JP2020111076A - スラスタ制御装置および姿勢制御装置 - Google Patents

スラスタ制御装置および姿勢制御装置 Download PDF

Info

Publication number
JP2020111076A
JP2020111076A JP2019001178A JP2019001178A JP2020111076A JP 2020111076 A JP2020111076 A JP 2020111076A JP 2019001178 A JP2019001178 A JP 2019001178A JP 2019001178 A JP2019001178 A JP 2019001178A JP 2020111076 A JP2020111076 A JP 2020111076A
Authority
JP
Japan
Prior art keywords
command value
pitch
propeller
thruster
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019001178A
Other languages
English (en)
Inventor
覚 吉川
Satoru Yoshikawa
覚 吉川
武典 松江
Takenori Matsue
武典 松江
徹治 光田
Tetsuharu Mitsuta
徹治 光田
雅尊 平井
Masataka Hirai
雅尊 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Soken Inc filed Critical Denso Corp
Priority to JP2019001178A priority Critical patent/JP2020111076A/ja
Priority to US16/734,448 priority patent/US20200278697A1/en
Priority to CN202010011642.7A priority patent/CN111413993A/zh
Publication of JP2020111076A publication Critical patent/JP2020111076A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0858Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
    • G05D1/085Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability to ensure coordination between different movements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/30Blade pitch-changing mechanisms
    • B64C11/44Blade pitch-changing mechanisms electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/83Electronic components structurally integrated with aircraft elements, e.g. circuit boards carrying loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/296Rotors with variable spatial positions relative to the UAV body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/18Thrust vectoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
    • G05D1/0825Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability using mathematical models
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports

Abstract

【課題】汎用の制御装置を用いる場合でも、飛行装置の性能を十分に発揮するスラスタ制御装置を提供する。【解決手段】スラスタ制御装置50は、2つ以上のスラスタ12と、スラスタ12で発生する推進力を制御するためにスラスタ12へ指令値を出力する主制御装置30と、を備える飛行装置10に用いられる。スラスタ制御装置50は、指令値取得部53および指令値作成部54を備える。指令値取得部53は、プロペラ15のピッチが固定されていることを前提にして主制御装置30からスラスタ12へ出力される指令値を取得する。指令値作成部54は、取得した指令値から、プロペラ15のピッチを設定するためのプロペラピッチ指令値を作成してスラスタ12のピッチ変更機構部16へ出力するとともに、プロペラピッチ指令値に基づいて指令値を修正しモータ14の回転数を設定するための修正回転数指令値を作成してモータ14へ出力する。【選択図】図1

Description

本発明は、飛行装置のスラスタ制御装置および姿勢制御装置に関する。
近年、いわゆるドローンと称される飛行装置の普及が進んでいる。このような飛行装置は、モータで駆動されるプロペラを有する複数のスラスタを備えている。飛行装置は、スラスタが発生する推進力を制御することにより、その飛行姿勢および飛行状態が変化する。飛行装置は、機器のモジュール化が進んでおり、多くの供給者で製造された種々の機体を汎用の制御装置で制御する傾向にある。
しかしながら、汎用の制御装置は、より多くの種類の機体に適用可能とするために、制御系統の統一化が図られている。そのため、飛行装置の機体側で仕様を変更しても、汎用の制御装置は各種の機体の仕様のすべてに対応することができない。その結果、日々能力が向上する飛行装置の性能を十分に発揮することができないという問題がある。
特開昭63−192697号公報
そこで、汎用の制御装置を用いる場合でも、飛行装置の性能を十分に発揮するスラスタ制御装置を提供することを目的とする。
また、汎用の制御装置に機能を付加することにより、飛行装置の性能を十分に発揮する姿勢制御装置を提供することを他の目的とする。
飛行装置は、スラスタで発生する推進力を制御することにより、その飛行姿勢を制御している。スラスタで発生する推進力は、主にプロペラを駆動するモータの回転数によって制御される。ここで、スラスタにプロペラのピッチを変更するためのピッチ変更機構部を設けると、スラスタで発生する推進力はモータの回転数だけでなくプロペラのピッチによっても変更される。この場合、プロペラのピッチの変更による推進力の変化の応答性は、モータの回転数の変更によるものと比較して、10倍以上の速さを有している。そのため、スラスタで発生する推進力を制御する場合、プロペラのピッチの変更を利用することにより、例えば突然の風などのような外乱に対する応答性が向上し、飛行状態の安定性の向上が図られる。反面、プロペラのピッチを変更する場合、制御の対象は、モータの回転数およびプロペラのピッチとなる。そのため、スラスタの推進力の制御にプロペラのピッチの変更を用いるためには、制御系統が増加し、特殊な制御装置が必要になる。その結果、飛行装置は、プロペラのピッチを固定することを前提として、スラスタのモータの回転数を制御するための回転数指令値を出力する汎用の制御装置が用いられる。
請求項1記載の発明では、指令値取得部を備えている。指令値取得部は、スラスタにおけるプロペラのピッチを固定することを前提として出力された指令値を取得する。指令値作成部は、指令値取得部で取得した指令値から、プロペラピッチ指令値および修正回転数指令値を作成する。すなわち、指令値作成部は、取得した指令値からプロペラのピッチを設定するためのプロペラピッチ指令値を作成する。これとともに、指令値作成部は、作成したプロペラピッチ指令値に基づいて、取得した指令値を修正し、モータの回転数を設定するための修正回転数指令値を作成する。スラスタでは、指令値作成部から出力されたプロペラピッチ指令値に基づいて、ピッチ変更機構部によりプロペラのピッチが変更される。これとともに、スラスタでは、指令値作成部から出力された修正回転数指令値によりモータの回転数が変更される。このとき、指令値作成部は、プロペラのピッチおよびモータの回転数を、例えば応答性もしくは効率を優先して、または応答性および効率を両立させるようにプロペラピッチ指令値および修正回転数指令値を作成する。このように、指令値作成部は、主制御装置から出力された回転数指令値を用いて、プロペラピッチ指令値および修正回転数指令値を作成し、スラスタへ出力する。これにより、飛行装置のスラスタがピッチ変更機構部を備える場合、スラスタが発生する推進力はモータの回転数だけでなくプロペラのピッチも用いて制御される。したがって、プロペラのピッチが固定されていることを前提として指令値を出力する主制御装置を用いる場合でも、プロペラのピッチを変更することができ、飛行装置の性能を十分に発揮することができる。
請求項2記載の発明では、プロペラのピッチが固定されていることを前提として指令値を出力する主制御部に、この主制御部から指令値を取得する指令値取得部が付加されている。指令値取得部は、上述の請求項1記載の発明と同様に主制御部から出力される指令値を取得する。指令値作成部は、指令値取得部で取得した指令値から、プロペラピッチ指令値および修正回転数指令値を作成する。これにより、飛行装置のスラスタがピッチ変更機構部を備える場合、スラスタが発生する推進力はモータの回転数だけでなくプロペラのピッチも用いて制御される。したがって、プロペラのピッチが固定されていることを前提として指令値を出力する場合でも、プロペラのピッチを変更することができ、飛行装置の性能を十分に発揮することができる。
第1実施形態による飛行装置の構成を示すブロック図 第1実施形態による飛行装置の概略的な構成を示す模式図 第1実施形態による飛行装置のスラスタに用いられるピッチ変更機構部の一例を示す概略的な斜視図 モータの回転数と、プロペラのピッチと、スラスタが発生する推進力との関係を示す概略図 モータの回転数と、スラスタが発生する推進力と、プロペラのピッチとの関係から、モータの単位出力当たりの効率を示す概略図 第1実施形態による飛行装置において、自動制御モードにおける処理を示す概略図 第1実施形態による飛行装置において、手動制御モードにおける処理を示す概略図 第2実施形態による飛行装置において、自動制御モードにおける処理を示す概略図 第3実施形態による飛行装置の構成を示すブロック図 第3実施形態による飛行装置において、自動制御モードにおける処理を示す概略図 第4実施形態による飛行装置の構成を示す模式図 第5実施形態による姿勢制御装置の構成を示すブロック図
以下、スラスタ制御装置を用いた飛行装置の複数の実施形態を図面に基づいて説明する。なお、複数の実施形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。
(第1実施形態)
図2に示すように第1実施形態による飛行装置10は、本体11およびスラスタ12を備えている。飛行装置10は、複数のスラスタ12を備えている。第1実施形態では、飛行装置10は、4つのスラスタ12を備えている。この場合、本体11は、径方向外側へ放射状に伸びる4本の腕部13を有しており、この腕部13の先端にそれぞれスラスタ12が設けられている。なお、本体11は、放射状に伸びる腕部13に限らず、円環状に形成し、周方向へ複数のスラスタ12を設ける構成としてもよい。
スラスタ12は、それぞれモータ14、プロペラ15およびピッチ変更機構部16を有している。モータ14は、プロペラ15を駆動する駆動源である。モータ14は、本体11に収容されているバッテリ17などの電源から供給される電力によって駆動される。モータ14の回転は、プロペラ15に伝達される。プロペラ15は、モータ14によって回転駆動される。ピッチ変更機構部16は、プロペラ15のピッチを変更する。
ピッチ変更機構部16の一例を図3に基づいて説明する。なお、図3に示すピッチ変更機構部16は、一例であり、プロペラ15のピッチを変更可能な構成であって、飛行装置10のスラスタ12に適用可能な構成であればこの例に限らない。ピッチ変更機構部16は、サーボモータ21、レバー部材22、リンク部材23および変更部材24を有している。サーボモータ21の回転は、レバー部材22、リンク部材23および変更部材24を通してプロペラ15に伝達される。このとき、サーボモータ21の回転は、レバー部材22、リンク部材23および変更部材24を経由することにより、プロペラ15の回転中心Aと垂直なプロペラ軸Apを中心とするプロペラ15の回転に変換される。すなわち、サーボモータ21が回転すると、プロペラ15は、プロペラ軸Apを中心に回転する。このプロペラ軸Apを中心に回転するプロペラ15の回転角度は、「ピッチ」または「プロペラピッチ」という。これにより、プロペラ15は、上昇時の推力を発生するピッチと下降時の推力を発生するピッチとの間で変化する。プロペラ15のピッチの変化量は、サーボモータ21の回転角度に対応する。スラスタ12が発生する推進力は、プロペラ15を回転駆動するモータ14の回転数と、プロペラ15のピッチによって変化する。
飛行装置10は、図1および図2に示すように主制御装置30および通信部31を備えている。主制御装置30は、図2に示すように本体11の内部に収容され、バッテリ17と接続している。主制御装置30は、モジュール化された汎用の制御装置である。主制御装置30は、図1に示すように制御演算部32および記憶部33を有している。制御演算部32は、CPU、ROMおよびRAMを有するマイクロコンピュータで構成されている。制御演算部32は、CPUでROMに記憶されているコンピュータプログラムを実行することにより、飛行装置10の全体を制御する。制御演算部32は、コンピュータプログラムを実行することにより、状態取得部34および飛行制御部35をソフトウェア的に実現している。なお、状態取得部34および飛行制御部35は、ソフトウェア的に限らず、専用の電子回路によるハードウェア的、あるいはソフトウェアとハードウェアとの協働によって実現してもよい。記憶部33は、例えば不揮発性メモリなどを有している。記憶部33は、予め設定された飛行計画をデータとして記憶している。飛行計画は、例えば飛行装置10が飛行する飛行ルートや飛行高度などが含まれている。記憶部33は、制御演算部32のRAMおよびRAMと共用してもよい。通信部31は、操作者が操作する操作装置36と無線または有線で通信する。
状態取得部34は、本体11の傾きや本体11に加わる加速度などから飛行装置10の飛行状態を取得する。具体的には、状態取得部34は、GPSセンサ41、加速度センサ42、角速度センサ43、地磁気センサ44および高度センサ45などと接続している。GPSセンサ41は、GPS(Global Positioning System)衛星から出力されるGPS信号を受信する。また、加速度センサ42は、X軸、Y軸およびZ軸の3次元の3つの軸方向において本体11に加わる加速度を検出する。角速度センサ43は、3次元の3つの軸方向において本体11に加わる角速度を検出する。地磁気センサ44は、3次元の3つの軸方向における地磁気を検出する。高度センサ45は、天地方向における高度を検出する。
状態取得部34は、これらGPSセンサ41で受信したGPS信号、加速度センサ42で検出した加速度、角速度センサ43で検出した角速度、地磁気センサ4で検出した地磁気などから、本体11の飛行姿勢、飛行方向および飛行速度を検出する。また、状態取得部34は、GPSセンサ41で検出したGPS信号と各種のセンサによる検出値から本体11の飛行位置を自立的に検出する。さらに、状態取得部34は、GPSセンサ41で受信したGPS信号、および高度センサ45で検出した高度から本体11の飛行高度を検出する。このように、状態取得部34は、本体11の飛行姿勢、飛行位置および飛行高度など、飛行装置10の飛行に必要な情報を飛行状態として取得する。状態取得部34は、これらの各種センサに加え、可視的な画像を取得するカメラ46、あるいは周囲の物体までの距離を測定するLIDAR(Light Detection And Ranging)47などに接続してもよい。
飛行制御部35は、飛行装置10の飛行を、自動制御モードまたは手動制御モードによって制御する。自動制御モードは、操作者の操作によらずに飛行装置10を自動的に飛行させるモードである。飛行装置10の操作者は、自動制御モードと手動制御モードとを任意に切り替えることができる。自動制御モードのとき、飛行制御部35は、記憶部33に記憶されている飛行計画に沿って、飛行装置10の飛行を自動的に制御する。すなわち、飛行制御部35は、この自動制御モードのとき、状態取得部34で取得した本体11の飛行状態に基づいて、スラスタ12が発生する推進力を制御する。これにより、飛行制御部35は、操作者の操作によらず、飛行装置10を記憶部33に記憶された飛行計画に沿って自動的に飛行させる。
手動制御モードは、操作者の操作にしたがって飛行装置10を飛行させる飛行モードである。手動制御モードのとき、操作者は、飛行装置10と別体で遠隔に設けられている操作装置36を通して飛行装置10の飛行状態を制御する。飛行制御部35は、操作装置36を通して操作者が入力した操作、および状態取得部34で取得した飛行状態に基づいて、スラスタ12が発生する推進力を制御する。これにより、飛行制御部35は、操作者の意思に沿って飛行装置10の飛行を制御する。
飛行制御部35は、自動制御モードまたは手動制御モードにおいて、スラスタ12が発生する推進力を制御するために指令値を出力する。第1実施形態の場合、飛行制御部35は、指令値として回転数指令値Rxを出力する。回転数指令値Rxは、スラスタ12におけるプロペラ15のピッチが固定されていることを前提として、スラスタ12で発生する推進力を制御するためにモータ14の回転数を指令する値である。すなわち、既存の汎用される主制御装置30は、スラスタ12が発生する推進力を制御するとき、プロペラ15のピッチが固定されていることを前提としてモータ14の回転数を制御する。そのため、主制御装置30の飛行制御部35は、スラスタ12に要求する推進力を設定するとともに、設定した推進力に応じてモータ14の回転数を設定する。飛行制御部35は、スラスタ12のモータ14を設定した回転数とするために、回転数に対応する回転数指令値Rxを出力する。スラスタ12は、この回転数指令値Rxに基づいてモータ14の回転数が変更され、設定されたモータ14の回転数に対応する推進力を発生する。このように、飛行制御部35は、スラスタ12におけるモータ14の回転数を制御するために回転数指令値Rxを出力する。
次に、第1実施形態によるスラスタ制御装置50について説明する。
スラスタ制御装置50は、飛行装置10において主制御装置30とスラスタ12との間に設けられている。すなわち、スラスタ制御装置50は、主制御装置30とスラスタ12との間にアドオンされる追加的なユニットである。第1実施形態の場合、スラスタ制御装置50は、4つのスラスタ12を制御する。すなわち、第1実施形態のスラスタ制御装置50は、1つの主制御装置30に対して1つ接続され、飛行装置10が備える4つのスラスタ12を制御する。
スラスタ制御装置50は、制御演算部51、記憶部52、指令値取得部53および指令値作成部54を備えている。制御演算部51は、CPU、ROMおよびRAMを有するマイクロコンピュータで構成されている。制御演算部51は、CPUでROMに記憶されているコンピュータプログラムを実行することにより、指令値取得部53および指令値作成部54をソフトウェア的に実現している。なお、指令値取得部53および指令値作成部54は、ソフトウェア的に限らず、専用の電子回路によってハードウェア的、あるいはソフトウェアとハードウェアとの協働によって実現してもよい。また、スラスタ制御装置50の全体を専用の電子回路としてハードウェア的に構成してもよい。
記憶部52は、例えば不揮発性メモリなどを有している。記憶部52は、制御演算部51のROMやRAMと共用してもよい。指令値取得部53は、主制御装置30の飛行制御部35から出力される回転数指令値Rxを取得する。つまり、飛行制御部35から出力された回転数指令値Rxは、スラスタ制御装置50の指令値取得部53に入力される。
指令値作成部54は、指令値取得部53で取得した回転数指令値Rxから、プロペラピッチ指令値Pxおよび修正回転数指令値Rrを作成する。プロペラピッチ指令値Pxは、ピッチ変更機構部16で変更するプロペラ15のピッチを設定するための指令値である。また、修正回転数指令値Rrは、プロペラピッチ指令値Pxを考慮してモータ14の回転数を設定するための指令値である。上述のように主制御装置30から出力される回転数指令値Rxは、プロペラ15のピッチが固定されていることを前提として、スラスタ12に要求される推進力に対応するモータ14の回転数として決定されている。指令値作成部54は、このスラスタ12が発生する推進力を、プロペラ15のピッチの変更によって発生する推進力と、モータ14の回転にともなうプロペラ15の回転によって発生する推進力とに分配する。これにより、指令値作成部54は、主制御装置30で設定された回転数指令値Rxから、プロペラ15のピッチを変更するためのプロペラピッチ指令値Pxと、モータ14の回転数を変更するための修正回転数指令値Rrとを作成する。その結果、スラスタ12が発生する推進力は、主制御装置30から出力された回転数指令値Rxに対応して維持されつつ、プロペラ15のピッチの変更による推進力と、プロペラ15の回転数の変更による推進力とに分配される。
この場合、指令値作成部54は、例えば応答性を優先して、効率を優先して、または応答性と効率との均衡を図りつつ、推進力をピッチの変更と回転数の変更とに分配する。モータ14の回転数と、プロペラ15のピッチと、スラスタ12が発生する推進力との間には、図4に示すような関係がある。また、モータ14の回転数と、スラスタ12が発生する推進力と、プロペラ15のピッチと、効率との間には、図5に示すような関係がある。指令値作成部54は、図4および図5に示すような相関関係を用いて、任意の割合で推進力をピッチの変更と回転数の変更とに分配する。この場合、推進力の分配の割合は、上述のように応答性または効率などを優先したり、均衡を図ったりなど、飛行装置10に要求される性能や飛行装置10の仕様などに応じて任意に設定される。設定された推進力の分配の割合は、例えば数式やマップとして記憶部52に記憶されている。効率は、電気的な効率であり、モータ14の単位出力当たりの効率を意味する。そのため、効率が向上するほど、同一の推進力に対する消費電力は減少する。
指令値作成部54は、作成したプロペラピッチ指令値Pxを、ピッチ変更機構部16のサーボモータ21へ出力する。サーボモータ21は、プロペラピッチ指令値Pxに基づいて駆動される。これにより、プロペラ15は、サーボモータ21の回転によってプロペラ軸Apを中心に回転し、ピッチが変更される。また、指令値作成部54は、作成した修正回転数指令値Rrを、スラスタ12のモータ14へ出力する。モータ14は、修正回転数指令値Rrに基づいて駆動される。これにより、プロペラ15は、修正回転数指令値Rrに基づく回転数で回転する。これらの結果、スラスタ12のプロペラ15は、主制御装置30から出力された回転数指令値Rxを用いてピッチが変更されるとともに、回転数も変更される。
次に、上記の構成によるスラスタ制御装置50によるプロペラピッチ指令値Pxおよび修正回転数指令値Rrの作成の流れについて説明する。
自動制御モードの場合、図6に示すように処理が実行される。主制御装置30の飛行制御部35は、記憶部33に記憶されている飛行計画に基づいて目標位置Ptを取得する。状態取得部34は、GPSセンサ41などから飛行装置10が飛行している位置の推定値を位置推定値pとして取得する。飛行制御部35は、取得した目標位置Ptおよび位置推定値pに加え、速度推定値vを取得する。速度推定値vは、状態取得部34の例えばGPSセンサ41、加速度センサ42および角速度センサ43などから取得した値を用いて推定される。飛行制御部35は、取得した目標位置Pt、位置推定値pおよび速度推定値vを用いて、姿勢目標値Stを設定する。
飛行制御部35は、状態取得部34を通して姿勢推定値sを取得する。姿勢推定値sは、状態取得部34の角速度センサ43などから取得した値から推定される飛行装置10の飛行姿勢である。飛行姿勢は、飛行装置10のロール軸、ピッチ軸およびヨー軸のそれぞれを中心とした回転角度に相当する。飛行制御部35は、設定した姿勢目標値Stおよび取得した姿勢推定値sに、姿勢変化推定値srを用いて、RPYT指示値を設定する。姿勢変化推定値srは、飛行装置10の飛行姿勢を姿勢目標値Stとするために必要な変化量の推定値である。飛行制御部35は、ロール軸を中心とする飛行装置10の回転角度R、ピッチ軸を中心とする飛行装置10の回転角度P、およびヨー軸を中心とする飛行装置10の回転角度Yの変化量を姿勢変化推定値srとして取得する。そして、飛行制御部35は、取得した姿勢変化推定値srからRPYT指示値Dsを設定する。RPYT指示値Dsは、取得した姿勢変化推定値srに基づいて、ロール軸を中心とする回転角度R、ピッチ軸を中心とする回転角度P、ヨー軸を中心とする回転角度Y、および飛行装置の飛行速度Tを特定するための姿勢指令値を含んでいる。飛行制御部35は、設定されたRPYT指示値Dsに基づいて、スラスタ12におけるモータ14の回転数を回転数指令値Rxとして設定する。この回転数指令値Rxは、スラスタ12が発生する推進力を設定するための指令値である。
主制御装置30の飛行制御部35から出力された回転数指令値Rxは、スラスタ制御装置50の指令値取得部53に入力される。入力された回転数指令値Rxは、指令値作成部54においてプロペラピッチ指令値Px、および修正回転数指令値Rrとして作成される。指令値作成部54は、作成したプロペラピッチ指令値Pxをピッチ変更機構部16のサーボモータ21へ出力する。これとともに、指令値作成部54は、作成した修正回転数指令値Rrをスラスタ12のモータ14へ出力する。
また、手動制御モードの場合、図7に示すように処理が実行される。主制御装置30の飛行制御部35は、操作装置36から入力された操作者の操作に基づいて、姿勢目標値Stを設定する。飛行制御部35は、操作者の操作に基づいて設定した姿勢目標値St、および状態取得部34を通して取得した姿勢推定値sに、姿勢変化推定値srを用いて、RPYT指示値Dsを設定する。飛行制御部35は、設定されたRPYT指示値Dsに基づいて、スラスタ12におけるモータ14の回転数を回転数指令値Rxとして設定する。主制御装置30の飛行制御部35から出力された回転数指令値Rxは、スラスタ制御装置50の指令値取得部53に入力される。入力された回転数指令値Rxは、指令値作成部54においてプロペラピッチ指令値Px、および修正回転数指令値Rrとして作成される。指令値作成部54は、作成したプロペラピッチ指令値Pxをピッチ変更機構部16のサーボモータ21へ出力する。これとともに、指令値作成部54は、作成した修正回転数指令値Rrをスラスタ12のモータ14へ出力する。
以上説明した第1実施形態では、スラスタ制御装置50は指令値取得部53を備えている。指令値取得部53は、スラスタ12におけるプロペラ15のピッチを固定することを前提として主制御装置30から出力された回転数指令値Rxを取得する。指令値作成部54は、指令値取得部53で取得した回転数指令値Rxから、プロペラピッチ指令値Pxおよび修正回転数指令値Rrを作成する。すなわち、指令値作成部54は、取得した回転数指令値Rxからプロペラ15のピッチを設定するためのプロペラピッチ指令値Pxを作成する。これとともに、指令値作成部54は、作成したプロペラピッチ指令値Pxに基づいて、取得した回転数指令値Rxを修正し、モータ14の回転数を設定するための修正回転数指令値Rrを作成する。スラスタ12では、指令値作成部54から出力されたプロペラピッチ指令値Pxに基づいて、ピッチ変更機構部16によりプロペラ15のピッチが変更される。これとともに、スラスタ12では、指令値作成部54から出力された修正回転数指令値Rrによりモータ14の回転数が変更される。これにより、ピッチ変更機構部16を備える飛行装置10は、スラスタ12から発生する推進力がモータ14の回転数だけでなくプロペラ15のピッチも用いて制御される。したがって、プロペラ15のピッチが固定されていることを前提として回転数指令値Rxを出力する主制御装置30を用いる場合でも、プロペラ15のピッチを変更することができ、飛行装置10の性能を十分に発揮することができる。
第1実施形態のようにスラスタ12にピッチ変更機構部16を備える飛行装置10の場合、スラスタ12で発生する推進力は、モータ14の回転数だけでなくプロペラ15のピッチによっても変更される。この場合、プロペラ15のピッチの変更による推進力の変化の応答性は、モータ14の回転数の変更によるものと比較して、10倍以上の速さを有している。そのため、スラスタ12で発生する推進力を制御する場合、プロペラ15のピッチの変更を利用することにより、例えば突然の風などのような外乱に対する応答性が向上し、飛行状態の安定性の向上が図られる。第1実施形態では、スラスタ制御装置50は、汎用の主制御装置30から出力された回転数指令値Rxを使用して、プロペラピッチ指令値Pxおよび修正回転数指令値Rrを作成している。そのため、第1実施形態のスラスタ制御装置50は、制御系統の複雑化や専用の回路設計といった主制御装置30の改変をともなわない。したがって、構成の複雑化や専用化などを招くことなく、プロペラ15のピッチの変更にも対応することができ、飛行装置10の性能を十分に発揮して、飛行安定性、応答性、効率の向上を図ることができる。
(第2実施形態)
第2実施形態によるスラスタ制御装置について説明する。
第2実施形態によるスラスタ制御装置50は、その構成が第1実施形態と共通しており、処理の流れが第1実施形態と異なっている。第2実施形態のスラスタ制御装置50は、図8に示すように主制御装置30の飛行制御部35から姿勢指令値を含むRPYT指示値Dsを取得する。すなわち、主制御装置30の飛行制御部35は、第1実施形態の回転数指令値Rxに代えて、RPYT指示値Dsを出力する。これとともに、出力されたRPYT指示値Dsは、スラスタ制御装置50の指令値取得部53に入力される。入力されたRPYT指示値Dsは、指令値作成部54においてプロペラピッチ指令値Px、および修正回転数指令値Rrとして作成される。指令値作成部54は、作成したプロペラピッチ指令値Pxをピッチ変更機構部16のサーボモータ21へ出力する。これとともに、指令値作成部54は、作成した修正回転数指令値Rrをスラスタ12のモータ14へ出力する。この場合、指令値作成部54は、RPYT指示値Dsに含まれる回転角度R、回転角度P、回転角度Yまたは飛行速度Tに対応する姿勢指令値のうち少なくとも1つ以上の姿勢指令値を用いてプロペラピッチ指令値Pxおよび修正回転数指令値Rrを作成することができる。
第2実施形態では、指令値作成部54は、主制御装置30の飛行制御部35から出力された複数の姿勢指令値を含むRPYT指示値Dsを用いてプロペラピッチ指令値Pxおよび修正回転数指令値Rrを作成する。このように、第2実施形態の指令値作成部54は、第1実施形態のように最終的な回転数指令値Rxに代えて、飛行制御部35で作成される中間的な指示値であるRPYT指示値Dsを用いてプロペラピッチ指令値Pxおよび修正回転数指令値Rrを作成する。これにより、主制御装置30の飛行制御部35における処理は、第1実施形態に比較して簡略化される。したがって、より応答性の向上を図ることができる。
なお、第2実施形態では、自動制御モードを例に説明したが手動制御モードの場合も同様に応答性の向上を図ることができる。
(第3実施形態)
第3実施形態によるスラスタ制御装置について説明する。
第3実施形態によるスラスタ制御装置50は、第2実施形態の変形である。図9に示すように第3実施形態のスラスタ制御装置50は、状態取得部61および姿勢推定部62を備えている。状態取得部61および姿勢推定部62は、スラスタ制御装置50においてソフトウェア的、ハードウェア的、またはソフトウェアとハードウェアとの協働によって実現されている。状態取得部61は、加速度センサ63、角速度センサ64および地磁気センサ65に接続している。また、状態取得部61は、図示しないGPSセンサや高度センサと接続してもよい。これらの各種のセンサは、主制御装置30の状態取得部34に接続されるセンサと同様の構成である。姿勢推定部62は、状態取得部61において加速度センサ63、角速度センサ64および地磁気センサ65で検出した値から、スラスタ制御装置50が搭載されている飛行装置10の飛行姿勢を推定する。すなわち、姿勢推定部62は、ロール軸を中心とする本体11の回転角度、ピッチ軸を中心とする本体11の回転角度、およびヨー軸を中心とする本体11の回転角度などから、飛行装置10の飛行姿勢を推定する。そして、推定した飛行姿勢を姿勢推定値s1として、指令値作成部54へ出力する。
これにより、第3実施形態のスラスタ制御装置50の場合、図10に示すように指令値作成部54は、姿勢推定値s1を用いてプロペラピッチ指令値Pxおよび修正回転数指令値Rrを作成する。すなわち、指令値作成部54は、主制御装置30の飛行制御部35から出力されたRPYT指示値Dsに加え、姿勢推定部62で推定した姿勢推定値s1を用いて、プロペラピッチ指令値Pxおよび修正回転数指令値Rrを作成する。指令値作成部54は、作成したプロペラピッチ指令値Pxをピッチ変更機構部16のサーボモータ21へ出力する。これとともに、指令値作成部54は、作成した修正回転数指令値Rrをスラスタ12のモータ14へ出力する。
第3実施形態では、指令値作成部54は、主制御装置30の飛行制御部35から出力されたRPYT指示値Dsに加え、姿勢推定部62で推定した姿勢推定値s1を用いてプロペラピッチ指令値Pxおよび修正回転数指令値Rrを作成する。これにより、指令値作成部54は、姿勢推定値s1で示される飛行装置10の飛行姿勢に基づいて、プロペラピッチ指令値Pxと修正回転数指令値Rrとの重み付けを変更する。したがって、プロペラピッチ指令値Pxおよび修正回転数指令値Rrのより適した設定が可能となり、応答性や効率のさらなる向上を図ることができる。
また、第3実施形態では、姿勢推定部62において姿勢推定値s1を生成することにより、主制御装置30の状態取得部34で取得された飛行姿勢などの飛行状態が適切であるか否かを判断可能となる。そのため、明らかな誤差や不具合などの影響は排除される。したがって、安全性をより高めることができ、冗長性の向上を図ることができる。
なお、第3実施形態では、自動制御モードを例に説明したが手動制御モードの場合も同様の効果を得ることができる。また、第3実施形態では、第2実施形態で説明したRPYT指示値Dsを用いる例について説明したが、第1実施形態で説明した回転数指令値Rxを用いる例にも適用することができる。さらに、第3実施形態では、スラスタ制御装置50に状態取得部61を設ける例について説明した。しかし、スラスタ制御装置50は、主制御装置30の状態取得部34で取得したデータを用いて飛行姿勢を推定してもよい。さらにまた、スラスタ制御装置50は、各種センサだけを主制御装置30と共用し、独自に飛行姿勢を推定する構成としてもよい。
(第4実施形態)
第4実施形態によるスラスタ制御装置について説明する。
スラスタ制御装置50は、図11に示すように複数のスラスタ12にそれぞれ接続する構成とすることができる。すなわち、図11に示すように4つのスラスタ12を備える飛行装置10の場合、スラスタ制御装置50はこれら4つのスラスタ12に対応してそれぞれ設けられている。これにより、主制御装置30から出力された指令値は、各スラスタ12に接続するスラスタ制御装置50に入力される。各スラスタ12に接続するスラスタ制御装置50は、接続するスラスタ12に適した重み付けでプロペラピッチ指令値Pxおよび修正回転数指令値Rrを作成する。したがって、飛行装置10の全体において応答性および効率のさらなる向上を図ることができる。
(第5実施形態)
第5実施形態による姿勢制御装置について説明する。
第5実施形態による姿勢制御装置70は、図12に示すように上述した複数の実施形態における主制御装置30とスラスタ制御装置50とが一体となって構成されている。すなわち、第5実施形態による姿勢制御装置70は、主制御装置30にスラスタ制御装置50を追加的にアドオンする構成ではなく、初期的に一体となって構成されている。その結果、姿勢制御装置70は、主制御装置30に相当する主制御部71に、スラスタ制御装置50に相当する指令値取得部73および指令値作成部74が設けられている。この場合、スラスタ制御装置50を構成する制御演算部51および記憶部52に相当する構成は、図12に示すように主制御部71と共用してもよく、別個の構成としてもよい。
第5実施形態による姿勢制御装置70は、プロペラ15のピッチが固定されていることを前提として指令値を出力する主制御部71に、この主制御部71から指令値を取得する指令値取得部73が付加されている。指令値取得部73は、主制御部71の飛行制御部35から出力される指令値を取得する。指令値作成部74は、指令値取得部73で取得した指令値から、プロペラピッチ指令値Pxおよび修正回転数指令値Rrを作成する。これにより、飛行装置10のスラスタ12がピッチ変更機構部16を備える場合、スラスタ12が発生する推進力はモータ14の回転数だけでなくプロペラ15のピッチも用いて制御される。したがって、プロペラ15のピッチが固定されていることを前提として指令値を出力する場合でも、プロペラ15のピッチを変更することができ、飛行装置10の性能を十分に発揮することができる。また、第5実施形態では、既存の主制御装置30に相当する主制御部71に指令値取得部73および指令値作成部74を追加している。したがって、大規模な主制御部71の変更などを招くことなく、容易にスラスタ12の制御するための機能を追加することができる。
上述の第5実施形態は、第1実施形態の主制御装置30に相当する主制御部71に指令値取得部73および指令値作成部74を追加する構成について説明した。しかし、第5実施形態の姿勢制御装置70は、第1実施形態に限らず、他の実施形態においても主制御部71に指令値取得部73および指令値作成部74を追加する構成としてもよい。
以上説明した本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
図面中、10は飛行装置、12はスラスタ、14はモータ、15はプロペラ、16はピッチ変更機構部、21はサーボモータ、30は主制御装置、34は状態取得部、35は飛行制御部、50はスラスタ制御装置、53、73は指令値取得部、54、74は指令値作成部、61は状態取得部、62は姿勢推定部、70は姿勢制御装置、71は主制御部を示す。

Claims (6)

  1. プロペラ(15)、前記プロペラ(15)を駆動するモータ(14)、および前記プロペラ(15)のピッチを変更するピッチ変更機構部(16)を有する2つ以上のスラスタ(12)と、
    前記プロペラ(15)のピッチが固定されていることを前提として、前記スラスタ(12)で発生する推進力を制御するために前記スラスタ(12)へ指令値を出力する主制御装置(30)と、を備える飛行装置(10)に用いられ、
    前記主制御装置(30)と前記スラスタ(12)との間に設けられ、前記スラスタ(12)が発生する推進力を制御するスラスタ制御装置であって、
    前記主制御装置(30)から出力される前記指令値を取得する指令値取得部(53)と、
    前記指令値取得部(53)で取得した前記指令値から、前記プロペラ(15)のピッチを設定するためのプロペラピッチ指令値を作成し、作成した前記プロペラピッチ指令値を前記ピッチ変更機構部(16)へ出力するとともに、前記プロペラピッチ指令値に基づいて前記指令値を修正し、前記モータ(14)の回転数を設定するための修正回転数指令値を作成し、作成した前記修正回転数指令値を前記モータ(14)へ出力する指令値作成部(54)と、
    を備えるスラスタ制御装置。
  2. 前記主制御装置(30)は、前記指令値として前記モータ(14)の回転数を指令する回転数指令値を出力するとともに、
    前記指令値作成部(54)は、前記回転数指令値を用いて、前記プロペラピッチ指令値および前記修正回転数指令値を作成する請求項1記載のスラスタ制御装置。
  3. 前記主制御装置(30)は、前記指令値として前記飛行装置(10)の飛行状態を設定するための複数の姿勢指令値を出力するとともに、
    前記指令値作成部(54)は、前記姿勢指令値のうち少なくとも1つ以上を用いて、前記プロペラピッチ指令値および前記修正回転数指令値を設定する請求項1記載のスラスタ制御装置。
  4. 前記飛行装置(10)の飛行姿勢を推定する姿勢推定部(62)を備え、
    前記指令値作成部(54)は、前記指令値、および前記姿勢推定部(62)で推定した前記飛行装置(10)の飛行姿勢を用いて、前記プロペラピッチ指令値および前記修正回転数指令値を作成する請求項1から3のいずれか一項記載のスラスタ制御装置。
  5. 前記スラスタ(12)の数と同数が設けられている請求項1から4のいずれか一項記載のスラスタ制御装置。
  6. プロペラ(15)、前記プロペラ(15)を駆動するモータ(14)、および前記プロペラ(15)のピッチを変更するピッチ変更機構部(16)を有する2つ以上のスラスタ(12)を備える飛行装置(10)において、前記スラスタ(12)が発生する推進力を制御して前記飛行装置(10)の飛行姿勢を制御する姿勢制御装置であって、
    前記プロペラ(15)のピッチが固定されていることを前提として、前記スラスタ(12)で発生する推進力を制御するために前記スラスタ(12)へ指令値を出力する主制御部(71)と、
    前記主制御部(71)から出力される前記指令値を取得する指令値取得部(73)と、
    前記指令値取得部(73)で取得した前記指令値から、前記プロペラ(15)のピッチを設定するための指令値をプロペラピッチ指令値として作成し、作成した前記プロペラピッチ指令値を前記ピッチ変更機構部(16)へ出力するとともに、前記プロペラピッチ指令値に基づいて前記回転数指令値を修正し、前記モータ(14)の回転数を設定するための指令値を修正回転数指令値として作成し、作成した前記修正回転数指令値を前記モータ(14)へ出力する指令値作成部(74)と、
    を備える姿勢制御装置。
JP2019001178A 2019-01-08 2019-01-08 スラスタ制御装置および姿勢制御装置 Pending JP2020111076A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019001178A JP2020111076A (ja) 2019-01-08 2019-01-08 スラスタ制御装置および姿勢制御装置
US16/734,448 US20200278697A1 (en) 2019-01-08 2020-01-06 Thruster controller and attitude controller
CN202010011642.7A CN111413993A (zh) 2019-01-08 2020-01-06 推进器控制器和姿态控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019001178A JP2020111076A (ja) 2019-01-08 2019-01-08 スラスタ制御装置および姿勢制御装置

Publications (1)

Publication Number Publication Date
JP2020111076A true JP2020111076A (ja) 2020-07-27

Family

ID=71490871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019001178A Pending JP2020111076A (ja) 2019-01-08 2019-01-08 スラスタ制御装置および姿勢制御装置

Country Status (3)

Country Link
US (1) US20200278697A1 (ja)
JP (1) JP2020111076A (ja)
CN (1) CN111413993A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116069066A (zh) * 2016-12-22 2023-05-05 小鹰公司 分布式飞行控制系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160092732A (ko) * 2015-01-28 2016-08-05 조선대학교산학협력단 추력 조절기 및 그 추력 조절기를 포함하는 멀티콥터
JP2018144732A (ja) * 2017-03-08 2018-09-20 株式会社Soken 飛行装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108622404B (zh) * 2017-03-17 2022-05-24 株式会社理光 飞行器以及飞行系统
JP6973103B2 (ja) * 2017-03-17 2021-11-24 株式会社リコー 飛行体及び飛行システム
US11420728B2 (en) * 2018-06-19 2022-08-23 Honda Motor Co., Ltd. Aircraft and control method for same
US10577116B1 (en) * 2018-08-07 2020-03-03 The Boeing Company Active damping of flexible modes for unmanned aerial vehicles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160092732A (ko) * 2015-01-28 2016-08-05 조선대학교산학협력단 추력 조절기 및 그 추력 조절기를 포함하는 멀티콥터
JP2018144732A (ja) * 2017-03-08 2018-09-20 株式会社Soken 飛行装置

Also Published As

Publication number Publication date
US20200278697A1 (en) 2020-09-03
CN111413993A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
US11591071B2 (en) Controlled flight of a multicopter experiencing a failure affecting an effector
EP3755624B1 (en) Thrust allocation for aerial vehicle
US20200398994A1 (en) Aerial vehicle
US10527429B2 (en) Sailing user interface systems and methods
JP4984591B2 (ja) 自動姿勢制御装置、自動姿勢制御方法及び自動姿勢制御プログラム
US20130110325A1 (en) Control system for unmanned aerial vehicle utilizing parallel processing architecture
EP3805893A1 (en) Method of controlling an actuator system and aircraft using same
WO2018037795A1 (ja) 飛行装置
JP2017056934A (ja) 飛行装置
CN108594839A (zh) 基于多矢量技术的控制方法、飞机及存储介质
Heng et al. A trajectory tracking LQR controller for a quadrotor: Design and experimental evaluation
JP6905401B2 (ja) 飛行装置
JP2020111076A (ja) スラスタ制御装置および姿勢制御装置
JP2018144731A (ja) 飛行装置
CN112041229B (zh) 飞行器和推进飞行器的方法
JP2020082853A (ja) 飛行装置
Khusheef An Efficient Approach for Modeling and Control of a Quadrotor
Dunham et al. Integrated pan/tilt sensor system and flight controls
Muley et al. Autonomous QuadCopter using Smartphone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230214