JP2020106343A - Calculation method and calculation device of gas sound speed - Google Patents

Calculation method and calculation device of gas sound speed Download PDF

Info

Publication number
JP2020106343A
JP2020106343A JP2018243955A JP2018243955A JP2020106343A JP 2020106343 A JP2020106343 A JP 2020106343A JP 2018243955 A JP2018243955 A JP 2018243955A JP 2018243955 A JP2018243955 A JP 2018243955A JP 2020106343 A JP2020106343 A JP 2020106343A
Authority
JP
Japan
Prior art keywords
wave
gas
steel material
sound velocity
guided wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018243955A
Other languages
Japanese (ja)
Other versions
JP7136685B2 (en
Inventor
松井 祐二
Yuji Matsui
祐二 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2018243955A priority Critical patent/JP7136685B2/en
Publication of JP2020106343A publication Critical patent/JP2020106343A/en
Application granted granted Critical
Publication of JP7136685B2 publication Critical patent/JP7136685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

To accurately calculate a gas sound speed even when the ultrasonic wave propagating through gas must be transmitted or received via a steel material.SOLUTION: In an ultrasonic wave measurement method, a guide wave is excited though a steel material by transmitting an ultrasonic wave to the steel material from a transmission unit, a part of the guide wave leaks into gas and propagates as a longitudinal wave, a longitudinal leak wave having arrived at a separate place of the steel material generates the phenomenon in which the leak wave is converted into a guide wave propagating again through the steel material, and the guide wave after the conversion is received by a receiving unit. In this method, using the propagation time from the transmission of the ultrasonic wave by the transmission unit to the reception of the guide wave by the receiving unit, the sound speed of the guide wave propagating through the steel material, the distance between the transmission unit and the receiving unit that are projected in the direction parallel with a guide wave travel direction through the steel material, and the propagation distance of the longitudinal leak wave through the gas that is projected in the direction perpendicular to the guide wave travel direction through the steel material, a longitudinal wave sound speed propagating through the gas is calculated.SELECTED DRAWING: Figure 1

Description

本発明は、鋼材で囲まれた気体の音速を算出する方法および装置に関わり、特に、配管鋼材または容器鋼材を経由して気体中を伝播する超音波を計測して、その音速を算出する方法および装置に関わる。 The present invention relates to a method and a device for calculating a sound velocity of a gas surrounded by steel materials, and in particular, a method of measuring an ultrasonic wave propagating in a gas through a pipe steel material or a container steel material and calculating the sound speed thereof. And involved in the equipment.

都市ガスやLPガスを供給するためのガス管や貯留容器が災害に被災した場合には、なるべく早いタイミングで補修、不要配管等の撤去、新規配管等の引き直しをする必要がある。配管や容器の内部が可燃性ガスである場合に、補修、撤去のために配管や容器を切断すると、切断時に発生する火花が着火源となり爆発する恐れがある。このような場合には、切断を伴わない補修、撤去方法を選択する、または、火花が発生しない切断法を適用することが必要になる。一方、災害時に配管や容器から可燃性ガスが既に漏えいして空気と入れ替わっていることが判っている場合には、通常の方法で配管等を即座に切断をすることができ、補修、撤去を迅速に行うことができる。どちらの方法を選択するか判断するためには、配管等を切断する前に、内部気体の種類を識別する必要がある。 When a gas pipe or a storage container for supplying city gas or LP gas is damaged by a disaster, it is necessary to repair it, remove unnecessary pipes, and redraw new pipes as soon as possible. When the inside of the pipe or container is flammable gas, if the pipe or container is cut for repair or removal, sparks generated at the time of cutting may become an ignition source and explode. In such a case, it is necessary to select a repair or removal method that does not involve cutting, or apply a cutting method that does not generate sparks. On the other hand, if it is known that flammable gas has already leaked from pipes and containers and replaced with air in the event of a disaster, you can immediately cut the pipes, etc. by normal methods, and repair or remove them. Can be done quickly. In order to determine which method to select, it is necessary to identify the type of internal gas before cutting the pipe or the like.

気体の種類を識別する手法の一つとして、気体音速を計測することが考えられる。都市ガスの主成分であるメタンガスの音速は442m/s程度、空気の音速は340m/s程度なので、音速を計測できれば都市ガスと空気を識別できる可能性がある。また、プロパンガス(音速262m/s程度)、ブタンガス(音速212m/s程度)等からなるLPガスと空気も、音速を計測できれば識別できる可能性がある。ただし、配管等、鋼材で囲まれた気体の種類を識別するには、鋼材経由で気体中に超音波を伝播させ、気体中を伝播した超音波を鋼材経由で受信することになる。このように、鋼材経由で気体中を伝播した超音波を計測して気体音速を算出し、気体の種類を識別する従来技術としては、例えば、特許文献1があげられる。 As one of the methods for identifying the type of gas, it is possible to measure the sound velocity of gas. Since the sound velocity of methane gas, which is the main component of city gas, is about 442 m/s and the sound velocity of air is about 340 m/s, there is a possibility that city gas and air can be distinguished if the sound velocity can be measured. Further, LP gas such as propane gas (sound speed of about 262 m/s), butane gas (sound speed of 212 m/s), and air may also be identified if the sound speed can be measured. However, in order to identify the type of gas surrounded by steel such as piping, ultrasonic waves are propagated in the gas via the steel and the ultrasonic waves propagated in the gas are received via the steel. As a conventional technique for identifying the type of gas by calculating the sound velocity of gas by measuring the ultrasonic waves propagated in the gas through the steel material, there is, for example, Patent Document 1.

特開2015−179027号公報JP, 2005-179027, A

上記従来技術では、配管鋼材の表面に装着した送信用超音波センサから鋼材中に斜角超音波を入射し、鋼材中を伝播した超音波が鋼材と気体の界面で屈折しながら気体中へ透過し、気体中を伝播した透過波が配管対向側の鋼材内表面で反射して配管送受信側に戻り、気体と鋼材の界面で屈折しながら鋼材中へ透過した斜角超音波を受信用超音波センサで受信すると想定している(図14)。このような想定において、
(数1)
音速V=(配管)内径φ/(送信タイミングから透過伝搬波受信までの)時間差ΔT …式(1)
なる式(1)で気体音速を算出している。本来は、気体音速を正確に求める場合には、
(数2)
気体音速=気体中の超音波伝播距離/気体中の超音波伝播時間 …式(2)
で求めるべきである。
In the above-mentioned conventional technology, oblique-angle ultrasonic waves are injected into the steel material from the ultrasonic sensor for transmission mounted on the surface of the pipe steel material, and the ultrasonic waves propagated in the steel material are transmitted into the gas while refracting at the interface between the steel material and the gas. Then, the transmitted wave propagating in the gas is reflected by the inner surface of the steel material on the opposite side of the pipe and returns to the pipe transmission/reception side, and the oblique ultrasonic wave that is transmitted through the steel material while refracting at the interface between the gas and the steel material It is assumed to be received by the sensor (Fig. 14). In such an assumption,
(Equation 1)
Sound velocity V=(pipe) inner diameter φ/time difference (from transmission timing to reception of transmitted propagating wave) ΔT Equation (1)
The sound velocity of gas is calculated by the following equation (1). Originally, when accurately determining the sound velocity of gas,
(Equation 2)
Sound velocity of gas = ultrasonic wave propagation distance in gas / ultrasonic wave propagation time in gas Equation (2)
Should be asked for.

しかし、上記従来技術では、送信タイミングから透過伝搬波受信までの伝播時間時間全体、すなわち、鋼材中の伝播時間と気体中の伝播時間を加算した時間を用いて気体音速を算出している。また、気体中を伝播する透過波は屈折角を持っていて、配管の軸方向に対して斜めに伝播するので、気体中の超音波伝播距離は配管内径よりも大きくなるという点も考慮していない。このため、上記従来技術では、気体音速の概算値を算出することはできるが、気体音速を正確に算出することはできない。 However, in the above-mentioned conventional technique, the gas sound velocity is calculated using the entire propagation time from the transmission timing to the reception of the transmitted propagating wave, that is, the time obtained by adding the propagation time in the steel material and the propagation time in the gas. In addition, since the transmitted wave propagating in the gas has a refraction angle and propagates obliquely with respect to the axial direction of the pipe, it is also considered that the ultrasonic wave propagation distance in the gas is larger than the pipe inner diameter. Absent. Therefore, in the above-mentioned conventional technique, the approximate value of the gas sound velocity can be calculated, but the gas sound velocity cannot be calculated accurately.

本発明の目的は、気体中を伝播する超音波を鋼材経由で送受信しなければならない場合でも、気体音速を正確に算出できる気体音速の算出方法を提供することにある。 An object of the present invention is to provide a gas sonic velocity calculation method capable of accurately calculating the gas sonic velocity even when ultrasonic waves propagating in a gas must be transmitted and received via a steel material.

上記目的のために本発明では、超音波送信部から鋼材に超音波を送信して鋼材中にガイド波を励振して、ガイド波の一部が気体中に漏えいして縦波として伝播し、鋼材の別の場所に到達した縦波漏えい波が再び鋼材中を伝播するガイド波に変換する現象を発生させ、変換後のガイド波を超音波受信部で受信する超音波計測方法において、送信部で超音波を送信してから受信部でガイド波を受信するまでの伝播時間と、鋼材中を伝播するガイド波の音速と、鋼材中のガイド波進行方向と平行な向きに投影した送信部と受信部の距離と、鋼材中のガイド波進行方向と垂直な向きに投影した気体中の縦波漏えい波の伝播距離と、を用いて気体中を伝播する縦波音速を算出することを特徴とする。 For the above purpose in the present invention, the ultrasonic wave is transmitted from the ultrasonic wave transmitting section to the steel material to excite the guide wave in the steel material, and a part of the guide wave leaks into the gas and propagates as a longitudinal wave, In the ultrasonic measurement method in which a longitudinal wave leaking wave that reaches another location of the steel material is converted into a guided wave that propagates through the steel material again, and the converted guided wave is received by the ultrasonic receiver Propagation time from the transmission of ultrasonic waves at the receiving part until receiving the guide wave, the speed of sound of the guide wave propagating in the steel material, and the transmission part projected in the direction parallel to the guide wave traveling direction in the steel material. Characteristic of calculating the longitudinal wave sound velocity propagating in the gas by using the distance of the receiving part and the propagation distance of the longitudinal wave leakage wave in the gas projected in the direction perpendicular to the guide wave traveling direction in the steel material. To do.

本発明によれば、気体中を伝播する超音波を鋼材経由で送受信しなければならない場合でも、気体音速を正確に算出することが可能となる。このため、鋼材配管や鋼材容器を切断する前に、内部気体の種類を正確に識別することが可能となる。 According to the present invention, even when ultrasonic waves propagating in a gas have to be transmitted and received via a steel material, it is possible to accurately calculate the sound velocity of gas. Therefore, it is possible to accurately identify the type of internal gas before cutting the steel pipe or the steel container.

実施例1における超音波計測装置の構成を示す説明図である。FIG. 3 is an explanatory diagram showing a configuration of an ultrasonic measurement device according to the first embodiment. 課題を説明するための図である。It is a figure for explaining a subject. 超音波伝播経路の第1の例を示す説明図である。It is explanatory drawing which shows the 1st example of an ultrasonic wave propagation path. 超音波伝播経路の第2の例を示す説明図である。It is explanatory drawing which shows the 2nd example of an ultrasonic wave propagation path. 超音波伝播経路の第3の例を示す説明図である。It is explanatory drawing which shows the 3rd example of an ultrasonic wave propagation path. 実施例1において配管鋼材の板厚計測について説明するため説明図である。FIG. 5 is an explanatory diagram for explaining a plate thickness measurement of a pipe steel material in Example 1. 実施例1において板厚計測結果の例を示すグラフである。5 is a graph showing an example of plate thickness measurement results in Example 1. 実施例1において配管鋼材のガイド波計測について説明するため説明図である。FIG. 5 is an explanatory diagram for explaining the guided wave measurement of the pipe steel material in the first embodiment. 実施例1においてガイド波結果の例を示すグラフである。6 is a graph showing an example of a guided wave result in Example 1. 実施例1において気体音速を算出するための入力画面の例を示す説明図である。FIG. 5 is an explanatory diagram showing an example of an input screen for calculating a gas sound velocity in the first embodiment. 実施例2において超音波の伝播経路を示す説明図である。7 is an explanatory diagram showing a propagation path of ultrasonic waves in Example 2. FIG. 実施例2において超音波の伝播経路を説明するための展開図である。FIG. 8 is a development view for explaining a propagation path of ultrasonic waves in the second embodiment. 実施例3において超音波の伝播経路を示す説明図である。FIG. 7 is an explanatory diagram showing a propagation path of ultrasonic waves in the third embodiment.

以下、図面を用いて本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図2は課題を説明するための図であり、図3〜図5は超音波伝播経路の第1から第3の例を示す説明図である。図2に示すように、鋼材配管1の内部の気体2の音速を計測するために、送信センサ3aとシュー3bを組合せた超音波送信部3から鋼材配管に超音波を送信し、鋼材、気体、鋼材の順に伝播した超音波を、シュー5bと受信センサ5aを組合せた超音波受信部5で受信することを想定する。鋼材配管の仕様から内径Pinが既知であり、鋼材配管中の超音波波進行方向と平行な向きに投影した送信部と受信部の距離Lが計測できたとしても、鋼材配管内の気体中を伝播する超音波の経路が15、16、17のように複数の候補が考えられる状況では、超音波の伝播距離が決まらないので、気体音速を正確に算出することはできない。 FIG. 2 is a diagram for explaining the problem, and FIGS. 3 to 5 are explanatory diagrams showing first to third examples of the ultrasonic wave propagation path. As shown in FIG. 2, in order to measure the sound velocity of the gas 2 inside the steel pipe 1, ultrasonic waves are transmitted to the steel pipe from the ultrasonic transmission unit 3 that is a combination of a transmission sensor 3a and a shoe 3b. It is assumed that the ultrasonic wave propagating in the order of the steel material is received by the ultrasonic wave receiving unit 5 in which the shoe 5b and the receiving sensor 5a are combined. Even if the inner diameter P in is known from the specifications of the steel pipe and the distance L p between the transmitter and the receiver projected in a direction parallel to the ultrasonic wave traveling direction in the steel pipe can be measured, the gas in the steel pipe In a situation where a plurality of candidates for ultrasonic waves propagating in the inside are considered, such as 15, 16, and 17, the ultrasonic wave propagation distance cannot be determined, so that the sound velocity of gas cannot be accurately calculated.

図3に超音波の伝播経路の第1の例を示す。鋼材配管1の外表面に受信センサ3aとシュー3bからなる超音波送信部3を設置して、鋼材配管にガイド波11を励振する。鋼材配管中を伝播するガイド波から、気体中に縦波漏えい波12が漏えいする。この漏えい波の屈折角をφとする。漏えい波が鋼材配管対向側の鋼材に伝播し、鋼材配管中を伝播するガイド波13に変換するので、このガイド波13を受信するためにシュー5bと受信センサ5aからなる超音波受信部5を設置する。 FIG. 3 shows a first example of the propagation path of ultrasonic waves. The ultrasonic wave transmitting unit 3 including the receiving sensor 3a and the shoe 3b is installed on the outer surface of the steel pipe 1, and the guide wave 11 is excited in the steel pipe. A longitudinal wave leaking wave 12 leaks into the gas from the guided wave propagating in the steel pipe. The angle of refraction of this leaky wave is φ. The leak wave propagates to the steel material on the side opposite the steel material pipe and is converted into the guide wave 13 that propagates in the steel material pipe. Therefore, in order to receive this guide wave 13, the ultrasonic wave receiving portion 5 including the shoe 5b and the receiving sensor 5a is used. Install.

鋼材配管中のガイド波音速をV、気体中の縦波音速をV、鋼材配管から気体へ伝播するときの屈折角をφとした場合、スネルの法則に従い、下記の式(3)が成立する。 When the guide wave sound velocity in the steel pipe is V s , the longitudinal wave sound velocity in the gas is V g , and the refraction angle when propagating from the steel pipe to the gas is φ, the following formula (3) is obtained according to Snell's law. To establish.

Figure 2020106343
Figure 2020106343

送信側のガイド波11の伝播距離をLs1、気体中の漏えい波12伝播距離をL、受信側のガイド波13の伝播距離をLs2とし、送信側鋼材配管中、気体中、受信側鋼材配管中、全体の伝播時間をTs1、T、Ts2、Tallとすると、下記の式(4)となる。 The propagation distance of the guide wave 11 on the transmission side is L s1 , the propagation distance of the leaky wave 12 in the gas is L g , and the propagation distance of the guide wave 13 on the reception side is L s2. In the steel pipe of the transmission side, in the gas, and the reception side. When the total propagation time in the steel pipe is T s1 , T g , T s2 , and Tall, the following equation (4) is obtained.

Figure 2020106343
Figure 2020106343

鋼材配管中のガイド波進行方向と平行な向きに投影した送信部と受信部の距離をL、鋼材配管中のガイド波進行方向と垂直な向きに投影した気体中の縦波漏えい波の伝播距離をL(図3においては、L=配管の内径Pin)、として、式(2)に式(1)を代入すると、以下の式(5)となり、屈折角φと気体音速Vは以下の式(6)、式(7)で算出できる。 Propagation of a longitudinal wave leakage wave in a gas projected in a direction perpendicular to the guide wave traveling direction in the steel pipe, L p , the distance between the transmitting part and the receiving part projected in a direction parallel to the guide wave traveling direction in the steel pipe Substituting the equation (1) into the equation (2), where L v (in FIG. 3, L v =inside diameter P in of the pipe), the following equation (5) is obtained, and the refraction angle φ and the gas sound velocity V are obtained. g can be calculated by the following equations (6) and (7).

Figure 2020106343
Figure 2020106343

Figure 2020106343
Figure 2020106343

Figure 2020106343
Figure 2020106343

また、図4のように、ガイド波11bの伝播距離が小さい場所から漏えい波12bが漏えいした場合や、図5のようにガイド波11cの伝播距離が大きい場所から漏えい波12cが漏えいした場合においても、送信側ガイド波(11、11b、11c)と受信側ガイド波(13、13b、13c)を加算した鋼材中のガイド波伝播合計距離はどの場合であっても同じであり、気体中の漏えい波(12、12b、12c)はどの場合であっても平行で同じ伝播距離となる。このため、図4、図5のような場合においても、式(6)、式(7)は、図3の場合と同様に成立する。 Further, as shown in FIG. 4, when the leaky wave 12b leaks from a place where the propagation distance of the guide wave 11b is short, or when the leaky wave 12c leaks from a place where the propagation distance of the guide wave 11c is long as shown in FIG. Also, the total guide wave propagation distance in the steel material, which is obtained by adding the transmitting side guide wave (11, 11b, 11c) and the receiving side guide wave (13, 13b, 13c), is the same in any case, and In any case, the leaky waves (12, 12b, 12c) are parallel and have the same propagation distance. Therefore, also in the cases of FIGS. 4 and 5, the equations (6) and (7) are established similarly to the case of FIG.

このように、鋼材配管中を伝播するガイド波の音速V、鋼材配管中のガイド波進行方向と平行な向きに投影した送信部と受信部の距離L、鋼材配管中のガイド波進行方向と垂直な向きに投影した気体中の縦波漏えい波の伝播距離をL、が判っていれば、送信センサで超音波を送信してから受信センサでガイド波を受信するまでの伝播時間Tallを計測することにより、式(6)、式(7)から配管内の気体の音速Vを正確に算出することができる。 As described above, the sound velocity V s of the guided wave propagating in the steel pipe, the distance L p between the transmitter and the receiver projected in the direction parallel to the guided wave travel direction in the steel pipe, the guided wave travel direction in the steel pipe If the propagation distance of the longitudinal wave leaking wave in the gas projected in the direction perpendicular to is known, L v , the propagation time Tall from the transmission of the ultrasonic wave by the transmission sensor to the reception of the guide wave by the reception sensor Tall By measuring, the sound velocity V g of the gas in the pipe can be accurately calculated from the equations (6) and (7).

実施例1について、図1、図6〜図10を参照しながら説明する。 Example 1 will be described with reference to FIGS. 1 and 6 to 10.

実施例1は、送信部と受信部を鋼材配管の対向面に設置して、鋼材配管内の気体音速を計測し、算出する例である。図1に鋼材配管の気体を超音波計測し音速算出する時の概略構成を示す。超音波探傷器20に組み込まれているパルサー21で受信センサ3aとシュー3bからなる超音波送信部3を励振してガイド波11を送信する。鋼材配管中を伝播するガイド波から、気体中に縦波漏えい波12が漏えいする。この漏えい波の屈折角をφとする。漏えい波が鋼材配管対向側の鋼材に伝播し、ガイド波13に変換して鋼材配管中をガイド波が伝播するので、このガイド波13をシュー5bと受信センサ5aを組合せた超音波受信部5で受信する。受信部5の信号は超音波探傷器20に組み込まれているレシーバー22で受信し、表示部23で超音波波形を表示するとともに、アナログ信号をPC30に出力する。PC30に組み込まれているA/D変換器31でアナログ出力をデジタル信号に変換して、演算処理を行い、結果をディスプレイ32に示す構成としている。 The first embodiment is an example in which the transmitting unit and the receiving unit are installed on the facing surfaces of the steel pipe, and the sound velocity of gas in the steel pipe is measured and calculated. FIG. 1 shows a schematic configuration when ultrasonically measuring the gas in the steel pipe and calculating the sound velocity. The pulsar 21 incorporated in the ultrasonic flaw detector 20 excites the ultrasonic wave transmitter 3 including the reception sensor 3a and the shoe 3b to transmit the guide wave 11. A longitudinal wave leaking wave 12 leaks into the gas from the guided wave propagating in the steel pipe. The angle of refraction of this leaky wave is φ. The leak wave propagates to the steel material on the opposite side of the steel material pipe and is converted into the guide wave 13 to propagate in the steel material piping. Therefore, the ultrasonic wave receiving portion 5 in which the shoe 5b and the receiving sensor 5a are combined with the guide wave 13 is used. To receive. The signal of the receiving unit 5 is received by the receiver 22 incorporated in the ultrasonic flaw detector 20, the ultrasonic waveform is displayed on the display unit 23, and the analog signal is output to the PC 30. The A/D converter 31 incorporated in the PC 30 converts the analog output into a digital signal, performs arithmetic processing, and displays the result on the display 32.

図1には、鋼材配管1の一部しか記していないが、測定対象の鋼材配管は長いので、鋼材配管に送信受信センサを設置する場所を選定しなければならない。本発明で鋼材配管中にガイド波を伝播させることを考えると、鋼材配管の板厚が一定の場所を選定することが望ましく、内面腐食などにより鋼材の板厚が不均一になっている場所は望ましくない。このため、図1のような計測に先立って、まず、図6に示すように、超音波センサ7で鋼材に垂直に超音波を入射したときの伝播時間から鋼材配管の板厚のばらつきを計測する。図7(A)に示すように、測定結果のばらつきが小さい場合には図6(A)のように鋼材配管の板厚が均一でガイド波が伝播しやすく、図7(B)に示すように、測定結果のばらつきが大さい場合には図6(B)のように鋼材配管の板厚が不均一でガイド波が伝播しにくい。送信部3と受信部5を設置する場所としては、板厚計測結果のばらつきが小さい場所を選定する。 Although only a part of the steel material pipe 1 is shown in FIG. 1, since the steel material pipe to be measured is long, it is necessary to select a place where the transmission/reception sensor is installed in the steel material pipe. Considering that the guide wave is propagated in the steel pipe in the present invention, it is desirable to select a place where the plate thickness of the steel pipe is constant, and a place where the plate thickness of the steel product is uneven due to internal corrosion is Not desirable. Therefore, prior to the measurement as shown in FIG. 1, first, as shown in FIG. 6, the variation of the plate thickness of the steel pipe is measured from the propagation time when the ultrasonic wave is vertically incident on the steel by the ultrasonic sensor 7. To do. As shown in FIG. 7(A), when the variation in the measurement results is small, the plate thickness of the steel pipe is uniform and the guided wave easily propagates, as shown in FIG. 7(B). In addition, when the measurement results have a large variation, as shown in FIG. 6B, the plate thickness of the steel pipe is not uniform and the guided wave is hard to propagate. As a place where the transmitting unit 3 and the receiving unit 5 are installed, a place where the variation in the plate thickness measurement result is small is selected.

また、図1の計測では、鋼材配管中をガイド波が伝播することを前提としているので、ガイド波を送受信できる場所、ガイド波が一定の速度で伝播している場所を選定することが望ましい。図8に示すように送信部3と受信部5を配管の同一面側に配置し、送信部3と受信部5の距離を変えた場合でも超音波が安定して受信できるかを確認する。図8のような配置で超音波が受信できない、あるいは、特定の送受間距離でしか超音波が送受信できない場合には、ガイド波が励振できていないので、センサとシューの仕様を再検討する必要がある。 Further, in the measurement of FIG. 1, it is assumed that the guide wave propagates in the steel pipe, so it is desirable to select a place where the guide wave can be transmitted and received and a place where the guide wave propagates at a constant speed. As shown in FIG. 8, the transmitter 3 and the receiver 5 are arranged on the same side of the pipe, and it is confirmed whether or not the ultrasonic waves can be stably received even when the distance between the transmitter 3 and the receiver 5 is changed. If the ultrasonic waves cannot be received with the arrangement as shown in FIG. 8 or the ultrasonic waves can be transmitted/received only at a specific transmission/reception distance, it is necessary to reexamine the specifications of the sensor and the shoe because the guided wave cannot be excited. There is.

送受間距離に関わらず超音波が安定して受信できる場合に、送受間距離と伝播時間の関連性をグラフ化した結果を図9に示す。計測点の近似直線の傾きがガイド波の音速を表すので、この方法により鋼材中を伝播するガイド波音速を実測できる。また、近似直線のY切片は、計測系内で時間遅れ(シュー3b、5bの超音波伝播時間など)に相当するので、この方法で計測系内の時間遅れを実測評価することができる。 FIG. 9 shows a graph of the relationship between the transmission/reception distance and the propagation time when ultrasonic waves can be stably received regardless of the transmission/reception distance. Since the inclination of the approximate straight line of the measurement point represents the sound velocity of the guide wave, the sound velocity of the guide wave propagating in the steel material can be measured by this method. Further, since the Y-intercept of the approximate straight line corresponds to the time delay in the measurement system (the ultrasonic wave propagation time of the shoes 3b, 5b, etc.), the time delay in the measurement system can be measured and evaluated by this method.

図9(A)に示すように、近似直線に対する計測点のばらつきが小さい場合には、図8(A)のように鋼材配管の板厚が均一でガイド波が一定速度で伝播しており、図9(B)に示すように近似直線に対する計測点のばらつきが大きい場合には、図8(B)のように鋼材配管の板厚が不均一なためにガイド波の伝搬速度が一定ではない状態になっている。送信部3と受信部5を設置する場所としては、ガイド波速度が一定となっている場所を選定する。 As shown in FIG. 9(A), when the variation of the measurement points with respect to the approximate straight line is small, as shown in FIG. 8(A), the plate thickness of the steel pipe is uniform and the guide wave is propagating at a constant velocity. As shown in FIG. 9B, when there is a large variation in measurement points with respect to the approximate straight line, the propagation velocity of the guided wave is not constant because the plate thickness of the steel pipe is uneven as shown in FIG. 8B. It is in a state. As a place where the transmitter 3 and the receiver 5 are installed, a place where the guided wave velocity is constant is selected.

選定した場所にセンサを設置し、図1に示す構成で超音波計測をしたときの、気体音速の算出手順を説明する。図10は、PC30のディスプレイ32の表示画面の例である。画面の上半分には受信した超音波波形41が表示されている。画面下半分は、気体音速の算出に必要な数値の入力と、算出結果を表示するようになっている。装置の操作者は図示されていないキーボードやマウスを用いて、鋼材配管中を伝播するガイド波の音速Vを枠43に、鋼材配管中のガイド波進行方向と平行な向きに投影した送信部と受信部の距離Lpを枠44に、鋼材配管中のガイド波進行方向と垂直な向きに投影した気体中の縦波漏えい波の伝播距離L(実施例1の場合には、L=配管の内径Pin)を枠45に、入力する。測定系内の遅れ時間を枠46に入力し、超音波波形41において図1で想定した経路で伝播した超音波ピークをカーソル42で指定すると、送信センサで超音波を送信してから受信センサでガイド波を受信するまでの伝播時間TallをPC30が算出して枠47に表示する。これらの数値から、PC30が、式(6)、式(7)に基づいて、気体中を伝播する縦波音速Vを算出し、枠48に表示する。 A procedure for calculating the gas sound velocity when the sensor is installed at the selected location and ultrasonic measurement is performed with the configuration shown in FIG. 1 will be described. FIG. 10 is an example of a display screen of the display 32 of the PC 30. The received ultrasonic waveform 41 is displayed in the upper half of the screen. The lower half of the screen displays the input of the numerical values required to calculate the sound velocity of gas and the calculation result. The operator of the device uses a keyboard and a mouse (not shown) to project the sound velocity V s of the guide wave propagating in the steel pipe on the frame 43 in a direction parallel to the traveling direction of the guide wave in the steel pipe. and the frame 44 a distance Lp of the receiving unit, when the propagation distance L v (example 1 of the longitudinal wave leakage waves in the gas which is projected onto the guided wave traveling direction perpendicular to the direction in the steel pipe, L v = Enter the inner diameter P in of the pipe in the frame 45. When the delay time in the measurement system is input in the frame 46 and the ultrasonic peak propagated along the path assumed in FIG. 1 in the ultrasonic waveform 41 is designated by the cursor 42, the ultrasonic wave is transmitted by the transmission sensor and then the reception sensor The PC 30 calculates the propagation time Tall until the guided wave is received and displays it in the frame 47. From these numerical values, the PC 30 calculates the longitudinal wave sound velocity V g propagating in the gas based on the equations (6) and (7), and displays it in the frame 48.

本実施例によれば、気体中を伝播する超音波を鋼材経由で送受信しなければならない場合でも、気体音速を正確に算出することが可能となる。このため、鋼材配管を切断する前に、内部気体の種類を正確に識別することが可能となる。 According to the present embodiment, even when ultrasonic waves propagating in a gas have to be transmitted and received via the steel material, it is possible to accurately calculate the sound velocity of the gas. Therefore, it is possible to accurately identify the type of internal gas before cutting the steel pipe.

実施例2について、図11、図12を参照しながら説明する。 Example 2 will be described with reference to FIGS. 11 and 12.

実施例2は、送信部と受信部を配管の同一面に設置して、配管内の気体音速を計測し算出する例である。図11に本実施例における超音波の伝播経路を示す。鋼材配管1の外表面に受信センサ3aとシュー3bからなる送信部3を設置して、鋼材配管中を伝播するガイド波51を励振する。鋼材中を伝播するガイド波から、気体中に縦波漏えい波52aが漏えいする。この漏えい波の屈折角をφとする。漏えい波が配管対向側の鋼材内表面で反射し(52b)、送受信側の鋼材まで伝播したところで、鋼材中を伝播するガイド波53に変換するので、このガイド波53をシュー5bと受信センサ5aからなる受信部5で受信する。図12の展開図に示すように、送信センサ、鋼材中を伝播するガイド波、気体中に漏えいした縦波漏えい波、鋼材中を伝播するガイド波、受信センサ、からなる経路は、L=2×Pinとなることを除くと、実施例1と同様である。したがって、送信部と受信部を鋼材配管の同一面に設置した場合でも、式(6)、式(7)に基づいて、気体音速を算出することが可能になる。 The second embodiment is an example in which the transmitting unit and the receiving unit are installed on the same surface of the pipe, and the sound velocity of gas in the pipe is measured and calculated. FIG. 11 shows an ultrasonic wave propagation path in this embodiment. A transmitter 3 including a receiving sensor 3a and a shoe 3b is installed on the outer surface of the steel pipe 1 to excite a guide wave 51 propagating in the steel pipe. A longitudinal wave leaking wave 52a leaks into the gas from the guide wave propagating in the steel material. The angle of refraction of this leaky wave is φ. The leakage wave is reflected by the inner surface of the steel material on the pipe-opposing side (52b), and when it propagates to the steel material on the transmitting/receiving side, it is converted into a guide wave 53 propagating in the steel material. It is received by the receiving unit 5 consisting of. As shown in the development view of FIG. 12, the route consisting of the transmission sensor, the guided wave propagating in the steel material, the longitudinal wave leaking in the gas, the guided wave propagating in the steel material, and the receiving sensor is L v = The same as Example 1 except that it is 2×P in . Therefore, even when the transmitting unit and the receiving unit are installed on the same surface of the steel pipe, it is possible to calculate the gas sound velocity based on the equations (6) and (7).

本実施例によれば、実施例1での効果に加えて、超音波送信部と受信部を鋼材配管の同一面に設置した場合でも気体音速を算出することが可能になる。 According to the present embodiment, in addition to the effects of the first embodiment, it is possible to calculate the gas sonic velocity even when the ultrasonic transmitter and the receiver are installed on the same surface of the steel pipe.

実施例3について、図13を参照しながら説明する。 Example 3 will be described with reference to FIG.

実施例3は、内部に超音波反射体として利用できる構造物がある鋼製容器の平面部に送信部と受信部を設置して、容器内の気体音速を計測し算出する例である。図13に本実施例における超音波の伝播経路を示す。鋼製容器61の平面部に受信センサ3aとシュー3bからなる送信部3を設置して、鋼材中を伝播するガイド波51を励振する。鋼材中を伝播するガイド波から、気体62中に縦波漏えい波52aが漏えいする。この漏えい波の屈折角をφとする。漏えい波が容器内の構造物63で反射し(52b)、容器の平面部まで伝播したところで、鋼材中を伝播するガイド波53に変換するので、このガイド波53をシュー5bと受信センサ5aからなる受信部5で受信する。送信部、鋼材中を伝播するガイド波、気体中に漏えいした縦波漏えい波、鋼材中を伝播するガイド波、受信部、からなる経路は実施例2と同様である。送信受信センサを設置した容器61の平面部内壁から構造物63までの距離Lgapが設計図面等で判っていれば、Lv=2×Lgapとして、式(6)、式(7)に基づいて、気体音速を算出することが可能になる。 The third embodiment is an example in which a transmitting unit and a receiving unit are installed on a flat surface of a steel container having a structure that can be used as an ultrasonic reflector inside, and the sound velocity of gas in the container is measured and calculated. FIG. 13 shows an ultrasonic wave propagation path in this embodiment. The transmitter 3 including the reception sensor 3a and the shoe 3b is installed on the flat surface of the steel container 61 to excite the guide wave 51 propagating in the steel material. A longitudinal wave leaking wave 52 a leaks into the gas 62 from the guided wave propagating in the steel material. The angle of refraction of this leaky wave is φ. The leakage wave is reflected by the structure 63 in the container (52b), and when it propagates to the flat portion of the container, it is converted into a guide wave 53 that propagates in the steel material. Therefore, the guide wave 53 is transmitted from the shoe 5b and the reception sensor 5a. It is received by the receiving unit 5. The route including the transmitting portion, the guided wave propagating in the steel material, the longitudinal wave leaking in the gas, the guided wave propagating in the steel material, and the receiving portion is the same as that of the second embodiment. If the distance L gap from the inner wall of the flat surface of the container 61 in which the transmission/reception sensor is installed to the structure 63 is known in the design drawing or the like, Lv=2×L gap , and based on the equations (6) and (7). Thus, it becomes possible to calculate the gas sound velocity.

本実施例によれば、気体中を伝播する超音波を鋼材経由で送受信しなければならない場合でも、気体音速を正確に算出することが可能となる。このため、鋼材容器を切断する前に、内部気体の種類を正確に識別することが可能となる。 According to the present embodiment, even when ultrasonic waves propagating in a gas have to be transmitted and received via the steel material, it is possible to accurately calculate the sound velocity of the gas. Therefore, it is possible to accurately identify the type of internal gas before cutting the steel container.

上記にて説明した各実施例は、配管や容器の鋼材で囲まれた気体音速を計測・算出し、鋼材を切断する前に気体の種類を識別することに適用できる。また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Each of the embodiments described above can be applied to measure and calculate the sound velocity of gas surrounded by steel materials of pipes and containers, and identify the type of gas before cutting the steel materials. Further, the present invention is not limited to the above-described embodiments, but includes various modifications. For example, the above-described embodiments have been described in detail for the purpose of explaining the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, with respect to a part of the configuration of each embodiment, other configurations can be added/deleted/replaced.

1:鋼材配管
2、62:気体
3a:送信センサ
3b:シュー
3:超音波送信部
5a:受信センサ
5b:シュー
5:超音波受信部
11、13、51、53:ガイド波、
12、52a、52b:縦波漏えい波
20:超音波探傷器、
21:パルサー
22:レシーバー
23:表示部
30:PC
31:A/D変換器
32:ディスプレイ
61:容器
63:構造物
1: Steel pipe 2, 62: Gas 3a: Transmission sensor 3b: Shoe 3: Ultrasonic wave transmission unit 5a: Reception sensor 5b: Shoe 5: Ultrasonic wave reception unit 11, 13, 51, 53: Guide wave,
12, 52a, 52b: longitudinal wave leakage wave 20: ultrasonic flaw detector,
21: Pulsar 22: Receiver 23: Display 30: PC
31: A/D converter 32: Display 61: Container 63: Structure

Claims (8)

送信部から鋼材に超音波を送信して鋼材中にガイド波を励振して、ガイド波の一部が気体中に漏えいして縦波として伝播し、鋼材の別の場所に到達した縦波漏えい波が再び鋼材中を伝播するガイド波に変換する現象を発生させ、変換後のガイド波を受信部で受信する超音波計測方法において、
送信部で超音波を送信してから受信部でガイド波を受信するまでの伝播時間と、鋼材中を伝播するガイド波の音速と、鋼材中のガイド波進行方向と平行な向きに投影した送信部と受信部の距離と、鋼材中のガイド波進行方向と垂直な向きに投影した気体中の縦波漏えい波の伝播距離と、を用いて気体中を伝播する縦波音速を算出することを特徴とする気体音速の算出方法。
An ultrasonic wave is transmitted from the transmitting part to the steel material to excite the guided wave into the steel material, and part of the guided wave leaks into the gas and propagates as a longitudinal wave, which then reaches another location of the steel material. In the ultrasonic measurement method of generating a phenomenon in which the wave is converted into a guided wave propagating in the steel material again, and receiving the converted guided wave in the receiving unit,
Propagation time from the transmission of ultrasonic waves at the transmission unit to the reception of guided waves at the reception unit, the speed of sound of the guided waves propagating in the steel material, and the transmission projected in a direction parallel to the traveling direction of the guided waves in the steel material. It is possible to calculate the sound velocity of a longitudinal wave propagating in a gas by using the distance between the receiving part and the receiving part and the propagation distance of the longitudinal wave leaking wave in the gas projected in a direction perpendicular to the traveling direction of the guided wave in the steel material. A method of calculating the characteristic sound velocity of gas.
請求項1に記載の気体音速の算出方法において、
前記送信部で超音波を送信してから受信部でガイド波を受信するまでの伝播時間をTall、前記鋼材中を伝播するガイド波の音速をV、前記鋼材中のガイド波進行方向と平行な向きに投影した送信部と受信部の距離をL、前記鋼材中のガイド波進行方向と垂直な向きに投影した気体中の縦波漏えい波の伝播距離をL、前記気体中の縦波漏えい波の屈折角をφとした場合に、
Figure 2020106343
Figure 2020106343
なる式を用いて、気体中を伝播する縦波音速を算出することを特徴とする気体音速の算出方法。
The method of calculating the sound velocity of gas according to claim 1,
The propagation time from the transmission of the ultrasonic wave by the transmitting unit to the reception of the guide wave by the receiving unit is Tall, the sound velocity of the guide wave propagating in the steel material is V s , and the direction of travel of the guide wave in the steel material is parallel. The distance between the transmitting part and the receiving part projected in any direction is L p , the propagation distance of the longitudinal wave leakage wave in the gas projected in the direction perpendicular to the traveling direction of the guided wave in the steel material is L v , the longitudinal direction in the gas When the angle of refraction of the leaking wave is φ,
Figure 2020106343
Figure 2020106343
A method of calculating the sound velocity of gas, characterized in that the sound velocity of longitudinal waves propagating in the gas is calculated using the following equation.
請求項1又は2のいずれかに記載の気体音速の算出方法において、
前記鋼材に超音波を送信及び受信する場所の複数の候補において、鋼材の板厚のばらつきを計測し、板厚のばらつきが小さい場所を超音波を送信及び受信する場所として選定することを特徴とする気体音速の算出方法。
The method for calculating a gas sound velocity according to claim 1,
In a plurality of candidates for the location of transmitting and receiving ultrasonic waves to the steel material, the variation in the plate thickness of the steel material is measured, and the location with the small variation in the plate thickness is selected as the location for transmitting and receiving the ultrasonic waves. Calculation method of gas sound velocity.
請求項1又は2のいずれかに記載の気体音速の算出方法において、
前記鋼材に超音波を送信及び受信する場所の複数の候補において、鋼材を伝播するガイド波を計測できるかを確認し、ガイド波が計測できる場所においては、ガイド波の音速とそのばらつきを計測して、ガイド波が計測できてガイド波音速のばらつきが小さい場所を超音波を送受信する場所として選定することを特徴とする気体音速の算出方法。
The method for calculating a gas sound velocity according to claim 1,
In a plurality of candidates for the location of transmitting and receiving ultrasonic waves to the steel material, it is confirmed whether or not the guided wave propagating through the steel material can be measured, and in the location where the guided wave can be measured, the sound velocity of the guided wave and its variation are measured. A method of calculating the sound velocity of gas, characterized in that a place where the guided wave can be measured and the variation of the sound velocity of the guided wave is small is selected as a place for transmitting and receiving ultrasonic waves.
鋼材にガイド波を励振するための送信部と、
前記鋼材中を伝播するガイド波を受信するための受信部と、
前記鋼材中のガイド波進行方向と平行な向きに投影した送信部と受信部の距離を計測する計測手段と、
前記送信部を励振するパルサーと、
前記受信部の信号を受信するレシーバーと、
受信波形を表示する波形表示手段と、
前記送信部で超音波を送信してから前記受信部でガイド波を受信するまでの伝播時間と鋼材中を伝播するガイド波の音速と鋼材中のガイド波進行方向と平行な向きに投影した送信部と受信部の距離と鋼材中のガイド波進行方向と垂直な向きに投影した気体中の縦波漏えい波の伝播距離とを入力したときに気体中を伝播する縦波音速を算出する手段と、
を備えたことを特徴とする気体音速の算出装置。
A transmitter for exciting a guided wave in steel,
A receiver for receiving a guided wave propagating in the steel material,
Measuring means for measuring the distance between the transmitter and the receiver projected in a direction parallel to the guided wave traveling direction in the steel material,
A pulsar for exciting the transmitter,
A receiver for receiving the signal of the receiver,
Waveform display means for displaying the received waveform,
Propagation time from transmitting the ultrasonic wave at the transmitting unit to receiving the guide wave at the receiving unit, sound velocity of the guided wave propagating in the steel material, and transmission projected in a direction parallel to the traveling direction of the guided wave in the steel material Means for calculating the longitudinal sound velocity propagating in the gas when the distance between the receiving part and the receiving part and the propagation distance of the longitudinal wave leaking wave in the gas projected in the direction perpendicular to the traveling direction of the guided wave in the steel are input. ,
A device for calculating a sound velocity of gas, comprising:
請求項5に記載の気体音速の算出装置において、
前記鋼材中のガイド波進行方向と平行な向きに投影した送信部と受信部の距離Lと送信部で超音波を送信してから受信部でガイド波を受信するまでの伝播時間Tallと鋼材中を伝播するガイド波の音速Vと鋼材中のガイド波進行方向と平行な向きに投影した送信部と受信部の距離Lと鋼材中のガイド波進行方向と垂直な向きに投影した気体中の縦波漏えい波の伝播距離Lと数式を記憶する手段と、
前記気体中を伝播する縦波音速を表示する手段と、
を備えたことを特徴とする気体音速の算出装置。
The gas sonic velocity calculation device according to claim 5,
The distance L p between the transmitter and the receiver projected in a direction parallel to the guided wave traveling direction in the steel material, the propagation time Tall from the transmission of the ultrasonic wave by the transmitter to the reception of the guided wave by the receiver, and the steel material. The sound velocity V s of the guided wave propagating through it, the distance L p between the transmitter and the receiver projected in a direction parallel to the traveling direction of the guided wave in the steel, and the gas projected in a direction perpendicular to the traveling direction of the guided wave in the steel. Means for storing the propagation distance L v of the longitudinal leaky wave and the mathematical expression,
Means for displaying the longitudinal wave velocity of sound propagating in the gas;
A device for calculating a sound velocity of gas, comprising:
請求項5又は6のいずれかに記載の気体音速の算出装置において、
垂直超音波センサと、
前記垂直超音波センサに信号を与える超音波探傷器と、
前記超音波の伝播時間を計測して板厚を算出する手段と、
を備えたことを特徴とする気体音速の算出装置。
The gas sonic velocity calculation device according to claim 5,
A vertical ultrasonic sensor,
An ultrasonic flaw detector that gives a signal to the vertical ultrasonic sensor,
A means for calculating the plate thickness by measuring the propagation time of the ultrasonic wave,
A device for calculating a sound velocity of gas, comprising:
請求項7に記載の気体音速の算出装置において、
前記ガイド波の計測結果を表示する手段と、
を備えたことを特徴とする気体音速の算出装置。
The gas sound velocity calculation device according to claim 7,
Means for displaying the measurement result of the guided wave,
A device for calculating a sound velocity of gas, comprising:
JP2018243955A 2018-12-27 2018-12-27 Calculation method and device for gas sound velocity Active JP7136685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018243955A JP7136685B2 (en) 2018-12-27 2018-12-27 Calculation method and device for gas sound velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243955A JP7136685B2 (en) 2018-12-27 2018-12-27 Calculation method and device for gas sound velocity

Publications (2)

Publication Number Publication Date
JP2020106343A true JP2020106343A (en) 2020-07-09
JP7136685B2 JP7136685B2 (en) 2022-09-13

Family

ID=71448785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243955A Active JP7136685B2 (en) 2018-12-27 2018-12-27 Calculation method and device for gas sound velocity

Country Status (1)

Country Link
JP (1) JP7136685B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557513A (en) * 2020-12-11 2021-03-26 国电锅炉压力容器检验有限公司 Transverse wave sound velocity measuring device and method for new material bolt
EP4242599A1 (en) * 2022-03-10 2023-09-13 Diehl Metering GmbH Measuring device and method for determining a measurement value

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229876A (en) * 1994-02-22 1995-08-29 Osaka Gas Co Ltd Identification of gas in conduit by sonic wave
JP2015081865A (en) * 2013-10-23 2015-04-27 富士電機株式会社 Fluid type discrimination device and fluid type discrimination method
JP2015179027A (en) * 2014-03-19 2015-10-08 大阪瓦斯株式会社 Fluid identification device and fluid identification method
JP2019144007A (en) * 2018-02-16 2019-08-29 富士電機株式会社 Measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229876A (en) * 1994-02-22 1995-08-29 Osaka Gas Co Ltd Identification of gas in conduit by sonic wave
JP2015081865A (en) * 2013-10-23 2015-04-27 富士電機株式会社 Fluid type discrimination device and fluid type discrimination method
JP2015179027A (en) * 2014-03-19 2015-10-08 大阪瓦斯株式会社 Fluid identification device and fluid identification method
JP2019144007A (en) * 2018-02-16 2019-08-29 富士電機株式会社 Measurement device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
佐藤 治道: "流体を満たしたパイプを伝搬するガイド波の解析", 超音波TECHNO, vol. 第27巻第2号, JPN6022035692, 1 April 2015 (2015-04-01), JP, pages 40 - 45, ISSN: 0004861358 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112557513A (en) * 2020-12-11 2021-03-26 国电锅炉压力容器检验有限公司 Transverse wave sound velocity measuring device and method for new material bolt
EP4242599A1 (en) * 2022-03-10 2023-09-13 Diehl Metering GmbH Measuring device and method for determining a measurement value

Also Published As

Publication number Publication date
JP7136685B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
US10281315B2 (en) System and method for measuring a speed of sound in a liquid or gaseous medium
US10228275B2 (en) System and method for non-intrusive and continuous level measurement in a cylindrical vessel
AU2006261535A1 (en) Non-destructive testing of pipes
US10151610B2 (en) Flow rate measurement device and flow rate measurement method
JPS59131161A (en) Method of monitoring structure
JP7136685B2 (en) Calculation method and device for gas sound velocity
JPS6410778B2 (en)
JP2004301540A (en) Non-destructive inspection method and non-destructive inspection device
Nicassio et al. Non-linear lamb waves for locating defects in single-lap joints
JP2020109360A (en) Ultrasonic gas flowmeter
JP2020106344A (en) Calculation method and calculation device of gas sound speed
JP6802113B2 (en) Ultrasonography method
JP5297791B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP4329773B2 (en) Ultrasonic inspection method for fluororesin inspection object
JP7235643B2 (en) Measuring method and measuring device
JP2006023215A (en) Ultrasonic inspection method, ultrasonic inspection device and guide wave transducer for the ultrasonic inspection device
JP2015102405A (en) Inspection method and inspection device
JP5841027B2 (en) Inspection apparatus and inspection method
JP6235839B2 (en) Method for inspecting micro crack on inner surface of tube and apparatus for inspecting micro crack on inner surface of tube
JP7151344B2 (en) Pressure measuring device
JP6731863B2 (en) Inspection method
JPWO2017086150A1 (en) Apparatus and method for measuring deposit thickness using ultrasonic waves
Sabhnani et al. Fault detection in small diameter pipes using ultrasonic guided wave technology
JP2015021749A (en) Inspection device and inspection method
JP3810661B2 (en) Defect detection method for piping

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220901

R150 Certificate of patent or registration of utility model

Ref document number: 7136685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150