JP2020116492A - Flowability lowering agent and flowability lowering method - Google Patents

Flowability lowering agent and flowability lowering method Download PDF

Info

Publication number
JP2020116492A
JP2020116492A JP2019007909A JP2019007909A JP2020116492A JP 2020116492 A JP2020116492 A JP 2020116492A JP 2019007909 A JP2019007909 A JP 2019007909A JP 2019007909 A JP2019007909 A JP 2019007909A JP 2020116492 A JP2020116492 A JP 2020116492A
Authority
JP
Japan
Prior art keywords
fluidity
mud
reducing agent
polymer
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019007909A
Other languages
Japanese (ja)
Other versions
JP7248226B2 (en
Inventor
平尾 孝典
Takanori Hirao
孝典 平尾
孝介 根崎
Kosuke Nezaki
孝介 根崎
正淳 大津
Masaaki Otsu
正淳 大津
藤田 聡
Satoshi Fujita
聡 藤田
正文 富田
Masafumi Tomita
正文 富田
朋弘 中尾
Tomohiro Nakao
朋弘 中尾
光広 ▲高▼品
光広 ▲高▼品
Mitsuhiro Takashina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Tachibana Material Co Ltd
Original Assignee
Kurita Water Industries Ltd
Tachibana Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Tachibana Material Co Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2019007909A priority Critical patent/JP7248226B2/en
Publication of JP2020116492A publication Critical patent/JP2020116492A/en
Application granted granted Critical
Publication of JP7248226B2 publication Critical patent/JP7248226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Abstract

To provide a flowability lowering agent which improves quality of a property of high flowability of mud (mud with a water content of 15% or more), is excellent in a flowability lowering effect, has good storage stability, and gives a low environmental load, and to provide a flowability lowering method.SOLUTION: There is provided a flowability lowering agent which lowers flowability of mud with a water content of 15 mass% or more. The flowability lowering agent is an aqueous solution including a polymer including, as a monomer component, (meth)acrylamide (A) and one or more compounds (B) selected from (meth)acrylic acid and salt thereof. A molar ratio (A/B) of the (meth)acrylamide (A) to the one or more compounds (B) selected from the (meth)acrylic acid and the salt thereof is 20/80 to 85/15. A polymer concentration in the aqueous solution including the polymer is 1 to 30 mass%. An intrinsic viscosity of the polymer in a 1 N aqueous sodium nitrate solution at 30°C is 1.9 dL/g or more.SELECTED DRAWING: None

Description

本発明は、流動性が高い泥土(含水率15%以上の泥土)の性状を改質し、流動性を低下させる流動性低下剤、及び当該流動性低下剤を用いた流動性低下方法に関する。 The present invention relates to a fluidity-reducing agent that modifies the properties of mud having a high fluidity (moisture content of 15% or more) to reduce fluidity, and a fluidity-reducing method using the fluidity-reducing agent.

建設工事、及びトンネル工事等の工事現場においては、地盤の掘削に伴い大量の泥土が発生する。発生した泥土は、流動性が高く静置しても広がってしまうため、運搬する際には、バキューム車、及び大型ベッセル車等の特殊車両が必要となる他、産業廃棄物として処理する際には、乾燥させ難い問題があった。
このため、発生した泥土の性状を改質し、泥土の流動性を低下させる試みとして、様々な形態の方法が提案されている。
At construction sites such as construction work and tunnel construction, a large amount of mud is generated as the ground is excavated. The generated mud has high fluidity and spreads even if it is left stationary.Therefore, special vehicles such as vacuum trucks and large vessel trucks are required for transportation, and also when treated as industrial waste. Had a problem that was difficult to dry.
Therefore, various forms of methods have been proposed as an attempt to modify the properties of the generated mud and reduce the fluidity of the mud.

例えば、特許文献1には、建設汚泥(含水汚泥)にアルカリ性物質を混合した後、該汚泥混合物に高分子化合物を混合することを特徴とする建設汚泥の固化処理方法が開示されている。 For example, Patent Document 1 discloses a method for solidifying construction sludge, which comprises mixing an alkaline substance with construction sludge (hydrous sludge) and then mixing a polymer compound with the sludge mixture.

また、特許文献2には、高含水率泥土、泥水又は汚泥に、含水率が50重量%以下の土又は砂を添加して調泥、前処理することを特徴とする高含水率泥土、泥水又は汚泥の改質固化方法が開示されている。 Further, in Patent Document 2, a high water content mud or mud characterized by adding soil or sand having a water content of 50% by weight or less to a high water content mud, mud or sludge to prepare and pretreat it. Alternatively, a method for reforming and solidifying sludge is disclosed.

また、特許文献3には、発生直後は流動性が高い自硬性汚泥に対し、W/O型エマルジョン系水溶性高分子化合物を添加し、混合すること、及び、当該混合後に、無機粉末系固化材及び/又はカチオン性水溶性化合物を添加し、混合して造粒すること、を含む、造粒固化処理土の製造方法が開示されている。 Further, in Patent Document 3, a W/O emulsion water-soluble polymer compound is added to and mixed with a self-hardening sludge having high fluidity immediately after generation, and after the mixing, inorganic powder-based solidification is performed. There is disclosed a method for producing a granulated and solidified treated soil, which comprises adding a material and/or a cationic water-soluble compound, mixing and granulating.

特開平11−10197号公報JP, 11-10197, A 特開平11−188392号公報JP-A-11-188392 特開2013−202563号公報JP, 2013-202563, A

しかしながら、特許文献1では、建設汚泥にアルカリ性物質を混合するため、処理対象となる建設汚泥の流動性を低下させる効果は得られても、当該建設汚泥がアルカリ性を呈することから、環境への負荷が懸念される。
また、特許文献2では、高含水率泥土等に更に砂等を添加するため、処理対象となる高含水率泥土等の流動性を低下させる効果は得られても、当該高含水率泥土等の他に砂等の容積も加わり、運搬費用の増大が懸念される。
また、特許文献3では、自硬性汚泥に添加する水溶性高分子化合物がW/O型エマルジョンであるため、固液分離が進行し貯蔵性安定性に劣る懸念や、CODの値が高くなり環境への負荷が大きくなる懸念がある。
However, in Patent Document 1, since an alkaline substance is mixed with the construction sludge, although the effect of reducing the fluidity of the construction sludge to be treated can be obtained, the construction sludge exhibits alkalinity, so that the load on the environment is reduced. Is concerned.
Further, in Patent Document 2, since sand or the like is further added to the high-moisture content mud or the like, even if the effect of reducing the fluidity of the high-moisture content mud or the like to be treated is obtained, In addition, the volume of sand is added, and there is a concern that transportation costs will increase.
Further, in Patent Document 3, since the water-soluble polymer compound added to the self-hardening sludge is a W/O type emulsion, there is a concern that solid-liquid separation will progress and storage stability will be inferior, and the COD value will be high. There is a concern that the load on the

そこで本発明は、上記課題を解決するためになされたものであり、流動性が高い泥土(含水率15%以上の泥土)の性状を改質し、流動性を低下させる効果に優れ、貯蔵安定性が良好で、環境への負荷が小さい流動性低下剤、及び流動性低下方法を提供することを目的とするものである。 Therefore, the present invention has been made to solve the above problems, and is excellent in the effect of modifying the properties of mud having high fluidity (mud having a water content of 15% or more) to reduce fluidity, and storage stability. It is an object of the present invention to provide a fluidity-reducing agent which has good properties and has a small load on the environment, and a method of reducing fluidity.

本発明者は、上記課題に鑑みて鋭意検討した結果、水溶液中のポリマーを構成する必須のモノマー成分を特定のモル比(A/B)(20/80〜85/15)とし、水溶液中のポリマーの固有粘度を特定の値(1.9dL/g以上)とすることで、上記課題を解決し得ることを見出し、本発明を完成させるに至った。
すなわち、本発明は以下の通りである。
The present inventor, as a result of diligent studies in view of the above problems, has determined that an essential monomer component constituting a polymer in an aqueous solution has a specific molar ratio (A/B) (20/80 to 85/15) and It has been found that the above problems can be solved by setting the intrinsic viscosity of the polymer to a specific value (1.9 dL/g or more), and the present invention has been completed.
That is, the present invention is as follows.

[1]含水率15質量%以上の泥土の流動性を低下させる流動性低下剤であって、前記流動性低下剤が、(メタ)アクリルアミド(A)と、(メタ)アクリル酸及びその塩から選ばれる1種以上の化合物(B)とをモノマー成分として含むポリマーを含む水溶液であり、前記(メタ)アクリル酸及びその塩から選ばれる1種以上の化合物(B)に対する前記(メタ)アクリルアミド(A)のモル比(A/B)が、20/80〜85/15であり、前記ポリマーを含む水溶液中のポリマー濃度が1〜30質量%であり、前記ポリマーの1N硝酸ナトリウム水溶液における30℃での固有粘度が1.9dL/g以上である、流動性低下剤。
[2]前記泥土に、請求項1に記載の流動性低下剤を添加して泥土の流動性を低下させる、流動性低下方法。
[3]前記流動性低下剤の純分添加量が0.5〜5.0kg/mである、前記[2]に記載の流動性低下方法。
[4]前記泥土に、請求項1に記載の流動性低下剤を2種以上添加して泥土の流動性を低下させる、前記[2]又は[3]に記載の流動性低下方法。
[5]前記泥土に、更に凝集剤を添加して泥土の流動性を低下させる、前記[2]〜[4]のいずれか1つに記載の流動性低下方法。
[6]前記泥土に、更に土壌固化材を添加して泥土の流動性を低下させる、前記[2]〜[5]のいずれか1つに記載の流動性低下方法。
[1] A fluidity-reducing agent that reduces fluidity of mud having a water content of 15% by mass or more, wherein the fluidity-reducing agent comprises (meth)acrylamide (A), (meth)acrylic acid and a salt thereof. It is an aqueous solution containing a polymer containing one or more compounds (B) selected as a monomer component, and the (meth)acrylamide (for the one or more compounds (B) selected from the (meth)acrylic acid and salts thereof. The molar ratio (A/B) of A) is 20/80 to 85/15, the polymer concentration in the aqueous solution containing the polymer is 1 to 30% by mass, and the polymer is 30° C. in a 1N aqueous sodium nitrate solution. A fluidity-reducing agent having an intrinsic viscosity of 1.9 dL/g or more.
[2] A method for reducing fluidity, which comprises adding the fluidity-reducing agent according to claim 1 to the mud to reduce the fluidity of the mud.
[3] The fluidity reducing method according to [2], wherein the pure content of the fluidity reducing agent is 0.5 to 5.0 kg/m 3 .
[4] The fluidity-reducing method according to [2] or [3], wherein the fluidity-reducing agent according to claim 1 is added to the mud to reduce the fluidity of the mud.
[5] The fluidity-reducing method according to any one of [2] to [4], wherein a coagulant is further added to the mud to reduce the fluidity of the mud.
[6] The fluidity-reducing method according to any one of [2] to [5], wherein a soil-solidifying material is further added to the mud to reduce the fluidity of the mud.

本発明によれば、流動性が高い泥土(含水率15%以上の泥土)の性状を改質し、流動性を低下させる効果に優れ、貯蔵安定性が良好で、環境への負荷が小さい流動性低下剤、及び流動性低下方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the property of the mud with high fluidity (moisture content of 15% or more) is improved, the effect of lowering the fluidity is excellent, the storage stability is good, and the load on the environment is small. A property reducing agent and a method for decreasing fluidity can be provided.

以下、本発明の流動性低下剤、及び本発明の流動性低下剤を用いた流動性低下方法を詳細に説明する。
なお、本明細書において、「(メタ)アクリル」とは、「アクリル」及び/又は「
メタクリル」を意味するものである。
Hereinafter, the fluidity-reducing agent of the present invention and the fluidity-reducing method using the fluidity-reducing agent of the present invention will be described in detail.
In the present specification, “(meth)acrylic” means “acrylic” and/or “acrylic”.
Methacrylic" is meant.

[流動性低下剤]
本発明の流動性低下剤は、含水率15質量%以上の泥土の流動性を低下させる流動性低下剤であって、前記流動性低下剤が、(メタ)アクリルアミド(A)と、(メタ)アクリル酸及びその塩から選ばれる1種以上の化合物(B)とをモノマー成分として含むポリマーを含む水溶液であり、前記(メタ)アクリル酸及びその塩から選ばれる1種以上の化合物(B)に対する前記(メタ)アクリルアミド(A)のモル比(A/B)が、20/80〜85/15であり、前記ポリマーを含む水溶液中のポリマー濃度が1〜30質量%であり、前記ポリマーの1N硝酸ナトリウム水溶液における30℃での固有粘度が1.9dL/g以上である。
このような流動性低下剤によれば、流動性が高い泥土(含水率15%以上の泥土)の性状を改質し、流動性を低下させる効果に優れ、貯蔵安定性が良好で、環境への負荷を小さくすることができる。
[Fluidity-reducing agent]
The fluidity-reducing agent of the present invention is a fluidity-reducing agent that reduces the fluidity of mud having a water content of 15% by mass or more, wherein the fluidity-reducing agent is (meth)acrylamide (A) and (meth). An aqueous solution containing a polymer containing, as a monomer component, one or more compounds (B) selected from acrylic acid and its salts, for one or more compounds (B) selected from the (meth)acrylic acid and its salts. The molar ratio (A/B) of the (meth)acrylamide (A) is 20/80 to 85/15, the polymer concentration in the aqueous solution containing the polymer is 1 to 30% by mass, and 1N of the polymer is used. The intrinsic viscosity at 30° C. in an aqueous sodium nitrate solution is 1.9 dL/g or more.
According to such a fluidity-reducing agent, the properties of mud having a high fluidity (mud having a water content of 15% or more) are improved, the fluidity is effectively reduced, the storage stability is good, and the environment stability is improved. The load of can be reduced.

(泥土)
本発明の流動性低下剤は、流動性が高い泥土(含水率15%以上の泥土)の性状を改質し、流動性を低下させる目的で用いられるものである。
なお、泥土とは、一般には、コーン指数が200kN/m未満となるものをいう。
(mud)
The fluidity-reducing agent of the present invention is used for the purpose of modifying the properties of mud having a high fluidity (mud having a water content of 15% or more) to reduce the fluidity.
The mud generally has a cone index of less than 200 kN/m 2 .

(流動性低下剤を構成するポリマー)
本発明の流動性低下剤を構成するポリマーは、必須のモノマー成分として、(メタ)アクリルアミド(A)と、(メタ)アクリル酸及びその塩から選ばれる1種以上の化合物(B)とを含む共重合体である。
(Polymer that constitutes the fluidity reducing agent)
The polymer constituting the fluidity-reducing agent of the present invention contains (meth)acrylamide (A) and one or more compounds (B) selected from (meth)acrylic acid and salts thereof as essential monomer components. It is a copolymer.

(必須のモノマー成分)
本発明の流動性低下剤を構成するポリマーは、必須のモノマー成分として、(メタ)アクリルアミド(A)と、(メタ)アクリル酸及びその塩から選ばれる1種以上の化合物(B)とを含むが、その他のモノマー成分を含んでもよい。
なお、前記ポリマーが、その他のモノマー成分を含有する場合、前記(A)及び前記(B)の合計含有割合は、全モノマー成分100モル%中、好ましくは90モル%以上、より好ましくは95モル%以上、更に好ましくは98モル%以上、特に好ましくは100モル%である。
(Essential monomer component)
The polymer constituting the fluidity-reducing agent of the present invention contains (meth)acrylamide (A) and one or more compounds (B) selected from (meth)acrylic acid and salts thereof as essential monomer components. However, it may contain other monomer components.
When the polymer contains other monomer components, the total content of (A) and (B) is preferably 90 mol% or more, more preferably 95 mol% in 100 mol% of all the monomer components. % Or more, more preferably 98 mol% or more, and particularly preferably 100 mol%.

<(メタ)アクリルアミド(A)>
モノマー成分となる(メタ)アクリルアミド(A)は、アクリルアミド、及びメタクリルアミドから選ばれる少なくとも1種である。これらは、1種単独で用いても、2種以上の併用であってもよい。
(メタ)アクリルアミド(A)としては、流動性低下剤に含まれる有機物の量を少なくして環境への負荷を低減する観点から、アクリルアミドが好ましく用いられる。
<(Meth)acrylamide (A)>
The (meth)acrylamide (A) serving as the monomer component is at least one selected from acrylamide and methacrylamide. These may be used alone or in combination of two or more.
As the (meth)acrylamide (A), acrylamide is preferably used from the viewpoint of reducing the load on the environment by reducing the amount of organic substances contained in the fluidity-reducing agent.

<(メタ)アクリル酸及びその塩から選ばれる1種以上の化合物(B)>
モノマー成分となる(メタ)アクリル酸及びその塩から選ばれる1種以上の化合物(B)は、アクリル酸、メタクリル酸、アクリル酸塩、及びメタクリル酸塩から選ばれる少なくとも1種である。これらは、1種単独で用いても、2種以上の併用であってもよい。
(メタ)アクリル酸の塩としては、ナトリウム、カリウム、亜鉛、マグネシウム、アルミニウム等の金属塩が挙げられる。
(メタ)アクリル酸及びその塩から選ばれる1種以上の化合物(B)としては、流動性低下剤に含まれる有機物の量を少なくして環境への負荷を低減する観点から、アクリル酸、及びアクリル酸塩から選ばれる少なくとも1種が好ましく、アクリル酸塩がより好ましく、中でも、アクリル酸ナトリウム、及びアクリル酸カリウムが好適に用いられる。
<One or more compounds (B) selected from (meth)acrylic acid and salts thereof>
The one or more compounds (B) selected from (meth)acrylic acid and its salts, which are the monomer components, are at least one selected from acrylic acid, methacrylic acid, acrylates, and methacrylates. These may be used alone or in combination of two or more.
Examples of the salt of (meth)acrylic acid include metal salts such as sodium, potassium, zinc, magnesium and aluminum.
As the one or more compounds (B) selected from (meth)acrylic acid and salts thereof, acrylic acid and, from the viewpoint of reducing the load on the environment by reducing the amount of organic substances contained in the fluidity-reducing agent, At least one selected from acrylates is preferable, acrylates are more preferable, and sodium acrylate and potassium acrylate are particularly preferably used.

<モル比(A/B)>
(メタ)アクリル酸及びその塩から選ばれる1種以上の化合物(B)に対する(メタ)アクリルアミド(A)のモル比(A/B)は、含水率15%以上の泥土の性状を改質し、流動性を低下させる効果を好適に得る観点から、20/80〜85/15であり、好ましくは30/70〜75/25、より好ましくは30/70〜50/50である。
上記(メタ)アクリル酸及びその塩から選ばれる1種以上の化合物(B)のモル比率が高すぎる場合、コロイドが多く含有される泥土に対してはアクリル酸の泥土に対する吸着力が弱まり、流動性を低下できないおそれがある。
一方、上記(メタ)アクリル酸及びその塩から選ばれる1種以上の化合物(B)のモル比率が低すぎる場合、コロイドを含有しない泥土に対してはアクリル酸の分散作用が強くなり、流動性を低下できないおそれがある。
<Molar ratio (A/B)>
The molar ratio (A/B) of (meth)acrylamide (A) to one or more compounds (B) selected from (meth)acrylic acid and salts thereof modifies the properties of mud having a water content of 15% or more. From the viewpoint of suitably obtaining the effect of lowering the fluidity, it is 20/80 to 85/15, preferably 30/70 to 75/25, and more preferably 30/70 to 50/50.
If the molar ratio of one or more compounds (B) selected from the above (meth)acrylic acid and its salts is too high, the adsorption force of acrylic acid on mud containing a large amount of colloid is weakened, and the fluidity May not be reduced.
On the other hand, when the molar ratio of the one or more compounds (B) selected from the above (meth)acrylic acid and its salts is too low, the dispersing action of acrylic acid becomes strong in the mud containing no colloid, and the fluidity is increased. May not be reduced.

(その他のモノマー成分)
本発明の流動性低下剤を構成するポリマーは、前記した必須のモノマー成分以外に、その他のモノマー成分を含んでもよい。
なお、前記ポリマーが、その他のモノマー成分を含有する場合、その他のモノマー成分の合計含有割合は、全モノマー成分100モル%中、好ましくは10モル%未満、より好ましくは5モル%未満、更に好ましくは2モル%未満、特に好ましくは0モル%である。
その他のモノマー成分としては、例えば、マレイン酸、無水マレイン酸等のカルボキシ基含有モノマー、また、ビニルスルホン酸、(メタ)アリルスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸等の不飽和スルホ基含有モノマー等のアニオン性モノマーが挙げられる。また、これらのモノマーのナトリウム、カリウム、亜鉛、マグネシウム、アルミニウム等の金属塩も挙げられる。
(Other monomer components)
The polymer constituting the fluidity-reducing agent of the present invention may contain other monomer components in addition to the above-mentioned essential monomer components.
When the polymer contains other monomer components, the total content of the other monomer components is preferably less than 10 mol%, more preferably less than 5 mol%, still more preferably 100 mol% of all the monomer components. Is less than 2 mol %, particularly preferably 0 mol %.
Other monomer components include, for example, carboxy group-containing monomers such as maleic acid and maleic anhydride, and unsaturated sulfo groups such as vinyl sulfonic acid, (meth)allyl sulfonic acid and 2-acrylamido-2-methylpropane sulfonic acid. Examples include anionic monomers such as group-containing monomers. Further, metal salts of these monomers such as sodium, potassium, zinc, magnesium and aluminum are also included.

(ポリマー水溶液)
本発明の流動性低下剤の形態は、前記した必須のモノマー成分を含むポリマーを含む水溶液(以下「ポリマー水溶液」と称す)である。
ポリマー水溶液は、固体ポリマーを粉砕し粉末状にしたポリマーを、水に溶解又は分散させて製造することもできる。しかし、この場合、粉末状ポリマーは固有粘度が非常に高いため、水に溶解又は分散させることが可能なポリマーの量は0.1〜1質量%程度であるため、ポリマー濃度(純分濃度)を高めることが困難になるおそれがある。
このため、本発明のポリマー水溶液は、流動性が高い泥土(含水率15%以上の泥土)の流動性を好適に低下させ、処理対象泥土の容積を抑える観点から、水溶液重合法により製造されることが好ましい。
(Polymer aqueous solution)
The form of the fluidity-reducing agent of the present invention is an aqueous solution containing a polymer containing the above-mentioned essential monomer component (hereinafter referred to as "polymer aqueous solution").
The polymer aqueous solution can also be produced by dissolving or dispersing a polymer obtained by pulverizing a solid polymer into a powder form in water. However, in this case, since the powdery polymer has a very high intrinsic viscosity, the amount of the polymer that can be dissolved or dispersed in water is about 0.1 to 1% by mass. Can be difficult to increase.
Therefore, the polymer aqueous solution of the present invention is produced by an aqueous solution polymerization method from the viewpoint of suitably reducing the fluidity of mud having a high fluidity (mud having a water content of 15% or more) and suppressing the volume of the treated mud. It is preferable.

(水溶液重合法)
水溶液重合法としては、特に限定されず公知の方法を採用できるが、例えば、前記した必須のモノマー成分を含むポリマー水溶液に、窒素ガスを吹き込みながら、撹拌し、水溶性重合開始剤を添加してポリマー水溶液を製造する方法が挙げられる。
ここで、水溶性重合開始剤がアゾ系重合開始剤であれば、加熱を行い、アゾ系化合物が分解する温度に達した時点でラジカルが発生し重合が開始される。
一方、水溶性重合開始剤がレドックス系重合開始剤であれば、酸化剤と還元剤の組合せで用いられ、酸化剤と還元剤が混合された時点でラジカルが発生し重合が開始される。
なお、本発明の流動性低下剤は、水溶液の形態であるため、架橋剤を用いず、直鎖状等の非架橋型のポリマーを合成することが好ましい。
(Aqueous solution polymerization method)
The aqueous solution polymerization method is not particularly limited and may be a known method. For example, while a nitrogen gas is being blown into the aqueous polymer solution containing the essential monomer components, stirring is performed, and a water-soluble polymerization initiator is added. A method for producing an aqueous polymer solution may be mentioned.
Here, if the water-soluble polymerization initiator is an azo-based polymerization initiator, heating is performed, and radicals are generated and polymerization is started when the temperature reaches a temperature at which the azo-based compound decomposes.
On the other hand, when the water-soluble polymerization initiator is a redox polymerization initiator, it is used in combination with an oxidizing agent and a reducing agent, and radicals are generated and polymerization is initiated when the oxidizing agent and the reducing agent are mixed.
Since the fluidity-reducing agent of the present invention is in the form of an aqueous solution, it is preferable to synthesize a non-crosslinking polymer such as a linear polymer without using a crosslinking agent.

(ポリマー濃度)
前記したポリマーを含む水溶液中のポリマー濃度(純分濃度)は、含水率15%以上の泥土の性状を改質し、流動性を低下させる効果を好適に得る観点から、1〜50質量%であり、好ましくは5〜40質量%、より好ましくは5〜30質量%である。
上記ポリマー濃度(純分濃度)が、上記範囲未満である場合、純分濃度が低すぎ、流動性が高い泥土(含水率15%以上の泥土)の性状を改質し、流動性を低下させる効果が十分得られないおそれがある。
一方、上記ポリマー濃度(純分濃度)が、上記範囲を超える場合、純分濃度が高すぎ、水溶液中に特定の固有粘度(1.9dL/g以上)を有するポリマーを含むことからポリマー水溶液としての状態を維持できず、ゲル化するおそれがある。
(Polymer concentration)
The polymer concentration (pure content concentration) in the aqueous solution containing the above-mentioned polymer is 1 to 50% by mass from the viewpoint that the property of the mud having a water content of 15% or more is modified to suitably obtain the effect of lowering the fluidity. %, preferably 5 to 40% by mass, more preferably 5 to 30% by mass.
When the polymer concentration (pure content concentration) is less than the above range, the pure content concentration is too low and the fluidity of the mud having a high fluidity (water content of 15% or more) is modified to lower the fluidity. The effect may not be fully obtained.
On the other hand, when the polymer concentration (concentration of pure components) exceeds the above range, the concentration of pure components is too high, and the aqueous solution contains a polymer having a specific intrinsic viscosity (1.9 dL/g or more). There is a possibility that gelation will not be possible due to the inability to maintain the state.

前記したポリマー濃度(純分濃度)とは、前記したポリマー水溶液の蒸発残留分(不揮発分)のことをいう。
ポリマー水溶液の蒸発残留分は、具体的には、前記したポリマー水溶液約5gを蒸発皿に入れた重量(W1)と、更に、当該ポリマー水溶液約5gを105℃で蒸発乾固させたときの残分の重量(W2)とをそれぞれ秤量し、下記数式1より純分濃度(質量%)が算出される。
The above-mentioned polymer concentration (concentration of pure content) refers to the evaporation residue (nonvolatile content) of the above-mentioned polymer aqueous solution.
The evaporation residue of the polymer aqueous solution is specifically the weight (W1) of about 5 g of the above-mentioned polymer aqueous solution put in an evaporation dish, and the residue when about 5 g of the polymer aqueous solution is evaporated to dryness at 105°C. The weight (W2) of each of the parts is weighed, and the pure content concentration (mass %) is calculated by the following mathematical formula 1.

前記したポリマー水溶液、すなわち本発明の流動性低下剤は、W/Oエマルションの形態とは異なり、水溶液中のポリマーを均質な状態に長期間保つことができ、固液分離が生じ難く、分離界面は認められず、貯蔵安定性に優れる。
この理由は、水溶液中においてすでに高分子鎖が溶媒中に溶解しており、分散状態にあるためであると考えられる。
The polymer aqueous solution described above, that is, the fluidity-reducing agent of the present invention, unlike the W/O emulsion form, can keep the polymer in the aqueous solution in a homogeneous state for a long period of time, solid-liquid separation hardly occurs, and the separation interface Is not observed and the storage stability is excellent.
It is considered that this is because the polymer chains are already dissolved in the solvent in the aqueous solution and are in a dispersed state.

また、前記したポリマー水溶液、すなわち本発明の流動性低下剤は、希釈せずそのまま泥土に添加して用いることができる点で取り扱い性に優れる。
更に、本発明の流動性低下剤は、当初のポリマー濃度(純分濃度)よりも低くしたい場合には、水を追加して数分以内の短時間による撹拌混合で均一なポリマー水溶液が得られ、ポリマー濃度(純分濃度)の希釈が簡便である点でも、取り扱い性に優れる。
Further, the above-mentioned aqueous polymer solution, that is, the fluidity-reducing agent of the present invention, is excellent in handleability in that it can be used by adding it to mud as it is without dilution.
Furthermore, in the case of the fluidity-reducing agent of the present invention, when it is desired to lower the initial polymer concentration (concentration of pure content), water is added and stirring and mixing for a short time within a few minutes gives a uniform polymer aqueous solution. Also, it is excellent in handleability in that it is easy to dilute the polymer concentration (concentration of pure content).

(その他の成分)
前記したポリマー水溶液、すなわち本発明の流動性低下剤は、必須のモノマー成分として、(メタ)アクリルアミド(A)と、(メタ)アクリル酸及びその塩から選ばれる1種以上の化合物(B)、及び必要に応じてその他のモノマー成分とを含むポリマー、を含む他に、本発明の目的効果を損なわない範囲で、その他の成分を含有してもよい。
その他の成分としては、例えば、ポリマー合成の際に添加される添加剤(例えば、重合開始剤、連鎖移動剤等)が挙げられ、具体的には、2,2'-アゾビス(イソブチロニトリル)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2-メチルブチロニトリル)、4,4'-アゾビス(4-シアノ吉草酸)、2,2'-アゾビス(2-メチルプロピオンアミジン)二塩酸塩、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、過酸化水素と塩化第一鉄、塩過硫酸塩と亜硫酸水素ナトリウム、チオフェノール、1-ブタンチオール、シクロヘキサンチオール、3-メルカプトプロピオン酸シクロヘキシル、2,4-ジフェニル-4-メチル-1-ペンテン、1-ドデカンチオール、1-ドデカンチオール、メルカプト酢酸2-エチルヘキシル、3-メルカプトプロピオン酸2-エチルヘキシル、3-メルカプトプロピオン酸ヘキシル、メルカプト酢酸エチル、2-メルカプトエタノール、2-メルカプトエタノール、3-メルカプト-1,2-プロパンジオール、メルカプト酢酸、2-メルカプトエタンスルホン酸ナトリウム、3-メルカプトプロピオン酸、メルカプト酢酸メチル、3-メルカプトプロピオン酸メチル等が挙げられる。
なお、その他の成分の含有量は、流動性低下剤100質量%中、好ましくは0〜10質量%、より好ましくは0〜5質量%、更に好ましくは0%である。
(Other ingredients)
The above-mentioned polymer aqueous solution, that is, the fluidity-reducing agent of the present invention comprises (meth)acrylamide (A) and one or more compounds (B) selected from (meth)acrylic acid and salts thereof as essential monomer components. In addition to the polymer containing the other monomer component as necessary, other components may be contained within a range not impairing the intended effect of the present invention.
Other components include, for example, additives (for example, a polymerization initiator, a chain transfer agent, etc.) added at the time of polymer synthesis, and specifically, 2,2′-azobis(isobutyronitrile). ) 2,2'-Azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(2-methylbutyronitrile), 4,4'-azobis(4-cyanovaleric acid), 2,2 '-Azobis(2-methylpropionamidine)dihydrochloride,2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride, hydrogen peroxide and ferrous chloride, persulfate salt Salt and sodium bisulfite, thiophenol, 1-butanethiol, cyclohexanethiol, cyclohexyl 3-mercaptopropionate, 2,4-diphenyl-4-methyl-1-pentene, 1-dodecanethiol, 1-dodecanethiol, mercaptoacetic acid 2-Ethylhexyl, 2-Mercaptopropionate, 2-Ethylhexyl, 3-Mercaptopropionate, Hexyl, Ethyl mercaptoacetate, 2-Mercaptoethanol, 2-Mercaptoethanol, 3-Mercapto-1,2-propanediol, Mercaptoacetic acid, 2- Examples thereof include sodium mercaptoethanesulfonate, 3-mercaptopropionic acid, methyl mercaptoacetate, and methyl 3-mercaptopropionate.
The content of other components is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, and further preferably 0% in 100% by mass of the fluidity-reducing agent.

(固有粘度)
前記したポリマーの1N硝酸ナトリウム水溶液における30℃での固有粘度は、含水率15%以上の泥土の性状を改質し、流動性を低下させる効果を好適に得る観点から、1.9dL/g以上であり、好ましくは2.0〜5.0dL/g、より好ましくは2.0〜4.0dL/gである。
(Intrinsic viscosity)
The intrinsic viscosity of the above-mentioned polymer in a 1N sodium nitrate aqueous solution at 30° C. is 1.9 dL/g or more from the viewpoint of suitably improving the property of mud having a water content of 15% or more and lowering the fluidity. And preferably 2.0 to 5.0 dL/g, and more preferably 2.0 to 4.0 dL/g.

上記ポリマーの固有粘度が、上記範囲未満である場合、固有粘度が低すぎ、流動性が高い泥土(含水率15%以上の泥土)の性状を改質し、流動性を低下させる効果が得られないおそれがある。
一方、上記ポリマーの固有粘度が、上記範囲を超える場合、固有粘度が高すぎ、ポリマーを含む水溶液を好適に製造することができず、ポリマー濃度(純分濃度)を高めることが困難になるおそれがある。
When the intrinsic viscosity of the above-mentioned polymer is less than the above range, the effect of reducing the fluidity by modifying the properties of the mud having a too low intrinsic viscosity and high fluidity (water content of 15% or more) can be obtained. There is a possibility that there is no.
On the other hand, when the intrinsic viscosity of the polymer exceeds the above range, the intrinsic viscosity is too high, an aqueous solution containing the polymer cannot be suitably produced, and it may be difficult to increase the polymer concentration (purity concentration). There is.

固有粘度は[η]で表され、下記のHugginsの式を用いて算出された値とする。
Hugginsの式:ηSP/C=[η]+k’[η]
上記式において、ηSP:比粘度(=ηrel−1)、k’:Huggins定数、C:ポリマー溶液濃度、ηrel:相対粘度を表す。
異なる濃度のポリマー溶液を調製し、各濃度の溶液に対して比粘度ηSPを求めて、ηSP/C対Cの関係をプロットし、Cを0に外挿した切片の値が固有粘度([η])である。
The intrinsic viscosity is represented by [η] and is a value calculated using the following Huggins equation.
Huggins equation: η SP /C=[η]+k′[η] 2 C
In the above formula, η SP : specific viscosity (= η rel −1), k′: Huggins constant, C: polymer solution concentration, η rel : relative viscosity.
Polymer solutions having different concentrations were prepared, specific viscosities η SP were obtained for the solutions having different concentrations, the relationship of η SP /C versus C was plotted, and the value of the intercept obtained by extrapolating C to 0 was the intrinsic viscosity ( [Η]).

固有粘度は、分子量の指標ともなり、ポリマーの分子量が小さいほど、固有粘度が低い傾向にある。ただし、固有粘度は、前記したモル比(A/B)やポリマーの重合条件等による影響も受けるため、必ずしも分子量の大小に対応するとは限らない。
なお、固有粘度の調整は、ポリマーを合成する際の反応温度、反応系のモノマー濃度、重合開始剤の種類や濃度、及び連鎖移動剤の濃度等を調整することにより行うことができる。一般的に、反応温度を高く、また、反応系のモノマー濃度を小さく、また、重合開始剤の濃度を大きく、また、連鎖移動剤の濃度を大きくすると、固有粘度が低くなる傾向にある。
The intrinsic viscosity also serves as an index of the molecular weight, and the smaller the molecular weight of the polymer, the lower the intrinsic viscosity tends to be. However, since the intrinsic viscosity is affected by the above-mentioned molar ratio (A/B) and the polymerization conditions of the polymer, it does not always correspond to the size of the molecular weight.
The intrinsic viscosity can be adjusted by adjusting the reaction temperature when synthesizing the polymer, the monomer concentration of the reaction system, the type and concentration of the polymerization initiator, the concentration of the chain transfer agent, and the like. In general, when the reaction temperature is high, the monomer concentration in the reaction system is low, the polymerization initiator concentration is high, and the chain transfer agent concentration is high, the intrinsic viscosity tends to be low.

(流動性低下剤の粘度)
前記したポリマー水溶液、すなわち本発明の流動性低下剤の粘度(製品粘度)は、含水率15%以上の泥土の性状を改質し、流動性を低下させる効果を好適に得られ易くする観点から、好ましくは1500〜25000mPa・s、より好ましくは2000〜20000mPa・s、更に好ましく2300〜18000mPa・sである。
なお、流動性低下剤の粘度は、B型回転粘度計(BROOKFIELD社製、「LV型」)を用いて測定される値で、より具体的な測定方法は、後述の実施例の方法に基づく。
(Viscosity of fluidity reducing agent)
From the viewpoint that the above-mentioned aqueous polymer solution, that is, the viscosity (product viscosity) of the fluidity-reducing agent of the present invention, modifies the properties of mud having a water content of 15% or more and easily obtains the effect of reducing fluidity. It is preferably 1500 to 25000 mPa·s, more preferably 2000 to 20000 mPa·s, and further preferably 2300 to 18000 mPa·s.
The viscosity of the fluidity-reducing agent is a value measured using a B-type rotational viscometer (manufactured by BROOKFIELD, “LV type”), and a more specific measuring method is based on the method described in Examples below. ..

上記流動性低下剤の粘度が、上記範囲未満である場合、流動性低下剤の製品の濃度が少ない、又は流動性低下剤自体の分子量が低い、ということにつながる為、流動性が高い泥土(含水率15%以上の泥土)の性状を改質し、流動性を低下させる効果が得られないおそれがある。
一方、上記流動性低下剤の粘度が、上記範囲を超える場合、流動性低下剤の粘度が高すぎ、流動性が高い泥土との混合性が悪く、反応効率が低下するおそれがある。
When the viscosity of the fluidity-reducing agent is less than the above range, the product concentration of the fluidity-reducing agent is low, or the molecular weight of the fluidity-reducing agent itself is low. There is a possibility that the effect of modifying the properties of mud having a water content of 15% or more) to lower the fluidity may not be obtained.
On the other hand, when the viscosity of the fluidity-reducing agent exceeds the above range, the viscosity of the fluidity-reducing agent is too high, the miscibility with mud having high fluidity is poor, and the reaction efficiency may decrease.

(流動性低下剤のpH)
前記したポリマー水溶液、すなわち本発明の流動性低下剤のpHは、含水率15%以上の泥土の性状を改質し、流動性を低下させる効果を好適に得られ易くする観点から、好ましくはpH2.0〜10.0、より好ましくはpH2.5〜9.0、更に好ましくはpH3.0〜8.0である。
上記流動性低下剤のpHが、上記範囲にあることで、流動性低下剤を添加した後の流動性が低下した泥土は、アルカリ性を呈さず、環境への負荷が小さく、建設資材として再利用することも可能となる。
なお、流動性低下剤のpHは、JIS Z 8802:2011に準拠して求められる値で、より具体的な測定方法は、後述の実施例の方法に基づく。
(PH of fluidity reducing agent)
The pH of the above-mentioned polymer aqueous solution, that is, the fluidity-reducing agent of the present invention is preferably pH 2 from the viewpoint of easily improving the fluidity-reducing effect by modifying the properties of mud having a water content of 15% or more. 0.0 to 10.0, more preferably pH 2.5 to 9.0, and still more preferably pH 3.0 to 8.0.
When the pH of the fluidity-reducing agent is in the above range, the mud with reduced fluidity after addition of the fluidity-reducing agent does not exhibit alkalinity, has a small environmental load, and is reused as a construction material. It is also possible to do.
The pH of the fluidity-reducing agent is a value determined according to JIS Z 8802:2011, and a more specific measuring method is based on the method of Examples described later.

[流動性低下方法]
本発明の流動性低下方法は、含水率15%以上の泥土に、前述した本発明の流動性低下剤を添加して泥土の流動性を低下させる。
このような流動性低下方法によれば、流動性が高い泥土(含水率15%以上の泥土)の性状を改質し、流動性を低下させる効果に優れ、貯蔵安定性が良好で、環境への負荷を小さくすることができる。
[Liquidity reduction method]
The fluidity-reducing method of the present invention reduces the fluidity of mud by adding the fluidity-reducing agent of the present invention to mud having a water content of 15% or more.
According to such a method for reducing fluidity, the property of mud having high fluidity (mud having a water content of 15% or more) is improved, the fluidity is excellent, the storage stability is good, and the environment is good. The load of can be reduced.

(流動性低下剤の純分添加量)
本発明においては、前記したポリマー水溶液、すなわち本発明の流動性低下剤の純分添加量は、いくつかの要因により変動するが、目安としては、好ましくは0.5〜5.0kg/m、より好ましくは0.5〜4.0kg/m、更に好ましくは0.8〜3.0kg/mである。
前記した流動性低下剤の純分添加量とは、下記数式2より算出される値である。
(Amount of pure fluidity reducing agent added)
In the present invention, the above-mentioned polymer aqueous solution, that is, the pure content of the fluidity-reducing agent of the present invention, varies depending on several factors, but as a guide, it is preferably 0.5 to 5.0 kg/m 3. , more preferably 0.5~4.0kg / m 3, more preferably from 0.8~3.0kg / m 3.
The pure addition amount of the fluidity-reducing agent is a value calculated by the following mathematical formula 2.

上記流動性低下剤の純分添加量の好ましい範囲(0.5〜5.0kg/m)は、ポリマーを構成する必須のモノマー成分のモル比(A/B)、流動性低下剤を構成するポリマーの固有粘度、及び泥土の含水率等の要因により変動する。 The preferable range (0.5 to 5.0 kg/m 3 ) of the pure content of the fluidity reducing agent is such that the molar ratio (A/B) of the essential monomer components constituting the polymer and the fluidity reducing agent are constituted. Fluctuates due to factors such as the intrinsic viscosity of the polymer used and the water content of the mud.

(2種以上の流動性低下剤との併用)
本発明の流動性低下方法は、流動性が高い泥土(含水率15%以上の泥土)に、前述した本発明の流動性低下剤を2種以上併用して、これらの剤を添加して泥土の流動性を低下させてもよい。
ここで、本発明の2種以上の流動性低下剤とは、互いに物性が異なる流動性低下剤のことを指していい、例えば、以下の3つの形態を例示できるが、これらの組合せであってもよい。
・ポリマーを構成する必須のモノマー成分のモル比(A/B)において、本発明で規定する範囲(20/80〜85/15)を満たすが、互いに異なるモル比(A/B)を有する2種以上の流動性低下剤
・流動性低下剤を構成するポリマーの固有粘度において、本発明で規定する範囲(1.9dL/g以上)を満たすが、互いに異なる固有粘度を有する2種以上の流動性低下剤
2種以上の流動性低下剤を添加する方法は、特に限定されないが、例えば、泥土に2種以上の流動性低下剤を別々のタイミングで添加混合してもよいし、泥土に2種以上の流動性低下剤をほぼ同じタイミングで添加混合してもよい。2種以上の流動性低下剤を予め混合したものも用いることもできる。
本発明の2種以上の流動性低下剤を併用した場合、泥土の性状に応じて、流動性を低下させる効果を好適に発揮され易くすることができる。
(Combination with two or more fluidity-reducing agents)
The fluidity-reducing method of the present invention is carried out by adding two or more types of the fluidity-reducing agent of the present invention described above to mud having high fluidity (moisture content of 15% or more) and adding these agents. The fluidity of may be reduced.
Here, the two or more types of fluidity-reducing agents of the present invention refer to fluidity-reducing agents having physical properties different from each other. For example, the following three forms can be exemplified, but a combination thereof is also possible. Good.
The molar ratio (A/B) of the essential monomer components constituting the polymer satisfies the range (20/80 to 85/15) defined in the present invention, but has different molar ratios (A/B) from each other. Two or more types of fluidity reducing agents-The intrinsic viscosity of the polymer constituting the fluidity reducing agent satisfies the range defined by the present invention (1.9 dL/g or more), but two or more types of fluidity having different intrinsic viscosities. The method of adding two or more fluidity-reducing agents is not particularly limited. For example, two or more fluidity-reducing agents may be added to and mixed with mud at different timings. It is also possible to add and mix one or more fluidity-reducing agents at substantially the same timing. It is also possible to use a mixture of two or more fluidity-reducing agents in advance.
When two or more fluidity-reducing agents of the present invention are used in combination, the effect of reducing fluidity can be easily exerted suitably, depending on the properties of the mud.

(凝集剤との併用)
本発明の流動性低下方法は、流動性が高い泥土(含水率15%以上の泥土)に、前述した本発明の流動性低下剤と凝集剤とを併用して、両剤を添加して泥土の流動性を低下させてもよい。
両剤を添加する方法は、特に限定されないが、例えば、泥土に流動性低下剤と凝集剤とを別々のタイミングで添加混合してもよいし、泥土に流動性低下剤と凝集剤とをほぼ同じタイミングで添加混合してもよい。
本発明の流動性低下剤と凝集剤とを併用した場合、流動性が非常に高い泥土に対しても、流動性を低下させる効果を好適に発揮され易くすることができる。
併用する凝集剤としては、例えば、ポリ塩化アルミニウム(PAC)、硫酸アルミニウム、塩化第二鉄、ポリ硫酸第二鉄、硫酸第一鉄、ポリシリカ鉄等が挙げられる。
併用する凝集剤の純分添加量は、流動性低下剤100質量部に対して、好ましくは1〜30質量部、より好ましくは1〜20質量部、更に好ましくは1〜10質量部である。
(Combination with coagulant)
The method for reducing fluidity of the present invention is to add mud having a high fluidity (mud having a water content of 15% or more) to the mud having a high fluidity and the aggregating agent of the present invention, and adding both agents. Flowability may be reduced.
The method of adding both agents is not particularly limited, but, for example, the fluidity-reducing agent and the coagulant may be added to and mixed with the mud at different timings, or the fluidity-reducing agent and the coagulant may be substantially the same as the mud. You may add and mix at a timing.
When the fluidity-reducing agent of the present invention and the coagulant are used in combination, the effect of reducing the fluidity can be easily exhibited suitably even for mud having extremely high fluidity.
Examples of the coagulant used in combination include polyaluminum chloride (PAC), aluminum sulfate, ferric chloride, polyferric sulfate, ferrous sulfate, and polysilica iron.
The pure content of the coagulant used in combination is preferably 1 to 30 parts by mass, more preferably 1 to 20 parts by mass, and further preferably 1 to 10 parts by mass with respect to 100 parts by mass of the fluidity reducing agent.

(土壌固化材との併用)
本発明の流動性低下方法は、流動性が高い泥土(含水率15%以上の泥土)に、前述した本発明の流動性低下剤と土壌固化材とを併用して、両剤を添加して泥土の流動性を低下させてもよい。
両剤を添加する方法は、特に限定されないが、例えば、泥土に流動性低下剤と土壌固化材とを別々のタイミングで添加混合してもよいし、泥土に流動性低下剤と土壌固化材とをほぼ同じタイミングで添加混合してもよい。
本発明の流動性低下剤と土壌固化材とを併用した場合、泥土の流動性を低下させる効果の他に、泥土を固化させる効果も付与することができる。
併用する土壌固化材としては、例えば、生石灰、石膏、セメント、酸化マグネシウム等が挙げられる。
併用する土壌固化材の純分添加量は、流動性低下剤100質量部に対して、好ましくは1000〜30000質量部、より好ましくは2000〜25000質量部、更に好ましくは3000〜25000質量部である。
(Combination with soil solidifying material)
The method for reducing fluidity of the present invention is to add mud having a high fluidity (mud having a water content of 15% or more) to the mud having a high fluidity and the soil-solidifying material of the present invention, and adding both agents. The fluidity of may be reduced.
The method of adding both agents is not particularly limited, for example, the fluidity-reducing agent and the soil solidifying material may be added to and mixed with the mud at different timings, or the fluidity-reducing agent and the soil solidifying material may be added to the mud. You may add and mix at substantially the same timing.
When the fluidity-reducing agent of the present invention and the soil solidifying material are used in combination, not only the effect of reducing the fluidity of the mud but also the effect of solidifying the mud can be imparted.
Examples of the soil solidifying material used in combination include quick lime, gypsum, cement, magnesium oxide and the like.
The pure content of the soil solidifying agent used in combination is preferably 1000 to 30000 parts by mass, more preferably 2000 to 25000 parts by mass, and further preferably 3000 to 25000 parts by mass with respect to 100 parts by mass of the fluidity-reducing agent. ..

以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(I)流動性低下剤の準備
実施例1〜4及び比較例1〜4の各流動性低下剤を、表1に示すとおり準備した。
実施例1、2、4、及び比較例1〜4の各流動性低下剤を構成するポリマーは、アクリルアミド−アクリル酸ナトリウム共重合体である。一方、実施例3の流動性低下剤を構成するポリマーは、アクリルアミド−アクリル酸共重合体である。
なお、比較例4のW/Oエマルションの油相は、炭化水素系溶剤(鉱物油)である。
流動性低下剤を構成するポリマーの固有粘度、流動性低下剤の粘度、及び流動性低下剤のpHは、以下に示す方法で測定し、その結果を表1に示した。
(I) Preparation of fluidity reducing agent Each fluidity reducing agent of Examples 1 to 4 and Comparative Examples 1 to 4 was prepared as shown in Table 1.
The polymer constituting each of the fluidity-reducing agents of Examples 1, 2, 4 and Comparative Examples 1 to 4 is an acrylamide-sodium acrylate copolymer. On the other hand, the polymer constituting the fluidity reducing agent of Example 3 is an acrylamide-acrylic acid copolymer.
The oil phase of the W/O emulsion of Comparative Example 4 was a hydrocarbon solvent (mineral oil).
The intrinsic viscosity of the polymer constituting the fluidity-reducing agent, the viscosity of the fluidity-reducing agent, and the pH of the fluidity-reducing agent were measured by the following methods, and the results are shown in Table 1.

(ポリマーの固有粘度)
以下の手順にて、各流動性低下剤を構成する成分となるポリマーの固有粘度を求めた。
〔1〕キャノンフェンスケ粘度計(株式会社草野化学製No.75)5本をガラス器具用中性洗剤に1日以上浸漬後、脱イオン水で十分洗浄し、乾燥させた。
〔2〕各流動性低下剤をポリマー純分換算で約0.3g(例えば、純分濃度10質量%の水溶液タイプ(実施例1)の場合は約3.0g)となるように採取して精秤し、脱イオン水に、マグネティックスターラーにて500rpmでの撹拌下で加え、2時間撹拌した後、15〜24時間静置した。再び500rpmで30分間撹拌した後、ガラスフィルター3G2で全量ろ過し、0.2質量%ポリマー水溶液を調製した。
なお、W/Oエマルションタイプ(比較例4)は、大過剰のアセトンに添加して析出精製を行い、この析出物を真空乾燥して粉体として、固有粘度測定に供した。
〔3〕前記0.2質量%ポリマー水溶液50mLに2N硝酸ナトリウム水溶液50mLを加え、マグネティックスターラーにて500rpmで20分間撹拌した後、ポリマー濃度0.1質量%の1N硝酸ナトリウム水溶液を得た。これを1N硝酸ナトリウム水溶液で希釈して0.02、0.04、0.06、0.08、0.1質量%の5段階の濃度のポリマー試料溶液を調製した。なお、1N硝酸ナトリウム水溶液(1N−NaNO3)をブランク液とした。
〔4〕温度30℃(±0.02℃内)に調整した恒温水槽内に、前記粘度計5本を垂直に取り付けた。各粘度計にホールピペットにてブランク液10mLを入れた後、温度を一定にするために約30分間静置した。その後、スポイト栓を用いて液を吸い上げ、自然落下させて、標線を通過する時間をストップウォッチで1/100秒単位まで測定した。この測定を、各粘度計について5回繰り返し、平均値をブランク値tとした。
〔5〕上記で調製した5段階の濃度のポリマー試料溶液各10mLを、ブランク液の測定を行った粘度計5本に入れ、温度を一定にするために約30分間静置した。その後、ブランク液の測定と同様の操作を3回繰り返し、濃度ごとの通過時間の平均値を測定値tとした。
〔6〕上記のブランク値t、測定値t、及びポリマー試料溶液の濃度C[質量/体積%](=C[g/dL])から、相対粘度ηrel、比粘度ηSP、及び還元粘度ηSP/C[dL/g]を下記の関係式にて求めた。
ηrel=t/t
ηSP=(t−t)/t=ηrel−1
これらの値から、上述したHugginsの式に基づく固有粘度の求め方に従って、各ポリマーの固有粘度([η])を算出した。
(Intrinsic viscosity of polymer)
By the following procedure, the intrinsic viscosity of the polymer that is a component of each fluidity-reducing agent was determined.
[1] Five Canon Fenske viscometers (No. 75, manufactured by Kusano Chemical Co., Ltd.) were immersed in a neutral detergent for glassware for one day or more, thoroughly washed with deionized water, and dried.
[2] Collect each fluidity-reducing agent so as to have a polymer content of about 0.3 g (for example, about 3.0 g in the case of an aqueous solution type having a pure content concentration of 10% by mass (Example 1)). The sample was precisely weighed, added to deionized water with a magnetic stirrer at 500 rpm under stirring, stirred for 2 hours, and then allowed to stand for 15 to 24 hours. After stirring again at 500 rpm for 30 minutes, the whole amount was filtered with a glass filter 3G2 to prepare a 0.2 mass% polymer aqueous solution.
In addition, the W/O emulsion type (Comparative Example 4) was added to a large excess of acetone for precipitation purification, and the precipitate was vacuum dried to be a powder, which was then subjected to intrinsic viscosity measurement.
[3] To 50 mL of the 0.2 mass% polymer aqueous solution, 50 mL of a 2N sodium nitrate aqueous solution was added, and the mixture was stirred with a magnetic stirrer at 500 rpm for 20 minutes to obtain a 1N sodium nitrate aqueous solution having a polymer concentration of 0.1 mass%. This was diluted with a 1N sodium nitrate aqueous solution to prepare a polymer sample solution having a concentration of 5 steps of 0.02, 0.04, 0.06, 0.08 and 0.1% by mass. A 1N sodium nitrate aqueous solution (1N-NaNO 3 ) was used as a blank solution.
[4] Five viscometers were vertically installed in a constant temperature water tank adjusted to a temperature of 30°C (within ±0.02°C). A blank pipette (10 mL) was put into each viscometer with a whole pipette, and then left still for about 30 minutes to keep the temperature constant. After that, the liquid was sucked up using a dropper plug and allowed to fall naturally, and the time for passing through the marked line was measured with a stopwatch to a unit of 1/100 second. This measurement was repeated 5 times for each viscometer, and the average value was used as the blank value t 0 .
[5] 10 mL of each of the polymer sample solutions having the five grades of concentrations prepared above were placed in 5 viscometers in which blank liquids were measured, and left still for about 30 minutes to keep the temperature constant. Then, the same operation as the measurement of the blank solution was repeated three times, and the average value of the passage time for each concentration was used as the measurement value t.
[6] From the blank value t 0 , the measured value t, and the concentration C [mass/volume%] (=C [g/dL]) of the polymer sample solution, the relative viscosity η rel , the specific viscosity η SP , and the reduction The viscosity η SP /C [dL/g] was calculated by the following relational expression.
η rel =t/t 0
η SP =(t−t 0 )/t 0rel −1
From these values, the intrinsic viscosity ([η]) of each polymer was calculated according to the method for obtaining the intrinsic viscosity based on the above Huggins equation.

(流動性低下剤の粘度)
表1に示すとおり準備した実施例1〜4及び比較例1〜4の各流動性低下剤の粘度は、25℃で24時間静置後、B型回転粘度計(BROOKFIELD社製、「LV型」)を用い、下記に示す条件で測定した。
・ローター:S64スピンドル
・回転数:6rpm
・測定温度:25℃
(Viscosity of fluidity reducing agent)
The viscosities of the fluidity-reducing agents of Examples 1 to 4 and Comparative Examples 1 to 4 prepared as shown in Table 1 were determined by allowing them to stand at 25° C. for 24 hours, and then measuring them with a B-type rotational viscometer (manufactured by BROOKFIELD, “LV type” ]) was used and measured under the following conditions.
-Rotor: S64 spindle-Rotation speed: 6 rpm
・Measuring temperature: 25℃

(II)泥土の調製
後述する各流動性低下剤の各種評価試験に用いた泥土1〜5は、以下に示す方法で調製した。泥土の含水率、及び泥土のpHは、以下に示す方法で測定し、その結果を表2に示した。
(II) Preparation of Mud Mud 1 to 5 used in various evaluation tests of each fluidity reducing agent described later were prepared by the method described below. The water content of mud and the pH of mud were measured by the following methods, and the results are shown in Table 2.

(泥土1)
原料泥土として笠岡粘土(カサネン工業株式会社販売)を用い、原料泥土の配合量が330g/Lとなるように、水道水を用いて、流動性が高い泥土1(比重:1.442t/m)を調製した。
(Mud 1)
Kasaoka clay (sold by Kasanen Kogyo Co., Ltd.) was used as the raw mud, and tap water was used so that the raw mud content was 330 g/L. Highly fluid mud 1 (specific gravity: 1.442 t/m 3 ) Was prepared.

(泥土2)
原料泥土として笠岡粘土(カサネン工業株式会社販売)を用い、原料泥土の配合量が380g/Lとなるように、水道水を用いて、流動性が高い泥土2(比重:1.606t/m)を調製した。
(Muddy soil 2)
Kasaoka clay (sold by Kasanen Kogyo Co., Ltd.) was used as the raw mud, and tap water was used so that the raw mud content was 380 g/L. Highly fluid mud 2 (specific gravity: 1.606 t/m 3 ) Was prepared.

(泥土3)
原料泥土として、川砂(中目)(埼玉県児玉郡上里町産)(ビバホーム株式会社販売)、珪砂(6号)(JFEミネラル株式会社販売)、及び粘土(トチクレー)(大竹工業株式会社販売)を用い、川砂の配合量が1500g/L、珪砂の配合量が400g/L、粘土の配合量が100g/Lとなるように、水道水を用いて、流動性が高い泥土3(比重:1.860t/m)を調製した。
(Mud 3)
As raw material mud, Kawasuna (medium) (Kamizato-cho, Kodama-gun, Saitama) (Viva Home Co., Ltd. sales), silica sand (No. 6) (JFE Mineral Co., Ltd. sales), and clay (tochi clay) (Otake Industrial Co., Ltd. sales) Using river water, the amount of river sand was 1500 g/L, the amount of silica sand was 400 g/L, and the amount of clay was 100 g/L. .860 t/m 3 ) was prepared.

(泥土4)
原料泥土として笠岡粘土(カサネン工業株式会社販売)を用い、原料泥土の配合量が300g/Lとなるように、市水を用いて、流動性が高い泥土4(比重:1.327t/m)を調製した。
(Mud 4)
Kasaoka clay (sold by Kasanen Kogyo Co., Ltd.) was used as the raw mud, and the mud with high fluidity (specific gravity: 1.327 t/m 3 ) was prepared by using city water so that the raw mud content was 300 g/L. ) Was prepared.

(泥土5)
原料泥土として笠岡粘土(カサネン工業株式会社販売)を用い、原料泥土の配合量が300g/Lとなるように、水道水を用いて、流動性が高い泥土5(比重:1.325t/m)を調製した。
(Mud 5)
Kasaoka clay (sold by Kasanen Kogyo Co., Ltd.) was used as the raw material mud, and tap water was used so that the content of the raw material mud was 300 g/L. Highly fluid mud 5 (specific gravity: 1.325 t/m 3 ) Was prepared.

(泥土の含水率)
泥土の含水率は、JIS A 1203:2009に準拠して測定した。
(Water content of mud)
The water content of the mud was measured according to JIS A 1203:2009.

(泥土のpH)
泥土のpHは、JIS Z 8802:2011に準拠してガラス電極法の操作に基づいて測定した。なお、pHの校正には、市販のフタル酸塩、中性りん酸塩、及び炭酸塩の各pH標準液を用いた。
(PH of mud)
The pH of the mud was measured based on the operation of the glass electrode method according to JIS Z 8802:2011. For pH calibration, commercially available pH standard solutions of phthalate, neutral phosphate, and carbonate were used.

(III)流動性効果の各種評価試験
(1)目視観察による評価試験
上記の表1に示す実施例1〜4及び比較例1〜4の各流動性低下剤を対象として、泥土を改質させ流動性を低下させる効果に関する目視観察による評価試験を以下に示す方法で行い、その結果を表3に示した。
上記の表2に示す泥土1(含水率52.0%、pH8.32)1Lを、3L程度のボウルに採取した。
この泥土1に対して、上記の表1に示す実施例1〜4及び比較例1〜4の各流動性低下剤を、表3に示す添加量X(kg/m)で添加し、60秒間撹拌して混合した。
その後、各流動性低下剤が有する、泥土を改質させ流動性を低下させる効果を以下に示す4段階の基準で目視による評価を行った。
A:泥土の性状の改質が観察され、流動性を低下させる効果も確認された。
B:泥土の性状の改質が観察されたものの、流動性を低下させる効果は不十分であった。
C:泥土の性状の改質が若干観察され、流動性も若干低下したがその効果は不十分であった。
D:泥土の性状の改質は観察されず、流動性を低下させる効果も得られなかった。
(III) Various evaluation tests of fluidity effect (1) Evaluation test by visual observation Targeting each of the fluidity-reducing agents of Examples 1 to 4 and Comparative Examples 1 to 4 shown in Table 1 above, the mud was modified. An evaluation test by visual observation regarding the effect of lowering the fluidity was conducted by the method described below, and the results are shown in Table 3.
1 L of mud 1 (water content 52.0%, pH 8.32) shown in Table 2 was collected in a bowl of about 3 L.
To the mud 1, the fluidity-reducing agents of Examples 1 to 4 and Comparative Examples 1 to 4 shown in Table 1 above were added at the addition amount X (kg/m 3 ) shown in Table 3, and 60 Stir for 2 seconds to mix.
After that, the effect of modifying the mud and decreasing the fluidity of each fluidity-reducing agent was visually evaluated according to the following four-stage criteria.
A: Modification of the properties of mud was observed, and the effect of reducing fluidity was also confirmed.
B: The property of mud was modified, but the effect of lowering the fluidity was insufficient.
C: Some modification of the properties of the mud was observed and the fluidity was also slightly decreased, but the effect was insufficient.
D: No modification of the properties of mud was observed, and the effect of lowering the fluidity was not obtained.

(結果のまとめ1)
表3に記載されている評価結果より、以下のことが分かる。
比較例1〜3は、流動性低下剤を構成する成分となるポリマーの固有粘度が、1.9dL/g未満である流動性低下剤を用いたことに起因し、泥土の性状の改質は観察されず、流動性を低下させる効果は得られなかった。
これに対して、実施例1〜4は、本願で規定する流動性低下剤を用いたことに起因し、泥土の性状の改質が観察され、流動性を低下させる効果が確認された。
実施例1〜4と従来品である比較例4とを比べると、実施例1〜4の流動性低下効果は、比較例4と同等レベル得られることが確認された。
(Summary of results 1)
The following can be seen from the evaluation results shown in Table 3.
Comparative Examples 1 to 3 are due to the use of the fluidity-reducing agent in which the intrinsic viscosity of the polymer that is a component of the fluidity-reducing agent is less than 1.9 dL/g. It was not observed, and the effect of lowering the fluidity was not obtained.
On the other hand, in Examples 1 to 4, due to the use of the fluidity-reducing agent specified in the present application, modification of the properties of mud was observed, and the effect of reducing fluidity was confirmed.
Comparing Examples 1 to 4 with Comparative Example 4 which is a conventional product, it was confirmed that the fluidity lowering effect of Examples 1 to 4 was obtained at the same level as that of Comparative Example 4.

(2)広がり性評価試験
上記の表1に示す実施例4及び比較例4の各流動性低下剤を対象として、泥土を改質させ流動性を低下させる効果に関する広がり性評価試験を以下に示す方法で行った。
上記の表2に示す泥土2(含水率38.7%、pH8.11)200mLを300ccビーカーに採取した。
この泥土2に対して、上記の表1に示す実施例4及び比較例4の各流動性低下剤を、表4に示す添加量X(kg/m)で添加し、2回/1秒間の頻度で、60秒間スパーテルを用いて撹拌して混合した。
その後、泥土2を金属製パレットに広げ、泥土2が広がった後の径を最大と認める方向の長さ(L)と、この方向に直角な方向の長さ(L)とをそれぞれ測定し、その結果を表4に示した。
(2) Spreadability evaluation test A spreadability evaluation test regarding the effect of modifying mud to reduce fluidity is shown below for each fluidity reducing agent of Example 4 and Comparative Example 4 shown in Table 1 above. Made by way.
200 mL of mud 2 (water content 38.7%, pH 8.11) shown in Table 2 above was collected in a 300 cc beaker.
The fluidity-reducing agents of Example 4 and Comparative Example 4 shown in Table 1 above were added to the mud 2 at an addition amount X (kg/m 3 ) shown in Table 4 and the addition was performed twice/second. At a frequency of 60 seconds for 60 seconds using a spatula to mix.
Then, the mud 2 was spread on a metal pallet, and the length (L 2 ) in the direction in which the diameter of the mud 2 after spreading was recognized as the maximum and the length in the direction perpendicular to this direction (L 1 ) were measured. The results are shown in Table 4.

(結果のまとめ2)
表4に記載されている評価結果より、以下のことが分かる。
比較例5は、流動性添加剤を用いなかったことに起因し、泥土2の広がり(L×L)は8cm×8cmであった。
これに対して、実施例4は、本願で規定する流動性低下剤を用いたことに起因し、泥土2の広がり(L×L)は、比較例5よりも広がりが抑えられ、流動性を低下させる効果が確認された。
実施例4と従来品である比較例4とを比べると、実施例4の流動性低下効果は、比較例4と同等レベル得られることが確認された。
(Summary of results 2)
The following can be seen from the evaluation results shown in Table 4.
In Comparative Example 5, the spread (L 1 ×L 2 ) of the mud 2 was 8 cm×8 cm due to the fact that the fluidity additive was not used.
On the other hand, in Example 4, due to the use of the fluidity-reducing agent defined in the present application, the spread (L 1 ×L 2 ) of the mud 2 was suppressed as compared with Comparative Example 5, and the flowability was reduced. The effect of reducing the sex was confirmed.
Comparing Example 4 with Comparative Example 4 which is a conventional product, it was confirmed that the fluidity lowering effect of Example 4 was obtained at the same level as Comparative Example 4.

(3)テーブルフロー値による評価試験
上記の表1に示す実施例3及び比較例2の各流動性低下剤を対象として、泥土を改質させ流動性を低下させる効果に関するテーブルフロー値による評価試験を以下に示す方法で行った。
上記の表2に示す泥土3(含水率17.0%、pH未測定)500mLを2000ccプラスチックビーカーに採取した。
この泥土3に対して、上記の表1に示す実施例3及び比較例2の各流動性低下剤を、表5に示す添加量X(kg/m)で添加し、60秒間撹拌して混合した。
その後、前記で撹拌混合した泥土3を対象として、JIS R 5201:2015(セメントの物性試験方法)に準拠し、以下に示すテーブルフロー試験を行った。
前記で撹拌混合した泥土3を、フローテーブル上の中央に正しく置いたフローコーンの半分の深さまで詰め、突き棒の先端がその層の約1/2の深さまで入るよう、全面にわたり15回突いて一層目を詰めた。次に、一層目の泥土3と同じ量の泥土3を二層目としてフローコーンに詰め、一層目と同様にして突き棒の先端がその層の約1/2の深さまで入るよう、全面にわたり15回突いて二層目を詰めた。そして、フローコーンの上面まで満たすように、必要に応じて不足分を補い表面をならした。
そして、直ちにフローコーンを垂直方向に取り去り、泥土3がフローテーブル上に広がった後の径を最大と認める方向の長さと、この方向に直角な方向の長さとをそれぞれ1mm単位まで測定し、その平均値を算出した(n=0)。
次いで、フローテーブル上に広がった泥土3に対して、フローテーブルのハンドルを回転させ15秒間に15回の落下運動を与え、泥土3がフローテーブル上に更に広がった後の径を最大と認める方向の長さと、この方向に直角な方向の長さとをそれぞれ1mm単位まで測定し、その平均値を算出した(n=15)。
このようなテーブルフロー試験を2回行い、その平均値をテーブルフロー値とした。なお、ここで「n」は、落下運動の回数を表す。
このテーブルフロー値(n=15)が150mm以下である場合、泥土の性状の改質がなされ、流動性を低下させる効果が得られたと評価できる。
(3) Evaluation test by table flow value For each of the fluidity-reducing agents of Example 3 and Comparative Example 2 shown in Table 1 above, an evaluation test by a table flow value regarding the effect of modifying mud to reduce fluidity Was carried out by the method shown below.
500 mL of mud 3 (water content 17.0%, pH unmeasured) shown in Table 2 above was collected in a 2000 cc plastic beaker.
The fluidity-reducing agents of Example 3 and Comparative Example 2 shown in Table 1 above were added to the mud 3 at an addition amount X (kg/m 3 ) shown in Table 5 and stirred for 60 seconds. Mixed.
After that, the following table flow test was performed on the mud 3 stirred and mixed as described above in accordance with JIS R 5201:2015 (method for testing physical properties of cement).
The mud 3 stirred and mixed as described above was packed to the depth of half of the flow cone correctly placed in the center of the flow table, and pierced 15 times over the entire surface so that the tip of the stick entered the depth of about 1/2 of the layer. I narrowed my eyes. Next, the same amount of mud 3 as the first layer was packed in the flow cone as the second layer, and the entire surface was covered so that the tip of the thrust rod entered into the depth of about 1/2 of that layer in the same manner as the first layer. I struck 15 times and packed the second layer. Then, if necessary, the shortage was supplemented to smooth the surface so that the upper surface of the flow cone was filled.
Then, the flow cone is immediately removed in the vertical direction, and the length in the direction in which the diameter after the mud 3 spreads on the flow table is recognized as the maximum and the length in the direction perpendicular to this direction are measured up to a unit of 1 mm. The average value was calculated (n=0).
Then, the handle of the flow table is rotated to give 15 drop motions for 15 seconds to the mud 3 spread on the flow table, and the diameter after the mud 3 further spreads on the flow table is recognized as the maximum. And the length in the direction perpendicular to this direction were measured up to a unit of 1 mm, and the average value thereof was calculated (n=15).
Such a table flow test was performed twice, and the average value was used as the table flow value. In addition, "n" represents the frequency|count of a falling motion here.
When the table flow value (n=15) is 150 mm or less, it can be evaluated that the property of mud was modified and the effect of lowering the fluidity was obtained.

(結果のまとめ3)
表5に記載されている評価結果より、以下のことが分かる。
比較例5は、流動性低下剤を用いなかったことに起因し、テーブルフロー値(n=15)が150mmを超えてしまい、流動性を低下させる効果は確認されなかった。
また、比較例2は、流動性低下剤を構成する成分となるポリマーの固有粘度が、1.9dL/g未満である流動性低下剤を用いたことに起因し、純分添加量が0.20kg/mでは泥土の性状の改質は観察されず、純分添加量が0.40kg/mであってもテーブルフロー値(n=15)が150mmを超えてしまい、流動性を低下させる効果は確認されなかった。
これに対して、実施例3は、本願で規定する流動性低下剤を用いたことに起因し、純分添加量が0.15kg/mでも0.30kg/mでもテーブルフロー値(n=15)が150mm未満となり、流動性を低下させる効果が確認された。
(Summary of results 3)
From the evaluation results shown in Table 5, the following can be seen.
In Comparative Example 5, the table flow value (n=15) exceeded 150 mm due to the fact that the fluidity-reducing agent was not used, and the effect of reducing the fluidity was not confirmed.
Further, in Comparative Example 2, since the intrinsic viscosity of the polymer which is a component constituting the fluidity-reducing agent was less than 1.9 dL/g, the fluidity-reducing agent was used, and thus the addition amount of the pure component was 0.5. No modification of the properties of mud was observed at 20 kg/m 3 , and the table flow value (n=15) exceeded 150 mm even when the pure content was 0.40 kg/m 3 , resulting in poor fluidity. No effect was confirmed.
In contrast, Example 3, resulted from using a fluid reducing agent defined by the present, pure content amount even 0.15kg / m 3 0.30kg / m 3 even table flow value (n =15) was less than 150 mm, and the effect of lowering the fluidity was confirmed.

(4)分離抵抗性評価試験、及びCOD評価試験
上記の表1に示す実施例4及び比較例4の各流動性低下剤を対象として、泥土を改質させ流動性を低下させる効果に関する分離抵抗性評価試験及びCOD評価試験を以下に示す方法で行い、その結果を表6に示した。
<分離抵抗性評価試験>
上記の表1に示す実施例4及び比較例4の各流動性低下剤90mLを、100mLガラス製サンプル瓶(胴内径40mm)に投入して密閉し、室温(20〜25℃)にて静置した。
その後、ガラス製サンプル瓶に投入された各流動性低下剤の状態を、3日、7日、及び14日の各経過時点で観察し、固液分離が生じ分離界面が認められた場合には、液面と分離界面との距離(分離距離)を直線定規で測定した。
この液面と分離界面との距離(分離距離)が長いほど、固液分離が進行し貯蔵性安定性に劣る流動性低下剤であると評価できる。
<CODMn評価試験>
上記の表1に示す実施例4及び比較例4の各流動性低下剤のCODMn(100℃における過マンガン酸カリウムによる酸素消費量)は、JIS K 0102:2016に準拠して測定した。
このCODMnの値が高いほど、有機物を多く含む流動性低下剤であるといえ、環境への負荷が大きいと評価できる。
(4) Separation resistance evaluation test and COD evaluation test Targeting each of the fluidity-reducing agents of Example 4 and Comparative Example 4 shown in Table 1 above, the separation resistance relating to the effect of modifying mud to reduce fluidity A sex evaluation test and a COD evaluation test were performed by the methods described below, and the results are shown in Table 6.
<Separation resistance evaluation test>
90 mL of each fluidity-reducing agent of Example 4 and Comparative Example 4 shown in Table 1 above was placed in a 100 mL glass sample bottle (body diameter 40 mm), sealed, and allowed to stand at room temperature (20 to 25° C.). did.
After that, the state of each fluidity-reducing agent charged in the glass sample bottle was observed at each time point of 3 days, 7 days, and 14 days, and when solid-liquid separation occurred and a separation interface was observed, The distance between the liquid surface and the separation interface (separation distance) was measured with a straight line ruler.
The longer the distance between the liquid surface and the separation interface (separation distance), the more it can be evaluated as a fluidity-reducing agent that undergoes solid-liquid separation and is inferior in storage stability.
<COD Mn evaluation test>
The COD Mn (oxygen consumption by potassium permanganate at 100° C.) of each fluidity-reducing agent of Example 4 and Comparative Example 4 shown in Table 1 above was measured according to JIS K 0102:2016.
It can be said that the higher the value of COD Mn is, the more the fluidity-reducing agent contains a large amount of organic substances, and the greater the load on the environment.

(結果のまとめ4)
表6に記載されている評価結果より、以下のことが分かる。
<分離抵抗性評価試験>
比較例4は、流動性低下剤の形態がW/Oエマルションであったことに起因し、3日経過時点で固液分離が生じ分離界面が認められ、14日経過時点で底部に沈殿が認められたが、撹拌により再分散させることは可能であった。
これに対して、実施例4は、流動性低下剤の形態が水溶液であったことに起因し、14日経過時点においても固液分離が生じなかった。このことから、実施例4の流動性低下剤は、比較例4と比べて貯蔵性に優れることが確認された。
<CODMn評価試験>
比較例4は、流動性低下剤の形態がW/Oエマルションであったことに起因し、CODMnの値が実施例4の約3倍も高いことが確認された。このことから、比較例4の流動性低下剤は、有機物を多く含む流動性低下剤であるといえ、環境への負荷が大きいことが確認された。
これに対して、実施例4は、流動性低下剤の形態が水溶液であったことに起因し、実施例4の流動性低下剤は、比較例4よりも有機物を含む量が少ないといえ、環境への負荷が小さいことが確認された。
(Summary of results 4)
From the evaluation results shown in Table 6, the following can be seen.
<Separation resistance evaluation test>
In Comparative Example 4, due to the fact that the form of the fluidity-reducing agent was a W/O emulsion, solid-liquid separation occurred after 3 days and a separation interface was observed, and precipitation was observed at the bottom after 14 days. However, it was possible to redisperse it by stirring.
On the other hand, in Example 4, solid-liquid separation did not occur even after 14 days because the form of the fluidity-reducing agent was an aqueous solution. From this, it was confirmed that the fluidity-reducing agent of Example 4 was superior in storability to that of Comparative Example 4.
<COD Mn evaluation test>
In Comparative Example 4, it was confirmed that the value of COD Mn was about 3 times higher than that of Example 4, because the form of the fluidity-reducing agent was a W/O emulsion. From this, it was confirmed that the fluidity-reducing agent of Comparative Example 4 is a fluidity-reducing agent that contains a large amount of organic substances, but has a large load on the environment.
On the other hand, in Example 4, since the form of the fluidity-reducing agent was an aqueous solution, it can be said that the fluidity-reducing agent of Example 4 contained less organic matter than Comparative Example 4. It was confirmed that the load on the environment was small.

(5)流動性低下剤の初期形態の違いによる評価
実施例4(表1の実施例4と同じ)及び比較例6の各流動性低下剤を、表7に示すとおり準備した。
実施例4及び比較例6の各流動性低下剤を構成するポリマーは、組成は異なるが共にアクリルアミド−アクリル酸ナトリウム共重合体である。
流動性低下剤を構成するポリマーの固有粘度、流動性低下剤の粘度、及び流動性低下剤のpHは、上述した方法で測定し、その結果を表7に示した。
(5) Evaluation Based on Difference in Initial Form of Fluidity-Reducing Agent Each fluidity-reducing agent of Example 4 (same as Example 4 in Table 1) and Comparative Example 6 was prepared as shown in Table 7.
The polymers constituting the respective fluidity-reducing agents of Example 4 and Comparative Example 6 are acrylamide-sodium acrylate copolymers although they have different compositions.
The intrinsic viscosity of the polymer constituting the fluidity-reducing agent, the viscosity of the fluidity-reducing agent, and the pH of the fluidity-reducing agent were measured by the methods described above, and the results are shown in Table 7.

上記の表7に示す比較例6の粉末状のポリマーが0.1質量%水溶液となるように、純水を用いて、比較例6を水溶液形態に調製した。
上記の表7に示す実施例4の水溶液形態の流動性低下剤、及び上記の表7に示す比較例6を水溶液の形態に調製した流動性低下剤を対象として、流動性低下剤の初期形態の違いによる評価試験を以下に示す方法で行った。
上記の表2に示す泥土1(含水率52.0%、pH8.32)200mLを300ccビーカーに採取した。
この泥土1に対して、上記の表7に示す実施例4の水溶液形態の流動性低下剤、及び上記の表7に示す比較例6を水溶液形態に調製した流動性低下剤を、表8に示す添加量X(kg/m)で添加し、60秒間撹拌して混合した。
その後、実施例4及び比較例6の各流動性低下剤の初期形態の違いによる効果を、以下に示す5段階の基準で目視による評価を行った。
A:泥土の性状の改質が観察され、流動性を低下させる効果も確認された。
B:泥土の性状の改質が観察されたものの、流動性を低下させる効果は不十分であった。
C:泥土の性状の改質が若干観察され、流動性も若干低下したがその効果は不十分であった。
D:泥土の性状の改質は観察されず、流動性を低下させる効果も得られなかった。
E:処理対象汚泥の含水率が増大し、泥土そのものが比重が高いため下方に沈殿し、水分が上方に浮き、泥土の性状の改質は観察されなかった。
Comparative Example 6 was prepared in an aqueous solution form using pure water so that the powdery polymer of Comparative Example 6 shown in Table 7 above became an aqueous solution of 0.1% by mass.
For the fluidity-reducing agent in the aqueous solution form of Example 4 shown in Table 7 above and the fluidity-reducing agent prepared in Comparative Example 6 shown in Table 7 above in the form of an aqueous solution, the initial form of the fluidity-reducing agent is targeted. An evaluation test depending on the difference was carried out by the following method.
200 mL of mud 1 shown in Table 2 (water content 52.0%, pH 8.32) was collected in a 300 cc beaker.
For this mud 1, the fluidity-reducing agent in the aqueous solution form of Example 4 shown in Table 7 above and the fluidity-reducing agent prepared in Comparative Example 6 shown in Table 7 above in the aqueous solution form are shown in Table 8. The addition amount X (kg/m 3 ) shown was added, and the mixture was stirred for 60 seconds and mixed.
After that, the effect of the difference in the initial form of each fluidity-reducing agent of Example 4 and Comparative Example 6 was visually evaluated on the basis of the following 5 grades.
A: Modification of the properties of mud was observed, and the effect of reducing fluidity was also confirmed.
B: The property of mud was modified, but the effect of lowering the fluidity was insufficient.
C: Some modification of the properties of the mud was observed and the fluidity was also slightly decreased, but the effect was insufficient.
D: No modification of the properties of mud was observed, and the effect of lowering the fluidity was not obtained.
E: The water content of the sludge to be treated increased, and the mud itself had a high specific gravity, so that it sedimented downward and the water floated upward, and no modification of the properties of the mud was observed.

(結果のまとめ5)
表7、8に記載されている評価結果より、以下のことが分かる。
比較例6の粉末状ポリマーは、固有粘度が実施例4と比べて10倍近く高い値であった。このことに起因して、比較例6の粉末状ポリマーを水に溶解してポリマー水溶液とした場合、ポリマー濃度(純分濃度)を0.1〜1質量%程度までしか高めることができなかった。
このため、泥土1に対して、比較例6のポリマー水溶液を流動性低下剤として添加する純分添加量を、実施例4と同等にするためには、流動性低下剤の添加量Xは比較例6−3に示されるように100倍以上必要となることが確認された。
その結果、比較例6の粉末状ポリマーは、処理対象汚泥の含水率が増大し、泥土そのものが比重が高いため下方に沈殿し、水分が上方に浮き、泥土の性状の改質は観察されなかった。
(Summary of results 5)
From the evaluation results shown in Tables 7 and 8, the following can be seen.
The powdery polymer of Comparative Example 6 had an intrinsic viscosity nearly 10 times higher than that of Example 4. Due to this, when the powdery polymer of Comparative Example 6 was dissolved in water to form a polymer aqueous solution, the polymer concentration (concentration of pure content) could only be increased to about 0.1 to 1% by mass. ..
Therefore, in order to make the addition amount of the polymer aqueous solution of Comparative Example 6 as the fluidity reducing agent to the mud 1 equal to that of Example 4, the addition amount X of the fluidity reducing agent is compared. As shown in Example 6-3, it was confirmed that 100 times or more was required.
As a result, in the powdery polymer of Comparative Example 6, the water content of the sludge to be treated was increased, and the mud itself had a high specific gravity, so that it sedimented downward, the water floated upward, and the property modification of the mud was not observed. It was

(6)2種以上の流動性低下剤との併用
上記の表1に示す実施例1、4の流動性低下剤を対象として、2種以上の流動性低下剤との併用効果の評価試験を以下に示す方法で行った。
上記の表2に示す泥土4(含水率60.9%、pH7.88)200mLを300ccビーカーに採取した。
この泥土4に対して、上記の表1に示す実施例1、4の流動性低下剤を、表9に示す添加量X(kg/m)で添加し、60秒間撹拌して混合した。
その後、実施例1又は4の流動性低下剤単独による効果、及び実施例1及び4の流動性低下剤併用による効果を以下に示す4段階の基準で目視による評価を行った。
A:泥土の性状の改質が観察され、流動性を低下させる効果も確認された。
B:泥土の性状の改質が観察されたものの、流動性を低下させる効果は不十分であった。
C:泥土の性状の改質が若干観察され、流動性も若干低下したがその効果は不十分であった。
D:泥土の性状の改質は観察されず、流動性を低下させる効果も得られなかった。
(6) Combined use with two or more fluidity-reducing agents An evaluation test of the effect of combined use with two or more fluidity-reducing agents was conducted on the fluidity-reducing agents of Examples 1 and 4 shown in Table 1 above. It carried out by the method shown below.
200 mL of mud 4 (water content 60.9%, pH 7.88) shown in Table 2 above was collected in a 300 cc beaker.
The fluidity-reducing agents of Examples 1 and 4 shown in Table 1 above were added to the mud 4 at an addition amount X (kg/m 3 ) shown in Table 9 and mixed by stirring for 60 seconds.
After that, the effect of the fluidity-reducing agent alone in Example 1 or 4 and the effect of the fluidity-reducing agent in combination in Examples 1 and 4 were visually evaluated based on the following four-stage criteria.
A: Modification of the properties of mud was observed, and the effect of reducing fluidity was also confirmed.
B: The property of mud was modified, but the effect of lowering the fluidity was insufficient.
C: Some modification of the properties of the mud was observed and the fluidity was also slightly decreased, but the effect was insufficient.
D: No modification of the properties of mud was observed, and the effect of lowering the fluidity was not obtained.

(結果のまとめ6)
表9に記載されている評価結果より、以下のことが分かる。
実施例1の流動性低下剤と実施例4の流動性低下剤との併用で、泥土の性状の改質が観察され、流動性を低下させる効果も確認された。
(Summary of results 6)
From the evaluation results shown in Table 9, the following can be seen.
When the fluidity-reducing agent of Example 1 and the fluidity-reducing agent of Example 4 were used in combination, modification of the properties of mud was observed, and the effect of reducing fluidity was also confirmed.

(7)凝集剤との併用
上記の表1に示す実施例3の流動性低下剤を対象として、凝集剤との併用効果の評価試験を以下に示す方法で行った。
上記の表2に示す泥土5(含水率61.2%、pH8.01)200mLを300ccビーカーに採取した。
この泥土5に対して、上記の表1に示す実施例3の流動性低下剤を、表10に示す添加量X(kg/m)で添加し、60秒間撹拌して混合した。次いで、凝集剤であるポリ塩化アルミニウム(PAC)を、表9に示す添加量b(kg/m)で添加し、60秒間撹拌して混合した。
その後、実施例3の流動性低下剤単独による効果、及び実施例3の流動性低下剤と凝集剤との併用による効果を以下に示す4段階の基準で目視による評価を行った。
A:泥土の性状の改質が観察され、流動性を低下させる効果も確認された。
B:泥土の性状の改質が観察されたものの、流動性を低下させる効果は不十分であった。
C:泥土の性状の改質が若干観察され、流動性も若干低下したがその効果は不十分であった。
D:泥土の性状の改質は観察されず、流動性を低下させる効果も得られなかった。
(7) Combined use with a flocculant Targeting the fluidity-reducing agent of Example 3 shown in Table 1 above, an evaluation test of the combined use with a flocculant was conducted by the method described below.
200 mL of the mud 5 shown in Table 2 (water content 61.2%, pH 8.01) was collected in a 300 cc beaker.
The fluidity-reducing agent of Example 3 shown in Table 1 above was added to the mud 5 at an addition amount X (kg/m 3 ) shown in Table 10 and mixed by stirring for 60 seconds. Next, polyaluminum chloride (PAC), which is a coagulant, was added at an addition amount b (kg/m 3 ) shown in Table 9 and mixed by stirring for 60 seconds.
Thereafter, the effect of the fluidity-reducing agent of Example 3 alone and the effect of the combination of the fluidity-reducing agent of Example 3 and the aggregating agent were visually evaluated based on the following four-stage criteria.
A: Modification of the properties of mud was observed, and the effect of reducing fluidity was also confirmed.
B: The property of mud was modified, but the effect of lowering the fluidity was insufficient.
C: Some modification of the properties of the mud was observed and the fluidity was also slightly decreased, but the effect was insufficient.
D: No modification of the properties of mud was observed, and the effect of lowering the fluidity was not obtained.

(結果のまとめ8)
表10に記載されている評価結果より、以下のことが分かる。
実施例3の流動性低下剤と凝集剤であるポリ塩化アルミニウム(PAC)との併用で、泥土の性状の改質が観察され、流動性を低下させる効果も確認された。
(Summary of results 8)
From the evaluation results shown in Table 10, the following can be seen.
When the fluidity-reducing agent of Example 3 and the coagulant polyaluminum chloride (PAC) were used in combination, modification of the properties of mud was observed, and the effect of reducing fluidity was also confirmed.

(8)土壌固化材との併用
上記の表1に示す実施例3の流動性低下剤を対象として、土壌固化材との併用効果の評価試験を以下に示す方法で行った。
上記の表2に示す泥土1(含水率52.0%、pH8.32)200mLを300ccビーカーに採取した。
この泥土1に対して、上記の表1に示す実施例3の流動性低下剤を、表11に示す添加量X(kg/m)で添加し、60秒間撹拌して混合した。次いで、土壌固化材である生石灰を、表10に示す添加量b(kg/m)で添加し、60秒間撹拌して混合し、24時間静置した。
その後、泥土の性状の改質が観察され、流動性が低下し泥土の固化も観察された。この固化した泥土1を対象として、山中式土壌硬度計を用いてコーン指数(kN/m)を測定し、その結果を表10に示した。
このコーン指数の値が高いほど、泥土の固化の程度が大きいと評価できる。
(8) Combined use with soil solidifying agent Targeting the fluidity-reducing agent of Example 3 shown in Table 1 above, an evaluation test of the combined use effect with the soil solidifying agent was carried out by the method described below.
200 mL of mud 1 shown in Table 2 (water content 52.0%, pH 8.32) was collected in a 300 cc beaker.
The fluidity-reducing agent of Example 3 shown in Table 1 above was added to the mud 1 at an addition amount X (kg/m 3 ) shown in Table 11 and mixed by stirring for 60 seconds. Then, quick lime, which is a soil solidifying material, was added at an addition amount b (kg/m 3 ) shown in Table 10, stirred for 60 seconds and mixed, and allowed to stand for 24 hours.
After that, modification of the properties of the mud was observed, fluidity was lowered, and solidification of the mud was also observed. A cone index (kN/m 2 ) was measured for this solidified mud 1 using a Yamanaka soil hardness meter, and the results are shown in Table 10.
It can be evaluated that the higher the value of this cone index, the greater the degree of solidification of the mud.

(結果のまとめ7)
表10に記載されている評価結果より、以下のことが分かる。
実施例3の流動性低下剤と土壌固化材である生石灰との併用で、泥土の流動性を低下させる効果の他に、泥土を固化させる効果も確認された。
(Summary of results 7)
From the evaluation results shown in Table 10, the following can be seen.
It was confirmed that the combined use of the fluidity-reducing agent of Example 3 and quick lime, which is a soil-solidifying material, not only reduces the fluidity of mud, but also solidifies mud.

Claims (6)

含水率15質量%以上の泥土の流動性を低下させる流動性低下剤であって、
前記流動性低下剤が、(メタ)アクリルアミド(A)と、(メタ)アクリル酸及びその塩から選ばれる1種以上の化合物(B)とをモノマー成分として含むポリマーを含む水溶液であり、
前記(メタ)アクリル酸及びその塩から選ばれる1種以上の化合物(B)に対する前記(メタ)アクリルアミド(A)のモル比(A/B)が、20/80〜85/15であり、
前記ポリマーを含む水溶液中のポリマー濃度が1〜30質量%であり、
前記ポリマーの1N硝酸ナトリウム水溶液における30℃での固有粘度が1.9dL/g以上である、流動性低下剤。
A fluidity-reducing agent for reducing the fluidity of mud having a water content of 15% by mass or more,
The fluidity reducing agent is an aqueous solution containing a polymer containing (meth)acrylamide (A) and one or more compounds (B) selected from (meth)acrylic acid and salts thereof as monomer components.
The molar ratio (A/B) of the (meth)acrylamide (A) to one or more compounds (B) selected from the (meth)acrylic acid and salts thereof is 20/80 to 85/15,
The polymer concentration in the aqueous solution containing the polymer is 1 to 30% by mass,
A fluidity-lowering agent, wherein the polymer has an intrinsic viscosity at 30° C. in a 1N sodium nitrate aqueous solution of 1.9 dL/g or more.
前記泥土に、請求項1に記載の流動性低下剤を添加して泥土の流動性を低下させる、流動性低下方法。 A fluidity-reducing method comprising adding the fluidity-reducing agent according to claim 1 to the mud to reduce the fluidity of the mud. 前記流動性低下剤の純分添加量が0.5〜5.0kg/mである、請求項2に記載の流動性低下方法。 The fluidity reducing method according to claim 2, wherein the pure content of the fluidity reducing agent is 0.5 to 5.0 kg/m 3 . 前記泥土に、請求項1に記載の流動性低下剤を2種以上添加して泥土の流動性を低下させる、請求項2又は3に記載の流動性低下方法。 The fluidity-reducing method according to claim 2 or 3, wherein the fluidity-reducing agent according to claim 1 is added to the mud to reduce the fluidity of the mud. 前記泥土に、更に凝集剤を添加して泥土の流動性を低下させる、請求項2〜4のいずれか1項に記載の流動性低下方法。 The fluidity reducing method according to any one of claims 2 to 4, wherein a coagulant is further added to the mud to reduce the fluidity of the mud. 前記泥土に、更に土壌固化材を添加して泥土の流動性を低下させる、請求項2〜5のいずれか1項に記載の流動性低下方法。 The fluidity reducing method according to any one of claims 2 to 5, wherein a soil solidifying material is further added to the mud to reduce fluidity of the mud.
JP2019007909A 2019-01-21 2019-01-21 Fluidity reducing agent and method for reducing fluidity Active JP7248226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019007909A JP7248226B2 (en) 2019-01-21 2019-01-21 Fluidity reducing agent and method for reducing fluidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019007909A JP7248226B2 (en) 2019-01-21 2019-01-21 Fluidity reducing agent and method for reducing fluidity

Publications (2)

Publication Number Publication Date
JP2020116492A true JP2020116492A (en) 2020-08-06
JP7248226B2 JP7248226B2 (en) 2023-03-29

Family

ID=71889527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019007909A Active JP7248226B2 (en) 2019-01-21 2019-01-21 Fluidity reducing agent and method for reducing fluidity

Country Status (1)

Country Link
JP (1) JP7248226B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110197A (en) * 1997-06-23 1999-01-19 Nippon Shokubai Co Ltd Solidification treatment method of construction sludge
WO2014038537A1 (en) * 2012-09-10 2014-03-13 栗田工業株式会社 Water treatment method and apparatus
JP2018114456A (en) * 2017-01-18 2018-07-26 栗田工業株式会社 Sludge dewatering agent and sludge dewatering method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110197A (en) * 1997-06-23 1999-01-19 Nippon Shokubai Co Ltd Solidification treatment method of construction sludge
WO2014038537A1 (en) * 2012-09-10 2014-03-13 栗田工業株式会社 Water treatment method and apparatus
JP2018114456A (en) * 2017-01-18 2018-07-26 栗田工業株式会社 Sludge dewatering agent and sludge dewatering method

Also Published As

Publication number Publication date
JP7248226B2 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
KR0138524B1 (en) High performing polymer flocculating agents
MX2014009580A (en) Rapidly inverting water-in-oil polymer emulsions.
CN101372525A (en) Method for preparing non-ionic hydrophobic association polymerization water-soluble polymer from reverse micro emulsion
JPS6034798A (en) Disprsing method of inorganic substance in aqueous system and precipitation control of usual hard ion salt
JP3643003B2 (en) Dispersant composition
CA3019017A1 (en) Amphoteric polymer, process for production thereof, and use thereof, to treat aqueous dispersions
JP2002526611A (en) Aqueous dispersion
CN103406067B (en) -kind of polycarboxylate dispersant and preparation method thereof and application
CN105330785B (en) Temperature-resistant salt-resistant nano anti-collapse filtrate reducer for drilling fluid and preparation method thereof
US20190375665A1 (en) Sludge dehydrating agent and sludge dehydrating method
JP7248226B2 (en) Fluidity reducing agent and method for reducing fluidity
TWI777016B (en) Additive for hydraulic composition and hydraulic composition
JP5088770B2 (en) Papermaking chemicals
TW201834976A (en) Sludge dehydrating agent and sludge dehydrating method
JPH073254A (en) Composition for drilling fluid
JP2011094007A (en) Dust preventive and dust preventing method
JP7318902B2 (en) Excavation Additives and Mud Pressure Shield Construction Method
JP4711122B2 (en) Water absorbing material
CN108424754A (en) A kind of high temperature resistance high calcium salt drilling fluid and preparation method
JPH02194891A (en) Treatment of water containing surplus excavation soil
JP4277124B2 (en) Drilling mud additive and drilling mud using the same
JP5733677B2 (en) Wastewater treatment agent
JP2011006581A (en) Water soluble thickener having temperature sensitivity
JP6388329B2 (en) Water-soluble polymer dispersion containing low inorganic salt and process for producing the same
WO2018213684A1 (en) Water soluble polymer dispersions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230307

R150 Certificate of patent or registration of utility model

Ref document number: 7248226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150