JP2020115068A - Refrigeration cycle device and liquid heating device including the same - Google Patents

Refrigeration cycle device and liquid heating device including the same Download PDF

Info

Publication number
JP2020115068A
JP2020115068A JP2019006714A JP2019006714A JP2020115068A JP 2020115068 A JP2020115068 A JP 2020115068A JP 2019006714 A JP2019006714 A JP 2019006714A JP 2019006714 A JP2019006714 A JP 2019006714A JP 2020115068 A JP2020115068 A JP 2020115068A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
heat exchanger
pressure
intermediate heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019006714A
Other languages
Japanese (ja)
Other versions
JP7012208B2 (en
Inventor
常子 今川
Tsuneko Imagawa
常子 今川
由樹 山岡
Yoshiki Yamaoka
由樹 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019006714A priority Critical patent/JP7012208B2/en
Priority to ES19191742T priority patent/ES2904478T3/en
Priority to EP19191742.6A priority patent/EP3683520B1/en
Priority to DK19191742.6T priority patent/DK3683520T3/en
Publication of JP2020115068A publication Critical patent/JP2020115068A/en
Application granted granted Critical
Publication of JP7012208B2 publication Critical patent/JP7012208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

To provide a refrigeration cycle device and a liquid heating device including the refrigeration cycle device that prevent deterioration of COP by performing appropriate control even when a high pressure is increased.SOLUTION: A refrigeration cycle device includes: a main refrigerant circuit 10 formed by sequentially connecting a compression mechanism 11, a use side heat exchanger 12, an intermediate heat exchanger 13, a first expansion device 14 and a heat source side heat exchanger 15 by using piping 16; a bypass refrigerant circuit 20 that is branched from the piping 16 from the use side heat exchanger 12 to the first expansion device 14 and in which after decompression is performed by a second expansion device 21, heat exchange with a refrigerant flowing in the main refrigerant circuit 10 is performed by the intermediate heat exchanger 13 and joining with a refrigerant of a compression rotating element in the process of being compressed is performed; and a control device 60. The control device 60 controls a valve opening of the second expansion device 21 so that a pressure of the refrigerant after decompressed by the second expansion device 21 maintains a state of exceeding a critical pressure.SELECTED DRAWING: Figure 4

Description

本発明は、冷凍サイクル装置及びそれを備えた液体加熱装置に関するものである。 The present invention relates to a refrigeration cycle device and a liquid heating device including the same.

従来、この種の冷凍サイクル装置には、冷媒を二段で圧縮する二段圧縮機と、冷媒を二段で膨張する二つの膨張装置とを備えた超臨界蒸気圧縮式冷凍サイクルを開示し、冷媒には二酸化炭素を用いているものがある(例えば、特許文献1参照)。 Conventionally, in this type of refrigeration cycle device, a two-stage compressor for compressing the refrigerant in two stages, and a supercritical vapor compression refrigeration cycle including two expansion devices for expanding the refrigerant in two stages are disclosed, Some refrigerants use carbon dioxide (see, for example, Patent Document 1).

特許文献1の超臨界蒸気圧縮式冷凍サイクルは、気液分離器を備え、気液分離器内の気相を主成分とする冷媒は、インジェクション回路から二段圧縮機の中間連結回路の途中にある冷媒混合器に中間インジェクションされ、低段側回転圧縮回転要素から吐出された冷媒に混合され、高段側回転圧縮回転要素に吸入される。 The supercritical vapor compression refrigeration cycle of Patent Document 1 includes a gas-liquid separator, and the refrigerant whose main component is a gas phase in the gas-liquid separator is in the middle of an intermediate connection circuit of the two-stage compressor from the injection circuit. It is subjected to intermediate injection into a certain refrigerant mixer, mixed with the refrigerant discharged from the low stage side rotary compression rotary element, and drawn into the high stage side rotary compression rotary element.

特許文献1では、低段側回転圧縮回転要素の排除容積に対する高段側回転圧縮回転要素の排除容積の割合(排除容積比)を、二段圧縮機の吸入圧力を第1膨脹装置における冷媒飽和液圧で除算した商の等エントロピ指数乗根以上とすることで、低段側回転圧縮回転要素の吐出圧力を冷媒の臨界圧力以下にしている。 In Patent Document 1, the ratio of the excluded volume of the high-stage rotary compression rotary element to the excluded volume of the low-stage rotary compression rotary element (excluded volume ratio), the suction pressure of the two-stage compressor, the refrigerant saturation in the first expansion device The discharge pressure of the low-stage rotary compression rotary element is set to be equal to or lower than the critical pressure of the refrigerant by setting the isentropic exponent root of the quotient divided by the hydraulic pressure or more.

また、従来、この種の冷凍サイクル装置には、冷媒が二酸化炭素でなくても、冷媒を二段で圧縮する二段圧縮機と、冷媒を二段で膨張する二つの膨張装置とを備えたものがある(例えば、特許文献2参照)。 Further, conventionally, a refrigeration cycle apparatus of this type includes a two-stage compressor that compresses the refrigerant in two stages and two expansion devices that expand the refrigerant in two stages even if the refrigerant is not carbon dioxide. There is one (for example, refer to Patent Document 2).

特許文献2の冷凍装置は、過冷却熱交換器を備え、二段圧縮機から吐出された冷媒の一部を膨張し、過冷却熱交換器で吐出された冷媒と熱交換を行った後、圧縮機の中間ポートにインジェクションするインジェクション回路を備え、過冷却熱交換器の出口の過熱度に従って目標過熱度を設定することにより、膨張弁開度の制御を行っている。 The refrigeration apparatus of Patent Document 2 includes a subcooling heat exchanger, expands a part of the refrigerant discharged from the two-stage compressor, and after exchanging heat with the refrigerant discharged in the subcooling heat exchanger, An injection circuit for injecting into the intermediate port of the compressor is provided, and the opening degree of the expansion valve is controlled by setting the target superheat degree according to the superheat degree at the outlet of the supercooling heat exchanger.

特開2010−071643号公報JP, 2010-071643, A 特開2010−054194号公報JP, 2010-054194, A

しかしながら、前記特許文献1にかかる従来の構成では、超臨界蒸気圧縮式冷凍サイクルにおいて、高温水を生成するために高圧を上昇させたとき、インジェクション回路における冷媒の中間圧が冷媒の臨界圧力以下であるため、高圧と中間圧との差圧が大きくなり、超臨界蒸気圧縮式冷凍サイクルのCOPが低下してしまうという課題を有していた。 However, in the conventional configuration according to Patent Document 1, when the high pressure is increased to generate high temperature water in the supercritical vapor compression refrigeration cycle, the intermediate pressure of the refrigerant in the injection circuit is equal to or lower than the critical pressure of the refrigerant. Therefore, there is a problem that the differential pressure between the high pressure and the intermediate pressure becomes large, and the COP of the supercritical vapor compression refrigeration cycle decreases.

また、前記特許文献2にかかる従来の構成では、過冷却熱交換器の出口の過熱度に基づいて制御を行うため、二段圧縮機から吐出され膨張された冷媒の圧力が臨界圧以上の場合には制御が不可能となる。 Further, in the conventional configuration according to Patent Document 2, since the control is performed based on the superheat degree at the outlet of the subcooling heat exchanger, when the pressure of the refrigerant discharged from the two-stage compressor and expanded is equal to or higher than the critical pressure. Will be out of control.

本発明は、前記課題を解決するもので、高圧を上昇させたときにも、適切な制御を行うことでCOPを低下させない冷凍サイクル装置及びそれを備えた液体加熱装置を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems, and to provide a refrigeration cycle apparatus and a liquid heating apparatus including the same, which do not reduce the COP by performing appropriate control even when the high pressure is increased. To do.

前記従来の課題を解決するために、本発明の冷凍サイクル装置は、圧縮回転要素から構成される圧縮機構、前記圧縮回転要素から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐され、第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、制御装置と、を備え、前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度との温度差が、前記冷媒が前記中間熱交換器を気液二相の状態で流れる場合よりも大きく、かつ、前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と前記中間熱交換器の前記主冷媒回路の冷媒の入口温度との温度差が、前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度と前記中間熱交換器の前記主冷媒回路の冷媒の出口温度との温度差よりも大きい状態となるように、前記制御装置は、前記第2膨張装置の弁開度を制御して、前記第2膨張装置により減圧された後の冷媒の圧力が、臨界圧を超えた状態を保つようにすることを特徴とするものである。 In order to solve the above-mentioned conventional problems, a refrigeration cycle apparatus of the present invention includes a compression mechanism including a compression rotary element, and a use side heat exchanger that heats a use side heat medium with a refrigerant discharged from the compression rotary element. A main refrigerant circuit formed by sequentially connecting an intermediate heat exchanger, a first expansion device, and a heat source side heat exchanger by piping, and from the piping between the use side heat exchanger and the first expansion device A bypass refrigerant circuit that is branched and is decompressed by the second expansion device, and then heat-exchanges with the refrigerant flowing through the main refrigerant circuit in the intermediate heat exchanger, and joins with the refrigerant in the middle of compression of the compression rotary element; A temperature difference between an outlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger and an inlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger, the refrigerant is the intermediate heat exchange. Larger than the case of flowing in a gas-liquid two-phase state through the reactor, and between the outlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger and the inlet temperature of the refrigerant of the main refrigerant circuit of the intermediate heat exchanger The control is performed such that the temperature difference is larger than the temperature difference between the inlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger and the outlet temperature of the refrigerant of the main refrigerant circuit of the intermediate heat exchanger. The device controls the valve opening of the second expansion device so that the pressure of the refrigerant after being decompressed by the second expansion device remains in a state of exceeding a critical pressure. Is.

これにより、第2膨張装置により減圧された後の冷媒の圧力が、臨界圧を超えた場合でも、バイパス冷媒回路の中間熱交換器の冷媒の出口と入口との間のエンタルピー差を大きくとることができるとともに、バイパス冷媒回路の中間熱交換器を流れる冷媒の流量を増加させることができるので、高いCOPを実現した冷凍サイクル装置を提供できる。 Thereby, even when the pressure of the refrigerant after being decompressed by the second expansion device exceeds the critical pressure, a large enthalpy difference between the refrigerant outlet and the refrigerant inlet of the intermediate heat exchanger of the bypass refrigerant circuit is taken. In addition, since the flow rate of the refrigerant flowing through the intermediate heat exchanger of the bypass refrigerant circuit can be increased, it is possible to provide a refrigeration cycle apparatus that realizes a high COP.

本発明によれば、高圧を上昇させたときにも、適切な制御を行うことでCOPを低下させない冷凍サイクル装置及びそれを備えた液体加熱装置を提供できる。 According to the present invention, it is possible to provide a refrigeration cycle apparatus that does not reduce COP by performing appropriate control even when the high pressure is increased, and a liquid heating apparatus including the same.

本発明の実施の形態1における液体加熱装置の構成図1 is a configuration diagram of a liquid heating device according to Embodiment 1 of the present invention (a)本発明の実施の形態1における冷凍サイクル装置の中間圧が臨界圧力より低い場合の圧力―エンタルピー線図(P−h線図)(b)同冷凍サイクル装置の中間圧が臨界圧力より高い場合の圧力―エンタルピー線図(P−h線図)(A) Pressure-enthalpy diagram (Ph diagram) when intermediate pressure of the refrigeration cycle device in Embodiment 1 of the present invention is lower than critical pressure (b) Intermediate pressure of the same refrigeration cycle device is lower than critical pressure High pressure-enthalpy diagram (Ph diagram) 本発明の実施の形態1における冷凍サイクル装置の中間熱交換器を流れる主冷媒回廊の冷媒とバイパス冷媒回路の冷媒の温度との関係を示す図The figure which shows the relationship between the temperature of the refrigerant of the main refrigerant corridor which flows through the intermediate heat exchanger of the refrigerating cycle device in Embodiment 1 of this invention, and the refrigerant of a bypass refrigerant circuit. (a)本発明の実施の形態1におけるΔTMと、中間熱交換器を流れるバイパス冷媒回路の冷媒循環量との関係を示す図(b)同中間熱交換器の熱交換量と、中間熱交換器を流れるバイパス冷媒回路の冷媒循環量との関係を示す図(c)同ΔTHとΔTLとの温度差であるΔTと、中間熱交換器を流れるバイパス冷媒回路の冷媒循環量との関係を示す図(A) The figure which shows the relationship between (DELTA)TM in Embodiment 1 of this invention, and the refrigerant|coolant circulation amount of the bypass refrigerant circuit which flows through an intermediate heat exchanger (b) The heat exchange amount of the same intermediate heat exchanger, and intermediate heat exchange (C) shows the relationship between the refrigerant circulation amount of the bypass refrigerant circuit flowing through the heat exchanger and the temperature difference ΔT between ΔTH and ΔTL and the refrigerant circulation amount of the bypass refrigerant circuit flowing through the intermediate heat exchanger. Figure 本発明の実施の形態1における液体加熱装置において、利用側熱交換器の熱利用媒体の入口温度が変化した場合の、冷凍サイクル装置の圧力―エンタルピー線図(P−h線図)In the liquid heating device according to Embodiment 1 of the present invention, the pressure-enthalpy diagram (Ph diagram) of the refrigeration cycle device when the inlet temperature of the heat utilization medium of the utilization side heat exchanger changes.

第1の発明は、圧縮回転要素から構成される圧縮機構、前記圧縮回転要素から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐され、第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、制御装置と、を備え、前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度との温度差が、前記冷媒が前記中間熱交換器を気液二相の状態で流れる場合よりも大きく、かつ、前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と前記中間熱交換器の前記主冷媒回路の冷媒の入口温度との温度差が、前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度と前記中間熱交換器の前記主冷媒回路の冷媒の出口温度との温度差よりも大きい状態となるように、前記制御装置は、前記第2膨張装置の弁開度を制御して、前記第2膨張装置により減圧された後の冷媒の圧力が、臨界圧を超えた状態を保つようにすることを特徴とする冷凍サイクル装置である。 A first aspect of the present invention is a compression mechanism including a compression rotary element, a use side heat exchanger that heats a use side heat medium by a refrigerant discharged from the compression rotary element, an intermediate heat exchanger, a first expansion device, and a heat source. After branching from the main refrigerant circuit formed by sequentially connecting side heat exchangers with piping and the piping between the utilization side heat exchanger and the first expansion device, and after decompressing with the second expansion device , A bypass refrigerant circuit that is heat-exchanged with the refrigerant flowing through the main refrigerant circuit in the intermediate heat exchanger, and is joined to the refrigerant in the middle of compression of the compression rotary element, and a control device, and the intermediate heat exchanger The temperature difference between the outlet temperature of the refrigerant of the bypass refrigerant circuit and the inlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger, than when the refrigerant flows through the intermediate heat exchanger in a gas-liquid two-phase state Is also large, and the temperature difference between the outlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger and the inlet temperature of the refrigerant of the main refrigerant circuit of the intermediate heat exchanger, the bypass of the intermediate heat exchanger. The control device controls the valve opening degree of the second expansion device so that the temperature difference between the refrigerant inlet temperature of the refrigerant circuit and the refrigerant outlet temperature of the main refrigerant circuit of the intermediate heat exchanger is larger than the temperature difference. Is controlled so that the pressure of the refrigerant after being decompressed by the second expansion device is maintained in a state of exceeding the critical pressure.

これにより、第2膨張装置により減圧された後の冷媒の圧力が、臨界圧を超えた場合でも、バイパス冷媒回路の中間熱交換器の冷媒の出口と入口との間のエンタルピー差を大きくとることができるとともに、バイパス冷媒回路の中間熱交換器を流れる冷媒の流量を増加させることができるので、高いCOPを実現した冷凍サイクル装置を提供できる。 Thereby, even when the pressure of the refrigerant after being decompressed by the second expansion device exceeds the critical pressure, a large enthalpy difference between the refrigerant outlet and the refrigerant inlet of the intermediate heat exchanger of the bypass refrigerant circuit is taken. In addition, since the flow rate of the refrigerant flowing through the intermediate heat exchanger of the bypass refrigerant circuit can be increased, it is possible to provide a refrigeration cycle apparatus that realizes a high COP.

第2の発明は、特に、第1の発明において、前記第2膨張装置により減圧された後の冷媒の圧力が高いほど、前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と冷媒の入口温度との温度差が大きくなるように、前記制御装置は、前記第2膨張装置の弁開度を制御することを特徴とするものである。 A second aspect of the present invention is, in particular, in the first aspect, the higher the pressure of the refrigerant after being decompressed by the second expansion device, the higher the outlet temperature of the refrigerant and the refrigerant outlet temperature of the bypass refrigerant circuit of the intermediate heat exchanger. The control device controls the valve opening degree of the second expansion device so that the temperature difference from the inlet temperature becomes large.

これにより、利用側熱交換器への利用側熱媒体の入口温度や、利用側熱交換器からの利用側熱媒体の出口温度、また、熱源側熱交換器への熱源側熱媒体(空気)が上昇することにより、バイパス冷媒回路の中間熱交換器の圧力も上昇するが、そのときに必要なエンタルピー差を確保するために、第2膨張装置により減圧された後の冷媒の圧力が高くなるほど、バイパス冷媒回路の中間熱交換器の冷媒の出口温度と冷媒の入口温度との温度差が大きくなるように、制御装置が、第2膨張装置の弁開度を制御することで、中間圧が上昇しても、バイパス冷媒回路の中間熱交換器の冷媒の出口と入口との間のエンタルピー差を確保することができるため、高いCOPを実現した冷凍サイクル装置を提供できる。 Thereby, the inlet temperature of the use side heat medium to the use side heat exchanger, the outlet temperature of the use side heat medium from the use side heat exchanger, and the heat source side heat medium (air) to the heat source side heat exchanger. Rises, the pressure of the intermediate heat exchanger of the bypass refrigerant circuit also rises. However, in order to secure a necessary enthalpy difference at that time, as the pressure of the refrigerant after being decompressed by the second expansion device becomes higher, The control device controls the valve opening degree of the second expansion device so that the temperature difference between the outlet temperature of the refrigerant and the inlet temperature of the refrigerant of the intermediate heat exchanger of the bypass refrigerant circuit becomes large. Even if the temperature rises, it is possible to secure the enthalpy difference between the outlet and the inlet of the refrigerant of the intermediate heat exchanger of the bypass refrigerant circuit, so that it is possible to provide a refrigeration cycle apparatus that realizes a high COP.

第3の発明は、特に、第1または第2の発明において、前記制御装置は、前記圧縮機構からの吐出冷媒の圧力値と、前記利用側熱交換器の冷媒の出口温度と、前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度とから、前記第2膨張装置により減圧された後の冷媒の圧力が、臨界圧以上であるか否かを判断することを特徴とするものである。 In a third aspect of the invention, in particular, in the first or second aspect of the invention, the control device is characterized in that the pressure value of the refrigerant discharged from the compression mechanism, the outlet temperature of the refrigerant of the utilization side heat exchanger, and the intermediate heat. From the inlet temperature of the refrigerant of the bypass refrigerant circuit of the exchanger, it is determined whether or not the pressure of the refrigerant after being decompressed by the second expansion device is equal to or higher than a critical pressure. ..

これにより、圧力検出装置を設けなくても、第2膨張装置により減圧された後の冷媒の圧力が、臨界圧以上であるか否かを判断できるので、低コスト化を実現した冷凍サイクル装置を提供できる。 With this, it is possible to determine whether the pressure of the refrigerant after being decompressed by the second expansion device is equal to or higher than the critical pressure without providing a pressure detection device, and thus a refrigeration cycle device that realizes cost reduction can be obtained. Can be provided.

第4の発明は、特に、第1から第3のいずれかの発明において、前記冷媒を二酸化炭素としたことを特徴とするものである。 A fourth invention is characterized in that, in any one of the first to third inventions, the refrigerant is carbon dioxide.

これによれば、利用側熱交換器において、冷媒で利用側熱媒体を加熱したときの、利用側熱媒体の高温化が可能となる。 According to this, in the usage-side heat exchanger, the temperature of the usage-side heat medium can be raised when the usage-side heat medium is heated by the refrigerant.

第5の発明は、特に、第1から第4のいずれかの発明の冷凍サイクルを用い、搬送装置によって、前記利用側熱媒体を循環させる利用側熱媒体回路を備えたことを特徴とする液体加熱装置である。 A fifth invention particularly uses the refrigeration cycle of any one of the first to fourth inventions, and is provided with a utilization-side heat medium circuit for circulating the utilization-side heat medium by a carrier device. It is a heating device.

これによれば、冷凍サイクル装置のCOPを低下させることなく、高温の利用側熱媒体を利用できる液体加熱装置を提供できる。 According to this, it is possible to provide a liquid heating device that can use the high-temperature use-side heat medium without lowering the COP of the refrigeration cycle device.

第6の発明は、特に、第5の発明において、前記利用側熱交換器から流出される前記利用側熱媒体の温度を検出する熱媒体出口温度サーミスタと、前記利用側熱交換器に流入される前記利用側熱媒体の温度を検出する熱媒体入口温度サーミスタと、を備え、前記制御装置は、前記熱媒体出口温度サーミスタの検出温度が目標温度となるように、前記搬送装置を動作させるとともに、前記熱媒体入口温度サーミスタの検出温度が第1所定温度を超えた場合には、前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と、前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度との温度差が、前記冷媒が前記中間熱交換器を気液二相の状態で流れる場合よりも大きく、かつ、前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と、前記中間熱交換器の前記主冷媒回路の冷媒の入口温度との温度差が、前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度と、前記中間熱交換器の前記主冷媒回路の冷媒の出口温度との温度差よりも大きい状態となるように、前記制御装置は、前記第2膨張装置の弁開度を制御することを特徴とするものである。 In a sixth aspect of the present invention, in particular, in the fifth aspect, a heat medium outlet temperature thermistor for detecting the temperature of the use side heat medium flowing out from the use side heat exchanger, and an inflow into the use side heat exchanger. A heat medium inlet temperature thermistor for detecting the temperature of the utilization side heat medium, and the control device operates the carrier device so that the detected temperature of the heat medium outlet temperature thermistor becomes a target temperature. When the detected temperature of the heat medium inlet temperature thermistor exceeds a first predetermined temperature, the outlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger and the bypass refrigerant circuit of the intermediate heat exchanger. The temperature difference from the inlet temperature of the refrigerant is larger than when the refrigerant flows through the intermediate heat exchanger in a gas-liquid two-phase state, and the outlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger. , A temperature difference between the inlet temperature of the refrigerant of the main refrigerant circuit of the intermediate heat exchanger, the inlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger, and the main refrigerant circuit of the intermediate heat exchanger The control device controls the valve opening degree of the second expansion device so that the temperature difference is larger than the temperature difference from the outlet temperature of the refrigerant.

これにより、冷凍サイクル装置の高圧を上昇させたときにも、COPを低下させないで、例えば、貯湯タンクに高温水を貯めることができる液体加熱装置を提供できる。 This makes it possible to provide, for example, a liquid heating device that can store high-temperature water in a hot water storage tank without lowering COP even when the high pressure of the refrigeration cycle device is increased.

第7の発明は、特に、第5の発明において、前記利用側熱交換器から流出される前記利用側熱媒体の温度を検出する熱媒体出口温度サーミスタと、前記利用側熱交換器に流入される前記利用側熱媒体の温度を検出する熱媒体入口温度サーミスタと、を備え、前記制御装置は、前記熱媒体出口温度サーミスタの検出温度と前記熱媒体入口温度サーミスタの検出温度との温度差が目標温度差となるように、前記搬送装置を動作させるとともに、前記熱媒体出口温度サーミスタの前記検出温度が第2所定温度を超えた場合には、前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と、前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度との温度差が、前記冷媒が前記中間熱交換器を気液二相の状態で流れる場合よりも大きく、かつ、前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と、前記中間熱交換器の前記主冷媒回路の冷媒の入口温度との温度差が、前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度と、前記中間熱交換器の前記主冷媒回路の冷媒の出口温度との温度差よりも大きい状態となるように、前記制御装置は、前記第2膨張装置の弁開度を制御することを特徴とするものである。 A seventh aspect of the invention is, in particular, in the fifth aspect, a heat medium outlet temperature thermistor for detecting the temperature of the utilization side heat medium flowing out from the utilization side heat exchanger, and a heat medium outlet temperature thermistor flowing into the utilization side heat exchanger. A heat medium inlet temperature thermistor for detecting the temperature of the utilization side heat medium, wherein the control device has a temperature difference between the temperature detected by the heat medium outlet temperature thermistor and the temperature detected by the heat medium inlet temperature thermistor. When the transfer device is operated so as to achieve the target temperature difference, and when the detected temperature of the heat medium outlet temperature thermistor exceeds a second predetermined temperature, the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger is The temperature difference between the outlet temperature and the inlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger is greater than when the refrigerant flows through the intermediate heat exchanger in a gas-liquid two-phase state, and The temperature difference between the outlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger and the inlet temperature of the refrigerant of the main refrigerant circuit of the intermediate heat exchanger is a refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger. The control device controls the valve opening degree of the second expansion device so that the temperature difference between the inlet temperature of the second heat exchanger and the outlet temperature of the refrigerant of the main refrigerant circuit of the intermediate heat exchanger is larger than the temperature difference. It is characterized by that.

これにより、冷凍サイクル装置の高圧を上昇させたときにも、COPを低下させないで、例えば、高温水を用いて暖房する液体加熱装置を提供できる。 This makes it possible to provide a liquid heating device that heats using, for example, high-temperature water without lowering the COP even when the high pressure of the refrigeration cycle device is increased.

第8の発明は、特に、第5から第7のいずれかの発明において、前記制御装置は、前記圧縮機構からの吐出冷媒の圧力値と、前記利用側熱交換器に流入する前記利用側熱媒体の温度と、前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度とから、前記第2膨張装置により減圧された後の冷媒の圧力が、臨界圧以上であるか否かを判断することを特徴とするものである。 In an eighth aspect of the present invention, in any one of the fifth to seventh aspects, the control device controls the pressure value of the refrigerant discharged from the compression mechanism and the utilization-side heat flowing into the utilization-side heat exchanger. From the temperature of the medium and the inlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger, it is determined whether the pressure of the refrigerant after being decompressed by the second expansion device is equal to or higher than a critical pressure. It is characterized by that.

これにより、圧力検出装置を設けなくても、第2膨張装置により減圧された後の冷媒の圧力が、臨界圧以上であるか否かを判断できるので、低コスト化を実現した冷凍サイクル装置を提供できる。 With this, it is possible to determine whether the pressure of the refrigerant after being decompressed by the second expansion device is equal to or higher than the critical pressure without providing a pressure detection device, and thus a refrigeration cycle device that realizes cost reduction can be obtained. Can be provided.

第9の発明は、特に、第5から第8のいずれかの発明において、前記利用側熱媒体を水又は不凍液としたことを特徴とするものである。 A ninth invention is characterized in that, in any one of the fifth to eighth inventions, the use side heat medium is water or an antifreeze liquid.

これにより、COPを低下させないで、例えば、貯湯タンクに高温水を貯めることができ、また、高温水を用いて暖房する液体加熱装置を提供できる。 With this, for example, it is possible to store high-temperature water in the hot water storage tank without lowering the COP, and to provide a liquid heating device that heats using the high-temperature water.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to this embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における液体加熱装置の構成図である。液体加熱装置は、超臨界蒸気圧縮式冷凍サイクルである冷凍サイクル装置、利用側熱媒体回路30から構成されている。また、冷凍サイクル装置は、主冷媒回路10、バイパス冷媒回路20から構成されている。
(Embodiment 1)
FIG. 1 is a configuration diagram of a liquid heating apparatus according to Embodiment 1 of the present invention. The liquid heating device is composed of a refrigeration cycle device which is a supercritical vapor compression refrigeration cycle, and a use side heat medium circuit 30. Further, the refrigeration cycle device includes a main refrigerant circuit 10 and a bypass refrigerant circuit 20.

主冷媒回路10は、冷媒を圧縮する圧縮機構11、放熱器である利用側熱交換器12、中間熱交換器13、第1膨張装置14、蒸発器である熱源側熱交換器15が、配管16で順次接続されて形成され、冷媒として二酸化炭素(CO)を用いている。 The main refrigerant circuit 10 includes a compression mechanism 11 for compressing a refrigerant, a utilization side heat exchanger 12 which is a radiator, an intermediate heat exchanger 13, a first expansion device 14, and a heat source side heat exchanger 15 which is an evaporator. 16 are sequentially connected and formed, and carbon dioxide (CO 2 ) is used as a refrigerant.

なお、冷媒としては、二酸化炭素を用いるのが最適だが、例えば、R407C等の非共沸混合冷媒、R410A等の擬似共沸混合冷媒、または、R32等の単一冷媒を用いることもできる。 Although carbon dioxide is optimally used as the refrigerant, a non-azeotropic mixed refrigerant such as R407C, a pseudo-azeotropic mixed refrigerant such as R410A, or a single refrigerant such as R32 can also be used.

圧縮機構11は、低段側圧縮回転要素11aと高段側圧縮回転要素11bとで構成される。利用側熱交換器12は、高段側圧縮回転要素11bから吐出された冷媒により利用側熱媒体を加熱する。 The compression mechanism 11 includes a low-stage compression rotary element 11a and a high-stage compression rotary element 11b. The usage-side heat exchanger 12 heats the usage-side heat medium by the refrigerant discharged from the high-stage compression rotation element 11b.

なお、圧縮機構11を構成する低段側圧縮回転要素11aと高段側圧縮回転要素11bとの容積比は一定で、駆動軸(図示せず)を共通化させ、1つの容器内に配置した1台の圧縮機で構成されている。 In addition, the volume ratio of the low-stage compression rotary element 11a and the high-stage compression rotary element 11b constituting the compression mechanism 11 is constant, and the drive shaft (not shown) is made common and arranged in one container. It consists of one compressor.

なお、本実施の形態では、圧縮回転要素が、低段側圧縮回転要素11aと高段側圧縮回転要素11bとで構成される二段の圧縮機構11を用いて説明するが、低段側圧縮回転要素11aと高段側圧縮回転要素11bとに分かれてなく、単一の圧縮回転要素においても適用できる。 In the present embodiment, the compression rotary element will be described using the two-stage compression mechanism 11 including the low-stage compression rotary element 11a and the high-stage compression rotary element 11b. The rotary element 11a and the high-stage compression rotary element 11b are not separated but can be applied to a single compression rotary element.

ここで、単一の圧縮回転要素の場合には、バイパス冷媒回路20からの冷媒が合流する位置を圧縮回転要素の圧縮途中とし、バイパス冷媒回路20からの冷媒が合流する位置までの圧縮回転要素を低段側圧縮回転要素11aとし、バイパス冷媒回路20からの冷媒が合流する位置以降の圧縮回転要素を高段側圧縮回転要素11bとして適用することができる。 Here, in the case of a single compression rotary element, the position where the refrigerant from the bypass refrigerant circuit 20 merges is set to the middle of compression of the compression rotary element, and the compression rotary element up to the position where the refrigerant from the bypass refrigerant circuit 20 merges. Can be used as the low-stage compression rotary element 11a, and the compression rotary element after the position where the refrigerant from the bypass refrigerant circuit 20 merges can be applied as the high-stage compression rotary element 11b.

また、低段側圧縮回転要素11aと高段側圧縮回転要素11bとが、それぞれが独立した2台の圧縮機から構成されている二段の圧縮機構11でもよい。 Further, the low-stage side compression rotary element 11a and the high-stage side compression rotary element 11b may be a two-stage compression mechanism 11 configured by two independent compressors.

バイパス冷媒回路20は、利用側熱交換器12から第1膨張装置14までの間の配管16から分岐され、低段側圧縮回転要素11aと高段側圧縮回転要素11bとの間の配管16に接続されている。 The bypass refrigerant circuit 20 is branched from the pipe 16 between the utilization side heat exchanger 12 and the first expansion device 14, and is connected to the pipe 16 between the low stage side compression rotary element 11a and the high stage side compression rotary element 11b. It is connected.

バイパス冷媒回路20には、第2膨張装置21が設けられている。利用側熱交換器12を通過後の一部の高圧冷媒、又は、中間熱交換器13を通過後の一部の高圧冷媒は、第2膨張装置21により減圧されて中間圧冷媒となった後に、中間熱交換器13で主冷媒回路10を流れる高圧冷媒と熱交換され、低段側圧縮回転要素11aと高段側圧縮回転要素11bとの間の冷媒と合流される。 A second expansion device 21 is provided in the bypass refrigerant circuit 20. After a part of the high-pressure refrigerant after passing through the use-side heat exchanger 12 or a part of the high-pressure refrigerant after passing through the intermediate heat exchanger 13, is decompressed by the second expansion device 21 to become an intermediate-pressure refrigerant. The intermediate heat exchanger 13 exchanges heat with the high-pressure refrigerant flowing through the main refrigerant circuit 10, and joins the refrigerant between the low-stage compression rotary element 11a and the high-stage compression rotary element 11b.

利用側熱媒体回路30は、利用側熱交換器12、搬送ポンプである搬送装置31、暖房端末32aが熱媒体配管33で順次接続されて形成され、利用側熱媒体として、水又は不凍液を用いている。 The use-side heat medium circuit 30 is formed by sequentially connecting the use-side heat exchanger 12, the transfer device 31 that is a transfer pump, and the heating terminal 32a with the heat medium pipe 33, and uses water or antifreeze as the use-side heat medium. ing.

本実施の形態における利用側熱媒体回路30は、暖房端末32aと並列に貯湯タンク32bを備えており、第1切替弁34、第2切替弁35の切り替えによって利用側熱媒体を、暖房端末32a又は貯湯タンク32bに循環させる。なお、利用側熱媒体回路30は、暖房端末32a及び貯湯タンク32bのいずれかを備えていればよい。 The use-side heat medium circuit 30 in the present embodiment is provided with the hot water storage tank 32b in parallel with the heating terminal 32a, and the use-side heat medium is changed by switching the first switching valve 34 and the second switching valve 35. Alternatively, it is circulated in the hot water storage tank 32b. The heat medium circuit 30 on the use side may include either the heating terminal 32a or the hot water storage tank 32b.

利用側熱交換器12で生成された高温水は、暖房端末32aで放熱して暖房に利用され、暖房端末32aで放熱された低温水は再び利用側熱交換器12で加熱される。 The high temperature water generated in the use side heat exchanger 12 radiates heat at the heating terminal 32a and is used for heating, and the low temperature water radiated at the heating terminal 32a is heated again by the use side heat exchanger 12.

また、利用側熱交換器12で生成された高温水は、貯湯タンク32bの上部から貯湯タンク32bに導入され、貯湯タンク32bの下部から低温水が導出されて利用側熱交換器12で加熱される。 The high-temperature water generated in the usage-side heat exchanger 12 is introduced into the hot-water storage tank 32b from the upper part of the hot-water storage tank 32b, the low-temperature water is drawn out from the lower part of the hot-water storage tank 32b, and is heated in the usage-side heat exchanger 12. It

給湯用熱交換器42は、貯湯タンク32b内に配置され、給水配管43からの給水と貯湯タンク32b内の高温水との間で熱交換させる。すなわち、給湯栓41が開栓されると、給水配管43から給湯用熱交換器42内に給水され、給湯用熱交換器42で加熱されて、給湯栓41で所定温度になるように調整され、給湯栓41からから給湯される。 The hot water supply heat exchanger 42 is arranged in the hot water storage tank 32b, and exchanges heat between the water supply from the water supply pipe 43 and the high temperature water in the hot water storage tank 32b. That is, when the hot water tap 41 is opened, water is supplied from the water supply pipe 43 into the hot water heat exchanger 42, heated by the hot water heat exchanger 42, and adjusted to a predetermined temperature by the hot water tap 41. Hot water is supplied from the hot water tap 41.

なお、給水配管43から給水され、給湯用熱交換器42で加熱されて、給湯栓41から給湯される湯水と、貯湯タンク32b内の高温水とは、互いに混ざり合うことがない間接加熱である。 The hot water supplied from the water supply pipe 43, heated by the hot water heat exchanger 42, and supplied from the hot water tap 41 and the high-temperature water in the hot water storage tank 32b are indirect heatings that are not mixed with each other. ..

給湯用熱交換器42は、伝熱管として銅管あるいはステンレス管を使用する水熱交換器であって、図1に示すように、給水源(水道)から延びる給水配管43と、給湯栓41とが接続されている。給水配管43は、常温の水を、給湯用熱交換器42の下端、すなわち、貯湯タンク32b内の下方に入れる。 The hot water supply heat exchanger 42 is a water heat exchanger that uses a copper tube or a stainless steel tube as a heat transfer tube, and as shown in FIG. 1, a water supply pipe 43 extending from a water supply source (water supply) and a hot water tap 41. Are connected. The water supply pipe 43 puts water at room temperature at the lower end of the hot water supply heat exchanger 42, that is, below the hot water storage tank 32b.

給水配管43より給湯用熱交換器42に入った常温水は、貯湯タンク32b内を下方から上方に移動しながら、貯湯タンク32b内の高温水から熱を奪い、加熱された高温の加熱水となって給湯栓41から給湯される。 The room-temperature water that has entered the hot water supply heat exchanger 42 through the water supply pipe 43 removes heat from the high-temperature water in the hot-water storage tank 32b while moving from the lower part to the upper part in the hot-water storage tank 32b, and becomes the heated hot water. Then, hot water is supplied from the hot water tap 41.

貯湯タンク32bには、複数の異なる高さ位置において温水の温度を計測する目的で、例えば、複数の第1貯湯タンク温度サーミスタ55a、第2貯湯タンク温度サーミスタ55b、第3貯湯タンク温度サーミスタ55cが設けられている。 In order to measure the temperature of hot water at a plurality of different height positions, for example, a plurality of first hot water storage tank temperature thermistors 55a, a second hot water storage tank temperature thermistor 55b, and a third hot water storage tank temperature thermistor 55c are provided in the hot water storage tank 32b. It is provided.

給水配管43より給湯用熱交換器42に入った常温水は、貯湯タンク32b内を下方から上方に移動しながら貯湯タンク32b内の高温水から熱を奪う構成のため、貯湯タンク32b内の温水は、自然と、上部が高温、下部が低温となる。 The room temperature water that has entered the hot water supply heat exchanger 42 through the water supply pipe 43 removes heat from the high temperature water in the hot water storage tank 32b while moving from the lower side to the upper side in the hot water storage tank 32b. Is naturally high in the upper part and low in the lower part.

主冷媒回路10には、高段側圧縮回転要素11bの吐出側の配管16に、高圧側圧力検出装置51が設けられている。なお、高圧側圧力検出装置51は、高段側圧縮回転要素11bの吐出側から、第1膨張装置14の上流側までの、主冷媒回路10に設けられていて、主冷媒回路10の高圧冷媒の圧力を検出できればよい。 In the main refrigerant circuit 10, a high pressure side pressure detection device 51 is provided in the discharge side pipe 16 of the high stage side compression rotary element 11b. The high-pressure side pressure detection device 51 is provided in the main refrigerant circuit 10 from the discharge side of the high-stage compression rotary element 11b to the upstream side of the first expansion device 14, and the high-pressure refrigerant of the main refrigerant circuit 10 is provided. It is only necessary to be able to detect the pressure of.

また、主冷媒回路10の利用側熱交換器12の下流側で、中間熱交換器13の上流側の配管16には、利用側熱交換器12から流出した冷媒の温度を検出する中間熱交換器主冷媒入口サーミスタが設けられていて、さらに、主冷媒回路10の中間熱交換器13の下流側で、第1膨張装置14の上流側の配管16には、中間熱交換器主冷媒出口サーミスタ58が設けられている。 Further, in the downstream side of the utilization side heat exchanger 12 of the main refrigerant circuit 10 and in the upstream side of the intermediate heat exchanger 13, an intermediate heat exchange for detecting the temperature of the refrigerant flowing out from the utilization side heat exchanger 12 is provided. Is provided with a main refrigerant inlet thermistor, and the intermediate heat exchanger main refrigerant outlet thermistor is provided in the pipe 16 on the downstream side of the intermediate heat exchanger 13 of the main refrigerant circuit 10 and on the upstream side of the first expansion device 14. 58 is provided.

バイパス冷媒回路20には、第2膨張装置21の下流側で、中間熱交換器13の上流側に中間熱交換器バイパス入口サーミスタ56が設けられている。また、中間熱交換器13の下流側に、中間熱交換器バイパス出口サーミスタ52が設けられている。 The bypass refrigerant circuit 20 is provided with an intermediate heat exchanger bypass inlet thermistor 56 on the downstream side of the second expansion device 21 and on the upstream side of the intermediate heat exchanger 13. Further, an intermediate heat exchanger bypass outlet thermistor 52 is provided on the downstream side of the intermediate heat exchanger 13.

利用側熱媒体回路30には、利用側熱交換器12から流出される利用側熱媒体の温度を検出する熱媒体出口温度サーミスタ53と、利用側熱交換器12に流入される利用側熱媒体の温度を検出する熱媒体入口温度サーミスタ54とが設けられている。 In the use side heat medium circuit 30, a heat medium outlet temperature thermistor 53 for detecting the temperature of the use side heat medium flowing out from the use side heat exchanger 12, and a use side heat medium flowing into the use side heat exchanger 12. And a heat medium inlet temperature thermistor 54 for detecting the temperature of the.

また、制御装置60は、高圧側圧力検出装置51からの検出圧力、算出した中間圧、中間熱交換器バイパス出口サーミスタ52の検出温度と中間熱交換器バイパス入口サーミスタ56の検出温度との温度差(ΔTM)、中間熱交換器バイパス出口サーミスタ52の検出温度と中間熱交換器主冷媒入口サーミスタ57の検出温度との温度差(ΔTH)、中間熱交換器バイパス入口サーミスタ56の検出温度と中間熱交換器主冷媒出口サーミスタ58の検出温度との温度差(ΔTL)、熱媒体出口温度サーミスタ53の検出温度、熱媒体入口温度サーミスタ54の検出温度によって、低段側圧縮回転要素11a及び高段側圧縮回転要素11bの運転周波数、第1膨張装置14と第2膨張装置21の弁開度、搬送装置31による利用側熱媒体の搬送量を制御する。 Further, the control device 60 controls the detected pressure from the high pressure side pressure detection device 51, the calculated intermediate pressure, and the temperature difference between the detected temperature of the intermediate heat exchanger bypass outlet thermistor 52 and the detected temperature of the intermediate heat exchanger bypass inlet thermistor 56. (ΔTM), temperature difference between the temperature detected by the intermediate heat exchanger bypass outlet thermistor 52 and the temperature detected by the intermediate heat exchanger main refrigerant inlet thermistor 57 (ΔTH), the temperature detected by the intermediate heat exchanger bypass inlet thermistor 56, and the intermediate heat Depending on the temperature difference (ΔTL) from the temperature detected by the exchanger main refrigerant outlet thermistor 58, the temperature detected by the heat medium outlet temperature thermistor 53, and the temperature detected by the heat medium inlet temperature thermistor 54, the low-stage compression rotary element 11a and the high-stage side The operating frequency of the compression rotating element 11b, the valve opening degrees of the first expansion device 14 and the second expansion device 21, and the amount of the use-side heat medium carried by the carrier device 31 are controlled.

なお、制御装置60が、バイパス冷媒回路20において、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)を算出する方法については、後に説明する。 A method for the control device 60 to calculate the pressure (intermediate pressure) of the refrigerant after being decompressed by the second expansion device 21 in the bypass refrigerant circuit 20 will be described later.

図2は、本実施の形態における冷凍サイクル装置について、理想条件での圧力―エンタルピー線図(P−h線図)であり、図2(a)は高圧が所定圧力未満、図2(b)は高圧が所定圧力以上の場合を示している。 FIG. 2 is a pressure-enthalpy diagram (Ph diagram) under ideal conditions for the refrigeration cycle apparatus according to the present embodiment. FIG. 2(a) shows that the high pressure is less than a predetermined pressure, and FIG. Indicates the case where the high pressure is equal to or higher than a predetermined pressure.

図2のa〜e点、およびA〜B点は、図1に示す冷凍サイクル装置における各ポイントに相当する。 Points a to e and points A to B in FIG. 2 correspond to points in the refrigeration cycle apparatus shown in FIG.

まず、高段側圧縮回転要素11bから吐出される高圧冷媒(a点)は、利用側熱交換器12で放熱した後に冷媒分岐点Aで主冷媒回路10から分岐し、第2膨張装置21により中間圧まで減圧されて中間圧冷媒(e点)となり、中間熱交換器13にて熱交換する。 First, the high-pressure refrigerant (point a) discharged from the high-stage compression rotary element 11 b radiates heat in the usage-side heat exchanger 12 and then branches from the main refrigerant circuit 10 at the refrigerant branch point A, and is then discharged by the second expansion device 21. The pressure is reduced to an intermediate pressure to become an intermediate pressure refrigerant (point e), and heat is exchanged in the intermediate heat exchanger 13.

利用側熱交換器12で放熱した後の主冷媒回路10を流れる高圧冷媒は、バイパス冷媒回路20を流れる中間圧冷媒(e点)によって冷却され、エンタルピーが低減された状態(b点)で第1膨張装置14にて減圧される。 The high-pressure refrigerant flowing in the main refrigerant circuit 10 after radiating heat in the usage-side heat exchanger 12 is cooled by the intermediate-pressure refrigerant (point e) flowing in the bypass refrigerant circuit 20, and is in a state where the enthalpy is reduced (point b). 1. The pressure is reduced by the expansion device 14.

これにより、第1膨張装置14にて減圧された後に、熱源側熱交換器15に流入する冷媒(c点)の冷媒エンタルピーも低減される。熱源側熱交換器15に流入する時点での冷媒乾き度(全冷媒に対して気相成分が占める重量比率)が低下して冷媒の液成分が増大するため、熱源側熱交換器15において蒸発に寄与し、冷媒比率が増大して外気からの吸熱量が増大され、低段側圧縮回転要素11aの吸入側(d点)に戻る。 Thereby, the refrigerant enthalpy of the refrigerant (point c) flowing into the heat source side heat exchanger 15 after being decompressed by the first expansion device 14 is also reduced. Since the dryness of the refrigerant at the time of flowing into the heat source side heat exchanger 15 (the weight ratio of the gas phase component to the total refrigerant) decreases and the liquid component of the refrigerant increases, evaporation in the heat source side heat exchanger 15 occurs. The amount of heat absorbed from the outside air is increased, and the refrigerant returns to the suction side (point d) of the low-stage compression rotary element 11a.

一方、熱源側熱交換器15において蒸発に寄与しない気相成分に相当する量の冷媒は、バイパス冷媒回路20にバイパスされて低温の中間圧冷媒(e点)となり、中間熱交換器13にて主冷媒回路10を流れる高圧冷媒によって加熱されて冷媒エンタルピーが高まった状態で、低段側圧縮回転要素11aと高段側圧縮回転要素11bとの間にある冷媒合流点Bに至る。 On the other hand, the amount of the refrigerant corresponding to the vapor phase component that does not contribute to evaporation in the heat source side heat exchanger 15 is bypassed to the bypass refrigerant circuit 20 to become a low temperature intermediate pressure refrigerant (point e), and the intermediate heat exchanger 13 In the state where the refrigerant is heated by the high-pressure refrigerant flowing in the main refrigerant circuit 10 and the refrigerant enthalpy is increased, the refrigerant reaches the refrigerant confluence B between the low-stage compression rotary element 11a and the high-stage compression rotary element 11b.

従って、高段側圧縮回転要素11bの吸入側(B点)では、低段側圧縮回転要素11aの吸入側(d点)より冷媒圧力が高いため冷媒密度も高く、かつ、低段側圧縮回転要素11aから吐出した冷媒と合流した冷媒が吸入され、高段側圧縮回転要素11bで更に圧縮されて吐出されるため、利用側熱交換器12に流入する冷媒流量が大幅に増大し、利用側熱媒体である水を加熱する能力が大幅に増大する。 Therefore, on the suction side (point B) of the high-stage compression rotating element 11b, the refrigerant pressure is higher than on the suction side (point d) of the low-stage compression rotating element 11a, so that the refrigerant density is also high and the low-stage compression rotation is high. The refrigerant combined with the refrigerant discharged from the element 11a is sucked, further compressed by the high-stage compression rotary element 11b and discharged, so that the flow rate of the refrigerant flowing into the usage-side heat exchanger 12 is significantly increased, The ability to heat the heat carrier water is greatly increased.

高段側圧縮回転要素11bの吐出圧力が上昇し、所定値を超えた場合には、制御装置60は、第2膨張装置21により減圧された後の冷媒の圧力が、臨界圧を超えた状態となるように、第2膨張装置21の弁開度の制御を開始する。 When the discharge pressure of the high-stage compression rotary element 11b rises and exceeds the predetermined value, the control device 60 causes the refrigerant pressure after being decompressed by the second expansion device 21 to exceed the critical pressure. Therefore, the control of the valve opening degree of the second expansion device 21 is started.

具体的には、制御装置60は、高圧側圧力検出装置51の検出圧力が上昇し、第1所定高圧値を超えたと判断した場合に、中間圧が臨界圧以下の場合には、中間圧が臨界圧を超えた状態となるように、第2膨張装置21を弁開度が大きくなる方向に動作を開始させる。 Specifically, when the control device 60 determines that the detected pressure of the high-pressure side pressure detection device 51 has risen and exceeds the first predetermined high pressure value, and the intermediate pressure is equal to or lower than the critical pressure, the intermediate pressure is The operation of the second expansion device 21 is started in the direction in which the valve opening becomes larger so that the critical pressure is exceeded.

そして、図2(b)に示すように、制御装置60は、第2膨張装置21の弁開度が大きくなる方向に動作させ、かつ、低段側圧縮回転要素11a及び高段側圧縮回転要素11bの運転周波数を上昇させて、利用側熱交換器12とバイパス冷媒回路20との間を流れる冷媒の循環量を増加させ、高圧側圧力検出装置51からの検出圧力が目標高圧値である第2所定高圧値になるようにする。第2所定高圧値は、第1所定高圧値よりも高い値である。 Then, as shown in FIG. 2B, the control device 60 operates in the direction in which the valve opening degree of the second expansion device 21 increases, and the low-stage side compression rotary element 11a and the high-stage side compression rotary element 11a. The operating frequency of 11b is increased to increase the circulation amount of the refrigerant flowing between the utilization side heat exchanger 12 and the bypass refrigerant circuit 20, and the detected pressure from the high pressure side pressure detection device 51 is the target high pressure value. 2 Set to a predetermined high pressure value. The second predetermined high voltage value is a value higher than the first predetermined high voltage value.

すなわち、第2膨張装置21の弁開度を大きくすることで、バイパス冷媒回路20を流れる冷媒流量を増加できるため、高段側圧縮回転要素11bの吸入圧力を、所定中間圧値である臨界圧を超えた状態に保つことができる。これにより、高段側圧縮回転要素11bの吸入圧力、すなわち、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)を、所定中間圧値である臨界圧を超えた状態に保つことができるとともに、利用側熱交換器12における冷媒の加熱能力も増加できる。 That is, since the flow rate of the refrigerant flowing through the bypass refrigerant circuit 20 can be increased by increasing the valve opening degree of the second expansion device 21, the suction pressure of the high-stage compression rotary element 11b is set to the critical pressure that is a predetermined intermediate pressure value. Can be kept above. As a result, the suction pressure of the high-stage compression rotary element 11b, that is, the pressure (intermediate pressure) of the refrigerant after being decompressed by the second expansion device 21, is maintained in a state of exceeding the critical pressure that is a predetermined intermediate pressure value. In addition to this, the heating capacity of the refrigerant in the utilization side heat exchanger 12 can be increased.

なお、低段側圧縮回転要素11aと高段側圧縮回転要素11bとが、それぞれが独立した2台の圧縮機から構成されている圧縮機構11の構成でもよく、少なくとも、高段側圧縮回転要素11bの運転周波数を上昇させれば良い。 The low-stage side compression rotary element 11a and the high-stage side compression rotary element 11b may have a configuration of the compression mechanism 11 including two independent compressors, at least the high-stage side compression rotary element. The operating frequency of 11b may be increased.

ここで、制御装置60が、バイパス冷媒回路20において、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)を算出する方法について説明する。 Here, a method in which the control device 60 calculates the pressure (intermediate pressure) of the refrigerant after being decompressed by the second expansion device 21 in the bypass refrigerant circuit 20 will be described.

制御装置60には、図2に示すような、圧力―エンタルピー線図(P−h線図)が記憶してある。 The control device 60 stores a pressure-enthalpy diagram (Ph diagram) as shown in FIG.

そして、高圧側圧力検出装置51により高圧側圧力(高段側圧縮回転要素11bの吐出圧力)、中間熱交換器主冷媒入口サーミスタ57により利用側熱交換器12の冷媒の出口温度(A点)、中間熱交換器バイパス入口サーミスタ56により中間熱交換器13のバイパス冷媒回路20の冷媒の入口温度(e点)を所定時間ごとに検出する。 Then, the high-pressure side pressure detection device 51 measures the high-pressure side pressure (the discharge pressure of the high-stage compression rotary element 11b), and the intermediate heat exchanger main refrigerant inlet thermistor 57 measures the refrigerant outlet temperature of the use-side heat exchanger 12 (point A). The intermediate heat exchanger bypass inlet thermistor 56 detects the inlet temperature (point e) of the refrigerant of the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 every predetermined time.

そして、A点とe点とはエンタルピーがほぼ同一値であるとの理想条件に基づいて、制御装置60が、e点の圧力とエンタルピーとを算出することで、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)の値を算出し、その値で臨界圧以上であるか否かを判断することができる。 Then, the control device 60 calculates the pressure and the enthalpy at the point e based on the ideal condition that the enthalpies at the points A and e are substantially the same value, and the pressure is reduced by the second expansion device 21. It is possible to calculate the value of the pressure (intermediate pressure) of the refrigerant after cooling and to judge whether or not the value is equal to or higher than the critical pressure.

なお、中間熱交換器主冷媒入口サーミスタ57の検出温度の代わりに、熱媒体入口温度サーミスタ54の検出温度を用いても、値はほぼ同一なので構わない。 The temperature detected by the heat medium inlet temperature thermistor 54 may be used instead of the temperature detected by the intermediate heat exchanger main refrigerant inlet thermistor 57, as the values are substantially the same.

すなわち、高段側圧縮回転要素11bの吐出圧力と、利用側熱交換器12の冷媒の出口温度(A点)と、中間熱交換器13のバイパス冷媒回路20の冷媒の入口温度(e点)、あるいは、利用側熱交換器12に流入される利用側熱媒体の温度とから、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)が、臨界圧以上であることを判断できるのである。 That is, the discharge pressure of the high-stage compression rotary element 11b, the outlet temperature of the refrigerant of the utilization side heat exchanger 12 (point A), and the inlet temperature of the refrigerant of the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 (point e). Alternatively, it is determined from the temperature of the use side heat medium flowing into the use side heat exchanger 12 that the pressure (intermediate pressure) of the refrigerant after being decompressed by the second expansion device 21 is equal to or higher than the critical pressure. You can do it.

これにより、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)が、臨界圧を超えた状態を保っているかを判断できるのである。 This makes it possible to determine whether the pressure (intermediate pressure) of the refrigerant that has been decompressed by the second expansion device 21 remains in a state of exceeding the critical pressure.

本実施の形態では、高段側圧縮回転要素11bの吸入圧力、すなわち、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)が臨界圧を超えた状態を保つとともに、中間熱交換器13におけるバイパス冷媒回路20の冷媒と主冷媒回路10の冷媒との熱交換量が最大となるように、制御装置60は、第2膨張装置21の弁開度を制御する。 In the present embodiment, the suction pressure of the high-stage compression rotary element 11b, that is, the pressure (intermediate pressure) of the refrigerant after being decompressed by the second expansion device 21 is maintained in a state of exceeding the critical pressure, and the intermediate heat The control device 60 controls the valve opening degree of the second expansion device 21 so that the amount of heat exchange between the refrigerant in the bypass refrigerant circuit 20 and the refrigerant in the main refrigerant circuit 10 in the exchanger 13 is maximized.

その理由は、中間熱交換器13での熱交換量が最大となる場合には、図2(b)のb点におけるエンタルピーが低減する。これにより、c点におけるエンタルピーも低減するため、熱源側熱交換器15における冷媒乾き度が低下して、吸熱量が増大することにより、COPの最大化を実現できるためである。 The reason is that when the amount of heat exchange in the intermediate heat exchanger 13 is the maximum, the enthalpy at point b in FIG. 2B is reduced. This is because the enthalpy at the point c is also reduced, and the dryness of the refrigerant in the heat source side heat exchanger 15 is reduced, and the amount of heat absorption is increased, whereby the COP can be maximized.

その具体的制御方法について以下に説明する。図3は、中間熱交換器13を流れる主冷媒回路10の冷媒とバイパス冷媒回路20の冷媒の温度との関係を示す図である。 The specific control method will be described below. FIG. 3 is a diagram showing the relationship between the refrigerant in the main refrigerant circuit 10 flowing through the intermediate heat exchanger 13 and the temperature of the refrigerant in the bypass refrigerant circuit 20.

図3において、中間熱交換器バイパス出口サーミスタ52の検出温度(B点)と中間熱交換器バイパス入口サーミスタ56の検出温度(e)との温度差(ΔTM)、中間熱交換器バイパス出口サーミスタ52の検出温度(B点)と中間熱交換器主冷媒入口サーミスタ57の検出温度(A点)との温度差(ΔTH)、中間熱交換器バイパス入口サーミスタ56の検出温度(e)と中間熱交換器主冷媒出口サーミスタ58の検出温度(b)との温度差(ΔTL)に基づいて、制御装置60は、第2膨張装置21の弁開度を制御するのである。 In FIG. 3, the temperature difference (ΔTM) between the detected temperature (point B) of the intermediate heat exchanger bypass outlet thermistor 52 and the detected temperature (e) of the intermediate heat exchanger bypass inlet thermistor 56, the intermediate heat exchanger bypass outlet thermistor 52. Difference (ΔTH) between the detected temperature (point B) and the detected temperature (point A) of the intermediate heat exchanger main refrigerant inlet thermistor 57, the detected temperature (e) of the intermediate heat exchanger bypass inlet thermistor 56 and the intermediate heat exchange The controller 60 controls the valve opening of the second expansion device 21 based on the temperature difference (ΔTL) from the detected temperature (b) of the main refrigerant outlet thermistor 58.

ここで、図4(a)は、ΔTMと中間熱交換器13を流れるバイパス冷媒回路20の冷媒循環量との関係を示す図である。図4(b)は、中間熱交換器13の熱交換量と中間熱交換器13を流れるバイパス冷媒回路20の冷媒循環量との関係を示す図である。図4(c)は、ΔTH、ΔTLと中間熱交換器13を流れるバイパス冷媒回路20の冷媒循環量との関係を示す図である。 Here, FIG. 4A is a diagram showing the relationship between ΔTM and the refrigerant circulation amount of the bypass refrigerant circuit 20 flowing through the intermediate heat exchanger 13. FIG. 4B is a diagram showing the relationship between the heat exchange amount of the intermediate heat exchanger 13 and the refrigerant circulation amount of the bypass refrigerant circuit 20 flowing through the intermediate heat exchanger 13. FIG. 4C is a diagram showing the relationship between ΔTH and ΔTL and the refrigerant circulation amount of the bypass refrigerant circuit 20 flowing through the intermediate heat exchanger 13.

まず、図4の(a)において、実線は中間圧が超臨界の場合の変化で、破線は中間圧が気液二相域の場合を示している。 First, in FIG. 4A, the solid line shows the change when the intermediate pressure is supercritical, and the broken line shows the case where the intermediate pressure is in the gas-liquid two-phase region.

バイパス冷媒回路20を流れるバイパス冷媒循環量が少ない場合は、バイパス冷媒回路20を流れるバイパス冷媒循環量に対し、主冷媒回路10の冷媒循環量が多いため、バイパス冷媒回路20を流れる冷媒は十分に加熱され、中間熱交換器13のバイパス冷媒回路20の冷媒の出口温度(B点)は上昇しやすく、ΔTMは大きくなる。 When the bypass refrigerant circulation amount flowing in the bypass refrigerant circuit 20 is small, the refrigerant circulation amount in the main refrigerant circuit 10 is larger than the bypass refrigerant circulation amount flowing in the bypass refrigerant circuit 20, so that the refrigerant flowing in the bypass refrigerant circuit 20 is sufficient. When heated, the outlet temperature (point B) of the refrigerant in the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 easily rises, and ΔTM increases.

一方、バイパス冷媒循環量が多くなるにしたがって、バイパス冷媒回路20を流れるバイパス冷媒循環量と、主冷媒回路10の冷媒循環量との流量差が小さくなるため、中間熱交換器13のバイパス冷媒回路20の冷媒の出口温度(B点)の温度上昇は抑えられ、ΔTMは小さくなる。 On the other hand, as the bypass refrigerant circulation amount increases, the difference in flow rate between the bypass refrigerant circulation amount flowing in the bypass refrigerant circuit 20 and the refrigerant circulation amount in the main refrigerant circuit 10 becomes smaller, so that the bypass refrigerant circuit of the intermediate heat exchanger 13 The temperature rise of the outlet temperature (point B) of the refrigerant of 20 is suppressed and ΔTM becomes small.

すなわち、中間圧が気液二相域の場合は、バイパス冷媒循環量が一定量を超えると冷媒を占める液成分が増加して、主冷媒回路10を循環する冷媒との熱交換によって得られた熱が潜熱となって、バイパス冷媒回路20を流れる冷媒の温度は上昇しないため、ΔTMは略0となる。一方、中間圧が臨界圧を超えた場合には、液成分がないため冷媒は温度上昇して、ΔTMは略0とはならない。 That is, when the intermediate pressure is in the gas-liquid two-phase region, when the bypass refrigerant circulation amount exceeds a certain amount, the liquid component occupying the refrigerant increases and is obtained by heat exchange with the refrigerant circulating in the main refrigerant circuit 10. Since the heat becomes latent heat and the temperature of the refrigerant flowing through the bypass refrigerant circuit 20 does not rise, ΔTM becomes substantially zero. On the other hand, when the intermediate pressure exceeds the critical pressure, the temperature of the refrigerant rises because there is no liquid component, and ΔTM does not become substantially zero.

次に、図4の(b)において、実線は中間圧が超臨界の場合の変化で、破線は中間圧が気液二相域の場合を示している。 Next, in FIG. 4B, the solid line shows the change when the intermediate pressure is supercritical, and the broken line shows the case where the intermediate pressure is in the gas-liquid two-phase region.

中間熱交換器13の熱交換量は、中間圧が、気液二相域である場合と、臨界圧を超えた場合では、中間熱交換器13の熱交換量を最大とするΔTMの大きさが異なり、臨界圧を超えた場合は、気液二相域の場合よりもΔTMが大きな値となることがわかる。 The amount of heat exchange of the intermediate heat exchanger 13 is the magnitude of ΔTM that maximizes the amount of heat exchange of the intermediate heat exchanger 13 when the intermediate pressure is in the gas-liquid two-phase region and when it exceeds the critical pressure. However, when the critical pressure is exceeded, ΔTM has a larger value than in the case of the gas-liquid two-phase region.

次に、図4の(c)において、主冷媒回路10の中間熱交換器13の冷媒の入口温度(A点)は、利用側熱交換器12への利用側熱媒体の入口温度が一定で、温度変化がないとする。 Next, in FIG. 4C, the inlet temperature (point A) of the refrigerant of the intermediate heat exchanger 13 of the main refrigerant circuit 10 is constant at the inlet temperature of the use side heat medium to the use side heat exchanger 12. , Suppose there is no temperature change.

このとき、第2膨張装置21の弁開度が小さいと、バイパス冷媒回路20を流れるバイパス冷媒循環量が少ない場合は、バイパス冷媒回路20を流れるバイパス冷媒循環量に対し、主冷媒回路10の冷媒循環量が多いため、バイパス冷媒回路20を流れる冷媒は十分に加熱され、中間熱交換器13のバイパス冷媒回路20の冷媒の出口温度(B点)は、主冷媒回路10の中間熱交換器13の冷媒の入口温度(A点)に近くなるため、温度差であるΔTHは小さい。 At this time, if the valve opening degree of the second expansion device 21 is small, and the bypass refrigerant circulation amount flowing through the bypass refrigerant circuit 20 is small, the refrigerant of the main refrigerant circuit 10 with respect to the bypass refrigerant circulation amount flowing through the bypass refrigerant circuit 20. Since the circulation amount is large, the refrigerant flowing in the bypass refrigerant circuit 20 is sufficiently heated, and the outlet temperature (point B) of the refrigerant of the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 is the intermediate heat exchanger 13 of the main refrigerant circuit 10. The temperature difference ΔTH, which is the temperature difference, is small because it is close to the refrigerant inlet temperature (point A).

一方、中間熱交換器13のバイパス冷媒回路20の冷媒の出口温度(e点)は、第2膨張装置21により減圧された後の冷媒の温度であるが、第2膨張装置21の弁開度が小さく、バイパス冷媒回路20のバイパス冷媒量が少なければ、中間圧も低くなるため冷媒の温度も低い。そのため、中間熱交換器13の主冷媒回路10の出口温度(b点)との温度差であるΔTLは大きくなる。 On the other hand, the outlet temperature (point e) of the refrigerant of the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 is the temperature of the refrigerant after being decompressed by the second expansion device 21, and the valve opening degree of the second expansion device 21 is Is small and the amount of bypass refrigerant in the bypass refrigerant circuit 20 is small, the intermediate pressure is also low, so the temperature of the refrigerant is low. Therefore, the temperature difference ΔTL from the outlet temperature (point b) of the main refrigerant circuit 10 of the intermediate heat exchanger 13 becomes large.

しかし、制御装置60が、第2膨張装置21の弁開度を大きくなる方向に動作させ、バイパス冷媒循環量を増加させると、中間熱交換器13の熱交換量の増加により、中間熱交換器13のバイパス冷媒回路20の冷媒の出口温度(B点)の温度上昇は抑えられ、ΔTHは増加する。 However, when the control device 60 operates the valve opening degree of the second expansion device 21 in the direction of increasing the bypass refrigerant circulation amount, the heat exchange amount of the intermediate heat exchanger 13 increases, so that the intermediate heat exchanger is increased. The temperature rise of the refrigerant outlet temperature (point B) of the bypass refrigerant circuit 20 of 13 is suppressed, and ΔTH increases.

さらに、制御装置60が、第2膨張装置21の弁開度を大きくなる方向に動作させ、バイパス冷媒循環量を多くするにしたがって、中間圧が高くなるため、中間熱交換器13のバイパス冷媒回路20の冷媒の出口温度(e点)の温度は上昇していき、中間熱交換器13の主冷媒回路10の出口温度(b点)との温度差であるΔTLは小さくなる。 Furthermore, as the control device 60 operates the valve opening degree of the second expansion device 21 in a direction to increase and increases the bypass refrigerant circulation amount, the intermediate pressure increases, so the bypass refrigerant circuit of the intermediate heat exchanger 13 is generated. The temperature of the refrigerant outlet temperature of 20 (point e) rises, and ΔTL, which is the temperature difference from the outlet temperature (point b) of the main refrigerant circuit 10 of the intermediate heat exchanger 13, decreases.

そして、本実施の形態では、制御装置60は、以下に記載の中間圧超臨界運転モードを実行する。 Then, in the present embodiment, control device 60 executes the intermediate pressure supercritical operation mode described below.

(中間圧超臨界運転モード)
制御装置60は、高圧側圧力検出装置51の検出圧力が上昇し、第1所定高圧値を超えたと判断した場合に、中間圧が臨界圧以下の場合には、中間圧が臨界圧を超えた状態となるように、第2膨張装置21を弁開度が大きくなる方向に動作を開始させ、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)が臨界圧を超えた状態を保つように、冷媒が中間熱交換器13を気液二相の状態で流れる場合よりも、中間熱交換器13のバイパス冷媒回路20の冷媒の出口温度と、中間熱交換器13のバイパス冷媒回路20の冷媒の入口温度との温度差(ΔTM)が大きな値となるように、制御装置60は第2膨張装置21の弁開度を制御する。
(Intermediate pressure supercritical operation mode)
When the control device 60 determines that the pressure detected by the high-pressure side pressure detection device 51 has risen and exceeds the first predetermined high pressure value, and the intermediate pressure is below the critical pressure, the intermediate pressure exceeds the critical pressure. State in which the second expansion device 21 starts to operate in the direction in which the valve opening increases, and the pressure (intermediate pressure) of the refrigerant after being decompressed by the second expansion device 21 exceeds the critical pressure. So that the refrigerant flows through the intermediate heat exchanger 13 in a gas-liquid two-phase state, the outlet temperature of the refrigerant of the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 and the bypass refrigerant of the intermediate heat exchanger 13 The control device 60 controls the valve opening degree of the second expansion device 21 so that the temperature difference (ΔTM) from the refrigerant inlet temperature of the circuit 20 becomes a large value.

すなわち、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)が臨界圧を超えた状態を保つように、冷媒が中間熱交換器13を気液二相の状態で流れる場合よりも、中間熱交換器バイパス出口サーミスタ52の検出温度(B点)と中間熱交換器バイパス入口サーミスタ56の検出温度(e)との温度差(ΔTM)が大きな値となるように、制御装置60は第2膨張装置21の弁開度を制御する。 That is, the refrigerant flows through the intermediate heat exchanger 13 in a gas-liquid two-phase state so that the pressure (intermediate pressure) of the refrigerant after being decompressed by the second expansion device 21 remains in a state exceeding the critical pressure. Also, the controller 60 controls the temperature difference (ΔTM) between the detected temperature (point B) of the intermediate heat exchanger bypass outlet thermistor 52 and the detected temperature (e) of the intermediate heat exchanger bypass inlet thermistor 56 to be a large value. Controls the valve opening of the second expansion device 21.

それとともに、本実施の形態では、制御装置60は、高圧側圧力検出装置51の検出圧力が上昇し、第1所定高圧値を超えたと判断した場合に、中間圧が臨界圧以下の場合には、中間圧が臨界圧を超えた状態となるように、第2膨張装置21を弁開度が大きくなる方向に動作を開始させ、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)が臨界圧を超えた状態を保つように、冷媒が中間熱交換器13を気液二相の状態で流れる場合よりも、中間熱交換器13のバイパス冷媒回路20の冷媒の出口温度と中間熱交換器13の主冷媒回路10の冷媒の入口温度との温度差(ΔTH)が、中間熱交換器13のバイパス冷媒回路20の冷媒の入口温度と中間熱交換器13の主冷媒回路10の冷媒の出口温度との温度差(ΔTL)よりも大きい状態となるように、制御装置60は第2膨張装置21の弁開度を制御する。 At the same time, in the present embodiment, when the control device 60 determines that the pressure detected by the high pressure side pressure detection device 51 has risen and exceeds the first predetermined high pressure value, if the intermediate pressure is below the critical pressure, , So that the intermediate pressure exceeds the critical pressure, the second expansion device 21 is started to operate in the direction in which the valve opening increases, and the pressure of the refrigerant after being decompressed by the second expansion device 21 (intermediate Pressure) exceeds the critical pressure so that the refrigerant outlet temperature of the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 is higher than that of the refrigerant flowing in the intermediate heat exchanger 13 in a gas-liquid two-phase state. The temperature difference (ΔTH) from the inlet temperature of the refrigerant of the main refrigerant circuit 10 of the intermediate heat exchanger 13 is equal to the inlet temperature of the refrigerant of the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 and the main refrigerant circuit 10 of the intermediate heat exchanger 13. The control device 60 controls the valve opening degree of the second expansion device 21 so that the temperature difference becomes larger than the temperature difference (ΔTL) from the outlet temperature of the refrigerant.

すなわち、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)が臨界圧を超えた状態を保つように、冷媒が中間熱交換器13を気液二相の状態で流れる場合よりも、中間熱交換器バイパス出口サーミスタ52の検出温度(B点)と中間熱交換器主冷媒入口サーミスタ57の検出温度(A点)との温度差(ΔTH)が、中間熱交換器バイパス入口サーミスタ56の検出温度(e)と中間熱交換器主冷媒出口サーミスタ58の検出温度(b)との温度差(ΔTL)よりも大きい状態となるように、制御装置60は第2膨張装置21の弁開度を制御する。 That is, the refrigerant flows through the intermediate heat exchanger 13 in a gas-liquid two-phase state so that the pressure (intermediate pressure) of the refrigerant after being decompressed by the second expansion device 21 remains in a state exceeding the critical pressure. Also, the temperature difference (ΔTH) between the detected temperature of the intermediate heat exchanger bypass outlet thermistor 52 (point B) and the detected temperature of the intermediate heat exchanger main refrigerant inlet thermistor 57 (point A) is the intermediate heat exchanger bypass inlet thermistor. The control device 60 controls the valve of the second expansion device 21 such that the temperature difference (ΔTL) between the detected temperature (e) of 56 and the detected temperature (b) of the main refrigerant outlet thermistor 58 of the intermediate heat exchanger is greater than that. Control the opening.

そして、制御装置60は、以上のような制御を行いながら、図4に示すように、中間熱交換器13のバイパス冷媒回路20の冷媒の出口温度と、中間熱交換器13のバイパス冷媒回路20の冷媒の入口温度との温度差(ΔTM)、冷媒が中間熱交換器13を気液二相の状態で流れる場合よりも、中間熱交換器13のバイパス冷媒回路20の冷媒の出口温度と中間熱交換器13の主冷媒回路10の冷媒の入口温度との温度差(ΔTH)と中間熱交換器13のバイパス冷媒回路20の冷媒の入口温度と中間熱交換器13の主冷媒回路10の冷媒の出口温度との温度差(ΔTL)との温度差(ΔT)が、中間熱交換器13の熱交換量が最大となる値となるように、第2膨張装置21の弁開度を調整し、バイパス冷媒回路20を流れるバイパス冷媒循環量を設定するのである。 While performing the above control, the control device 60, as shown in FIG. 4, the refrigerant outlet temperature of the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 and the bypass refrigerant circuit 20 of the intermediate heat exchanger 13. Difference (ΔTM) from the inlet temperature of the refrigerant in the intermediate heat exchanger 13 and the intermediate temperature of the refrigerant in the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 as compared with the case where the refrigerant flows in the intermediate heat exchanger 13 in a gas-liquid two-phase state. Temperature difference (ΔTH) between the inlet temperature of the refrigerant of the main refrigerant circuit 10 of the heat exchanger 13, the inlet temperature of the refrigerant of the bypass refrigerant circuit 20 of the intermediate heat exchanger 13, and the refrigerant of the main refrigerant circuit 10 of the intermediate heat exchanger 13. The valve opening degree of the second expansion device 21 is adjusted so that the temperature difference (ΔT) with the temperature difference (ΔTL) from the outlet temperature of the second expansion device 21 becomes the maximum value. The amount of circulation of the bypass refrigerant flowing through the bypass refrigerant circuit 20 is set.

なお、ΔTM、ΔT、中間熱交換器13の熱交換量のそれぞれの関係が、制御装置60に予め設定されていて、ΔTM、ΔTが、中間熱交換器13の熱交換量が最大となる値となるように、制御装置60は、第2膨張装置21の弁開度を調整し、バイパス冷媒回路20を流れるバイパス冷媒循環量を設定するのである。 The relationship between ΔTM, ΔT, and the heat exchange amount of the intermediate heat exchanger 13 is preset in the control device 60, and ΔTM and ΔT are values that maximize the heat exchange amount of the intermediate heat exchanger 13. Therefore, the control device 60 adjusts the valve opening degree of the second expansion device 21 and sets the bypass refrigerant circulation amount flowing through the bypass refrigerant circuit 20.

以上が、中間圧超臨界運転モードの制御内容である。 The above is the control contents of the intermediate pressure supercritical operation mode.

これにより、高いCOPを実現した冷凍サイクル装置を提供できるのである。 As a result, it is possible to provide a refrigeration cycle device that realizes a high COP.

以下、利用側熱媒体回路30に貯湯タンク32bを用いる場合について説明する。 Hereinafter, a case where the hot water storage tank 32b is used in the use side heat medium circuit 30 will be described.

複数の貯湯タンク温度サーミスタのうち、例えば、貯湯タンク32bの最も高い位置に配置されている第1貯湯タンク温度サーミスタ55aの検出温度が所定値未満の場合、貯湯タンク32b内に高温水が足りないと、制御装置60は判断する。 Of the plurality of hot water storage tank temperature thermistors, for example, when the detected temperature of the first hot water storage tank temperature thermistor 55a arranged at the highest position of the hot water storage tank 32b is less than a predetermined value, there is not enough high temperature water in the hot water storage tank 32b. Then, the control device 60 determines.

そして、制御装置60は、低段側圧縮回転要素11a及び高段側圧縮回転要素11bを動作させ、利用側熱交換器12で低温水を加熱するが、その加熱生成温度である熱媒体出口温度サーミスタ53の検出温度が目標温度となるように、搬送装置31を動作させる。 Then, the control device 60 operates the low-stage side compression rotary element 11a and the high-stage side compression rotary element 11b to heat the low-temperature water in the use-side heat exchanger 12, but the heat medium outlet temperature which is the heating generation temperature thereof. The transport device 31 is operated so that the temperature detected by the thermistor 53 becomes the target temperature.

これにより、貯湯タンク32bの下部から低温水が導出されて利用側熱交換器12で加熱生成された高温水は、貯湯タンク32bの上部から貯湯タンク32bに導入される。このときには、熱媒体入口温度サーミスタ54の検出温度が第1所定温度以下のため、図2(a)に記載の状態で動作する。 As a result, the low temperature water is drawn out from the lower part of the hot water storage tank 32b and the high temperature water generated by heating in the use side heat exchanger 12 is introduced into the hot water storage tank 32b from the upper part of the hot water storage tank 32b. At this time, since the temperature detected by the heat medium inlet temperature thermistor 54 is equal to or lower than the first predetermined temperature, the operation is performed in the state shown in FIG.

そして、貯湯タンク32b内には上部から次第に高温水が貯湯されていくため、熱媒体入口温度サーミスタ54の検出温度は次第に上昇していくが、熱媒体入口温度サーミスタ54の検出温度が第1所定温度を超えた場合には、図2(b)に記載の状態で動作するようにする。 Then, since hot water is gradually stored in the hot water storage tank 32b from above, the temperature detected by the heat medium inlet temperature thermistor 54 gradually rises, but the temperature detected by the heat medium inlet temperature thermistor 54 is the first predetermined value. When the temperature is exceeded, the device operates in the state shown in FIG.

すなわち、第2膨張装置21の弁開度が大きくなる方向に動作させ、かつ、低段側圧縮回転要素11a及び高段側圧縮回転要素11bの運転周波数を上昇させて、利用側熱交換器12とバイパス冷媒回路20との間を流れる冷媒の循環量を増加させ、高圧側圧力検出装置51からの検出圧力が目標高圧値である第2所定高圧値になるようにする。それと同時に、前記中間圧超臨界運転モードを実行する。 That is, the second expansion device 21 is operated in a direction in which the valve opening becomes large, and the operating frequencies of the low-stage compression rotary element 11a and the high-stage compression rotary element 11b are increased to increase the use-side heat exchanger 12 The circulation amount of the refrigerant flowing between the bypass refrigerant circuit 20 and the bypass refrigerant circuit 20 is increased so that the detected pressure from the high pressure side pressure detection device 51 becomes the second predetermined high pressure value which is the target high pressure value. At the same time, the intermediate pressure supercritical operation mode is executed.

これにより、利用側熱交換器12への熱媒体の入口温度が高くなり、利用側熱交換器12における冷媒のエンタルピー差(a−A)が小さくなった分を、利用側熱交換器12における冷媒の加熱能力を増加させることで、高温水の貯湯タンク32bへの供給を維持できるようにしている。 As a result, the inlet temperature of the heat medium to the use-side heat exchanger 12 becomes high, and the enthalpy difference (a-A) of the refrigerant in the use-side heat exchanger 12 becomes small. By increasing the heating capacity of the refrigerant, the supply of the high temperature water to the hot water storage tank 32b can be maintained.

そして、熱媒体入口温度サーミスタ54の検出温度が第1所定温度より高い第3所定温度を超えた場合には、低段側圧縮回転要素11a及び高段側圧縮回転要素11bの運転周波数を低下させることで、利用側熱交換器12における高圧冷媒の圧力が、目標高圧値である第2所定高圧値を超えないにように、利用側熱交換器12における高圧冷媒の圧力上昇を抑えながら、貯湯タンク32bに高温水を貯めることができる。 Then, when the detected temperature of the heat medium inlet temperature thermistor 54 exceeds the third predetermined temperature higher than the first predetermined temperature, the operating frequencies of the low-stage compression rotary element 11a and the high-stage compression rotary element 11b are reduced. Thus, the hot-water storage is performed while suppressing the pressure increase of the high-pressure refrigerant in the usage-side heat exchanger 12 so that the pressure of the high-pressure refrigerant in the usage-side heat exchanger 12 does not exceed the second predetermined high-pressure value that is the target high-pressure value. High temperature water can be stored in the tank 32b.

なお、閾値として、熱媒体入口温度サーミスタ54の検出温度である第1所定温度および第3所定温度の代わりに、それぞれ、高圧側圧力検出装置51の検出圧力である第1所定高圧値および第2所定高圧値を用いて、同様の運転動作を実行してもよい。 As the threshold values, instead of the first predetermined temperature and the third predetermined temperature that are the detection temperatures of the heat medium inlet temperature thermistor 54, the first predetermined high pressure value and the second predetermined pressure value that are the detection pressures of the high pressure side pressure detection device 51, respectively. A similar driving operation may be executed using the predetermined high pressure value.

また、低段側圧縮回転要素11aと高段側圧縮回転要素11bとが、それぞれが独立した2台の圧縮機から構成されている圧縮機構11の構成でもよく、少なくとも、高段側圧縮回転要素11bの運転周波数を低下させれば良い。 Further, the low-stage side compression rotary element 11a and the high-stage side compression rotary element 11b may have a configuration of the compression mechanism 11 configured by two independent compressors, at least the high-stage side compression rotary element. It suffices to reduce the operating frequency of 11b.

利用側熱媒体回路30に暖房端末32aを用いる場合について説明する。 A case where the heating terminal 32a is used in the use side heat medium circuit 30 will be described.

制御装置60は、低段側圧縮回転要素11a及び高段側圧縮回転要素11bを動作させ、利用側熱交換器12で循環水を加熱するが、その循環水の温度差である熱媒体出口温度サーミスタ53の検出温度と熱媒体入口温度サーミスタ54の検出温度との温度差が目標温度差となるように、搬送装置31を動作させる。 The control device 60 operates the low-stage side compression rotary element 11a and the high-stage side compression rotary element 11b to heat the circulating water in the use side heat exchanger 12, but the heat medium outlet temperature which is the temperature difference of the circulating water. The transfer device 31 is operated so that the temperature difference between the temperature detected by the thermistor 53 and the temperature detected by the heat medium inlet temperature thermistor 54 becomes the target temperature difference.

これにより、利用側熱交換器12で生成された高温水は、暖房端末32aで放熱して暖房に利用され、暖房端末32aで放熱された低温水は、再び利用側熱交換器12で加熱される。このときには、熱媒体出口温度サーミスタ53の検出温度と熱媒体入口温度サーミスタ54の検出温度との温度差が目標温度差となるように制御され、かつ、熱媒体出口温度サーミスタ53の検出温度が第2所定温度以下のため、図2(a)に記載の状態で動作する。 Thereby, the high-temperature water generated in the use-side heat exchanger 12 radiates heat to the heating terminal 32a and is used for heating, and the low-temperature water radiated in the heating terminal 32a is heated again in the use-side heat exchanger 12. It At this time, the temperature difference between the temperature detected by the heat medium outlet temperature thermistor 53 and the temperature detected by the heat medium inlet temperature thermistor 54 is controlled to be the target temperature difference, and the temperature detected by the heat medium outlet temperature thermistor 53 is set to the first temperature. Since the temperature is equal to or lower than the predetermined temperature, the operation is performed in the state shown in FIG.

そして、次第に暖房負荷が小さくなるため、熱媒体出口温度サーミスタ53の検出温度と熱媒体入口温度サーミスタ54の検出温度との温度差が目標温度差となるように制御している関係上、熱媒体出口温度サーミスタ53の検出温度及び熱媒体入口温度サーミスタ54の検出温度は次第に上昇していくが、熱媒体出口温度サーミスタ53の検出温度が第2所定温度を超えた場合には、図2(b)に記載の状態で動作するようにする。 Since the heating load gradually decreases, the heat medium is controlled so that the temperature difference between the temperature detected by the heat medium outlet temperature thermistor 53 and the temperature detected by the heat medium inlet temperature thermistor 54 becomes the target temperature difference. The detected temperature of the outlet temperature thermistor 53 and the detected temperature of the heat medium inlet temperature thermistor 54 gradually increase, but when the detected temperature of the heat medium outlet temperature thermistor 53 exceeds the second predetermined temperature, the temperature shown in FIG. ).

すなわち、第2膨張装置21の弁開度が大きくなる方向に動作させ、かつ、低段側圧縮回転要素11a及び高段側圧縮回転要素11bの運転周波数を上昇させて、利用側熱交換器12とバイパス冷媒回路20との間を流れる冷媒の循環量を増加させ、高圧側圧力検出装置51からの検出圧力が目標高圧値である第2所定高圧値になるようにする。それと同時に、前記中間圧超臨界運転モードを実行する。 That is, the second expansion device 21 is operated in a direction in which the valve opening becomes large, and the operating frequencies of the low-stage compression rotary element 11a and the high-stage compression rotary element 11b are increased to increase the use-side heat exchanger 12 The circulation amount of the refrigerant flowing between the bypass refrigerant circuit 20 and the bypass refrigerant circuit 20 is increased so that the detected pressure from the high pressure side pressure detection device 51 becomes the second predetermined high pressure value which is the target high pressure value. At the same time, the intermediate pressure supercritical operation mode is executed.

これにより、暖房負荷が小さくなり、利用側熱交換器12におけるエンタルピー差(a−A)が小さくなった分を、利用側熱交換器12における冷媒の加熱能力を増加させることで、高温水の暖房端末32aへの供給を維持できるようにしている。 As a result, the heating load is reduced and the enthalpy difference (a-A) in the usage-side heat exchanger 12 is reduced. By increasing the heating capacity of the refrigerant in the usage-side heat exchanger 12, the high-temperature water is cooled. The supply to the heating terminal 32a can be maintained.

そして、熱媒体出口温度サーミスタ53の検出温度が、第2所定温度より高い第4所定温度を超えた場合には、低段側圧縮回転要素11a及び高段側圧縮回転要素11bの運転周波数を低下させることで、利用側熱交換器12における高圧冷媒の圧力が、目標高圧値である第2所定高圧値を超えないにように、利用側熱交換器12における高圧冷媒の圧力上昇を抑えながら、高温水を用いた暖房機器として利用できる。 When the detected temperature of the heat medium outlet temperature thermistor 53 exceeds the fourth predetermined temperature higher than the second predetermined temperature, the operating frequencies of the low-stage compression rotary element 11a and the high-stage compression rotary element 11b are reduced. By doing so, the pressure of the high-pressure refrigerant in the usage-side heat exchanger 12 is controlled so as not to exceed the second predetermined high-pressure value that is the target high-pressure value, while suppressing the pressure increase of the high-pressure refrigerant in the usage-side heat exchanger 12, It can be used as a heating device that uses high-temperature water.

なお、閾値として、の検出温度である第2所定温度および第4所定温度の代わりに、それぞれ、高圧側圧力検出装置51の検出圧力である第1所定高圧値および第2所定高圧値を用いて、同様の運転動作を実行してもよい。 As the threshold value, instead of the second predetermined temperature and the fourth predetermined temperature which are the detected temperatures, the first predetermined high pressure value and the second predetermined high pressure value which are the detection pressures of the high pressure side pressure detection device 51 are used, respectively. The same driving operation may be executed.

以下、図5を用いて、利用側熱媒体回路30に貯湯タンク32bを用いる場合において、熱媒体入口温度サーミスタ54の検出温度が第1所定温度を超えた場合や、利用側熱媒体回路30に暖房端末32aを用いる場合において、熱媒体出口温度サーミスタ53の検出温度が第2所定温度を超えた場合に、制御装置60が実行する中間圧超臨界運転モードについて、以下に説明する。 Hereinafter, referring to FIG. 5, when the hot water storage tank 32b is used in the use side heat medium circuit 30, when the detected temperature of the heat medium inlet temperature thermistor 54 exceeds the first predetermined temperature, or in the use side heat medium circuit 30. In the case of using the heating terminal 32a, the intermediate pressure supercritical operation mode executed by the control device 60 when the detected temperature of the heat medium outlet temperature thermistor 53 exceeds the second predetermined temperature will be described below.

図5において、実線は、利用側熱媒体回路30に貯湯タンク32bを用いる場合において、熱媒体入口温度サーミスタ54の検出温度が第1所定温度を超えた場合や、利用側熱媒体回路30に暖房端末32aを用いる場合において、熱媒体出口温度サーミスタ53の検出温度が第2所定温度を超えた場合を示している。 In FIG. 5, a solid line indicates a case where the hot water storage tank 32b is used in the use side heat medium circuit 30 and the detected temperature of the heat medium inlet temperature thermistor 54 exceeds the first predetermined temperature, or the use side heat medium circuit 30 is heated. When the terminal 32a is used, the case where the temperature detected by the heat medium outlet temperature thermistor 53 exceeds the second predetermined temperature is shown.

なお、破線は、利用側熱媒体回路30に貯湯タンク32bを用いる場合において、熱媒体入口温度サーミスタ54の検出温度が第1所定温度以下場合や、利用側熱媒体回路30に暖房端末32aを用いる場合において、熱媒体出口温度サーミスタ53の検出温度が第2所定温度以下の場合を示している。 It should be noted that the broken line indicates that when the hot water storage tank 32b is used for the use side heat medium circuit 30, the detected temperature of the heat medium inlet temperature thermistor 54 is the first predetermined temperature or less, or the heating terminal 32a is used for the use side heat medium circuit 30. In the case, the temperature detected by the heat medium outlet temperature thermistor 53 is equal to or lower than the second predetermined temperature.

すなわち、図5において、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)が臨界圧を超えた状態において、中間圧が上昇していくと、主冷媒回路10の中間熱交換器13の冷媒の入口温度(A点)はエンタルピー増加の方向へ移動し、同様に中間熱交換器13のバイパス冷媒回路20の冷媒の出口温度(e点)や、中間熱交換器13のバイパス冷媒回路20の冷媒の出口温度(B点)もエンタルピー増加の方向へ移動することになる。 That is, in FIG. 5, when the intermediate pressure rises in a state where the pressure (intermediate pressure) of the refrigerant after being decompressed by the second expansion device 21 exceeds the critical pressure, the intermediate heat exchange of the main refrigerant circuit 10 occurs. The inlet temperature (point A) of the refrigerant of the heat exchanger 13 moves in the direction of increasing enthalpy, and similarly, the outlet temperature of the refrigerant of the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 (point e) and the bypass of the intermediate heat exchanger 13 are increased. The outlet temperature (point B) of the refrigerant of the refrigerant circuit 20 also moves in the direction of increasing the enthalpy.

なお、圧力が臨界圧を超えた状態において、エンタルピー増加の方向へ移動していくにつれて、圧力に対する等温線の傾きも急になっていく。 In addition, when the pressure exceeds the critical pressure, the slope of the isotherm with respect to the pressure becomes steeper as the enthalpy increases.

このため、中間熱交換器13において、中間圧が上昇しても、同一の熱交換量を得るためには、中間圧が上昇するにつれて、中間熱交換器13のバイパス冷媒回路20の冷媒の出口温度と、中間熱交換器13のバイパス冷媒回路20の冷媒の入口温度との温度差(ΔTM)が大きな値となるように、制御装置60は、第2膨張装置21の弁開度を制御しなければならない。 Therefore, even if the intermediate pressure rises in the intermediate heat exchanger 13, in order to obtain the same amount of heat exchange, the refrigerant outlet of the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 increases as the intermediate pressure rises. The control device 60 controls the valve opening degree of the second expansion device 21 so that the temperature difference (ΔTM) between the temperature and the inlet temperature of the refrigerant of the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 has a large value. There must be.

すなわち、中間圧が高くなるにつれて、中間熱交換器バイパス出口サーミスタ52の検出温度(B点)と中間熱交換器バイパス入口サーミスタ56の検出温度(e)との温度差(ΔTM)が大きな値となるように、制御装置60は、第2膨張装置21の弁開度を制御しなければならない。 That is, as the intermediate pressure increases, the temperature difference (ΔTM) between the detected temperature (point B) of the intermediate heat exchanger bypass outlet thermistor 52 and the detected temperature (e) of the intermediate heat exchanger bypass inlet thermistor 56 becomes a large value. Therefore, the control device 60 must control the valve opening degree of the second expansion device 21.

なお、高段側圧縮回転要素11bの吐出圧力と、利用側熱交換器12の冷媒の出口温度(A点)と、中間熱交換器13のバイパス冷媒回路20の冷媒の入口温度(e点)、あるいは、利用側熱交換器12に流入される利用側熱媒体の温度とから、第2膨張装置21により減圧された後の冷媒の圧力(中間圧)の値を算出する。 The discharge pressure of the high-stage compression rotary element 11b, the outlet temperature of the refrigerant of the utilization side heat exchanger 12 (point A), and the inlet temperature of the refrigerant of the bypass refrigerant circuit 20 of the intermediate heat exchanger 13 (point e). Alternatively, the value of the pressure (intermediate pressure) of the refrigerant after being decompressed by the second expansion device 21 is calculated from the temperature of the usage-side heat medium flowing into the usage-side heat exchanger 12.

そして、その値が臨界圧以上である場合には、その算出された中間圧の値に基づいて、第2膨張装置21により減圧された後の冷媒の圧力が高くなるほど、中間熱交換器13のバイパス冷媒回路20の冷媒の出口温度と冷媒の入口温度との温度差が大きくなるように、制御装置60は、第2膨張装置21の弁開度を制御すればよい。 Then, when the value is equal to or higher than the critical pressure, the higher the pressure of the refrigerant after being decompressed by the second expansion device 21, the higher the pressure of the intermediate heat exchanger 13 based on the calculated value of the intermediate pressure. The control device 60 may control the valve opening degree of the second expansion device 21 so that the temperature difference between the refrigerant outlet temperature and the refrigerant inlet temperature of the bypass refrigerant circuit 20 becomes large.

なお、中間圧が高くなるにつれてΔTMの値も大きくなるように、制御装置60にΔTMは予め設定されている。 It should be noted that ΔTM is preset in the control device 60 so that the value of ΔTM increases as the intermediate pressure increases.

また、制御装置60では、熱媒体入口温度サーミスタ54が第1所定温度を超えた場合、あるいは、熱媒体出口温度サーミスタ53が第2所定温度を超えた場合において、熱媒体入口温度サーミスタ54、あるいは、熱媒体出口温度サーミスタ53の検出温度が上昇するにつれて、第1膨張装置14の弁開度を小さくし、第2膨張装置21の弁開度を大きくして、中間圧が上昇するようにし、熱媒体入口温度サーミスタ54、あるいは、熱媒体出口温度サーミスタ53の検出温度が上昇するにつれて、ΔTMの値も大きくなるように、第2膨張装置21の弁開度を制御してもよい。 Further, in the control device 60, when the heat medium inlet temperature thermistor 54 exceeds the first predetermined temperature, or when the heat medium outlet temperature thermistor 53 exceeds the second predetermined temperature, the heat medium inlet temperature thermistor 54, or As the detected temperature of the heat medium outlet temperature thermistor 53 rises, the valve opening degree of the first expansion device 14 is decreased, the valve opening degree of the second expansion device 21 is increased, and the intermediate pressure is increased. The valve opening of the second expansion device 21 may be controlled so that the value of ΔTM increases as the temperature detected by the heat medium inlet temperature thermistor 54 or the heat medium outlet temperature thermistor 53 increases.

なお、利用側熱交換器12への利用側熱媒体の入口温度、あるいは、利用側熱交換器12からの利用側熱媒体の出口温度が高くなるにつれて、ΔTMの値も大きくなるように、制御装置60にΔTMは予め設定されている。 It should be noted that as the inlet temperature of the use side heat medium to the use side heat exchanger 12 or the outlet temperature of the use side heat medium from the use side heat exchanger 12 increases, the value of ΔTM also increases so that the value is controlled. ΔTM is preset in the device 60.

また、低段側圧縮回転要素11aと高段側圧縮回転要素11bとが、それぞれが独立した2台の圧縮機から構成されている圧縮機構11の構成でもよく、少なくとも、高段側圧縮回転要素11bの運転周波数を低下させれば良い。 Further, the low-stage side compression rotary element 11a and the high-stage side compression rotary element 11b may have a configuration of the compression mechanism 11 configured by two independent compressors, at least the high-stage side compression rotary element. It suffices to reduce the operating frequency of 11b.

また、低段側圧縮回転要素11aと高段側圧縮回転要素11bとに分かれてなく、単一の圧縮回転要素であってもよく、単一の圧縮回転要素の場合には、バイパス冷媒回路20からの冷媒を圧縮回転要素の圧縮途中とする。 Further, the low-stage side compression rotary element 11a and the high-stage side compression rotary element 11b are not divided and may be a single compression rotary element. In the case of a single compression rotary element, the bypass refrigerant circuit 20 The refrigerant from is in the middle of compression of the compression rotary element.

本実施の形態による冷凍サイクル装置では二酸化炭素とすることが好ましい。これは、利用側熱交換器12において、冷媒である二酸化炭素で、利用側熱媒体を加熱したときの、利用側熱媒体の高温化が可能となるためである。 Carbon dioxide is preferably used in the refrigeration cycle device according to the present embodiment. This is because it is possible to raise the temperature of the usage-side heat medium when the usage-side heat medium is heated by carbon dioxide as a refrigerant in the usage-side heat exchanger 12.

また、利用側熱媒体を水又は不凍液とすることで、暖房端末32aに用い、又は貯湯タンク32bに高温水を貯えることができる。 Further, by using water or antifreeze as the use side heat medium, it is possible to use the heating terminal 32a or store high temperature water in the hot water storage tank 32b.

以上のように、本発明にかかる冷凍サイクル装置は、中間熱交換器を備えた主冷媒回路とバイパス冷媒回路からなり、高圧と中間圧との差圧を大きくしないことで、COPを低下させないので、冷凍サイクル装置を用いた冷凍、空調、および、給湯、暖房機器の液体加熱装置等に有用である。 As described above, the refrigeration cycle apparatus according to the present invention includes the main refrigerant circuit including the intermediate heat exchanger and the bypass refrigerant circuit, and does not reduce the COP by not increasing the differential pressure between the high pressure and the intermediate pressure. It is useful for refrigeration using a refrigeration cycle device, air conditioning, hot water supply, liquid heating device for heating equipment, and the like.

10 主冷媒回路
11 圧縮機構
11a 低段側圧縮回転要素
11b 高段側圧縮回転要素
12 利用側熱交換器
13 中間熱交換器
14 第1膨張装置
15 熱源側熱交換器
16 配管
20 バイパス冷媒回路
21 第2膨張装置
30 利用側熱媒体回路
31 搬送装置
32a 暖房端末
32b 貯湯タンク
33 熱媒体配管
34 第1切替弁
35 第2切替弁
41 給湯栓
42 給湯用熱交換器
43 給水配管
51 高圧側圧力検出装置
52 中間熱交換器バイパス出口サーミスタ
53 熱媒体出口温度サーミスタ
54 熱媒体入口温度サーミスタ
55a 第1貯湯タンク温度サーミスタ
55b 第2貯湯タンク温度サーミスタ
55c 第3貯湯タンク温度サーミスタ
56 中間熱交換器バイパス入口サーミスタ
57 中間熱交換器主冷媒入口サーミスタ
58 中間熱交換器主冷媒出口サーミスタ
60 制御装置
10 Main Refrigerant Circuit 11 Compression Mechanism 11a Lower Stage Compression Rotating Element 11b Higher Stage Compression Rotating Element 12 Utilization Side Heat Exchanger 13 Intermediate Heat Exchanger 14 First Expansion Device 15 Heat Source Side Heat Exchanger 16 Piping 20 Bypass Refrigerant Circuit 21 Second expansion device 30 Utilization-side heat medium circuit 31 Conveyor device 32a Heating terminal 32b Hot water tank 33 Heat medium pipe 34 First switching valve 35 Second switching valve 41 Hot water tap 42 Hot water heat exchanger 43 Water supply pipe 51 High pressure side pressure detection Device 52 Intermediate heat exchanger bypass outlet thermistor 53 Heat medium outlet temperature thermistor 54 Heat medium inlet temperature thermistor 55a First hot water tank temperature thermistor 55b Second hot water tank temperature thermistor 55c Third hot water tank temperature thermistor 56 Intermediate heat exchanger bypass inlet thermistor 57 Intermediate Heat Exchanger Main Refrigerant Inlet Thermistor 58 Intermediate Heat Exchanger Main Refrigerant Outlet Thermistor 60 Controller

Claims (9)

圧縮回転要素から構成される圧縮機構、前記圧縮回転要素から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、
前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐され、第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる冷媒と熱交換され、前記圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路と、
制御装置と、
を備え、
前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度との温度差が、前記冷媒が前記中間熱交換器を気液二相の状態で流れる場合よりも大きく、
かつ、
前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と前記中間熱交換器の前記主冷媒回路の冷媒の入口温度との温度差が、
前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度と前記中間熱交換器の前記主冷媒回路の冷媒の出口温度との温度差よりも大きい状態となるように、
前記制御装置は、前記第2膨張装置の弁開度を制御して、
前記第2膨張装置により減圧された後の冷媒の圧力が、臨界圧を超えた状態を保つようにすることを特徴とする冷凍サイクル装置。
A compression mechanism including a compression rotary element, a utilization side heat exchanger that heats a utilization side heat medium by a refrigerant discharged from the compression rotation element, an intermediate heat exchanger, a first expansion device, and a heat source side heat exchanger are pipes. A main refrigerant circuit formed by sequentially connecting with,
Branched from the pipe between the utilization side heat exchanger and the first expansion device, and after being decompressed by the second expansion device, heat is exchanged with the refrigerant flowing through the main refrigerant circuit in the intermediate heat exchanger, A bypass refrigerant circuit joined to the refrigerant in the middle of compression of the compression rotary element,
A control device,
Equipped with
The temperature difference between the outlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger and the inlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger, the refrigerant is a gas-liquid two-phase Than when flowing in
And,
The temperature difference between the outlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger and the inlet temperature of the refrigerant of the main refrigerant circuit of the intermediate heat exchanger,
In order to be in a state larger than the temperature difference between the inlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger and the outlet temperature of the refrigerant of the main refrigerant circuit of the intermediate heat exchanger,
The control device controls the valve opening degree of the second expansion device,
A refrigeration cycle apparatus, wherein the pressure of the refrigerant after being decompressed by the second expansion device is maintained in a state of exceeding a critical pressure.
前記第2膨張装置により減圧された後の冷媒の圧力が高いほど、前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と冷媒の入口温度との温度差が大きくなるように、前記制御装置は、前記第2膨張装置の弁開度を制御することを特徴とする請求項1に記載の冷凍サイクル装置。 The control is performed such that the higher the pressure of the refrigerant after being decompressed by the second expansion device, the larger the temperature difference between the outlet temperature of the refrigerant and the inlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger. The refrigeration cycle apparatus according to claim 1, wherein the apparatus controls a valve opening degree of the second expansion device. 前記制御装置は、前記圧縮機構からの吐出冷媒の圧力値と、前記利用側熱交換器の冷媒の出口温度と、前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度とから、前記第2膨張装置により減圧された後の冷媒の圧力が、臨界圧以上であるか否かを判断することを特徴とする請求項1または2に記載の冷凍サイクル装置。 From the pressure value of the refrigerant discharged from the compression mechanism, the refrigerant outlet temperature of the utilization side heat exchanger, and the refrigerant inlet temperature of the bypass refrigerant circuit of the intermediate heat exchanger, The refrigeration cycle apparatus according to claim 1 or 2, wherein it is determined whether or not the pressure of the refrigerant after being decompressed by the 2 expansion device is equal to or higher than a critical pressure. 前記冷媒を二酸化炭素としたことを特徴とする請求項1〜3のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle device according to any one of claims 1 to 3, wherein the refrigerant is carbon dioxide. 請求項1〜4のいずれか1項に記載の冷凍サイクルを用い、搬送装置によって、前記利用側熱媒体を循環させる利用側熱媒体回路を備えたことを特徴とする液体加熱装置。 A liquid heating apparatus comprising the refrigeration cycle according to any one of claims 1 to 4, further comprising a usage-side heat medium circuit that circulates the usage-side heat medium by a carrier device. 前記利用側熱交換器から流出される前記利用側熱媒体の温度を検出する熱媒体出口温度サーミスタと、前記利用側熱交換器に流入される前記利用側熱媒体の温度を検出する熱媒体入口温度サーミスタと、を備え、前記制御装置は、前記熱媒体出口温度サーミスタの検出温度が目標温度となるように、前記搬送装置を動作させるとともに、前記熱媒体入口温度サーミスタの検出温度が第1所定温度を超えた場合には、前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と、前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度との温度差が、前記冷媒が前記中間熱交換器を気液二相の状態で流れる場合よりも大きく、かつ、前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と、前記中間熱交換器の前記主冷媒回路の冷媒の入口温度との温度差が、前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度と、前記中間熱交換器の前記主冷媒回路の冷媒の出口温度との温度差よりも大きい状態となるように、前記制御装置は、前記第2膨張装置の弁開度を制御することを特徴とする請求項5に記載の液体加熱装置。 Heat medium outlet temperature thermistor for detecting the temperature of the use side heat medium flowing out from the use side heat exchanger, and heat medium inlet for detecting the temperature of the use side heat medium flowing into the use side heat exchanger. A temperature thermistor, and the control device operates the transfer device so that the detected temperature of the heat medium outlet temperature thermistor becomes a target temperature, and the detected temperature of the heat medium inlet temperature thermistor is a first predetermined value. When the temperature is exceeded, the temperature difference between the outlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger and the inlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger, the refrigerant is Greater than when flowing through the intermediate heat exchanger in a gas-liquid two-phase state, and the outlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger, of the refrigerant of the main refrigerant circuit of the intermediate heat exchanger The temperature difference from the inlet temperature is in a state of being larger than the temperature difference between the inlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger and the outlet temperature of the refrigerant of the main refrigerant circuit of the intermediate heat exchanger. The liquid heating device according to claim 5, wherein the control device controls the valve opening degree of the second expansion device. 前記利用側熱交換器から流出される前記利用側熱媒体の温度を検出する熱媒体出口温度サーミスタと、前記利用側熱交換器に流入される前記利用側熱媒体の温度を検出する熱媒体入口温度サーミスタと、を備え、前記制御装置は、前記熱媒体出口温度サーミスタの検出温度と前記熱媒体入口温度サーミスタの検出温度との温度差が目標温度差となるように、前記搬送装置を動作させるとともに、前記熱媒体出口温度サーミスタの前記検出温度が第2所定温度を超えた場合には、前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と、前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度との温度差が、前記冷媒が前記中間熱交換器を気液二相の状態で流れる場合よりも大きく、かつ、前記中間熱交換器の前記バイパス冷媒回路の冷媒の出口温度と、前記中間熱交換器の前記主冷媒回路の冷媒の入口温度との温度差が、前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度と、前記中間熱交換器の前記主冷媒回路の冷媒の出口温度との温度差よりも大きい状態となるように、前記制御装置は、前記第2膨張装置の弁開度を制御することを特徴とする請求項5に記載の液体加熱装置。 Heat medium outlet temperature thermistor for detecting the temperature of the use side heat medium flowing out from the use side heat exchanger, and heat medium inlet for detecting the temperature of the use side heat medium flowing into the use side heat exchanger. A temperature thermistor, and the controller operates the transfer device so that a temperature difference between the temperature detected by the heat medium outlet temperature thermistor and the temperature detected by the heat medium inlet temperature thermistor becomes a target temperature difference. In addition, when the detected temperature of the heat medium outlet temperature thermistor exceeds a second predetermined temperature, the outlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger and the bypass refrigerant of the intermediate heat exchanger. The temperature difference with the inlet temperature of the refrigerant of the circuit is larger than when the refrigerant flows through the intermediate heat exchanger in a gas-liquid two-phase state, and the outlet of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger. The temperature difference between the temperature and the inlet temperature of the refrigerant of the main refrigerant circuit of the intermediate heat exchanger, the inlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger, the main refrigerant of the intermediate heat exchanger The liquid heating device according to claim 5, wherein the control device controls the valve opening degree of the second expansion device so that the temperature difference is larger than the temperature difference from the outlet temperature of the refrigerant of the circuit. .. 前記制御装置は、前記圧縮機構からの吐出冷媒の圧力値と、前記利用側熱交換器に流入する前記利用側熱媒体の温度と、前記中間熱交換器の前記バイパス冷媒回路の冷媒の入口温度とから、前記第2膨張装置により減圧された後の冷媒の圧力が、臨界圧以上であるか否かを判断することを特徴とする請求項5〜7のいずれか1項に記載の液体加熱装置。 The control device, the pressure value of the refrigerant discharged from the compression mechanism, the temperature of the use-side heat medium flowing into the use-side heat exchanger, the inlet temperature of the refrigerant of the bypass refrigerant circuit of the intermediate heat exchanger From the above, it is judged whether or not the pressure of the refrigerant after being decompressed by the second expansion device is equal to or higher than a critical pressure, The liquid heating according to any one of claims 5 to 7, apparatus. 前記利用側熱媒体を水又は不凍液としたことを特徴とする請求項5〜8のいずれか1項に記載の液体加熱装置。 The liquid heating device according to any one of claims 5 to 8, wherein the use-side heat medium is water or antifreeze.
JP2019006714A 2019-01-18 2019-01-18 Refrigeration cycle device and liquid heating device equipped with it Active JP7012208B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019006714A JP7012208B2 (en) 2019-01-18 2019-01-18 Refrigeration cycle device and liquid heating device equipped with it
ES19191742T ES2904478T3 (en) 2019-01-18 2019-08-14 Refrigeration cycle device and liquid heating device including that device
EP19191742.6A EP3683520B1 (en) 2019-01-18 2019-08-14 Refrigeration cycle device and liquid heating device having the same
DK19191742.6T DK3683520T3 (en) 2019-01-18 2019-08-14 COOLING CYCLE DEVICE AND LIQUID HEATING DEVICE WITH SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019006714A JP7012208B2 (en) 2019-01-18 2019-01-18 Refrigeration cycle device and liquid heating device equipped with it

Publications (2)

Publication Number Publication Date
JP2020115068A true JP2020115068A (en) 2020-07-30
JP7012208B2 JP7012208B2 (en) 2022-01-28

Family

ID=67658827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019006714A Active JP7012208B2 (en) 2019-01-18 2019-01-18 Refrigeration cycle device and liquid heating device equipped with it

Country Status (4)

Country Link
EP (1) EP3683520B1 (en)
JP (1) JP7012208B2 (en)
DK (1) DK3683520T3 (en)
ES (1) ES2904478T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114353383A (en) * 2021-12-10 2022-04-15 青岛海尔空调电子有限公司 Air source heat pump unit control method and air source heat pump unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022175115A (en) * 2021-05-12 2022-11-25 パナソニックIpマネジメント株式会社 Refrigeration cycle device and liquid heating device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288411A (en) * 1997-01-09 1998-10-27 Nippon Soken Inc Vapor pressure compression type refrigerating cycle
JP2009204235A (en) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd Heat pump type water heater
JP2010054194A (en) * 2008-07-31 2010-03-11 Daikin Ind Ltd Refrigerating device
JP2010071643A (en) * 2009-11-27 2010-04-02 Mitsubishi Electric Corp Supercritical vapor compression type refrigerating cycle, and heating and cooling air conditioning equipment and heat pump water heater using the same
WO2011135616A1 (en) * 2010-04-27 2011-11-03 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105891A (en) * 2012-11-26 2014-06-09 Panasonic Corp Refrigeration cycle device and hot-water generating device including the same
JP6477908B2 (en) * 2015-10-05 2019-03-06 株式会社デンソー Refrigeration cycle equipment
WO2017163339A1 (en) * 2016-03-23 2017-09-28 三菱電機株式会社 Air-conditioning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288411A (en) * 1997-01-09 1998-10-27 Nippon Soken Inc Vapor pressure compression type refrigerating cycle
JP2009204235A (en) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd Heat pump type water heater
JP2010054194A (en) * 2008-07-31 2010-03-11 Daikin Ind Ltd Refrigerating device
JP2010071643A (en) * 2009-11-27 2010-04-02 Mitsubishi Electric Corp Supercritical vapor compression type refrigerating cycle, and heating and cooling air conditioning equipment and heat pump water heater using the same
WO2011135616A1 (en) * 2010-04-27 2011-11-03 三菱電機株式会社 Refrigeration cycle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114353383A (en) * 2021-12-10 2022-04-15 青岛海尔空调电子有限公司 Air source heat pump unit control method and air source heat pump unit
CN114353383B (en) * 2021-12-10 2024-04-19 青岛海尔空调电子有限公司 Air source heat pump unit control method and air source heat pump unit

Also Published As

Publication number Publication date
EP3683520A1 (en) 2020-07-22
EP3683520B1 (en) 2021-11-03
ES2904478T3 (en) 2022-04-05
DK3683520T3 (en) 2021-12-20
JP7012208B2 (en) 2022-01-28

Similar Documents

Publication Publication Date Title
JP5452138B2 (en) Refrigeration air conditioner
JP5627713B2 (en) Air conditioner
JP5871959B2 (en) Air conditioner
JP6161005B2 (en) Refrigeration cycle apparatus and hot water generating apparatus having the same
JP5893151B2 (en) Air conditioning and hot water supply complex system
JPWO2009150761A1 (en) Refrigeration cycle apparatus and control method thereof
JPWO2011048695A1 (en) Air conditioner
JP2015218909A (en) Refrigeration cycle device and hot water generation device including the same
JP5908183B1 (en) Air conditioner
JP2011080634A (en) Refrigerating cycle device and hot-water heating device
JP2017161182A (en) Heat pump device
JP7012208B2 (en) Refrigeration cycle device and liquid heating device equipped with it
JP2017155944A (en) Refrigeration cycle device and hot water heating device including the same
US20220090815A1 (en) Air-conditioning apparatus
JP2005214550A (en) Air conditioner
JP6758506B2 (en) Air conditioner
JP6986675B2 (en) Supercritical vapor compression refrigeration cycle and liquid heating device
JP2017166709A (en) Refrigeration cycle device and hot water heating device including the same
WO2019234986A1 (en) Refrigeration cycle device and liquid heating device comprising same
JP2020003156A (en) Refrigeration cycle device and liquid heating device including the same
JP2021092358A (en) Heat pump system
EP4089345A1 (en) Refrigeration cycle device and liquid heating device having the same
EP3671049B1 (en) Heat pump system
JP2020148381A (en) Refrigeration cycle device and liquid heating device including the same
JP7117513B2 (en) heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R151 Written notification of patent or utility model registration

Ref document number: 7012208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151