JP2020104591A - Vehicular air conditioner - Google Patents

Vehicular air conditioner Download PDF

Info

Publication number
JP2020104591A
JP2020104591A JP2018243127A JP2018243127A JP2020104591A JP 2020104591 A JP2020104591 A JP 2020104591A JP 2018243127 A JP2018243127 A JP 2018243127A JP 2018243127 A JP2018243127 A JP 2018243127A JP 2020104591 A JP2020104591 A JP 2020104591A
Authority
JP
Japan
Prior art keywords
refrigerant
accumulator
bypass passage
compressor
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018243127A
Other languages
Japanese (ja)
Inventor
輝明 辻
Teruaki Tsuji
輝明 辻
睦浩 小野寺
Mutsuhiro Onodera
睦浩 小野寺
浩之 石野
Hiroyuki Ishino
浩之 石野
俊介 平下
Shunsuke Hirashita
俊介 平下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Japan Co Ltd
Original Assignee
Valeo Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Japan Co Ltd filed Critical Valeo Japan Co Ltd
Priority to JP2018243127A priority Critical patent/JP2020104591A/en
Priority to EP19218445.5A priority patent/EP3674627A1/en
Publication of JP2020104591A publication Critical patent/JP2020104591A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2113Temperatures of a suction accumulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

To provide a vehicular air conditioner with a refrigeration cycle capable of avoiding an excessive decompression state in an accumulator while sufficiently exhibiting a temperature control function required for the vehicular air conditioner.SOLUTION: A vehicular air conditioner includes at least: a refrigeration cycle 80 having a compressor 6, an outdoor heat exchanger 4, an expansion device 12, an evaporator 3 and an accumulator 10 and formed by connecting these elements in this order by piping; a bypass passage 43 that connects a refrigerant inlet pipe 41 for causing a refrigerant circulating in the refrigeration cycle to flow into the accumulator and a refrigerant outlet pipe 42 for causing a refrigerant to flow out from the accumulator with each other outside the accumulator and enables the refrigerant to flow in a short-circuit manner; a valve gear 40 provided in the bypass passage and having an opening/closing function; and a control device 23 controlling the compressor and the valve gear.SELECTED DRAWING: Figure 1

Description

本開示は、アキュムレータを有する冷凍サイクルを備えた車両用空調装置に関する。 The present disclosure relates to a vehicle air conditioner including a refrigeration cycle having an accumulator.

圧縮機の上流側にアキュムレータを有する冷凍サイクルでは、圧縮機の起動直後にアキュムレータの内部で冷媒が沸騰し、異音が発生する場合がある。そこで、音や沸騰減少の抑制を狙いとした技術が提供されている(例えば特許文献1を参照。)。 In a refrigeration cycle having an accumulator on the upstream side of the compressor, the refrigerant may boil inside the accumulator immediately after the compressor is activated, and abnormal noise may occur. Therefore, there is provided a technique aiming at suppressing the sound and the decrease in boiling (see, for example, Patent Document 1).

特許文献1では、アキュムレータに流入する冷媒の流れを利用して撹拌装置を駆動して、アキュムレータの内部に貯留されている液状冷媒を撹拌して、沸騰状態となることの抑制を狙っている。 In Patent Document 1, the stirring device is driven by using the flow of the refrigerant flowing into the accumulator to stir the liquid refrigerant stored inside the accumulator, and aims to suppress the boiling state.

また、アキュムレータの内部において、冷媒流出管のうち上方に通気孔を設けて、アキュムレータ内部にて気相冷媒を短絡させる思想が開示されている(例えば特許文献2を参照。)。 Further, there is disclosed a concept in which a vent hole is provided above the refrigerant outflow pipe inside the accumulator to short-circuit the gas-phase refrigerant inside the accumulator (for example, see Patent Document 2).

特開2017−058070号公報JP, 2017-058070, A 特開2000−088402号公報JP, 2000-088402, A

しかし、特許文献1の技術では、攪拌装置90を設置するため、アキュムレータの内部構造が複雑になるという欠点があった。 However, the technique of Patent Document 1 has a drawback that the internal structure of the accumulator is complicated because the stirring device 90 is installed.

また、特許文献2の技術では、アキュムレータ内部の下方に貯留される液状冷媒からここに溶解している潤滑油を吸い出す必要があり、アキュムレータ内部の下方にまで延びる冷媒流出管は、下方先端において一定の吸込力の発揮が必要不可欠であって、特許文献2の符号17で示されるような通気孔は、無計画に大きく設定することができない。 Further, in the technique of Patent Document 2, it is necessary to suck out the lubricating oil dissolved therein from the liquid refrigerant stored in the lower portion of the inside of the accumulator, and the refrigerant outflow pipe extending to the lower portion of the inside of the accumulator is constant at the lower end. It is indispensable to exert the suction force of the above, and the vent hole as shown by the reference numeral 17 in Patent Document 2 cannot be set large unexpectedly.

ところで、圧縮機の起動直後に液状冷媒が沸騰するのは、アキュムレータの内部空間が急激に減圧されるためである。このため、例えば圧縮機の起動直後の回転数に制御を加え(回転数を低めに抑え)、過度の冷媒の吸入を防止する対応が考えられるが、すると冷凍サイクルに求められる急速冷房能力あるいは急速暖房能力を十分に得ることが出来ない問題がある。 By the way, the reason why the liquid refrigerant boils immediately after the start of the compressor is that the internal space of the accumulator is rapidly depressurized. For this reason, for example, control may be performed on the number of revolutions immediately after the compressor is started (the number of revolutions may be kept low) to prevent excessive refrigerant suction, but the rapid cooling capacity or rapid cooling required for the refrigeration cycle may be considered. There is a problem that heating capacity cannot be obtained sufficiently.

そこで本開示は、求められる車両用空調装置に対して求められる温度調整機能を十分に発揮しつつアキュムレータ内部の過度な減圧状態を回避することのできる冷凍サイクルを有する車両用空調装置を提供することを目的とする。 Therefore, the present disclosure provides a vehicle air conditioner having a refrigeration cycle capable of avoiding an excessively depressurized state inside the accumulator while sufficiently exerting a required temperature adjusting function for the vehicle air conditioner required. With the goal.

本発明者らは、鋭意検討したところ、冷凍サイクルを循環する冷媒をアキュムレータへ流し込む冷媒入口管と冷媒をアキュムレータから流し出す冷媒出口管とをアキュムレータの外部で接続し、冷媒を短絡して流通可能としたバイパス通路を設けることで、突沸による異音発生を抑制できることを見出し、本発明を完成させた。すなわち、本発明に係る車両用空調装置は、少なくとも、圧縮機、室外熱交換器、膨張装置、蒸発器及びアキュムレータを備え、この順序で配管により接続した冷凍サイクルと、該冷凍サイクルを循環する冷媒を前記アキュムレータへ流し込む冷媒入口管と前記冷媒を前記アキュムレータから流し出す冷媒出口管とを該アキュムレータの外部で接続し、前記冷媒を短絡して流通可能としたバイパス通路と、該バイパス通路に設けられた開閉機能を有する弁装置と、少なくとも、前記圧縮機及び前記弁装置を制御する制御装置と、を備えることを特徴とする。 The inventors of the present invention have made diligent studies and connected a refrigerant inlet pipe for flowing a refrigerant circulating in the refrigeration cycle to the accumulator and a refrigerant outlet pipe for discharging the refrigerant from the accumulator outside the accumulator to short-circuit and distribute the refrigerant. It was found that the generation of abnormal noise due to bumping can be suppressed by providing such a bypass passage, and the present invention has been completed. That is, the vehicle air conditioner according to the present invention includes at least a compressor, an outdoor heat exchanger, an expansion device, an evaporator, and an accumulator, a refrigeration cycle connected by pipes in this order, and a refrigerant that circulates through the refrigeration cycle. Is connected to the refrigerant inlet pipe flowing into the accumulator and the refrigerant outlet pipe flowing out of the refrigerant from the accumulator outside the accumulator, and the bypass passage through which the refrigerant can be short-circuited and is provided in the bypass passage. A valve device having an open/close function, and at least a control device that controls the compressor and the valve device.

本発明に係る車両用空調装置では、前記弁装置が、前記バイパス通路内の前記冷媒の流れを許容又は遮断する開閉弁であることが好ましい。簡易な構造で、バイパス通路内の記冷媒の流れを制御することができる。 In the vehicle air conditioner according to the present invention, it is preferable that the valve device is an opening/closing valve that allows or blocks the flow of the refrigerant in the bypass passage. It is possible to control the flow of the refrigerant in the bypass passage with a simple structure.

本発明に係る車両用空調装置では、前記弁装置が、前記バイパス通路と前記冷媒出口管との合流点に配置された三方弁であることが好ましい。簡易な構造で、バイパス通路内の記冷媒の流れを制御することができる。 In the vehicle air conditioner according to the present invention, it is preferable that the valve device is a three-way valve arranged at a confluence point of the bypass passage and the refrigerant outlet pipe. It is possible to control the flow of the refrigerant in the bypass passage with a simple structure.

本発明に係る車両用空調装置では、前記アキュムレータの内部の液相冷媒の温度を検出可能な冷媒温度検知手段をさらに有し、前記圧縮機は、電動式であり、前記制御装置は、前記圧縮機を指定する回転数で起動し、かつ、前記弁装置によって前記バイパス通路内の前記冷媒の流れを許容した状態とし、続いて、前記圧縮機の指定する回転数及び前記冷媒温度検知手段から得た温度情報から、前記バイパス通路内の前記冷媒の流れを遮断したときの前記アキュムレータの内部の気相冷媒の推定過熱度Testを算出し、該推定過熱度Testと所定の閾値過熱度Tdefとを比較して、推定過熱度Testが閾値過熱度Tdefを下回ったら、前記弁装置によって前記バイパス通路内の前記冷媒の流れを遮断することが好ましい。弁装置の閉弁時期を推定し、突沸の発生を精度良く抑制することが可能となる。 In the vehicle air conditioner according to the present invention, further has a refrigerant temperature detecting means capable of detecting the temperature of the liquid phase refrigerant inside the accumulator, the compressor is an electric type, the control device, the compression The engine is started at a specified rotation speed, and the flow of the refrigerant in the bypass passage is allowed by the valve device, and then the rotation speed specified by the compressor and the refrigerant temperature detection means are obtained. From the temperature information, the estimated superheat degree Test of the vapor phase refrigerant inside the accumulator when the flow of the refrigerant in the bypass passage is shut off is calculated, and the estimated superheat degree Test and a predetermined threshold superheat degree Tdef are calculated. In comparison, when the estimated superheat degree Test falls below the threshold superheat degree Tdef, it is preferable that the flow of the refrigerant in the bypass passage is shut off by the valve device. It is possible to estimate the valve closing timing of the valve device and accurately suppress the occurrence of bumping.

本発明に係る車両用空調装置では、前記冷媒温度検知手段の温度センサー部は、前記アキュムレータの内部空間内の中央より下側又はアキュムレータの外底面に配置されていることが好ましい。弁装置の閉弁時期をより精度良く推定することが可能となり、その結果、突沸の発生をより精度良く抑制することが可能となる。 In the vehicle air conditioner according to the present invention, it is preferable that the temperature sensor portion of the refrigerant temperature detecting means is arranged below the center in the internal space of the accumulator or on the outer bottom surface of the accumulator. It is possible to more accurately estimate the valve closing timing of the valve device, and as a result, it is possible to more accurately suppress the occurrence of bumping.

本発明に係る車両用空調装置では、前記制御装置は、前記圧縮機の起動時には前記弁装置によって前記バイパス通路内の前記冷媒の流れを許容した状態とし、その後、所定時間を経過したのちに前記弁装置によって前記バイパス通路内の前記冷媒の流れを遮断した状態とすることが好ましい。冷媒温度検知手段を設けずとも、簡易な構成のままで突沸の発生を精度良く抑制することが可能となる。 In the vehicle air conditioner according to the present invention, the control device allows the flow of the refrigerant in the bypass passage by the valve device at the time of starting the compressor, and then, after a predetermined time has elapsed, the control device It is preferable that the flow of the refrigerant in the bypass passage is shut off by the valve device. Even without providing the coolant temperature detection means, it is possible to accurately suppress the occurrence of bumping with a simple configuration.

本発明に係る車両用空調装置では、車外温度検知手段をさらに有し、前記制御措置は、前記圧縮機の起動時に、前記車外温度検知手段から得られた車外温度が所定温度未満であるときに前記弁装置によって前記バイパス通路内の前記冷媒の流れを許容した状態とし、前記車外温度が所定温度以上のときに前記弁装置によって前記バイパス通路内の前記冷媒の流れを遮断することが好ましい。車外温度検知手段を使って、簡易な構成のままで突沸の発生を精度良く抑制することが可能となる。 In the vehicle air conditioner according to the present invention, the vehicle further has an outside temperature detecting means, and the control means is configured to, when the outside temperature obtained from the outside temperature detecting means is below a predetermined temperature, when the compressor is started. It is preferable that the flow of the refrigerant in the bypass passage is allowed by the valve device and the flow of the refrigerant in the bypass passage is shut off by the valve device when the vehicle exterior temperature is equal to or higher than a predetermined temperature. By using the vehicle exterior temperature detecting means, it is possible to accurately suppress the occurrence of bumping with a simple configuration.

本開示によれば、求められる車両用空調装置に対して求められる温度調整機能を十分に発揮しつつアキュムレータ内部の過度な減圧状態を回避することのできる冷凍サイクルを有する車両用空調装置を提供することができる。 According to the present disclosure, there is provided a vehicle air conditioner having a refrigeration cycle capable of avoiding an excessively depressurized state inside the accumulator while sufficiently exerting the required temperature adjusting function for the vehicle air conditioner required. be able to.

本実施形態に係る車両用空調装置における冷房用冷凍サイクルの構成の第一例を示す概略図である。It is a schematic diagram showing the 1st example of composition of the refrigerating cycle for cooling in the air-conditioner for vehicles concerning this embodiment. バイパス通路を含むアキュムレータの第一例を示す概略図である。It is the schematic which shows the 1st example of the accumulator containing a bypass passage. バイパス通路を含むアキュムレータの第二例を示す概略図である。It is the schematic which shows the 2nd example of the accumulator containing a bypass passage. バイパス通路を含むアキュムレータの第三例を示す概略図である。It is a schematic diagram showing the 3rd example of the accumulator containing a bypass passage. 本実施形態に係る車両用空調装置における冷凍サイクルの構成の第二例を示す概略図である。It is a schematic diagram showing the 2nd example of composition of the refrigerating cycle in the air-conditioner for vehicles concerning this embodiment. 本実施形態に係る車両用空調装置における冷凍サイクルの構成の第三例を示す概略図である。It is a schematic diagram showing the 3rd example of composition of the refrigerating cycle in the air-conditioner for vehicles concerning this embodiment. 本実施形態に係る車両用空調装置における冷凍サイクルの構成の第四例を示す概略図である。It is a schematic diagram showing the 4th example of composition of the refrigerating cycle in the air-conditioner for vehicles concerning this embodiment. 本実施形態に係る車両用空調装置における冷凍サイクルの構成の第五例を示す概略図である。It is a schematic diagram showing the 5th example of composition of the refrigerating cycle in the air-conditioner for vehicles concerning this embodiment. 第一例のアキュムレータにおいてバイパス通路内の冷媒の流れを「許容」している状態を示す概略図である。It is a schematic diagram showing the state where the flow of the refrigerant in the bypass passage is "permitted" in the accumulator of the first example. 第一例のアキュムレータにおいてバイパス通路内の冷媒の流れを「遮断」している状態を示す概略図である。It is a schematic diagram showing the state where the flow of the refrigerant in the bypass passage is "blocked" in the accumulator of the first example. 圧縮機を起動したときのバイパス通路内の冷媒の流れの制御の第一例を示すフロー図である。It is a flowchart which shows the 1st example of control of the flow of the refrigerant in a bypass passage at the time of starting a compressor. 第二例のアキュムレータにおいてバイパス通路内の冷媒の流れを「許容」している状態を示す概略図である。It is a schematic diagram showing the state where the flow of the refrigerant in the bypass passage is "permitted" in the accumulator of the second example. 第二例のアキュムレータにおいてバイパス通路内の冷媒の流れを「遮断」している状態を示す概略図である。It is a schematic diagram showing the state where the flow of the refrigerant in the bypass passage is "blocked" in the accumulator of the second example. 圧縮機を起動したときのバイパス通路内の冷媒の流れの制御の第二例を示すフロー図である。It is a flowchart which shows the 2nd example of control of the flow of the refrigerant in a bypass passage at the time of starting a compressor. 圧縮機を起動したときのバイパス通路内の冷媒の流れの制御の第三例を示すフロー図である。It is a flowchart which shows the 3rd example of control of the flow of the refrigerant in a bypass passage at the time of starting a compressor.

以下、添付の図面を参照して本発明の一態様を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。本発明の効果を奏する限り、種々の形態変更をしてもよい。 Hereinafter, one aspect of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In addition, in the present specification and the drawings, components having the same reference numerals indicate the same components. Various modifications may be made as long as the effects of the present invention are exhibited.

図1及び図2を参照して、本実施形態に係る車両用空調装置について説明する。本実施形態に係る車両用空調装置は、少なくとも、圧縮機6、室外熱交換器4、膨張装置12、蒸発器3及びアキュムレータ10を備え、この順序で配管により接続した冷凍サイクル80と、冷凍サイクル80を循環する冷媒をアキュムレータ10へ流し込む冷媒入口管41と冷媒をアキュムレータ10から流し出す冷媒出口管42とをアキュムレータ10の外部で接続し、冷媒を短絡して流通可能としたバイパス通路43と、バイパス通路43に設けられた開閉機能を有する弁装置40と、少なくとも、圧縮機6及び弁装置40を制御する制御装置23と、を備える。 The vehicle air conditioner according to the present embodiment will be described with reference to FIGS. 1 and 2. The vehicle air conditioner according to the present embodiment includes at least a compressor 6, an outdoor heat exchanger 4, an expansion device 12, an evaporator 3, and an accumulator 10, and a refrigeration cycle 80 connected by piping in this order, and a refrigeration cycle. A refrigerant inlet pipe 41 for flowing the refrigerant circulating through 80 into the accumulator 10 and a refrigerant outlet pipe 42 for discharging the refrigerant from the accumulator 10 are connected outside the accumulator 10, and a bypass passage 43 that short-circuits the refrigerant to allow circulation. A valve device 40 provided in the bypass passage 43 and having an opening/closing function, and at least a control device 23 for controlling the compressor 6 and the valve device 40 are provided.

(冷凍サイクルの第一例)
冷房用の冷凍サイクルの基本的な構成は、図1に示すように、圧縮機6と、室外熱交換器4と、膨張装置12と、蒸発器3と、アキュムレータ10とを備えている。圧縮機6は、冷媒を吸入圧縮する。圧縮機6は、プーリー63、ベルト等を介して図示しない車両走行用エンジンにより回転駆動される。圧縮機6としては、可変容量型圧縮機及び固定容量型圧縮機のいずれを使用してもよい。また、圧縮機6として電動圧縮機を使用すれば、電動モータの回転数調整により冷媒吐出能力を調整できる。また、ベルト等を介して車両走行用エンジンとの連結を不要とすることができる。圧縮機6から吐出された高圧の気相冷媒は室外熱交換器4に流入し、ここで外気と熱交換して冷却され、凝縮される。室外熱交換器4で凝縮した液冷媒は次に膨張装置12にて低圧に減圧されて霧状の気液二相状態となる。この膨張装置12はオリフィス、ノズルのような固定絞り、あるいは適宜の可変絞りからなる。減圧後の低圧冷媒は蒸発器3において、図示しない空調送風機の送風空気から吸熱して蒸発する。蒸発器3は図示しない空調ケース内に配置され、蒸発器3で冷却された冷風は図示しないヒータコア部で温度調整された後に車室内へ吹き出される。蒸発器3を通過した冷媒はアキュムレータ10にて気液分離された後に圧縮機6に吸入される。アキュムレータ10は、蒸発器3から流出した冷媒を気相冷媒と液相冷媒とに分離し、液相冷媒を貯えて気相冷媒を圧縮機6に吸入させる役割を果たす。アキュムレータ10は、タンク底部側に溜まる液冷媒中に溶け込んでいるオイルを圧縮機6に吸入させる役割をも果たす。
(First example of refrigeration cycle)
As shown in FIG. 1, the basic configuration of the refrigerating cycle for cooling includes a compressor 6, an outdoor heat exchanger 4, an expansion device 12, an evaporator 3, and an accumulator 10. The compressor 6 sucks and compresses the refrigerant. The compressor 6 is rotationally driven by a vehicle running engine (not shown) via a pulley 63, a belt and the like. As the compressor 6, either a variable capacity type compressor or a fixed capacity type compressor may be used. If an electric compressor is used as the compressor 6, the refrigerant discharge capacity can be adjusted by adjusting the rotation speed of the electric motor. In addition, it is possible to eliminate the need for connection to the vehicle running engine via a belt or the like. The high-pressure vapor-phase refrigerant discharged from the compressor 6 flows into the outdoor heat exchanger 4, where it exchanges heat with the outside air to be cooled and condensed. The liquid refrigerant condensed in the outdoor heat exchanger 4 is then decompressed to a low pressure by the expansion device 12 and becomes a mist-like gas-liquid two-phase state. The expansion device 12 comprises an orifice, a fixed throttle such as a nozzle, or an appropriate variable throttle. In the evaporator 3, the low-pressure refrigerant after depressurization absorbs heat from the air blown by the air-conditioning fan (not shown) and evaporates. The evaporator 3 is arranged in an air conditioning case (not shown), and the cold air cooled by the evaporator 3 is blown out into the vehicle compartment after its temperature is adjusted by a heater core (not shown). The refrigerant that has passed through the evaporator 3 is separated into gas and liquid by the accumulator 10 and then sucked into the compressor 6. The accumulator 10 separates the refrigerant flowing out of the evaporator 3 into a gas-phase refrigerant and a liquid-phase refrigerant, stores the liquid-phase refrigerant, and sucks the gas-phase refrigerant into the compressor 6. The accumulator 10 also plays a role of causing the compressor 6 to suck the oil dissolved in the liquid refrigerant accumulated on the tank bottom side.

(アキュムレータ)
図2に示した冷媒44は、蒸発器3から流出した冷媒であって、気液二相状態の冷媒である。蒸発器3からつながる冷媒入口管41を通過した冷媒44は、タンク45に設けられた流入口46からタンク45の内部空間に流入する。タンク45の内部空間内には、溜められた液相冷媒47と気相冷媒48とが存在している。気液二相状態の冷媒44は気液分離体52によって、気相冷媒と液状冷媒とに分離される。気相冷媒48は、タンク45に設けられた流出口49に接続された冷媒出口管42を通り、圧縮機6に送られる。
(accumulator)
The refrigerant 44 shown in FIG. 2 is a refrigerant that has flowed out of the evaporator 3 and is in a gas-liquid two-phase state. The refrigerant 44 that has passed through the refrigerant inlet pipe 41 connected from the evaporator 3 flows into the internal space of the tank 45 from the inflow port 46 provided in the tank 45. In the internal space of the tank 45, the stored liquid-phase refrigerant 47 and vapor-phase refrigerant 48 exist. The gas-liquid two-phase refrigerant 44 is separated into a gas-phase refrigerant and a liquid refrigerant by the gas-liquid separator 52. The vapor-phase refrigerant 48 is sent to the compressor 6 through a refrigerant outlet pipe 42 connected to an outlet 49 provided in the tank 45.

(バイパス通路)
バイパス通路43は、冷媒入口管41と冷媒をアキュムレータ10から流し出す冷媒出口管42とをアキュムレータ10の外部で接続し、冷媒を短絡して流通可能とする。バイパス通路43には、バイパス通路43の開閉を行なうための弁装置40が設けられている。弁装置40によってバイパス通路43内の冷媒の流れが「許容」又は「遮断」される。ここで、弁装置40は、図2に示すような開閉弁であることが好ましい。簡易な構造で、バイパス通路43内の冷媒の流れを制御することができる。すなわち、開閉弁を開とするとバイパス通路内の冷媒の流れが「許容」される。このとき冷媒入口管41及び冷媒出口管42は閉じられていないので、冷媒はアキュムレータ10内に流れうるものの、バイパス通路43内を流れるほうがアキュムレータ10内を流れるよりも通気抵抗が小さくなるため、バイパス通路43内を流れることが支配的となる。このときバイパス通路43内の圧力とアキュムレータ10内の圧力は自然に近似される。一方、開閉弁を閉とするとバイパス通路内の冷媒の流れが「遮断」され、冷媒はアキュムレータ10内に流れ込む。
(Bypass passage)
The bypass passage 43 connects the refrigerant inlet pipe 41 and the refrigerant outlet pipe 42 for flowing the refrigerant from the accumulator 10 outside the accumulator 10, and short-circuits the refrigerant so that the refrigerant can flow. The bypass passage 43 is provided with a valve device 40 for opening and closing the bypass passage 43. The valve device 40 “allows” or “blocks” the flow of the refrigerant in the bypass passage 43. Here, the valve device 40 is preferably an on-off valve as shown in FIG. The flow of the refrigerant in the bypass passage 43 can be controlled with a simple structure. That is, when the opening/closing valve is opened, the flow of the refrigerant in the bypass passage is “permitted”. At this time, since the refrigerant inlet pipe 41 and the refrigerant outlet pipe 42 are not closed, the refrigerant can flow into the accumulator 10, but the air flow resistance in the bypass passage 43 becomes smaller than that in the accumulator 10, so that the bypass is bypassed. The flow in the passage 43 becomes dominant. At this time, the pressure in the bypass passage 43 and the pressure in the accumulator 10 are naturally approximated. On the other hand, when the on-off valve is closed, the flow of the refrigerant in the bypass passage is “blocked” and the refrigerant flows into the accumulator 10.

弁装置40は、図3に示すようにバイパス通路43と冷媒出口管40との合流点に配置された三方弁であることが好ましい。簡易な構造で、バイパス通路43内の冷媒の流れを制御することができる。すなわち、三方弁においてバイパス通路を開、冷媒出口管42を閉とするとバイパス通路内の冷媒の流れが「許容」される。このとき、冷媒出口管42を閉としているので、アキュムレータ10内に冷媒は流れない。ただし、冷媒入口管41は閉じられていないので、バイパス通路43内の圧力とアキュムレータ10内の圧力は自然に近似される。一方、三方弁においてバイパス通路を閉、冷媒出口管42を開とするとバイパス通路内の冷媒の流れが「遮断」され、冷媒はアキュムレータ10内に流れ込む。 The valve device 40 is preferably a three-way valve arranged at the confluence of the bypass passage 43 and the refrigerant outlet pipe 40 as shown in FIG. The flow of the refrigerant in the bypass passage 43 can be controlled with a simple structure. That is, when the bypass passage is opened and the refrigerant outlet pipe 42 is closed in the three-way valve, the flow of the refrigerant in the bypass passage is “permitted”. At this time, since the refrigerant outlet pipe 42 is closed, the refrigerant does not flow into the accumulator 10. However, since the refrigerant inlet pipe 41 is not closed, the pressure in the bypass passage 43 and the pressure in the accumulator 10 are naturally approximated. On the other hand, when the bypass passage is closed and the refrigerant outlet pipe 42 is opened in the three-way valve, the flow of the refrigerant in the bypass passage is “blocked” and the refrigerant flows into the accumulator 10.

弁装置40は、図2に示した開閉弁としても、図3に示した三方弁としても、上記に説明したとおり、バイパス通路43内の冷媒の流れを「許容」又は「遮断」することにおいて、同等の作用をする。 The valve device 40, as the on-off valve shown in FIG. 2 or the three-way valve shown in FIG. 3, is capable of “permitting” or “blocking” the flow of the refrigerant in the bypass passage 43, as described above. , Has the same effect.

(冷媒温度検知手段)
本実施形態に係る車両用空調装置では、図2に示すように、アキュムレータ10の内部の液相冷媒47の温度を検出可能な冷媒温度検知手段50をさらに有することが好ましい。ここで、冷媒温度検知手段50の温度センサー部は、アキュムレータ10の内部空間内の中央より下側又はアキュムレータ10の外底面に配置されていることが好ましい。このような場所に温度センサー部を配置することで、精度良く液相冷媒47の温度を検出できる。図2では、冷媒温度検知手段50の温度センサー部をアキュムレータ10の外底面に配置した形態を示した。弁装置の閉弁時期をより精度良く推定することが可能となり、その結果、突沸の発生をより精度良く抑制することが可能となる。また、冷媒温度検知手段50の温度センサー部は、アキュムレータ10の内部空間内の中央より下側に配置されると、アキュムレータ10内に溜まった液状冷媒47の量は、変動しうるところ、変動したとしても、液状冷媒47の液温を精度良く測定できる。
(Refrigerant temperature detection means)
As shown in FIG. 2, it is preferable that the vehicle air conditioner according to the present embodiment further include a refrigerant temperature detecting means 50 capable of detecting the temperature of the liquid-phase refrigerant 47 inside the accumulator 10. Here, it is preferable that the temperature sensor portion of the coolant temperature detecting means 50 is disposed below the center of the internal space of the accumulator 10 or on the outer bottom surface of the accumulator 10. By disposing the temperature sensor unit in such a place, the temperature of the liquid-phase refrigerant 47 can be accurately detected. In FIG. 2, the temperature sensor portion of the coolant temperature detecting means 50 is arranged on the outer bottom surface of the accumulator 10. It is possible to more accurately estimate the valve closing timing of the valve device, and as a result, it is possible to more accurately suppress the occurrence of bumping. Further, when the temperature sensor part of the refrigerant temperature detecting means 50 is arranged below the center of the internal space of the accumulator 10, the amount of the liquid refrigerant 47 accumulated in the accumulator 10 fluctuates, although it may fluctuate. Even in this case, the liquid temperature of the liquid refrigerant 47 can be accurately measured.

(車外温度検知手段)
本実施形態に係る車両用空調装置では、図4に示すように、車外温度検知手段51をさらに有することが好ましい。なお、図2及び図3に示した形態においても車外温度検知手段51をさらに有することが好ましい。圧縮機6の起動直後にアキュムレータ10の内部で冷媒が沸騰し異音は、圧縮機の回転速度の状態にもよるが、車外温度が比較的高い条件(例えば35℃)よりも、中程度の条件(例えば20℃)やより低い条件(例えば10℃)の方が概ね発生しやすく、車外温度を把握することで、弁装置40の開閉操作のタイミングを精度よく調整することができる。
(External temperature detection means)
The vehicle air conditioner according to the present embodiment preferably further includes a vehicle outside temperature detecting means 51, as shown in FIG. It should be noted that it is preferable to further include the vehicle outside temperature detecting means 51 also in the configurations shown in FIGS. 2 and 3. Immediately after the compressor 6 is started, the refrigerant boils inside the accumulator 10 and the abnormal noise is higher than the condition (for example, 35° C.) where the temperature outside the vehicle is relatively high, although it depends on the state of the rotation speed of the compressor. The conditions (for example, 20° C.) and lower conditions (for example, 10° C.) are more likely to occur, and the timing of the opening/closing operation of the valve device 40 can be accurately adjusted by grasping the temperature outside the vehicle.

(制御装置)
制御装置23は、弁装置40によるバイパス通路43内の冷媒の流れの「許容」又は「遮断」を制御する。例えば、開閉弁の開と閉の切換えを制御する。また、三方弁においてバイパス通路43を開、且つ冷媒出口管42を閉とするか、又は、バイパス通路43を閉、且つ冷媒出口管42を開とする、の切換えを制御する。さらに、圧縮機6の運転の制御を行なう。例えば、圧縮機6が電動式圧縮機である場合、制御装置23が、電動式圧縮機の回転数を指定し、電動式圧縮機はその指定された回転数となるように駆動する。また、制御装置23は、弁装置40及び圧縮機6の制御を行う他、他の装置の制御を行なってもよい。さらに、制御装置23は、各種センサーからの情報を入手しても良く、例えば、冷媒温度検知手段50からアキュムレータの内部の液相冷媒の温度情報を入手しても良い。さらに、制御装置23は、車外温度検知手段51から車外温度情報を入手しても良い。
(Control device)
The control device 23 controls “permit” or “block” the flow of the refrigerant in the bypass passage 43 by the valve device 40. For example, it controls switching between opening and closing of the on-off valve. In addition, the switching of the bypass passage 43 and the refrigerant outlet pipe 42 closed in the three-way valve or the bypass passage 43 and the refrigerant outlet pipe 42 opened is controlled. Further, the operation of the compressor 6 is controlled. For example, when the compressor 6 is an electric compressor, the control device 23 specifies the rotation speed of the electric compressor, and the electric compressor is driven to reach the specified rotation speed. In addition to controlling the valve device 40 and the compressor 6, the control device 23 may control other devices. Further, the control device 23 may obtain information from various sensors, for example, the temperature information of the liquid phase refrigerant inside the accumulator from the refrigerant temperature detecting means 50. Further, the control device 23 may obtain the vehicle exterior temperature information from the vehicle exterior temperature detecting means 51.

(冷凍サイクルの変形例)
本実施形態に係る車両用空調装置では、単純な冷房用の冷凍サイクル(冷凍サイクルの第一例)だけでなく、除湿暖房の可能な冷凍サイクルに、バイパス通路43及び弁装置40を適用してもよい。例えば、国際公開2013/035130号公報に開示された車両用空調装置に適用してもよい。具体的には、同公報の図1、図5、図6又は図7に記載の装置に適用できる。
(Modification of refrigeration cycle)
In the vehicle air conditioner according to the present embodiment, the bypass passage 43 and the valve device 40 are applied to not only a simple refrigeration cycle for cooling (first example of refrigeration cycle) but also a refrigeration cycle capable of dehumidifying and heating. Good. For example, you may apply to the vehicle air conditioner disclosed by the international publication 2013/035130. Specifically, it can be applied to the device described in FIG. 1, FIG. 5, FIG. 6 or FIG.

(冷凍サイクルの第二例)
図5に本実施形態に係る車両用空調装置における冷凍サイクルの構成の第二例の概略図を示す。冷凍サイクルの構成の第二例は、国際公開2013/035130号公報の図1に記載の装置にバイパス通路43及び弁装置40を適用した例である。なお、同公報の図中の開閉弁17は、本願の図面における開閉弁17と共通である。
(Second example of refrigeration cycle)
FIG. 5 shows a schematic diagram of a second example of the configuration of the refrigeration cycle in the vehicle air conditioner according to the present embodiment. The second example of the configuration of the refrigeration cycle is an example in which the bypass passage 43 and the valve device 40 are applied to the device shown in FIG. 1 of WO 2013/035130. The open/close valve 17 in the drawing of the publication is the same as the open/close valve 17 in the drawings of the present application.

(冷凍サイクルの第三例)
図6に本実施形態に係る車両用空調装置における冷凍サイクルの構成の第三例の概略図を示す。冷凍サイクルの構成の第三例は、国際公開2013/035130号公報の図5に記載の装置にバイパス通路43及び弁装置40を適用した例である。
(Third example of refrigeration cycle)
FIG. 6 shows a schematic diagram of a third example of the configuration of the refrigeration cycle in the vehicle air conditioner according to the present embodiment. The third example of the configuration of the refrigeration cycle is an example in which the bypass passage 43 and the valve device 40 are applied to the device shown in FIG. 5 of WO 2013/035130.

(冷凍サイクルの第四例)
図7に本実施形態に係る車両用空調装置における冷凍サイクルの構成の第四例の概略図を示す。冷凍サイクルの構成の第四例は、国際公開2013/035130号公報の図6に記載の装置にバイパス通路43及び弁装置40を適用した例である。
(Fourth example of refrigeration cycle)
FIG. 7 shows a schematic diagram of a fourth example of the configuration of the refrigeration cycle in the vehicle air conditioner according to the present embodiment. The fourth example of the configuration of the refrigeration cycle is an example in which the bypass passage 43 and the valve device 40 are applied to the device shown in FIG. 6 of WO 2013/035130.

(冷凍サイクルの第四例)
図8に本実施形態に係る車両用空調装置における冷凍サイクルの構成の第五例の概略図を示す。冷凍サイクルの構成の第五例は、国際公開2013/035130号公報の図7に記載の装置にバイパス通路43及び弁装置40を適用した例である。
(Fourth example of refrigeration cycle)
FIG. 8 shows a schematic diagram of a fifth example of the configuration of the refrigeration cycle in the vehicle air conditioner according to the present embodiment. The fifth example of the configuration of the refrigeration cycle is an example in which the bypass passage 43 and the valve device 40 are applied to the device shown in FIG. 7 of WO 2013/035130.

次に、図2、図9及び図10を参照して、本実施形態に係る車両用空調装置について、更に詳しく説明する。本実施形態に係る車両用空調装置では、アキュムレータの内部の液相冷媒の温度を検出可能な冷媒温度検知手段50をさらに有し、圧縮機6は、電動式であり、制御装置23は、圧縮機6を指定する回転数で起動し、かつ、弁装置40によってバイパス通路43内の冷媒の流れを許容した状態とし(図9に示した状態とする。)、続いて、圧縮機6の指定する回転数及び冷媒温度検知手段50から得た温度情報から、バイパス通路43内の冷媒の流れを遮断したときのアキュムレータ10の内部の気相冷媒48の推定過熱度Testを算出し、推定過熱度Testと所定の閾値過熱度Tdefとを比較して、推定過熱度Testが閾値過熱度Tdefを下回ったら、弁装置40によってバイパス通路43内の冷媒の流れを遮断する(図10に示した状態とする。)ことが好ましい。弁装置の閉弁時期を推定し、突沸の発生を精度良く抑制することが可能となる。具体的には次の通りである。図11に制御装置23の具体的な制御フロー図を示した。圧縮機6は電動式であることから、制御装置23の指定する回転数にて圧縮機6を制御することが可能である。そして、圧縮機6の回転数からバイパス通路43内の冷媒の流れを遮断した後のアキュムレータ10内の気相冷媒48の圧力を推定する(以降推定圧力という。)ことは可能である。推定圧力と冷媒温度検知手段50から得た温度情報とから推定過熱度Testを算出する。ここで、過熱度の算出式は、前提として、開弁している弁装置40を閉弁したときに突沸しないことを推定するための式となる。この過熱度のことを、閉弁した場合の「推定過熱度Test」と定義する。圧縮機6の吸入冷媒量Vsが多いほど、弁装置40を閉弁したときのアキュムレータ10の内部空間の気相圧力Pvsは低くなる。また、液冷媒の温度Tliqが高いほど沸点温度は高い一方、液冷媒からの冷媒の蒸発量Vevaも多いため、一概に液冷媒の温度が高いほど沸騰しやすいとは言い切れない。これらをふまえ、推定過熱度Testを次式(数1)のように算出する。ここで、α、β、γは、それぞれ係数である。
(数1) Test1 = α・Tliq − (β・Veva × γ・Pvs)
さらに、外気負荷(外気温度)Toutが高いほどアキュムレータの内部に貯留される冷媒の量は減少し気相領域が多くなるため、圧縮機6により冷媒が吸引されても気相圧力Pvsの減少量は緩やかとなり、また冷媒の蒸発量Vevaが一定量であったとしても気相圧力Pvsの上昇も緩やかとなる。このため、数1に外気温度Toutを反映させることで、より高い精度で推定過熱度Testを算出することができる。具体的には次式(数2)のように算出する。
(数2) Test2 =
α・Tliq − (β・Veva × γ・Pvs / Tout)
そして、数1また数2により算出した推定過熱度と、閾値過熱度とを比較して、推定過熱度Testが閾値過熱度Tdefを下回ったら、弁装置40を閉弁するとの制御を行なう。閾値過熱度Tdefは、液冷媒の沸騰温度に対して所定温度低く設定することが好ましい。閾値過熱度Tdefは、沸騰温度に対して低く設定するほど突沸の防止効果が高くなる。ここで所定温度は1℃〜6℃の範囲から選択される決められた温度とすることが好ましく、2℃〜5℃の範囲から選択される決められた温度とすることがより好ましい。閾値過熱度Tdefは、例えば沸騰温度よりも2℃低く設定することが好ましく、5℃低く設定することがより好ましい。
Next, the vehicle air conditioner according to the present embodiment will be described in more detail with reference to FIGS. 2, 9 and 10. The vehicle air conditioner according to the present embodiment further includes a refrigerant temperature detecting means 50 capable of detecting the temperature of the liquid phase refrigerant inside the accumulator, the compressor 6 is an electric type, and the control device 23 is a compressor. The machine 6 is started at the designated rotation speed, and the flow of the refrigerant in the bypass passage 43 is allowed by the valve device 40 (the state shown in FIG. 9). Then, the compressor 6 is designated. The estimated superheat degree Test of the vapor phase refrigerant 48 inside the accumulator 10 when the flow of the refrigerant in the bypass passage 43 is cut off is calculated from the rotational speed and the temperature information obtained from the refrigerant temperature detection means 50, and the estimated superheat degree is calculated. Test and a predetermined threshold superheat degree Tdef are compared, and when the estimated superheat degree Test falls below the threshold superheat degree Tdef, the flow of the refrigerant in the bypass passage 43 is shut off by the valve device 40 (in the state shown in FIG. 10). It is preferable. It is possible to estimate the valve closing timing of the valve device and accurately suppress the occurrence of bumping. Specifically, it is as follows. FIG. 11 shows a specific control flow chart of the control device 23. Since the compressor 6 is an electric type, it is possible to control the compressor 6 at a rotation speed designated by the control device 23. Then, it is possible to estimate the pressure of the gas-phase refrigerant 48 in the accumulator 10 after the flow of the refrigerant in the bypass passage 43 is blocked (hereinafter referred to as the estimated pressure) from the rotation speed of the compressor 6. The estimated superheat degree Test is calculated from the estimated pressure and the temperature information obtained from the refrigerant temperature detection means 50. Here, the formula for calculating the degree of superheat is, as a premise, a formula for estimating that bumping will not occur when the valve device 40 that is open is closed. This degree of superheat is defined as "estimated degree of superheat Test" when the valve is closed. The larger the suction refrigerant amount Vs of the compressor 6, the lower the gas phase pressure Pvs of the internal space of the accumulator 10 when the valve device 40 is closed. Further, the higher the temperature Tliq of the liquid refrigerant is, the higher the boiling point temperature is, and the larger the evaporation amount Veva of the refrigerant from the liquid refrigerant is. Therefore, it cannot be said that the higher the temperature of the liquid refrigerant is, the easier the boiling is. Based on these, the estimated superheat degree Test is calculated by the following equation (Equation 1). Here, α, β, and γ are coefficients.
(Equation 1) Test1=α·Tliq − (β·Veva×γ·Pvs)
Further, as the outside air load (outside air temperature) Tout is higher, the amount of the refrigerant stored inside the accumulator decreases and the gas phase region increases, so that even if the refrigerant is sucked by the compressor 6, the amount of decrease in the gas phase pressure Pvs. Is moderate, and even if the refrigerant evaporation amount Veva is a constant amount, the increase in the vapor phase pressure Pvs is also moderate. Therefore, the estimated superheat degree Test can be calculated with higher accuracy by reflecting the outside air temperature Tout in Formula 1. Specifically, it is calculated as in the following equation (Equation 2).
(Equation 2) Test2 =
α·Tliq − (β·Veva×γ·Pvs/Tout)
Then, the estimated superheat degree calculated by the equations 1 and 2 is compared with the threshold superheat degree, and when the estimated superheat degree Test falls below the threshold superheat degree Tdef, the valve device 40 is controlled to be closed. The threshold superheat degree Tdef is preferably set to be lower than the boiling temperature of the liquid refrigerant by a predetermined temperature. As the threshold superheat degree Tdef is set lower with respect to the boiling temperature, the effect of preventing bumping becomes higher. Here, the predetermined temperature is preferably a predetermined temperature selected from the range of 1°C to 6°C, and more preferably a predetermined temperature selected from the range of 2°C to 5°C. The threshold superheat degree Tdef is preferably set, for example, 2° C. lower than the boiling temperature and more preferably 5° C. lower than the boiling temperature.

次に、図3、図12及び図13を参照する。この形態は、図2、図9及び図10に示した形態の開閉弁を、三方弁に変更した例である。弁装置40によってバイパス通路43内の冷媒の流れを許容した状態を図12に示す。弁装置40によってバイパス通路43内の冷媒の流れを遮断した状態を図13に示す。図3、図12及び図13に示した形態においても図11に示した制御フロー図の制御が適用できる。 Next, refer to FIG. 3, FIG. 12 and FIG. This form is an example in which the on-off valve of the form shown in FIGS. 2, 9 and 10 is changed to a three-way valve. FIG. 12 shows a state in which the flow of the refrigerant in the bypass passage 43 is allowed by the valve device 40. FIG. 13 shows a state in which the flow of the refrigerant in the bypass passage 43 is blocked by the valve device 40. The control of the control flow chart shown in FIG. 11 can be applied to the configurations shown in FIGS. 3, 12, and 13.

次に、図2、図9及び図10を参照して、本実施形態に係る車両用空調装置について、別の制御を行なう例を説明する。本実施形態発明に係る車両用空調装置では、制御装置23は、圧縮機6の起動時には弁装置40によってバイパス通路43内の冷媒の流れを許容した状態とし(図9に示した状態とする。)、その後、所定時間を経過したのちに弁装置40によってバイパス通路43内の冷媒の流れを遮断した状態とする(図10に示した状態とする。)ことが好ましい。制御措置23はタイマー機能を備えている。冷媒温度検知手段を設けずとも、簡易な構成のままで突沸の発生を精度良く抑制することが可能となる。図14に制御装置23の具体的な制御フロー図を示した。所定時間は、例えば90〜180秒の範囲から選択させる決められた時間である。 Next, with reference to FIG. 2, FIG. 9 and FIG. 10, an example of performing another control of the vehicle air conditioner according to the present embodiment will be described. In the vehicle air conditioner according to the present invention, the control device 23 allows the flow of the refrigerant in the bypass passage 43 by the valve device 40 when the compressor 6 is activated (the state shown in FIG. 9). ) Then, after a predetermined time has passed, it is preferable that the flow of the refrigerant in the bypass passage 43 is blocked by the valve device 40 (the state shown in FIG. 10). The control device 23 has a timer function. Even without providing the coolant temperature detection means, it is possible to accurately suppress the occurrence of bumping with a simple configuration. FIG. 14 shows a specific control flow chart of the control device 23. The predetermined time is, for example, a predetermined time to be selected from the range of 90 to 180 seconds.

次に、図4を参照して、本実施形態に係る車両用空調装置について説明する。本実施形態発明に係る車両用空調装置では、車外温度検知手段51をさらに有し、制御措置23は、圧縮機6の起動時に、車外温度検知手段51から得られた車外温度が所定温度未満であるときに弁装置40によってバイパス通路43内の冷媒の流れを許容した状態とし、車外温度が所定温度以上のときに弁装置40によってバイパス通路43内の冷媒の流れを遮断することが好ましい。車外温度検知手段51を使って、簡易な構成のままで突沸の発生を精度良く抑制することが可能となる。図15に制御装置23の具体的な制御フロー図を示した。車外温度の所定温度は、例えば5℃以下の範囲から選択させる決められた温度である。 Next, the vehicle air conditioner according to the present embodiment will be described with reference to FIG. In the vehicle air conditioner according to the present embodiment, the vehicle outside temperature detecting means 51 is further provided, and the control measure 23 is configured such that, when the compressor 6 is started, the outside temperature obtained from the vehicle outside temperature detecting means 51 is less than the predetermined temperature. It is preferable that the flow of the refrigerant in the bypass passage 43 is allowed by the valve device 40 at a certain time, and the flow of the refrigerant in the bypass passage 43 is blocked by the valve device 40 when the temperature outside the vehicle is equal to or higher than a predetermined temperature. By using the vehicle exterior temperature detecting means 51, it is possible to accurately suppress the occurrence of bumping with a simple configuration. FIG. 15 shows a specific control flow chart of the control device 23. The predetermined temperature of the vehicle exterior temperature is a predetermined temperature that is selected from a range of 5° C. or less, for example.

本実施形態に係る車両用空調装置は、いずれの形態であっても、アキュムレータ10内の内部空間の過度な減圧状態を回避することができる。これによって、液状冷媒の突沸の発生を抑制することができ、それゆえ、突沸現象によるアキュムレータからの異音の発生を抑制することができる。 The vehicle air conditioner according to the present embodiment can avoid an excessively depressurized state of the internal space in the accumulator 10 in any form. With this, it is possible to suppress the occurrence of bumping of the liquid refrigerant, and thus to suppress the generation of abnormal noise from the accumulator due to the bumping phenomenon.

3 蒸発器
4 室外熱交換器
6 圧縮機
10 アキュムレータ
12 膨張装置
17 開閉弁
23 制御装置
40 弁装置
41 冷媒入口管
42 冷媒出口管
43 バイパス通路
44 冷媒
45 タンク
46 流入口
47 液相冷媒
48 気相冷媒
49 流出口
50 冷媒温度検知手段
51 車外温度検知手段
52 気液分離体
63 プーリー
80 冷凍サイクル

3 evaporator 4 outdoor heat exchanger 6 compressor 10 accumulator 12 expansion device 17 on-off valve 23 control device 40 valve device 41 refrigerant inlet pipe 42 refrigerant outlet pipe 43 bypass passage 44 refrigerant 45 tank 46 inlet 47 liquid phase refrigerant 48 gas phase Refrigerant 49 Outlet 50 Refrigerant temperature detection means 51 Vehicle temperature detection means 52 Gas-liquid separator 63 Pulley 80 Refrigeration cycle

Claims (7)

少なくとも、圧縮機(6)、室外熱交換器(4)、膨張装置(12)、蒸発器(3)及びアキュムレータ(10)を備え、この順序で配管により接続した冷凍サイクル(80)と、冷凍サイクルを循環する冷媒をアキュムレータへ流し込む冷媒入口管(41)と前記冷媒を前記アキュムレータから流し出す冷媒出口管(42)とを該アキュムレータの外部で接続し、前記冷媒を短絡して流通可能としたバイパス通路(43)と、
該バイパス通路に設けられた開閉機能を有する弁装置(40)と、
少なくとも、前記圧縮機及び前記弁装置を制御する制御装置(23)と、
を備えることを特徴とする車両用空調装置。
At least a compressor (6), an outdoor heat exchanger (4), an expansion device (12), an evaporator (3) and an accumulator (10), and a refrigeration cycle (80) connected by piping in this order, and a refrigeration cycle. A refrigerant inlet pipe (41) for flowing a refrigerant circulating through the cycle into an accumulator and a refrigerant outlet pipe (42) for flowing out the refrigerant from the accumulator are connected outside the accumulator, and the refrigerant is short-circuited to enable circulation. A bypass passage (43),
A valve device (40) having an opening/closing function provided in the bypass passage,
At least a control device (23) for controlling the compressor and the valve device,
An air conditioner for a vehicle, comprising:
前記弁装置が、前記バイパス通路内の前記冷媒の流れを許容又は遮断する開閉弁であることを特徴とする請求項1に記載の車両用空調装置。 The vehicle air conditioner according to claim 1, wherein the valve device is an opening/closing valve that allows or blocks the flow of the refrigerant in the bypass passage. 前記弁装置が、前記バイパス通路と前記冷媒出口管との合流点に配置された三方弁であることを特徴とする請求項1に記載の車両用空調装置。 The vehicle air conditioner according to claim 1, wherein the valve device is a three-way valve disposed at a confluence of the bypass passage and the refrigerant outlet pipe. 前記アキュムレータの内部の液相冷媒の温度を検出可能な冷媒温度検知手段(50)をさらに有し、
前記圧縮機は、電動式であり、
前記制御装置は、
前記圧縮機を指定する回転数で起動し、かつ、前記弁装置によって前記バイパス通路内の前記冷媒の流れを許容した状態とし、
続いて、前記圧縮機の指定する回転数及び前記冷媒温度検知手段から得た温度情報から、前記バイパス通路内の前記冷媒の流れを遮断したときの前記アキュムレータの内部の気相冷媒(48)の推定過熱度Testを算出し、
該推定過熱度Testと所定の閾値過熱度Tdefとを比較して、推定過熱度Testが閾値過熱度Tdefを下回ったら、前記弁装置によって前記バイパス通路内の前記冷媒の流れを遮断することを特徴とする請求項1〜3のいずれか一つに記載の車両用空調装置。
Further comprising a refrigerant temperature detecting means (50) capable of detecting the temperature of the liquid phase refrigerant inside the accumulator,
The compressor is electric,
The control device is
The compressor is started at a designated rotation speed, and the valve device allows the flow of the refrigerant in the bypass passage,
Then, from the rotational speed designated by the compressor and the temperature information obtained from the refrigerant temperature detection means, the gas-phase refrigerant (48) inside the accumulator when the flow of the refrigerant in the bypass passage is shut off. Calculate the estimated superheat degree Test,
Comparing the estimated superheat degree Test and a predetermined threshold superheat degree Tdef, and when the estimated superheat degree Test falls below the threshold superheat degree Tdef, the flow of the refrigerant in the bypass passage is shut off by the valve device. The vehicle air conditioner according to any one of claims 1 to 3.
前記冷媒温度検知手段の温度センサー部は、前記アキュムレータの内部空間内の中央より下側又はアキュムレータの外底面に配置されていることを特徴とする請求項4に記載の車両用空調装置。 The vehicle air conditioner according to claim 4, wherein the temperature sensor portion of the refrigerant temperature detecting means is arranged below the center of the internal space of the accumulator or on the outer bottom surface of the accumulator. 前記制御装置は、前記圧縮機の起動時には前記弁装置によって前記バイパス通路内の前記冷媒の流れを許容した状態とし、その後、所定時間を経過したのちに前記弁装置によって前記バイパス通路内の前記冷媒の流れを遮断した状態とすることを特徴とする請求項1〜3のいずれか一つに記載の車両用空調装置。 The control device is in a state in which the flow of the refrigerant in the bypass passage is allowed by the valve device at the time of starting the compressor, and then, after a predetermined time has elapsed, the refrigerant in the bypass passage by the valve device. The air conditioner for a vehicle according to any one of claims 1 to 3, wherein the flow of the air is cut off. 車外温度検知手段(51)をさらに有し、
前記制御措置は、前記圧縮機の起動時に、前記車外温度検知手段から得られた車外温度が所定温度未満であるときに前記弁装置によって前記バイパス通路内の前記冷媒の流れを許容した状態とし、前記車外温度が所定温度以上のときに前記弁装置によって前記バイパス通路内の前記冷媒の流れを遮断する、請求項1〜3のいずれか一つに記載の車両用空調装置。

Further having a vehicle outside temperature detecting means (51),
The control measure, when starting the compressor, a state in which the flow of the refrigerant in the bypass passage is allowed by the valve device when the vehicle exterior temperature obtained from the vehicle exterior temperature detection means is lower than a predetermined temperature, The vehicle air conditioner according to any one of claims 1 to 3, wherein the valve device shuts off the flow of the refrigerant in the bypass passage when the vehicle exterior temperature is equal to or higher than a predetermined temperature.

JP2018243127A 2018-12-26 2018-12-26 Vehicular air conditioner Pending JP2020104591A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018243127A JP2020104591A (en) 2018-12-26 2018-12-26 Vehicular air conditioner
EP19218445.5A EP3674627A1 (en) 2018-12-26 2019-12-20 Vehicle air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243127A JP2020104591A (en) 2018-12-26 2018-12-26 Vehicular air conditioner

Publications (1)

Publication Number Publication Date
JP2020104591A true JP2020104591A (en) 2020-07-09

Family

ID=69411068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243127A Pending JP2020104591A (en) 2018-12-26 2018-12-26 Vehicular air conditioner

Country Status (2)

Country Link
EP (1) EP3674627A1 (en)
JP (1) JP2020104591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3116766A1 (en) * 2020-12-02 2022-06-03 Valeo Systemes Thermiques Refrigerant circuit comprising a bypass branch of an accumulator
WO2024053334A1 (en) * 2022-09-07 2024-03-14 株式会社デンソー Refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114877574B (en) * 2022-06-07 2022-10-14 浙江欧特立汽车空调有限公司 Liquid storage device for new energy automobile air conditioning system and working method of liquid storage device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088402A (en) 1998-07-13 2000-03-31 Showa Alum Corp Accumulator
JP4214884B2 (en) * 2003-10-14 2009-01-28 株式会社デンソー Refrigeration cycle equipment
EP2759424B1 (en) 2011-09-06 2017-04-19 Valeo Japan Co., Ltd. Vehicle air-conditioning apparatus
EP3088819B1 (en) * 2015-01-23 2021-09-15 Mitsubishi Electric Corporation Air conditioning device
JP2017058070A (en) 2015-09-16 2017-03-23 本田技研工業株式会社 Air conditioner
CN108180679B (en) * 2017-12-27 2020-12-18 青岛海信日立空调系统有限公司 Refrigeration system, air conditioner and control method of air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3116766A1 (en) * 2020-12-02 2022-06-03 Valeo Systemes Thermiques Refrigerant circuit comprising a bypass branch of an accumulator
WO2022117374A1 (en) * 2020-12-02 2022-06-09 Valeo Systemes Thermiques Refrigerating fluid circuit comprising an accumulator bypass branch
WO2024053334A1 (en) * 2022-09-07 2024-03-14 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
EP3674627A1 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
US6314750B1 (en) Heat pump air conditioner
JP6370545B2 (en) Heat pump system
JP5402027B2 (en) Air conditioner
JP6792057B2 (en) Refrigeration cycle equipment
JP2007183020A (en) Capacity variable air conditioner
WO2018110185A1 (en) Refrigerant circuit system and method for controlling refrigerant circuit system
JP2020104591A (en) Vehicular air conditioner
JP2010175190A (en) Air conditioner
JP2018095182A (en) Refrigeration cycle device
JP2001063348A (en) Refrigerating cycle system
JP5370551B1 (en) Container refrigeration equipment
JP2007010220A (en) Refrigerating unit and refrigerator comprising the same
JP2008030740A (en) Vehicular refrigerating cycle device
JP2006200890A (en) Air conditioner
JP4214884B2 (en) Refrigeration cycle equipment
JP2002081769A (en) Air conditioner
JP2007101177A (en) Air conditioner or refrigerating cycle device
JP3993540B2 (en) Refrigeration equipment
JP5989534B2 (en) Refrigeration system apparatus and air conditioner
JP2016109419A (en) Freezer
KR100526605B1 (en) Refrigerator and refrierator controlling method
JPWO2003083380A1 (en) Refrigeration equipment
JP4167308B2 (en) Refrigerant circulation type heat transfer device
JP2014163564A (en) Refrigeration device
KR20150048350A (en) Air conditioner