は、前記荷重又は前記歪みの電気量ごとの差分、または前記荷重又は前記歪みの充電率ごとの差分である、
請求項1から4のいずれか一項に記載の制御装置。
The change in the load or the strain is a difference for each electric quantity of the load or the strain, or a difference for each charge rate of the load or the strain,
The control device according to any one of claims 1 to 4.
前記制御部は、前記二次電池の充放電における、電流、電圧、および電力の少なくとも1つを制御する、
請求項1から5のいずれか一項に記載の制御装置。
The control unit controls at least one of current, voltage, and power in charging/discharging the secondary battery,
The control device according to any one of claims 1 to 5.
前記荷重又は前記歪みの変化に基づいて、前記二次電池の状態を判定する判定部をさらに備える、
請求項1から6のいずれか一項に記載の制御装置。
Further comprising a determination unit that determines the state of the secondary battery based on the change in the load or the strain,
The control device according to any one of claims 1 to 6.
前記判定部は、前記荷重又は前記歪みの変化の増加傾向の違いに基づいて、前記二次電池の状態を判定する、
請求項7に記載の制御装置。
The determination unit determines the state of the secondary battery based on the difference in the increasing tendency of the change in the load or the strain,
The control device according to claim 7.
前記二次電池は、リチウムイオン電池である、
請求項1から8のいずれか一項に記載の制御装置。
The secondary battery is a lithium-ion battery,
The control device according to any one of claims 1 to 8.
前記取得部は、前記二次電池が組電池である場合、前記組電池に含まれる複数のセルのうち、温度が最も高いセルにおける前記荷重又は前記歪みの計測値を取得する、
請求項1から9のいずれか一項に記載の制御装置。
The acquisition unit, when the secondary battery is an assembled battery, among the plurality of cells included in the assembled battery, acquires the measured value of the load or the strain in the cell having the highest temperature,
The control device according to any one of claims 1 to 9.
二次電池と、
前記二次電池の筐体に接触して配置された圧力センサと、
前記二次電池の充放電を制御する制御装置と、
を備え、
前記制御装置は、
前記圧力センサにより計測された、前記二次電池の筐体の所定の面における複数の位置での、荷重又は歪みの計測値を取得する取得部と、
前記複数の位置のそれぞれにおける、前記二次電池の充電率に対する前記荷重又は前記歪みの変化に基づいて、前記二次電池の充放電を制御する制御部と、
を備える、
バッテリモジュール。
A secondary battery,
A pressure sensor arranged in contact with the housing of the secondary battery,
A control device for controlling charge/discharge of the secondary battery,
Equipped with
The control device is
An acquisition unit that acquires measured values of load or strain at a plurality of positions on a predetermined surface of the casing of the secondary battery, which are measured by the pressure sensor,
In each of the plurality of positions, based on the change of the load or the strain with respect to the charging rate of the secondary battery, a control unit that controls the charging and discharging of the secondary battery,
With
Battery module.
請求項11に記載のバッテリモジュールを備えた電動車両。 An electric vehicle comprising the battery module according to claim 11.
JP2019012266A 2019-01-28 2019-01-28 Controllers, battery modules, and electric vehicles Active JP7171462B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019012266A JP7171462B2 (en) 2019-01-28 2019-01-28 Controllers, battery modules, and electric vehicles
CN202010026422.1A CN111490300B (en) 2019-01-28 2020-01-10 Control device, battery module, and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019012266A JP7171462B2 (en) 2019-01-28 2019-01-28 Controllers, battery modules, and electric vehicles

Publications (2)

Publication Number Publication Date
JP2020120555A true JP2020120555A (en) 2020-08-06
JP7171462B2 JP7171462B2 (en) 2022-11-15

Family

ID=71812437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019012266A Active JP7171462B2 (en) 2019-01-28 2019-01-28 Controllers, battery modules, and electric vehicles

Country Status (2)

Country Link
JP (1) JP7171462B2 (en)
CN (1) CN111490300B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11480625B2 (en) * 2020-03-12 2022-10-25 Wisk Aero Llc Real-time battery fault detection and state-of-health monitoring
JP7241946B1 (en) 2022-03-01 2023-03-17 Apb株式会社 Measuring jig, measuring device, bipolar battery, and method for manufacturing bipolar battery
JP7468488B2 (en) 2021-09-24 2024-04-16 トヨタ自動車株式会社 Charge/discharge control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122907A (en) * 2011-11-11 2013-06-20 Toyota Motor Corp Battery system
US20140107949A1 (en) * 2012-10-11 2014-04-17 The Trustees Of Princeton University Mechanical measurement of state of health and state of charge for intercalation batteries
JP2017085735A (en) * 2015-10-27 2017-05-18 トヨタ自動車株式会社 Battery system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6939057B2 (en) * 2017-04-27 2021-09-22 トヨタ自動車株式会社 In-vehicle battery system and battery aging estimation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122907A (en) * 2011-11-11 2013-06-20 Toyota Motor Corp Battery system
US20140107949A1 (en) * 2012-10-11 2014-04-17 The Trustees Of Princeton University Mechanical measurement of state of health and state of charge for intercalation batteries
JP2017085735A (en) * 2015-10-27 2017-05-18 トヨタ自動車株式会社 Battery system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11480625B2 (en) * 2020-03-12 2022-10-25 Wisk Aero Llc Real-time battery fault detection and state-of-health monitoring
JP7468488B2 (en) 2021-09-24 2024-04-16 トヨタ自動車株式会社 Charge/discharge control device
JP7241946B1 (en) 2022-03-01 2023-03-17 Apb株式会社 Measuring jig, measuring device, bipolar battery, and method for manufacturing bipolar battery
WO2023167215A1 (en) * 2022-03-01 2023-09-07 Apb株式会社 Measuring jig, measuring device, bipolar battery, and method for manufacturing bipolar battery
JP2023127268A (en) * 2022-03-01 2023-09-13 Apb株式会社 Measurement jig, measurement apparatus, bipolar type battery and manufacturing method of bipolar type battery

Also Published As

Publication number Publication date
CN111490300B (en) 2023-11-28
CN111490300A (en) 2020-08-04
JP7171462B2 (en) 2022-11-15

Similar Documents

Publication Publication Date Title
JP6477733B2 (en) Charge state estimation device
KR102435037B1 (en) A method for calibrating a battery, a method for estimating the state of health of a battery, and a system for performing theses methods
US11150307B2 (en) Apparatus and method for diagnosing battery
JP5439126B2 (en) Status detector for power supply
JP4884404B2 (en) Method and apparatus for detecting internal information of secondary battery
WO2015041091A1 (en) Secondary cell degradation diagnosis system, and degradation diagnosis method
EP2700964A2 (en) Battery state estimation system, battery control system, battery system, and battery state estimation method
CN111490300B (en) Control device, battery module, and electric vehicle
JP5929778B2 (en) CHARGE RATE ESTIMATION DEVICE AND CHARGE RATE ESTIMATION METHOD
JP2014160015A (en) Charging state estimation device and charging state estimation method
US11552494B2 (en) Method and apparatus controlling charging of battery based on diffusion characteristics of material included in the battery
JP5568583B2 (en) Lithium ion secondary battery system, inspection method for lithium ion secondary battery, control method for lithium ion secondary battery
JP5582099B2 (en) Battery life deterioration estimation device, battery life deterioration estimation method, and power storage system
CN111624497B (en) Monitoring device and monitoring method
JP6041040B2 (en) Storage battery, storage battery control method, control device, and control method
JP7326237B2 (en) Determination device, power storage system, determination method, and determination program for multiple batteries
JPWO2018211824A1 (en) Battery control device and vehicle system
JP2019087458A (en) Management device of power storage element and management method
JP6784731B2 (en) Deterioration judgment system and deterioration judgment method for secondary batteries
CN113785209A (en) Method for detecting abnormal battery cell
KR20220094464A (en) Battery diagnosis system, battery diagnosis method, battery pack, and electric vehicle
EP4053572A1 (en) Method and apparatus for estimating state of battery
US20230160965A1 (en) Electronic device for estimating battery state and operating method thereof
KR20230130238A (en) Battery state estimation method
KR20210070076A (en) Battery management system, battery pack, and battery management method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221102

R150 Certificate of patent or registration of utility model

Ref document number: 7171462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150