JP2020112034A - 軸流ファン - Google Patents

軸流ファン Download PDF

Info

Publication number
JP2020112034A
JP2020112034A JP2019000967A JP2019000967A JP2020112034A JP 2020112034 A JP2020112034 A JP 2020112034A JP 2019000967 A JP2019000967 A JP 2019000967A JP 2019000967 A JP2019000967 A JP 2019000967A JP 2020112034 A JP2020112034 A JP 2020112034A
Authority
JP
Japan
Prior art keywords
blade
axial fan
blades
hub
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019000967A
Other languages
English (en)
Inventor
昭宏 近藤
Akihiro Kondo
昭宏 近藤
増田 哲也
Tetsuya Masuda
哲也 増田
長谷川 寛
Hiroshi Hasegawa
寛 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019000967A priority Critical patent/JP2020112034A/ja
Publication of JP2020112034A publication Critical patent/JP2020112034A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】軸流ファンを多様な回転数で使用する場合に、回転に起因する羽根の変形量の変化が大きいこと。【解決手段】軸流ファン70は複数の羽根71と、ハブ72とを備えている。羽根71は内周側に位置する大翼73と、外周側に位置する小翼74とを備え、小翼74は回転軸を通る平面での断面において凸形状にして、周方向に凸形状を延在する形態にする。そしてハブ72と大翼73と、凸形状にして断面二次モーメントを増大させた小翼74とを一体に形成する。【選択図】図3

Description

本発明は回転することで回転軸方向に気相の流体の流れ(以下、気流)を発生させる軸流ファンに関するものである。
従来、この種の軸流ファンは、冷凍サイクル装置等で用いられており、多様な回転数や、多様な軸流ファンの前後の圧力差の下で使用されることから羽根の表面からの気流の剥離等の損失を伴う流れを生じやすいため、成形自由度の高い樹脂成型により羽根の厚み分布を調整することで損失を伴う流れを低減して効率を高めている。また羽根の角度や、羽根の外周部や回転方向の前方と後方の端部の曲率を適正化して、羽根の近傍における気流の乱れを低減して所定の風量での効率を向上している(例えば、特許文献1参照)。
図6は、特許文献1に記載された従来の軸流ファンを示すものである。図6に示すように、軸流ファン1は、羽根2と、ハブ3と、羽根2の周方向に沿って上流側に凸の領域4と、羽根2の周方向に沿って下流側に凸で半径方向に沿って上流側に凸の領域5と、半径方向に沿って下流側に凸の領域6と、から構成されている。
国際公開第2016/181463号
しかしながら従来の構成では、軸流ファン1に主に作用する力である遠心力は回転数の2乗に比例するため、多様な回転数で使用する場合に羽根2の変形量の変化が大きいという課題を有していた。これにより、羽根2が変形することを前提として所定の回転数で最大効率が得られるように設計しても、それ以外の回転数では最大効率に対して効率が低下していた。
ここで、効率に影響するのは主に羽根2の、回転軸7の方向への変形である。羽根2を微小に細分化した体積を質量要素8とし、質量要素8に作用する張力の方向を線分12とし、線分12が半径方向に対して有する角度を13として、線分12は質量要素8とハブ3の外周面における回転軸方向の中間位置11とを結んでいる。線分12が角度13を有する場合には、張力は半径方向成分の他に回転軸方向成分も有することから、羽根2は、中間位置11を通り且つ回転軸7に直交する平面14に近づくように、すなわち気流の下流側に位置する部分は上流側に向かって、気流の上流側に位置する部分は下流側に向かって変形する。従来の軸流ファンでは回転軸7の方向への変形量の変化が大きい原因として少なくとも3点挙げることができる。第1の原因は荷重の変化であって、遠心力は回転数の2乗に比例すること、第2の原因は変形のしやすさであって、軸流ファン1は羽根2が半径方向外方ほど拡大していることが多く、角度13が大きい質量要素8が多いこと、第3の原因も変形のしやすさであって、外周側に向かうほど板厚を薄くしているために断面二次モーメントが小さいこと、である。以上により従来の軸流ファンには多様な回転数で使用する場合に、特に外周側において、羽根2の変形量の変化が大きいという課題があった。
本発明は、従来の課題を解決するもので、前記の変形の第3の原因の影響を小さくすることによって、多様な回転数において変形量の変化を低減した軸流ファンを提供すること
を目的とする。
従来の課題を解決するために、本発明の軸流ファンは、複数の羽根と、ハブと、を備え、羽根は、ハブによって、回転軸の周りに等間隔に、且つ、回転軸と直交する平面に対して所定の角度を有して保持されている軸流ファンであって、羽根は大翼と、小翼と、を備え、羽根は軸流ファンの半径方向の外方に向かってハブと、大翼と、小翼がこの順に接続して一体に形成しており、回転軸を通る平面での羽根の断面において大翼と小翼の接続部は屈曲しており、小翼の形状は、接続部から小翼の半径方向外方の端点にかけて回転軸の方向に凸となっており、小翼は羽根の周方向に延在することを特徴としたものである。
これによって、変形量の変化の低減のために羽根に補強用のリブ等を追加すると羽根とハブとの接続部に応力が集中する軸流ファンでは羽根が重くなることで遠心力が増大して強度低下を生じることや、樹脂製の羽根に金属等で骨格を追加すると異種材料であるため接着面において温度変化や経年劣化により剥がれやがたつきが生じる可能性があり信頼性が低下することから補強等による対策は難しかったのに対し、羽根に断面二次モーメントの高い小翼を一体に備えるため、変形量の変化が減少することとなる。
本発明の軸流ファンは、所定の風量を得るための回転数で最大効率になるように設計している。そして従来は異なる回転数で回転させた場合には変形量の変化により最大効率よりも効率が低下していたのに対して、本発明の軸流ファンは断面二次モーメントの高い小翼を一体に備えているため、最大効率からの効率の低下を低減できるので、多様な回転数において効率を向上することができる。
本発明の実施の形態1における冷凍サイクル装置の構成図 本発明の実施の形態1における軸流ファンの斜視図 本発明の実施の形態1における軸流ファンの回転方向の前方における回転軸を通る平面での断面図 本発明の実施の形態1における軸流ファンの回転方向の中間における回転軸を通る平面での断面図 本発明の実施の形態1における軸流ファンの回転方向の後方における回転軸を通る平面での断面図 従来の軸流ファンの羽根の正面図
第1の発明は、複数の羽根と、ハブと、を備え、羽根は、ハブによって、回転軸の周りに等間隔に、且つ、回転軸と直交する平面に対して所定の角度を有して保持されている軸流ファンであって、羽根は大翼と、小翼と、を備え、羽根は軸流ファンの半径方向の外方に向かってハブと、大翼と、小翼がこの順に接続して一体に形成しており、回転軸を通る平面での羽根の断面において大翼と小翼の接続部は屈曲しており、小翼の形状は、接続部から小翼の半径方向外方の端点にかけて回転軸の方向に凸となっており、小翼は羽根の周方向に延在することを特徴とする。
これにより、羽根の外周側での板厚の薄さと、回転方向に前進しているために変形量が大きいことに対し、変形量の低減のために、補強用のリブ等を追加すると羽根とハブとの接続部に応力が集中する軸流ファンでは羽根が重くなることで遠心力が増大して強度低下を生じたり、羽根に金属等で骨格を追加すると異種材料であるため接着面において温度変化や経年劣化により剥がれやがたつきが生じる可能性があり信頼性が低下するのに対して
、小翼を一体に備えることで、強度低下や信頼性低下を防止しつつ、変形量を低減できる。これにより、最大効率が得られる所定の回転数とは異なる回転数であっても最大効率からの効率の低下を低減できるので、多様な回転数において効率を向上することができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の第1の実施の形態における冷凍サイクル装置の構成図を示すものである。図2は、本発明の第1の実施の形態における軸流ファンの斜視図を示すものである。図3は、本発明の第1の実施の形態における軸流ファンの回転方向の前方における回転軸を通る平面での断面図を示すものであり、図2における破線87での断面図である。図4は、本発明の第1の実施の形態における軸流ファンの回転方向の中間における回転軸を通る平面での断面図を示すものであり、図2における破線88での断面図である。図5は、本発明の第1の実施の形態における軸流ファンの回転方向の後方における回転軸を通る平面での断面図を示すものであり、図2における破線89での断面図である。
図1において、冷凍サイクル装置20は、主回路21と、圧縮機30と、室外熱交換器41と、室内熱交換器42と、四方弁50と、室外膨張弁55と、室内膨張弁56と、冷媒貯留槽57と、室外送風機61と、室内送風機62と、を備えており、室外熱交換器41で放熱するとともに室内熱交換器42で吸熱する、もしくは室外熱交換器41で吸熱するとともに室内熱交換器42で放熱するという動作を切り替えることが可能な構成となっている。冷凍サイクル装置20を、空気を加熱または冷却することを目的として用いた装置がエアコン等と呼ばれ、水を加熱または冷却することを目的として用いた装置がチラー等と呼ばれる。
また、冷凍サイクル装置20の形態として、圧縮機30と、室外熱交換器41と、四方弁50と、室外膨張弁55と、冷媒貯留槽57と、室外送風機61と、を含む室外機22、および、室内熱交換器42と、室内膨張弁56と、室内送風機62と、を含む室内機23、でユニットを分離して構成することもあるし、室外機22と、室内機23と、を一体のユニットとして構成することもある。また、室外機22と室内機23を分離する構成においても、室外機22と室内機23が同数の場合と、室外機22よりも室内機23の台数が多い場合と、がある。本実施の形態においては、家庭用エアコンや店舗用エアコンに多く見られる、室外機22と室内機23が分離しており、室外機22と室内機23が1台ずつであるエアコンの構成例を示す。
主回路21は、室外熱交換器41で放熱して室内熱交換器42で吸熱する動作を行う場合には、圧縮機30、四方弁50の第1経路51、室外熱交換器41、室外膨張弁55、冷媒貯留槽57、室内膨張弁56、室内熱交換器42をこの順に接続しており、室内熱交換器42から四方弁50の第2経路52を経由して圧縮機30に戻す回路である。圧縮機30と四方弁50の第1経路51を流路91によって、四方弁50の第1経路51と室外熱交換器41を流路92によって、室外熱交換器41と室外膨張弁55を流路93によって、室外膨張弁55と冷媒貯留槽57を流路94によって、冷媒貯留槽57と室内膨張弁56を流路95によって、室内膨張弁56と室内熱交換器42を流路96によって、室内熱交換器42と四方弁50の第2経路52を流路97によって、四方弁50の第2経路52と圧縮機30を流路98によって、接続している。
また、室外熱交換器41で吸熱して室内熱交換器42で放熱する動作を行う場合には、圧縮機30、四方弁50の第3経路53、室内熱交換器42、室内膨張弁56、冷媒貯留槽57、室外膨張弁55、室外熱交換器41をこの順に接続しており、室外熱交換器41
から四方弁50の第4経路54を経由して圧縮機30に戻す回路である。圧縮機30と四方弁50の第3経路53を流路91によって、四方弁50の第3経路53と室内熱交換器42を流路97によって、室内熱交換器42と室内膨張弁56を流路96によって、室内膨張弁56と冷媒貯留槽57を流路95によって、冷媒貯留槽57と室外膨張弁55を流路94によって、室外膨張弁55と室外熱交換器41を流路93によって、室外熱交換器41と四方弁50の第4経路54を流路92によって、四方弁50の第4経路54と圧縮機30を流路98によって、接続している。
冷凍サイクル装置20の動作の別による主回路21の切り替えは四方弁50により行うようにしている。主回路21の内部にはR32やR410Aに代表される冷媒と、圧縮機30の摺動部を潤滑するための圧縮機油を封入している。
圧縮機30は、ロータリー式圧縮機、すなわち、円筒形の内部空間を有するシリンダと、シリンダの内部の中心軸に対して偏心して配したローターと、シリンダ壁面に設けたスリットに摺動自由に収納されていて先端がローターの円筒面に常に接する構成にした仕切弁と、シリンダにおいて仕切弁の両側に主回路21への連通孔と、を備えている。
室外熱交換器41および室内熱交換器42は、フィンアンドチューブ式熱交換器、すなわち、厚さ0.1mm程度のアルミニウムの板に直径5mm〜8mm程度の複数個の丸穴が開いていて且つ丸穴が襟状に曲げられているフィンと、銅またはアルミニウムの管と、を備え、数百枚のフィンを並べて丸穴に管を挿入し、管を押し広げてフィンに密着するようにして構成している。
四方弁50は、内部に備える弁を用いて、第1経路51と第2経路52、もしくは、第3経路53と第4経路54の組み合わせを切り替えることが可能な構成にしている。
室外膨張弁55と室内膨張弁は、主回路21に対して冷媒が流れる経路の断面積を小さくする、または、閉塞と開放を切り替える等して、部分的に冷媒を流れにくくする構成にしている。
冷媒貯留槽57は、容器と、主回路21へ接続するための2つの連通孔と、を備え、連通孔から容器内部の下部まで管が延びており、容器の下部に溜まった液相の冷媒を主回路21に戻す構成にしている。
室内送風機62は、ターボファンや、シロッコファンや、クロスフローファンを用いるのが一般的であるが、軸流ファンを用いたものもある。
室外送風機61は、軸流ファン70と、ベルマウス81と電動機82と、を備える。軸流ファン70によって発生する空気の流れの上流側から下流側へ向かう方向において、室外熱交換器41と、電動機82と、軸流ファン70と、ベルマウス81と、をこの順に配置している。軸流ファン70は電動機82の回転シャフトに固定している。電動機は室外機22に固定している。ベルマウス81は、軸流ファン70の回転軸に対して周方向に、所定の隙間を有して軸流ファン70を囲繞する略円筒形の形態であって、回転軸方向に少なくとも部分的に軸流ファン70と重なるように配置し、室外機22に固定している。
図2において軸流ファン70は、羽根71と、ハブ72と、を有する。ハブ72は羽根71を保持している。羽根71は、大翼73と、小翼74と、を有する。ハブ72、大翼73、小翼74と、はこの順で接続されており、ガラス繊維強化プラスチック等(例えばAS/GFやPP/GF)の樹脂成型により一体に形成している。羽根71の回転方向の前方の稜線は回転軸7に対する半径が大きくなるにつれて軸流ファン70の回転方向の前
方に位置するように形成している。
図3と図4と図5において羽根71は、内周側の板厚が厚く、外周側の板厚を薄くしている。図3と図5のようにハブ72の回転軸7の方向の高さの中間位置80以外では小翼74は大翼73との接続部75において屈曲している。接続部75においては、大翼73の半径方向外方の端点が小翼74と接続している。小翼74の回転軸7に対する半径方向の長さは、軸流ファン70の直径の5%程度にしている。
図3と図5のように小翼74はハブ72の回転軸7の方向の高さの中間位置80に向かって凸になるように形成している。小翼74は、軸流ファン70の周方向に沿って小翼74の高さを変化させている。小翼74は、それぞれ羽根71の回転方向前方の端部と、回転方向後方の端部で最大になるように形成しており、小翼74の最大の高さは軸流ファン70の直径の0.5〜1%にしている。
以上のように構成された冷凍サイクル装置20および軸流ファン70について、以下その動作、作用を説明する。
まず、冷凍サイクル装置20が室外熱交換器41で放熱するとともに室内熱交換器42で吸熱する動作を行う場合は、主回路21において、主回路21に封入した冷媒が低温低圧の気相の状態で圧縮機30に吸入され、圧縮機30によって高温高圧の気相の状態に圧縮される。冷媒は四方弁50によって流れの方向が選択されて室外熱交換器41へ流れ、室外熱交換器41によって放熱して凝縮し、中温中圧の液相の状態となる。冷媒は冷媒貯留槽57に蓄えられた後に、室内膨張弁56で冷媒の流れる量が調整されて吐出され、室内熱交換器42において外気から吸熱して蒸発し、低温低圧の気相の状態に戻り、再び圧縮機30によって高温高圧の気相の状態に圧縮される。この一連の動作によって、冷媒を介して室内の熱を室外に移動することになるので、エアコンにおける冷房動作となる。
また、冷凍サイクル装置20が室外熱交換器41で吸熱するとともに室内熱交換器42で放熱する動作を行う場合は、主回路21において、主回路21に封入された冷媒が低温低圧の気相の状態で圧縮機30に吸入され、圧縮機30によって高温高圧の気相の状態に圧縮される。冷媒は四方弁50によって流れの方向が選択されて室内熱交換器42へ流れ、室内熱交換器42によって放熱して、中温中圧の液相の冷媒となる。冷媒は冷媒貯留槽57に蓄えられた後に、室外膨張弁55で冷媒の流れる量が調整されて吐出され、室外熱交換器41において吸熱して蒸発し、低温低圧の気相の状態に戻り、再び圧縮機30によって高温高圧の気相の状態に圧縮される。この一連の動作によって、冷媒を介して室外の熱を室内に移動することになるので、エアコンにおける暖房動作となる。
なお、室外熱交換器41で放熱または吸熱する際に、軸流ファン70を併用することによって、室外機22の効率向上を図っている。すなわち、軸流ファン70を併用しない場合は、室外熱交換器41は熱い空気は鉛直上方または下方に移動するという自然な空気の流れで放熱するので空気の入れ替えが少なく室外機22の効率が低いのに対して、軸流ファン70を併用する場合は、室外熱交換器41は軸流ファン70によって生じる空気の流れで放熱するので空気の入れ替えが多く室外機22の効率を向上することができる。
特に、一般的に、軸流ファンは、羽根が遠心力によって半径方向の外方に変形すると同時に、回転軸方向へもハブの回転軸方向の中間位置に近づくように変形するため、設計においては変形することを踏まえて所定の風量を送風する際の回転数において最大効率となるように羽根と回転軸に直行する平面との角度である取付角等を設定している。また、軸流ファンの外周側は周速が早いことから送風する機能に重要であるので効率を向上させるために板厚を薄くし、且つ、回転軸の半径方向の外方に向かうにつれて拡大している。し
かし従来においては、板厚が薄いことと図6に示すところのハブ3の外周面上の回転軸方向の中間点11と質量要素8とを結ぶ線分12と半径方向とで成す角度13が大きいことと、から外周側が変形しやすい。これに対して、本実施形態のように、回転軸83を通る平面での断面図において凸で、羽根71の周方向に延在する小翼74を備えることによって、所定の回転数とは異なる回転数で動作する場合、すなわち回転数の変化により変形量も変化して最大効率にならない場合であっても、変形量の変化を低減できるので高い効率を維持できる。
同様の効果を得る手段として他に、羽根の外周側に補強用のリブ等を追加したり板厚を増加したりする方法が考えられるが、軸流ファンの応力は羽根とハブとの接続部に集中するため補強部は強固になっても羽根が重くなることで遠心力が増大して強度が低下することとなり、強度の低下に対して応力集中部にリブを追加したり厚肉化するという対策をすると樹脂成型時における熱収縮による残留応力の対策で冷却時間を長くする必要があるためコストが高くなる。また金属等による補強の追加や高剛性な材料への変更という方法も考えられるがインサート成型等により手数が増えるためコストが高くなる。本実施形態の軸流ファン70によれば、強度を保ちコストを抑えつつ多様な回転数で高い効率を維持することを可能とした。
また羽根71の変形の方向と小翼74が凸になる方向を一致させた場合には小翼74は回転軸7を通る平面での断面において両端部の距離が短くなる方向に変形して高さが高くなるので断面二次モーメントが大きくなり、より変形量を低減できる。
また羽根71の回転方向の前方の稜線76はハブ72から外周側に向かうにつれて回転方向の前方に前進しているために外周側で尖っており変形量が大きい。また羽根71の回転方向の後方の稜線77は半径方向の中間付近で回転方向の前方に凹む形状になっており、同様に外周側の変形量が大きい。それぞれ変形量が大きい部分は外周側から軸流ファン70の直径の5%程度であるため、回転軸7に対する半径方向の長さを、軸流ファン70の直径の5%にした小翼74を設けることにより過不足なく小翼の幅を決定できる。
また羽根71は遠心力に起因してハブ72の回転軸7の方向の高さの中間位置に一致する方向に変形し、中間位置から回転軸方向の外方に向かうほど遠心力に対する張力の角度が大きくなって回転軸方向の成分が大きくなるため、小翼74を羽根71の回転方向の前方と、回転方向の後方と、に分けて、且つ、回転方向の前方の端部と後方の端部で小翼74の高さが最大となり中間位置では高さを有しないように構成することで、気流の乱れや応力集中の原因となりうる段差を設けることなく、荷重の分布に合わせて小翼74を形成できて変形量を低減できる。
以上のように、本実施の形態においては、複数の羽根71と、ハブ72と、を備え、
羽根71は、ハブ72によって、回転軸7の周りに等間隔に、且つ、回転軸7と直交する平面に対して所定の角度を有して保持されている軸流ファン70であって、羽根71は大翼73と、小翼74と、を備え、羽根71は軸流ファン70の半径方向の外方に向かってハブ72と、大翼73と、小翼74がこの順に接続して一体に形成しており、回転軸7を通る平面での羽根71の断面において大翼73と小翼74の接続部75は屈曲しており、小翼74の形状は、接続部75から小翼74の半径方向外方の端点79にかけて回転軸83の方向に凸となっており、小翼74は羽根71の周方向に延在することを特徴とした軸流ファン70としている。
例えば、羽根の外周部では板厚が薄く変形量が大きいことに対し、変形量の低減のために、補強用のリブ等を追加すると補強部は強固になっても羽根とハブとの接続部応力が集中する軸流ファンでは羽根が重くなることで遠心力が増大して強度低下を生じる。また、
羽根に金属等で骨格を追加すると異種材料であるため接着面において温度変化や経年劣化により剥がれやがたつきが生じる可能性があり信頼性が低下したり、コストが増加する。これに対して、本実施の形態の軸流ファン70によれば、ハブ72と、大翼73と、小翼74を一体に備えることで、強度低下や信頼性低下を防止しつつ遠心力に起因する羽根71の変形量を低減できることとなり、変形量を低減できるので、最大効率が得られる所定の回転数とは異なる回転数であっても最大効率に対する効率の低下を低減できて、多様な回転数において軸流ファン70の効率を向上することができる。
以上のように、本実施の形態の軸流ファンは、所定の風量を得るための回転数で最大効率になるように設計している。そして従来は異なる回転数で回転させた場合には変形量の変化により最大効率よりも効率が低下していたのに対して、本実施の形態の軸流ファンは断面二次モーメントの高い小翼をハブと大翼に一体に備えているため、最大効率からの効率の低下を低減できるので、多様な回転数において効率を向上することができる。
すなわち、従来の軸流ファン1には、回転軸7の方向への変形が大きいことで以下のような影響がある。まず、軸流ファン1が変形しないと仮定した場合には回転数と風量は正比例の関係にある。しかし実際には軸流ファン1に主に作用する遠心力により軸流ファン1は変形する。例えば回転数を2倍にすると、遠心力は回転数の2乗に比例することから(200%の2乗)=400%となる。樹脂材料の応力―ひずみ特性を表す特性曲線は直線状ではないため厳密には荷重と変形量は正比例しないものの、特性曲線の曲率が小さいことと、軸流ファン1は一般的に最大でも樹脂材料の強度の10%〜25%の狭い範囲で動作するように設計されることと、から、荷重と変形量は近似的に正比例するとみなせるので、変形量も約400%になる。
このように、ある風量よりも多くの風量を得ようとすると、変形により取付角15が小さくなるので、回転数を風量の増加割合よりも大きくする必要があり、騒音が増大したり強度が不足することがある。そのため要求される静音性や強度が成立する最大回転数で最大効率を得るようにするのが好ましい。
一方で、軸流ファン1は羽根2の取付角15が小さくなるほど高効率だが高回転になる傾向にある。そのため最大回転数で最大効率を得られるように設計すると、半分の風量を得たい場合は回転数が半分になり、遠心力は回転数の2乗に比例するので(50%の2乗)=25%になり、最大効率を得られる変形した形状から静止時の形状に向かって約75%も戻ってしまうこと、すなわち取付角15が大きくなってしまうことで、最大効率に対して効率が低下する。
軸流ファン1は所定の風量を送風できることを前提とするため、それ以外の風量では効率が低下することになる。なお、羽根2に作用する空力は羽根2を通過する流れの速さの2乗に比例することから、周速度の大きい外周側に向かうほど効率への影響が大きいため、外周側の変形量の変化を低減することで効率の低下を効果的に小さくすることができる。
そのため、断面二次モーメントが大きい小翼をハブと大翼に一体に備えることで、最大効率が得られる所定の回転数とは異なる回転数であっても変形量の変化を低減することができ、最大効率に対する効率の低下を低減できるので、多様な回転数において効率を向上することができる。
なお、冷凍サイクル装置20において、第一の実施の形態に対して以下の構成であっても良い。
圧縮機30の圧縮形式については、ロータリー式でも良いし、スクロール式やレシプロ式やターボ式でも良い。また圧縮機30の動力については、圧縮機30の内部に備えられた電動機でも良いし、圧縮機とは独立した電動機を動力としても良いし、電動機ではなく原動機を動力としても良い。気相の冷媒を圧縮できる機構であれば、その形式や動力は問わない。
なお、室内機23は、室内の空気を温度調節する代わりに水を温度調節するチラーモジュールであっても良く、単独の筐体という形態を取らずに化学物質の分留設備等に一体に組み込まれていても良い。主回路21から外部へ熱交換が可能な構成であれば、温度調節する対象や形態は問わない。
なお、室内熱交換器42は、扁平管を並べた形態の熱交換器であっても、直径の異なる円筒管を同軸に配した熱交換器であっても、容器の内部に管を並べた熱交換器であっても良い。流体間で熱を授受する構成であれば形式は問わない。
なお、室外熱交換器41は、扁平管を並べた形態の熱交換器であっても良い。軸流ファン70によって発生する空気の流れを通過させることで熱交換が促進できる構成であれば形式は問わない。
なお、主回路21に封入する冷媒は相変化を伴わないCO2等であってもよく、冷媒の種類は問わない。
なお、軸流ファン70の小翼74を凸にする方向は問わない。小翼74の凸の方向が羽根71の変形の方向と反対の場合はそれぞれの方向を一致させた場合に比べて変形しやすくなるものの、小翼74は単純な板状の翼に比べれば高さを有するため断面二次モーメントが大きく、変形しにくいので、変形量を低減する効果がある。敢えて羽根71の変形の方向とは反対に凸にする場合として、送風による騒音の低減を図る場合に羽根71の回転方向の後方の外周側をハブ72の方向に捩じり下げることが有効であるため、小翼74が凸になる方向を羽根71が変形する方向とは反対向きにすることが挙げられる。
以上のように、本発明にかかる軸流ファンは、最大効率となる所定の回転数とは異なる回転数で使用した場合にも効率が高いので、エアコンやチラー等の冷凍サイクル装置の他にも、換気装置や、噴霧装置や、ファンヒーター等の燃焼器の吸気装置や、バイオベンチの気流循環装置等の用途にも適用できる。
20 冷凍サイクル装置
21 主回路
22 室外機
23 室内機
30 圧縮機
41 室外熱交換器
42 室内熱交換器
50 四方弁
51 第1経路
52 第2経路
53 第3経路
54 第4経路
55 室外膨張弁
56 室内膨張弁
57 冷媒貯留槽
61 室外送風機
62 室内送風機
70 軸流ファン
71 羽根
72 ハブ
73 大翼
74 小翼
75 接続部
76 回転方向の前方の稜線
77 回転方向の後方の稜線
79 小翼の半径方向外方の端点
80 中間位置
81 ベルマウス
82 電動機
91〜98 流路

Claims (1)

  1. 複数の羽根と、ハブと、を備え、
    前記羽根は、前記ハブによって、回転軸の周りに等間隔に、且つ、前記回転軸と直交する平面に対して所定の角度を有して保持されている軸流ファンであって、
    前記羽根は大翼と、小翼と、を備え、
    前記羽根は前記軸流ファンの半径方向の外側に向かって前記ハブと、前記大翼と、前記小翼がこの順に接続して一体に形成しており、
    前記回転軸を通る平面での前記羽根の断面において前記大翼と前記小翼の接続部は屈曲しており、
    前記小翼の形状は、前記接続部から前記小翼の半径方向外方の端点にかけて前記回転軸の方向に凸となっており、
    前記小翼は前記羽根の周方向に延在することを特徴とした軸流ファン。
JP2019000967A 2019-01-08 2019-01-08 軸流ファン Pending JP2020112034A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019000967A JP2020112034A (ja) 2019-01-08 2019-01-08 軸流ファン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019000967A JP2020112034A (ja) 2019-01-08 2019-01-08 軸流ファン

Publications (1)

Publication Number Publication Date
JP2020112034A true JP2020112034A (ja) 2020-07-27

Family

ID=71665880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019000967A Pending JP2020112034A (ja) 2019-01-08 2019-01-08 軸流ファン

Country Status (1)

Country Link
JP (1) JP2020112034A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7460926B1 (ja) 2022-09-30 2024-04-03 ダイキン工業株式会社 流体搬送装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072948A1 (fr) * 2002-02-28 2003-09-04 Daikin Industries, Ltd. Ventilateur
JP2011179330A (ja) * 2010-02-26 2011-09-15 Panasonic Corp 羽根車と送風機及びそれを用いた空気調和機
JP2011226654A (ja) * 2010-04-15 2011-11-10 Panasonic Corp 斜流ファン及び空気調和機
JP2014080970A (ja) * 2012-09-28 2014-05-08 Daikin Ind Ltd プロペラファン及びこれを備える空気調和機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072948A1 (fr) * 2002-02-28 2003-09-04 Daikin Industries, Ltd. Ventilateur
JP2011179330A (ja) * 2010-02-26 2011-09-15 Panasonic Corp 羽根車と送風機及びそれを用いた空気調和機
JP2011226654A (ja) * 2010-04-15 2011-11-10 Panasonic Corp 斜流ファン及び空気調和機
JP2014080970A (ja) * 2012-09-28 2014-05-08 Daikin Ind Ltd プロペラファン及びこれを備える空気調和機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7460926B1 (ja) 2022-09-30 2024-04-03 ダイキン工業株式会社 流体搬送装置
WO2024070488A1 (ja) * 2022-09-30 2024-04-04 ダイキン工業株式会社 流体搬送装置

Similar Documents

Publication Publication Date Title
JP2021183843A (ja) 送風装置
JP6415741B2 (ja) 送風機、および、それを備えた空気調和装置
CN107923663B (zh) 低容量、低gwp的hvac系统
JP5295321B2 (ja) 送風機、室外機及び冷凍サイクル装置
EP2476913A2 (en) Outdoor unit for air conditioner
JP5791276B2 (ja) 送風機、室外ユニット及び冷凍サイクル装置
JP6035508B2 (ja) 送風機とそれを用いた室外ユニット
US20220221214A1 (en) Axial flow fan, air-sending device, and refrigeration cycle apparatus
JP2013163974A (ja) 送風機、室外ユニット及び冷凍サイクル装置
JP6811867B2 (ja) プロペラファン、送風装置及び冷凍サイクル装置
JP6472625B2 (ja) 空気調和機
JP2020112034A (ja) 軸流ファン
KR102559756B1 (ko) 공기조화기의 실외기
JP6755331B2 (ja) プロペラファン及び冷凍サイクル装置
CN110319056B (zh) 轴流风机
KR100638100B1 (ko) 후향팬
JP6856165B2 (ja) 送風機、及び送風機を有する冷凍装置
WO2015166581A1 (ja) 送風機、室外ユニット及び冷凍サイクル装置
JP6463497B2 (ja) 送風装置、室外機及び冷凍サイクル装置
JP6430032B2 (ja) 遠心ファン、空気調和装置および冷凍サイクル装置
US20220325905A1 (en) Air handling unit and fan therefor
JP6925571B1 (ja) 送風機、室内機および空気調和装置
JP7301236B2 (ja) 遠心送風機のスクロールケーシング、このスクロールケーシングを備えた遠心送風機、空気調和装置及び冷凍サイクル装置
WO2023223383A1 (ja) クロスフローファン、送風装置及び冷凍サイクル装置
JP2019183738A (ja) 軸流送風機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230516