JP2020104149A - Steel continuous casting method for steel - Google Patents

Steel continuous casting method for steel Download PDF

Info

Publication number
JP2020104149A
JP2020104149A JP2018246440A JP2018246440A JP2020104149A JP 2020104149 A JP2020104149 A JP 2020104149A JP 2018246440 A JP2018246440 A JP 2018246440A JP 2018246440 A JP2018246440 A JP 2018246440A JP 2020104149 A JP2020104149 A JP 2020104149A
Authority
JP
Japan
Prior art keywords
slab
continuous casting
steel
reduction
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018246440A
Other languages
Japanese (ja)
Inventor
章敏 松井
Akitoshi Matsui
章敏 松井
脩平 入江
Shuhei IRIE
脩平 入江
則親 荒牧
Norichika Aramaki
則親 荒牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018246440A priority Critical patent/JP2020104149A/en
Publication of JP2020104149A publication Critical patent/JP2020104149A/en
Pending legal-status Critical Current

Links

Abstract

To provide a continuous casting method for a steel capable of reducing porosities in a slab.SOLUTION: A continuous casting method for a steel has a process where, while injecting a molten steel 9 into a cooled mold 5 for continuous casting, the molten steel 9 is solidified to form a slab 10, and the slab 10 is pulled out from the mold 5. Next, cooling water is sprayed toward the slab 10 to solidify the molten steel 9 in the slab 10, and then, the slab 10 is depressed. At a position in which the depression is started, the surface temperature of the slab 10 is controlled to 600°C or lower, and also, a difference between the temperature of a slab center and the above surface temperature is controlled to 400°C or higher, and, at a solidification completion position 13 in which the solidification of the molten steel 9 in the slab 10 is completed, the solidification structure of the central part in a slab thickness direction is formed of columnar crystals and/or branched columnar crystals. The slab 10 is depressed by 5 mm or higher.SELECTED DRAWING: Figure 1

Description

本発明は、連続鋳造機で鋳造される鋳片に形成される空隙を低減する鋼の連続鋳造方法に関する。 The present invention relates to a continuous casting method for steel that reduces voids formed in a slab cast by a continuous casting machine.

鋼の連続鋳造では、冷却されている連続鋳造用鋳型に溶鋼を注入しつつ、溶鋼を凝固させ鋳片を形成し、鋳片を鋳型から引き抜き、鋳片に向けて冷却水を吹付けて鋳片内の溶鋼を更に凝固させる。鋳片には、凝固収縮や熱収縮に伴って、鋳片が凝固を完了する位置(「凝固完了位置」という)での鋳片中心部に小さな空隙(「ポロシティ」という)が形成される。ポロシティには水素が集積しやすく、水素が鋼板中に固溶し残留した場合には水素が起因となる割れが生じ得る。 In continuous casting of steel, while injecting molten steel into a cooled continuous casting mold, the molten steel is solidified to form a slab, the slab is pulled out of the mold, and cooling water is sprayed toward the slab to cast. The molten steel in the piece is further solidified. A small void (referred to as "porosity") is formed in the slab at the center of the slab at a position where the slab completes solidification (referred to as "solidification completion position") due to solidification contraction or thermal contraction. Hydrogen easily accumulates in the porosity, and if hydrogen remains as a solid solution in the steel sheet and remains, cracks due to hydrogen may occur.

ポロシティを低減するために鋳片の凝固完了位置付近に圧下ロールを配置し、圧下ロールで鋳片を圧下して鋳片中心部で形成されるポロシティを低減する方法が知られている。特許文献1には、鋳片の中心固相率が0.8以上1未満となる位置で、すなわち、鋳片中の溶鋼が完全に凝固する前に、所定の圧下量(mm)で鋳片の厚み方向に鋳片を圧下する鋼の連続鋳造方法が開示されている。また、特許文献2には、鋳片の厚み方向において圧下量(圧下率)を10〜50%として凝固完了後の鋳片を圧下する鋼の連続鋳造方法が開示されている。 In order to reduce porosity, a method is known in which a reduction roll is arranged near the solidification completion position of the slab and the slab is reduced by the reduction roll to reduce the porosity formed at the center of the slab. In Patent Document 1, at a position where the central solid fraction of the cast piece is 0.8 or more and less than 1, that is, before the molten steel in the cast piece is completely solidified, the cast piece is given a predetermined reduction amount (mm). Discloses a continuous casting method for steel in which a slab is rolled in the thickness direction of the steel. Further, Patent Document 2 discloses a continuous casting method for steel in which the amount of reduction (reduction rate) in the thickness direction of the slab is set to 10 to 50% and the slab after the completion of solidification is rolled down.

特開2007−296542号公報JP, 2007-296542, A 特開2016−175104号公報JP, 2016-175104, A

特許文献1の鋼の連続鋳造方法では、鋳片の凝固が完了する前に鋳片を圧下するので鋳片に割れが生じる可能性が高くなる。 In the continuous casting method for steel of Patent Document 1, since the cast piece is pressed before the solidification of the cast piece is completed, there is a high possibility that the cast piece will crack.

特許文献2の鋼の連続鋳造方法は、非常に大きな力で鋳片を圧下することでポロシティを低減させる技術に関し、特許文献2に記載の圧下を一般的な連続鋳造機で行おうとする場合には設備費が過大になる。近年、例えば、産業機械、建設機械、海洋構造物や圧力容器向けの鋼板はより大きな厚みが要求されてきており、そのような鋼板用の鋳片の厚みは最小でも200mm程度となる。このような鋳片に、鋳片厚み方向において10%の圧下を施すためには、数千トン重の圧下する力が大きい設備が必要となる。しかしながら、既存の連続鋳造機では、圧下する力が数百トン重である圧下装置が設けられている場合が一般的である。よって、一般的な連続鋳造機で、大きな厚みを有する鋳片に特許文献2に記載の方法の圧延を行おうとする場合には設備投資が必要となり、設備費が過大となる。 The steel continuous casting method of Patent Document 2 relates to a technique of reducing porosity by rolling down a slab with a very large force, and when the rolling down described in Patent Document 2 is to be performed by a general continuous casting machine. Is too expensive for equipment. In recent years, for example, steel sheets for industrial machines, construction machines, marine structures and pressure vessels have been required to have a larger thickness, and the thickness of a slab for such steel sheets is about 200 mm at the minimum. In order to apply a reduction of 10% to such a slab in the thickness direction of the slab, it is necessary to use equipment having a large reduction force of several thousand tons. However, in the existing continuous casting machine, it is general that a reduction device having a reduction force of several hundred tons is provided. Therefore, in a general continuous casting machine, when a slab having a large thickness is to be rolled by the method described in Patent Document 2, capital investment is required, and the capital cost becomes excessive.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、鋳片内のポロシティを低減することが可能な鋼の連続鋳造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a continuous casting method of steel capable of reducing porosity in a slab.

本発明者らは、鋭意検討した結果、圧下を開始する位置での鋳片の温度を所定の範囲にすることで凝固完了位置における鋳片の凝固組織を特定の組織とし、鋳片を特定の圧下量以上で圧下することで、ポロシティが抑えられた鋳片を鋳造することが可能であることを見出し、本発明の完成に至った。すなわち、本発明は下記の通りである。
(1)連続鋳造用鋳型に溶鋼を注入しつつ該溶鋼を凝固させ鋳片を形成し、該鋳片を前記鋳型から引き抜き、前記鋳片に向けて冷却水を吹付けて前記鋳片内の溶鋼を凝固させた後に該鋳片を圧下する鋼の連続鋳造方法であって、前記圧下を開始する位置で、前記鋳片の表面温度を600℃以下且つ前記鋳片の中心温度と前記表面温度との差を400℃以上とし、前記鋳片内の溶鋼の凝固が完了する凝固完了位置において鋳片厚み方向中心部の凝固組織を柱状晶及び/または分岐柱状晶とし、前記鋳片を5mm以上圧下する鋼の連続鋳造方法。
(2)前記鋳片を10mm以上圧下する(1)に記載の鋼の連続鋳造方法。
(3)鋳片幅方向に延在する1対の圧下ロールで前記圧下を行う(1)または(2)に記載の鋼の連続鋳造方法。
The present inventors, as a result of diligent study, the temperature of the slab at the position to start the reduction to a predetermined range by the solidification structure of the slab at the solidification completion position to a specific structure, specific slab The inventors have found that it is possible to cast a slab with suppressed porosity by performing the reduction with a reduction amount or more, and have completed the present invention. That is, the present invention is as follows.
(1) Injecting molten steel into a continuous casting mold while solidifying the molten steel to form a slab, pulling out the slab from the mold, blowing cooling water toward the slab, A method for continuous casting of steel, which comprises rolling down the slab after solidifying molten steel, wherein the surface temperature of the slab is 600° C. or less and the center temperature of the slab and the surface temperature at a position where the rolling is started. Is 400° C. or more, and at the solidification completion position where the solidification of the molten steel in the slab is completed, the solidification structure in the slab thickness direction central portion is columnar crystals and/or branched columnar crystals, and the slab is 5 mm or more. Continuous casting method for rolling steel.
(2) The continuous casting method for steel according to (1), wherein the slab is reduced by 10 mm or more.
(3) The steel continuous casting method according to (1) or (2), wherein the rolling is performed with a pair of rolling rolls extending in the width direction of the slab.

本発明によって、数千トン重の大きな力で圧下することなく、数百トン重の一般的な力による圧下で鋳片内のポロシティが抑えられた鋳片が鋳造可能となる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to cast a slab in which the porosity in the slab is suppressed under the reduction by a general force of several hundreds of tons, without the reduction of a large force of several thousand tons.

連続鋳造機を示す説明図である。It is explanatory drawing which shows a continuous casting machine. 図1に示す連続鋳造機の圧下帯を構成するロールセグメントを示す図である。It is a figure which shows the roll segment which comprises the reduction zone of the continuous casting machine shown in FIG. 図2に示すロールセグメントの鋳造方向と直交する断面を示す図である。It is a figure which shows the cross section orthogonal to the casting direction of the roll segment shown in FIG. 実験2における圧下量(mm)と最大ポロシティ径(mm)との関係を示すグラフである。7 is a graph showing the relationship between the amount of reduction (mm) and the maximum porosity diameter (mm) in Experiment 2. 実験3における鋳片の中心と表面と温度差(℃)と最大ポロシティ径(mm)との関係を示すグラフである。It is a graph which shows the relationship of the maximum porosity diameter (mm) with the temperature difference (degree C) of the center and surface of the cast in Experiment 3.

本発明は、鋼の連続鋳造において、圧下を開始する位置における鋳片の温度を所定の範囲にして凝固完了位置での鋳片の凝固組織を特定の組織とし、次いで鋳片を圧下することで、ポロシティが抑えられた鋳片を鋳造することを主眼としている。 The present invention, in the continuous casting of steel, the temperature of the slab at the position to start the rolling down to a predetermined range to the solidification structure of the slab at the solidification completion position to a specific structure, then by rolling down the slab The main purpose is to cast slabs with reduced porosity.

まずは、凝固完了後に鋳片を圧下する鋼の連続鋳造工程を行う連続鋳造機を示す図1を参照して説明する。連続鋳造機1は、鋳型5と、該鋳型5の上方に設置されるタンディッシュ2と、前記鋳型5の下方に複数並べて配置される鋳片支持ロール6と、を有する。図示を省略してあるが、タンディッシュ2の上方には、溶鋼9を収容する取鍋が設置され、該取鍋の底部からタンディッシュ2に溶鋼9が注入される。タンディッシュ2の底部には、スライディングノズル3が取り付けられた浸漬ノズル4が設置され、タンディッシュ2内に溶鋼9を所定量滞在させた状態で浸漬ノズル4を介して溶鋼9が鋳型5に注入される。鋳型5には冷却水路が形成されており、該冷却水路に冷却水を通過させている。これにより、鋳型5の内面から溶鋼9が抜熱され凝固し凝固シェル11が形成され、該凝固シェル11が引き抜かれ、溶鋼9からなる未凝固層12を内部に有する鋳片10が形成される。 First, it demonstrates with reference to FIG. 1 which shows the continuous casting machine which performs the continuous casting process of the steel which reduces a cast piece after completion of solidification. The continuous casting machine 1 has a mold 5, a tundish 2 installed above the mold 5, and a plurality of slab support rolls 6 arranged below the mold 5 side by side. Although not shown, a ladle containing the molten steel 9 is installed above the tundish 2, and the molten steel 9 is poured into the tundish 2 from the bottom of the ladle. At the bottom of the tundish 2, a dipping nozzle 4 with a sliding nozzle 3 attached is installed, and the molten steel 9 is injected into the mold 5 through the dipping nozzle 4 while the molten steel 9 is allowed to stay in the tundish 2 for a predetermined amount. To be done. A cooling water channel is formed in the mold 5, and cooling water is passed through the cooling water channel. As a result, the molten steel 9 is removed from the inner surface of the mold 5 and solidified to form the solidified shell 11, and the solidified shell 11 is pulled out to form the slab 10 having the unsolidified layer 12 of the molten steel 9 therein. ..

鋳造方向に隣り合う鋳片支持ロール6の間隙には、スプレーノズル(図示せず)が配置された二次冷却帯30が、鋳型5の直下から鋳造方向に沿って複数設置されている。二次冷却帯30のスプレーノズルから噴霧される冷却水によって、鋳片10は、引き抜かれながら冷却されるようになっている。鋳片10が、鋳片支持ロール6で搬送されて、複数の二次冷却帯30を通過している間に、凝固シェル11が適切に冷却され、未凝固層12の凝固が進み、鋳片10の凝固が完了する。図1では、二次冷却帯30を3個設置してあるが、二次冷却帯30の数は特に限定されるものではない。 In the gap between the slab support rolls 6 adjacent to each other in the casting direction, a plurality of secondary cooling zones 30 in which spray nozzles (not shown) are arranged are installed immediately below the mold 5 along the casting direction. The slab 10 is cooled while being pulled out by the cooling water sprayed from the spray nozzle of the secondary cooling zone 30. While the slab 10 is conveyed by the slab support roll 6 and passes through the plurality of secondary cooling zones 30, the solidified shell 11 is appropriately cooled, and the solidification of the unsolidified layer 12 proceeds, The solidification of 10 is complete. Although three secondary cooling zones 30 are installed in FIG. 1, the number of the secondary cooling zones 30 is not particularly limited.

凝固完了位置13あるいはその鋳造方向下流には、鋳片10を挟んで相対する鋳片支持ロール6の対が複数配置された鋳片支持ロール群から構成される圧下帯14が設置されている。圧下帯14の各鋳片支持ロール6の間にも鋳片10を冷却するためのスプレーノズルが配置されている。圧下帯14に配置される鋳片支持ロール6は圧下ロールとも呼ばれる。図1では、圧下帯14は、3対の鋳片支持ロール6を1組とするロールセグメントが鋳造方向に2基配置されて構成されているが、特に、圧下帯14を構成するロールセグメントの基数は特に限定されるものではないし、鋳片支持ロール6の対数も特に限定されるものではない。 At the solidification completion position 13 or at the downstream of the casting direction thereof, there is provided a reduction band 14 composed of a slab support roll group in which a plurality of pairs of slab support rolls 6 facing each other with the slab 10 sandwiched therebetween are arranged. A spray nozzle for cooling the slab 10 is also arranged between the slab support rolls 6 of the reduction zone 14. The slab support roll 6 arranged in the reduction band 14 is also called a reduction roll. In FIG. 1, the roll reduction zone 14 is configured by arranging two roll segments each including three pairs of slab support rolls 6 in the casting direction. The radix is not particularly limited, and the logarithm of the slab support roll 6 is not particularly limited.

凝固完了位置13では、鋳片中心部にポロシティが形成される可能性があり、このポロシティには水素が集積しやすく、水素が、鋳片を圧延して得られる鋼板中に固溶し残留した場合には水素が起因となる割れが鋼板に生じる可能性がある。よって、連続鋳造工程中にポロシティを低減することが望ましい。圧下帯14の全域または一部選択した領域で鋳片10に圧下を行って、ポロシティを低減することが可能となる。 At the solidification completed position 13, porosity may be formed in the center of the slab, and hydrogen is likely to accumulate in this porosity, and hydrogen remains as a solid solution in the steel sheet obtained by rolling the slab. In some cases, hydrogen-induced cracks may occur in the steel sheet. Therefore, it is desirable to reduce porosity during the continuous casting process. It is possible to reduce the porosity by performing reduction on the slab 10 in the entire area of the reduction zone 14 or in a partially selected area.

図1に示すように、圧下帯14より鋳造方向下流には、鋳片10を引き続き搬送するための搬送ロール7が複数設置されている。搬送ロール7の上方には、鋳片10を切断するための鋳片切断機8が配置されている。凝固完了後の鋳片10は、鋳片切断機8によって、所定の長さの鋳片10aに切断される。 As shown in FIG. 1, a plurality of transport rolls 7 for continuously transporting the slab 10 are installed downstream of the reduction zone 14 in the casting direction. A slab cutting machine 8 for cutting the slab 10 is arranged above the transport roll 7. The slab 10 after completion of solidification is cut into a slab 10a having a predetermined length by the slab cutting machine 8.

次に、圧下帯14を構成するロールセグメントを図2及び図3に示す。図2及び図3は、圧下ロールとして5対の鋳片支持ロール6が1つのロールセグメント15に配置された例を示すものであり、図2は、連続鋳造機の側方からの図、図3は、鋳造方向と直交する断面を示す図である。ロールセグメント15は、ロールチョック21を介して5対の鋳片支持ロール6を保持した1対のフレーム16及びフレーム16’からなり、フレーム16及びフレーム16’を貫通させて合計4本(上流側の両サイド及び下流側の両サイド)のタイロッド17が配置されている。このタイロッド17に設置されているウオームジャッキ19をモーター20にて駆動させることにより、フレーム16とフレーム16’との間隔の調整、つまり、ロールセグメント15における圧下勾配の調整を行ってもよい。 Next, the roll segments forming the rolling band 14 are shown in FIGS. 2 and 3. 2 and 3 show an example in which five pairs of slab support rolls 6 are arranged in one roll segment 15 as reduction rolls, and FIG. 2 is a side view of the continuous casting machine. 3 is a view showing a cross section orthogonal to the casting direction. The roll segment 15 is composed of a pair of frame 16 and frame 16′ holding five pairs of slab support rolls 6 via the roll chock 21, and a total of four (the upstream side of the frame 16 and frame 16′ are penetrated. Tie rods 17 on both sides and both sides on the downstream side are arranged. The worm jack 19 installed on the tie rod 17 may be driven by the motor 20 to adjust the distance between the frame 16 and the frame 16 ′, that is, the roll down gradient of the roll segment 15.

タイロッド17には、フレーム16’とウオームジャッキ19との間に皿バネ18が設置されている。皿バネ18は、1個の皿バネで構成されるものではなく、複数個の皿バネを重ねて構成されるものである(多数個の皿バネを重ねるほど剛性が高くなる)。この皿バネ18は、皿バネ18に或る所定の荷重以上の負荷荷重が作用しない場合には収縮せずに一定の厚みを呈しているが、或る所定の負荷荷重が作用した場合に収縮し始め、或る所定の負荷荷重を超えた以降は負荷荷重に比例して収縮するように構成されている。 On the tie rod 17, a disc spring 18 is installed between the frame 16 ′ and the worm jack 19. The disc spring 18 is not configured by one disc spring but is configured by stacking a plurality of disc springs (the rigidity increases as a number of disc springs are stacked). The disc spring 18 has a constant thickness without contracting when a load greater than a predetermined load is not applied to the disc spring 18, but contracts when a predetermined load is applied. Then, after the load exceeds a predetermined load, the load shrinks in proportion to the load.

圧下帯14は、このようなロールセグメント構造であるので、それぞれのロールセグメントに配置される複数対の鋳片支持ロール6のロール開度が一括して調整されることになる。この場合、ウオームジャッキによる上フレーム(フレーム16’に相当)の移動量は、ウオームジャッキの回転数により測定・制御されており、それぞれのロールセグメントの圧下勾配がわかるようになっている。 Since the rolling band 14 has such a roll segment structure, the roll opening degrees of the plurality of pairs of slab support rolls 6 arranged in each roll segment are collectively adjusted. In this case, the amount of movement of the upper frame (corresponding to the frame 16') by the worm jack is measured and controlled by the number of rotations of the worm jack, so that the rolling gradient of each roll segment can be known.

圧下帯14での圧下により、鋳片中のポロシティを低減することが可能ではあるものの、ポロシティを更に効果的に低減する方法が希求される。図2及び図3に示す装置は、数百トン重の荷重を発揮することが可能となっているが、特許文献2に記載されている通りに圧下率が10%以上となる、より大きな荷重(圧下力)を発揮する圧下装置で圧下帯14を構成すれば、ポロシティをより効果的に低減できる。そのような装置として、例えば、鋳片支持ロール6を支持するバックアップロールを有し、数千トン重の圧下力を生じさせる油圧圧下装置を有する構成の圧延装置がある。但し、既存の連続鋳造機1は、図2及び図3に示す構成の圧下装置が設けられている場合が一般的であるので、この圧下装置を前記圧延装置に変更しようとする場合には設備費が過大となる。 Although it is possible to reduce the porosity in the slab by the reduction in the reduction zone 14, a method for further effectively reducing the porosity is desired. The apparatus shown in FIG. 2 and FIG. 3 is capable of exerting a load of several hundred tons, but as described in Patent Document 2, the rolling reduction is 10% or more and a larger load. If the pressure-reducing device that exerts the (reduction force) configures the pressure-reducing zone 14, the porosity can be reduced more effectively. As such an apparatus, for example, there is a rolling apparatus having a backup roll that supports the slab support roll 6 and a hydraulic rolling-down device that produces a rolling force of several thousand tons. However, since the existing continuous casting machine 1 is generally provided with a rolling down device having the configuration shown in FIG. 2 and FIG. 3, when the rolling down device is to be replaced with the rolling down device, equipment is required. Expenses become excessive.

そこで、本発明者らは、既存の連続鋳造機1でもポロシティを効果的に低減する方法を確立すべく鋭意検討した。まず、本発明者らは、凝固完了時の鋳片組織が圧下後のポロシティに及ぼす影響を評価すべく調査、実験及び考察を重ねた。鋳型5から鋳片10を引き抜いた後であって、凝固完了位置13よりも鋳造方向上流側の位置で鋳片10に電磁撹拌を施した場合には、凝固完了後の鋳片10に微細な等軸晶が形成され、電磁撹拌を施さない場合では、大きさが不均一且つ粗大な等軸晶が形成され易くなることが一般的に知られている。この現象から、本発明者らは、粗大な等軸晶に起因して生じたポロシティはサイズが大きくなると考察し、凝固完了時の鋳片10で粗大な等軸晶が形成されることを避けることがポロシティのサイズを抑えることには重要であると推察した。 Therefore, the present inventors diligently studied to establish a method for effectively reducing porosity even in the existing continuous casting machine 1. First, the present inventors have conducted investigations, experiments and consideration to evaluate the effect of the slab structure at the completion of solidification on the porosity after reduction. After the slab 10 is pulled out from the mold 5, and when the slab 10 is subjected to electromagnetic stirring at a position upstream of the solidification completion position 13 in the casting direction, the slab 10 after the completion of the solidification is finely divided. It is generally known that when equiaxed crystals are formed and electromagnetic stirring is not performed, equiaxed crystals having a nonuniform size and a large size are likely to be formed. From this phenomenon, the present inventors consider that the porosity generated due to the coarse equiaxed crystal has a large size, and avoids the formation of the coarse equiaxed crystal in the slab 10 at the completion of solidification. We speculate that it is important to reduce the size of porosity.

次いで、本発明者らは、鋳片中心部の凝固組織を、等軸晶自体ではない柱状晶及び/または分岐柱状晶に制御するための条件を検討した。一般に、溶鋼の合金成分、鋳片の冷却速度や、鋳片表面から中心への温度勾配などにより、凝固組織は決まると考えられるところ、本発明者らは、厚板用鋼板として需要の高い炭素濃度が0.05〜1.00質量%となる鋼を対象に、鋳片中心の凝固組織を柱状晶及び/または分岐柱状晶にするための冷却条件を計算して、鋳片の冷却速度を強めて鋳片内の温度勾配を大きくすることで、凝固完了位置での鋳片の凝固組織を柱状晶及び/または分岐柱状晶組織にする可能性があると推察した。具体的には、本発明者らは、圧下を開始する位置で、鋳片表面温度を600℃以下且つ鋳片中心の温度と表面との温度差を400℃以上とすることで、凝固完了位置での鋳片の凝固組織を柱状晶及び/または分岐柱状晶の組織が得られると推察した。 Next, the present inventors examined the conditions for controlling the solidification structure of the slab center to columnar crystals and/or branched columnar crystals that are not equiaxed crystals themselves. Generally, it is considered that the solidification structure is determined by the alloy composition of the molten steel, the cooling rate of the slab, the temperature gradient from the slab surface to the center, and the like. For steel with a concentration of 0.05 to 1.00 mass%, the cooling conditions for changing the solidification structure at the center of the slab to columnar crystals and/or branched columnar crystals are calculated to determine the cooling rate of the slab. It was speculated that the solidification structure of the slab at the solidification completion position may be a columnar crystal and/or a branched columnar crystal structure by strengthening and increasing the temperature gradient in the slab. Specifically, the present inventors set the surface temperature of the slab at 600° C. or lower and the temperature difference between the center of the slab and the surface at 400° C. or more at the position where the reduction is started, so that the solidification completion position is reached. It was inferred that the solidified structure of the cast product in (1) was obtained as a structure of columnar crystals and/or branched columnar crystals.

この推察を確認すべく、本発明者らは、溶鋼の合金成分や冷却条件を調整して、凝固完了後の鋳片の凝固組織を等軸晶、柱状晶または分岐柱状晶に作り分ける複数の連続鋳造を行い、該複数の連続鋳造では同等の圧下力を鋳片に加えて、鋳片中心部のポロシティサイズの比較評価する実験を行った(実験1)。 To confirm this conjecture, the present inventors have adjusted the alloying components of the molten steel and the cooling conditions to make the solidification structure of the slab after completion of solidification into equiaxed crystals, columnar crystals or branched columnar crystals. Continuous casting was performed, and in the plurality of continuous castings, an equal rolling force was applied to the slab, and an experiment for comparative evaluation of the porosity size of the slab center was conducted (Experiment 1).

<実験1>
図1に示す連続鋳造機1を用いて、炭素濃度が0.05〜1.00質量%の範囲ではあるが、その他成分が異なる複数種の溶鋼9を準備し、鋳片10を複数鋳造した(本発明例101〜116及び比較例101〜105)。全ての本発明例では、図2及び図3に示すロールセグメント15で鋳片10を5mm圧下することとした。比較例でも本発明例と同様に5mm圧下することにしたが、本発明と比較するために圧下を行わなかった例を1つ設けた(比較例101)。実験1の条件及び結果を表1に示す。
<Experiment 1>
Using the continuous casting machine 1 shown in FIG. 1, a plurality of kinds of molten steel 9 having different carbon concentrations in the range of 0.05 to 1.00 mass% but different components were prepared, and a plurality of cast flakes 10 were cast. (Invention examples 101-116 and comparative examples 101-105). In all the examples of the present invention, the cast piece 10 was pressed down by 5 mm by the roll segment 15 shown in FIGS. 2 and 3. In the comparative example as well, it was decided to carry out the reduction by 5 mm as in the case of the present invention, but one example in which no reduction was performed was provided for comparison with the present invention (Comparative Example 101). The conditions and results of Experiment 1 are shown in Table 1.

本発明例101〜116では、圧下を開始する位置での鋳片表面温度を600℃以下且つ鋳片中心の温度と表面の温度差を400℃以上の範囲としたが、比較例102〜105では、鋳片表面温度及び/または鋳片中心と表面の温度差はこの範囲ではない。圧下を開始する位置での鋳片表面温度は、圧下帯14を構成する複数の鋳片支持ロール6のうち鋳造方向最上流に配置されている鋳片支持ロール6の位置で放射温度計によって鋳片の表面温度を測定した。測定した表面温度と鋳造条件を用いて伝熱凝固計算を実施することで、連続鋳造機内の鋳片の表面及び中心の温度分布を精度良く算出することができる。なお、圧下ロールは連続鋳造機の下流側に配置され、上記の伝熱凝固計算結果に基づいて、二次冷却をはじめとした鋳造条件を制御することで、圧下開始位置で本発明の要件を満たすことが可能である。 In the present invention examples 101 to 116, the slab surface temperature at the position where the reduction is started was 600° C. or less and the temperature difference between the slab center temperature and the surface was 400° C. or more, but in Comparative examples 102 to 105. , The surface temperature of the slab and/or the temperature difference between the center of the slab and the surface is not within this range. The slab surface temperature at the position where the reduction is started is determined by the radiation thermometer at the position of the slab support roll 6 which is arranged most upstream in the casting direction among the plurality of slab support rolls 6 forming the reduction zone 14. The surface temperature of the piece was measured. By carrying out the heat transfer solidification calculation using the measured surface temperature and the casting conditions, it is possible to accurately calculate the temperature distribution of the surface and the center of the slab in the continuous casting machine. Incidentally, the reduction roll is arranged on the downstream side of the continuous casting machine, based on the above heat transfer solidification calculation result, by controlling the casting conditions including secondary cooling, the requirements of the present invention at the reduction start position. It is possible to meet.

鋳片の中心部とは、鋳片の厚み方向における中心から上下10mm以内の部位であり、鋳片の厚み方向とは、鋳型長辺に対応する鋳片の面の法線方向を意味する。鋳片の幅方向とは、鋳型短片に対応する鋳片の面の法線方向を意味する。表1中の「鋳片中心部の凝固組織」について、鋳片厚み及び幅方向における中心を中心線として、凝固完了位置13付近で、中心線から上下(鋳片厚み)方向に10mm・左右(鋳片幅)方向に70mm・鋳造方向に15mmの試料を鋳片から切り出し、該試料を研磨した後エッチングして試料の凝固組織を確認して、鋳片中心部の凝固組織を特定した。 The central portion of the slab is a portion within 10 mm from the center in the thickness direction of the slab, and the thickness direction of the slab means the normal direction of the surface of the slab corresponding to the long side of the mold. The width direction of the slab means the normal direction of the surface of the slab corresponding to the mold short piece. Regarding the "solidification structure of the slab center part" in Table 1, with the center in the slab thickness and width direction as the center line, in the vicinity of the solidification completion position 13, 10 mm from the center line in the vertical direction (the slab thickness) and left and right ( A sample of 70 mm in the width direction of the slab and 15 mm in the casting direction was cut out from the slab, and after polishing the sample, the solidification structure of the sample was confirmed by etching and the solidification structure of the center part of the slab was identified.

また、圧下後の鋳片10aから、中心線から上下(鋳片厚み)方向に10mm・中心線を中心として左右(鋳片幅)方向に70mm・鋳造方向に15mmの試料を切り出し、超音波探傷装置を用いて前記試料を測定して最大ポロシティ径を算出した。超音波探傷装置から、試料には複数のポロシティがあることが確認できたが。確認されたポロシティの形状は必ずしも真球状ではなく楕円球状のものも含まれる。そこで、ポロシティサイズの評価として、各ポロシティの最大となる径の長さを測定し、表1中の「最大ポロシティ径」とした。形状が球形であるか不明である。しかし、各ポロシティの最大となる鋳造方向に沿った線長さを測定し、そのうちで、最大となる長さを表1中の「最大ポロシティ径」とした。 Also, from the cast slab 10a after reduction, a sample of 10 mm in the vertical direction (cast slab thickness) from the center line, 70 mm in the left and right (cast slab width) direction about the center line, and 15 mm in the casting direction was cut and ultrasonic flaw detection was performed. The sample was measured using an apparatus to calculate the maximum porosity diameter. Although it was confirmed from the ultrasonic flaw detector that the sample had multiple porosities. The shape of the confirmed porosity is not necessarily a true sphere but includes an ellipsoid. Therefore, as the evaluation of the porosity size, the length of the maximum diameter of each porosity was measured and defined as “maximum porosity diameter” in Table 1. It is unknown whether the shape is spherical. However, the maximum length of each porosity along the casting direction was measured, and the maximum length was defined as the "maximum porosity diameter" in Table 1.

表1からわかる通り、鋳片中心部の凝固組織が柱状晶及び/または分岐柱状晶であり且つ凝固完了位置13後に圧下した本発明例101〜116は最大ポロシティ径が1mm未満である。一方で、圧下していない比較例101及び圧下していても鋳片中心部の凝固組織が等軸晶である比較例102〜105は最大ポロシティ径が1mm以上である。この結果から、鋳片中心の凝固組織が等軸晶組織である場合よりも、柱状晶組織及び/または分岐柱状晶組織である場合の方が、ポロシティのサイズが小さい傾向があることがわかる。 As can be seen from Table 1, the maximum porosity diameters of Examples 101 to 116 of the present invention in which the solidification structure in the central portion of the slab is columnar crystals and/or branched columnar crystals and which was pressed after the solidification completion position 13 was less than 1 mm. On the other hand, the maximum porosity diameter is 1 mm or more in Comparative Example 101, which is not rolled, and Comparative Examples 102 to 105, in which the solidified structure of the center of the slab is equiaxed even if it is rolled. From these results, it is understood that the porosity size tends to be smaller when the columnar crystal structure and/or the branched columnar crystal structure is present than when the solidification structure at the center of the slab is the equiaxed crystal structure.

実験1では、図2及び図3に示すロールセグメント15で鋳片10を5mm圧下することしたが、本発明者らは、鋳片中心部の凝固組織が柱状晶及び/または分岐柱状晶である場合であっても、凝固完了位置13後での圧下量によっても、ポロシティのサイズは変わると推察した。そこで、本発明者らは、実験1と同様に、溶鋼の合金成分や冷却条件を調整して、凝固完了後の鋳片の凝固組織を等軸晶、柱状晶または分岐柱状晶に作り分ける複数の連続鋳造を行った。但し、該複数の連続鋳造では鋳片に加える圧下力を変更して、鋳片中心部のポロシティサイズの比較評価する実験を行った(実験2)。 In Experiment 1, the slab 10 was pressed down by 5 mm with the roll segment 15 shown in FIGS. 2 and 3, but the present inventors found that the solidified structure of the slab center was columnar crystals and/or branched columnar crystals. Even in the case, it was inferred that the size of porosity also changed depending on the amount of reduction after the solidification completion position 13. Therefore, as in the case of Experiment 1, the inventors of the present invention adjust the alloying components of the molten steel and the cooling conditions to make the solidification structure of the slab after completion of solidification into equiaxed crystals, columnar crystals or branched columnar crystals. Was continuously cast. However, in the plurality of continuous castings, an experiment was conducted in which the rolling force applied to the slab was changed and the porosity size at the center of the slab was comparatively evaluated (Experiment 2).

<実験2>
実験2では、実験1と同様に、図1に示す連続鋳造機1を用いて、炭素濃度が0.05〜1.00質量%の範囲ではあるが成分が異なる複数種の溶鋼9を準備し、鋳片10を複数鋳造した(本発明例201〜235及び比較例201〜210)。全ての本発明例及び比較例では、圧下を開始する位置での鋳片表面温度を600℃以下且つ鋳片中心の温度と表面の温度差を400℃以上の範囲として、凝固完了位置での鋳片中心部の凝固組織を柱状晶及び/または分岐柱状晶とした。本発明例及び比較例では、図2及び図3に示すロールセグメント15を用いて鋳片10の圧下量を変更した。それ以外は、実験1と同様にして鋼の連続鋳造を行った。実験2の条件及び結果を表2に示す。
<Experiment 2>
In Experiment 2, as in Experiment 1, the continuous casting machine 1 shown in FIG. 1 was used to prepare a plurality of types of molten steel 9 having different carbon concentrations in the range of 0.05 to 1.00 mass% but different components. A plurality of cast pieces 10 were cast (invention examples 201 to 235 and comparative examples 201 to 210). In all of the present invention examples and comparative examples, the casting surface temperature at the position where the reduction is started is set to 600° C. or less, and the temperature difference between the temperature of the casting piece center and the surface is set to 400° C. or more. The solidification structure at the center of one side was columnar crystals and/or branched columnar crystals. In the example of the present invention and the comparative example, the amount of reduction of the cast slab 10 was changed by using the roll segment 15 shown in FIGS. Other than that, the steel was continuously cast in the same manner as in Experiment 1. The conditions and results of Experiment 2 are shown in Table 2.

実験2では、鋳片温度、鋳片中心部の凝固組織及び最大ポロシティ径mmを実験1と同様にして求めてある。圧下量(mm)と最大ポロシティ径(mm)との関係を図4に示す。表2及び図4から、凝固完了位置での鋳片中心部の凝固組織を柱状晶及び/または分岐柱状晶とした上で圧下量を5mm以上とすることで、最大ポロシティ径は格段に低減することがわかる。 In Experiment 2, the slab temperature, the solidification structure at the center of the slab, and the maximum porosity diameter mm were determined in the same manner as in Experiment 1. The relationship between the amount of reduction (mm) and the maximum porosity diameter (mm) is shown in FIG. From Table 2 and FIG. 4, the maximum porosity diameter is remarkably reduced by setting the solidification structure in the central portion of the slab at the solidification completion position to be columnar crystals and/or branched columnar crystals and setting the reduction amount to 5 mm or more. I understand.

また、圧下量を10mm以上とすることが好ましい。これにより、最大ポロシティ径を0.5mm以下とできる可能性が高まる。なお、20mm以上の圧下を行っても、最大ポロシティ径は大きく低減しないので、設備負荷の観点からも圧下量を最大で20mmとすればよいことがわかる。 Further, it is preferable that the reduction amount is 10 mm or more. This increases the possibility that the maximum porosity diameter can be 0.5 mm or less. It should be noted that the maximum porosity diameter is not significantly reduced even if the rolling reduction is 20 mm or more, so it is understood that the rolling reduction amount may be 20 mm at the maximum from the viewpoint of equipment load.

ところで、実験1では、図2及び図3に示すロールセグメント15で鋳片10を5mm圧下することし、また、実験2では、全ての例で、圧下を開始する位置での鋳片表面温度を600℃以下且つ鋳片中心の温度と表面の温度差を400℃以上の範囲として、凝固完了位置での鋳片中心部の凝固組織を柱状晶及び/または分岐柱状晶としている。本発明者らは、更に、鋳片表面温度及び鋳片中心の温度と表面の温度差を前記範囲としつつも、これらを変更することで、鋳片中心部のポロシティサイズの変化を評価する実験を行った(実験3)。 By the way, in Experiment 1, the slab 10 was rolled down by 5 mm by the roll segment 15 shown in FIGS. 2 and 3, and in Experiment 2, in all the examples, the slab surface temperature at the position where the rolling was started was measured. When the temperature difference between the temperature of the slab and the temperature of the surface of the slab is 600° C. or less and 400° C. or more, the solidification structure of the central portion of the slab at the solidification completion position is a columnar crystal and/or a branched columnar crystal. The present inventors have further experimented to evaluate the change in porosity size of the slab center by changing the slab surface temperature and the temperature of the slab center and the temperature difference between the surfaces within the above range. Was performed (Experiment 3).

<実験3>
実験3では、実験1と同様に図1に示す連続鋳造機1を用いて、炭素濃度が0.05〜1.00質量%の範囲ではあるが、成分が異なる複数種の溶鋼9を準備し、鋳片10を複数鋳造した(本発明例301〜308)。全ての本発明例では、圧下を開始する位置での鋳片表面温度を600℃以下且つ鋳片中心の温度と表面の温度差を400℃以上の範囲として凝固完了位置での鋳片中心部の凝固組織を柱状晶としたが、実験3では、鋳片表面及び鋳片中心の温度を変更してみた。それ以外は、実験1と同様にして鋼の連続鋳造を行った。実験3の条件及び結果を表3に示す。
<Experiment 3>
In Experiment 3, as in Experiment 1, the continuous casting machine 1 shown in FIG. 1 was used to prepare a plurality of types of molten steel 9 having different carbon concentrations in the range of 0.05 to 1.00% by mass. A plurality of cast pieces 10 were cast (invention examples 301 to 308). In all the examples of the present invention, the slab surface temperature at the position where the reduction is started is 600° C. or less, and the temperature difference between the slab center and the surface is 400° C. or more, and the slab center portion at the solidification completion position is Although the solidification structure was columnar crystals, in Experiment 3, the temperatures of the surface of the cast piece and the center of the cast piece were changed. Other than that, the steel was continuously cast in the same manner as in Experiment 1. Table 3 shows the conditions and results of Experiment 3.

実験3でもまた、鋳片温度、鋳片中心部の凝固組織及び最大ポロシティ径を実験1と同様にして求めており、鋳片の中心と表面の温度差(℃)及び最大ポロシティ径(mm)の関係を図5に示す。表3及び図5から、鋳片の中心と表面の温度差が大きいほど、最大ポロシティ径が小さくなる傾向があることがわかる。温度差が大きいほど、変形抵抗差が大きくなるためポロシティを潰しやすくなったと推察される。 Also in Experiment 3, the slab temperature, the solidification structure of the slab center and the maximum porosity diameter were determined in the same manner as in Experiment 1, and the temperature difference (°C) between the center and the surface of the slab and the maximum porosity diameter (mm) were obtained. 5 shows the relationship. From Table 3 and FIG. 5, it can be seen that the larger the temperature difference between the center and the surface of the slab, the smaller the maximum porosity diameter tends to be. It is presumed that the larger the temperature difference, the larger the difference in deformation resistance and the easier it was to destroy the porosity.

鋳片表面を冷却して鋳片中心の温度を調整する際には、鋳片厚みが大きく影響する。鋳片表面の温度及び鋳片表面と鋳片中心との温度差に関する前述の条件で鋳片を冷却して、目標の凝固組織とする場合には、厚みが220mm以上500mm以下である望ましい。厚みが500mm超の場合には、二次冷却による鋳片の冷却を強めても、鋳片中心部での冷却速度を上げて温度勾配を強め難く、鋳片中心の凝固組織を柱状晶または分岐柱状晶にし難い。一方で、鋳片厚みが220mm未満の場合には、鋳片から得られる鋼板の特性を造り込むための次工程以降の圧下比が不十分となる場合があるため、好ましくない。ここで圧下比とは鋳片厚みを分子、製品の厚みを分母とした比である。 When the surface of the slab is cooled to adjust the temperature at the center of the slab, the thickness of the slab has a great influence. When the slab is cooled under the above-mentioned conditions regarding the temperature of the slab surface and the temperature difference between the slab surface and the center of the slab to obtain a target solidified structure, the thickness is preferably 220 mm or more and 500 mm or less. When the thickness is more than 500 mm, even if the cooling of the slab by the secondary cooling is strengthened, it is difficult to increase the cooling rate at the center of the slab and strengthen the temperature gradient. It is difficult to make columnar crystals. On the other hand, if the thickness of the cast piece is less than 220 mm, the reduction ratio after the next step for incorporating the characteristics of the steel sheet obtained from the cast piece may be insufficient, which is not preferable. Here, the reduction ratio is a ratio in which the thickness of the cast slab is the numerator and the thickness of the product is the denominator.

連続鋳造機は、設置スペースや生産性を勘案して垂直曲げ型や湾曲型となる場合がある。これらの型の連続鋳造機では鋳片の矯正帯がある。矯正帯で鋳片に大きな力を掛かることになるので、矯正帯を鋳片が通過する前に鋳片の表面温度を低下させ過ぎて凝固が進み過ぎると、鋳片の表面に割れが生じる可能性が高まる。従って、本発明のように、比較的強い冷却で鋳片の表面温度を低下させる場合には、矯正帯通過後の水平帯で目標の温度となるように鋳片を冷却することが好ましい。 The continuous casting machine may be a vertical bending type or a bending type in consideration of installation space and productivity. In these types of continuous casters, there is a slab straightening band. Since a large force is applied to the slab by the straightening band, if the surface temperature of the slab is lowered too much before the slab passes through the straightening band and solidification proceeds too much, cracks may occur on the surface of the slab. Sexuality increases. Therefore, in the case of lowering the surface temperature of the slab by relatively strong cooling as in the present invention, it is preferable to cool the slab so as to reach the target temperature in the horizontal strip after passing through the straightening strip.

本発明の圧下は、図3に示すような鋳片10の幅方向に延在する1対の鋳片支持ロール6(圧下ロール)で行うことが好ましい。連続鋳造機ではロールセグメント中の圧下ロールとして図2及び図3に示す形態以外に、鋳片10からの圧下ロールへの反力を軽減するべく鋳片の10の幅方向でロールを複数に分割した形態の圧下ロールがある。但し、複数の圧下ロール間の部位であって、圧下ロールが鋳片に接触していない部位では鋳片への圧下が不十分になる可能性があるので、その部位の鋳片中心部に存在するポロシティを低減しにくくなる可能性がある。よって、鋳片10の幅方向に延在している圧下ロールを用いて、鋳片10の圧下を行うことが好ましい。 The reduction of the present invention is preferably performed by a pair of slab support rolls 6 (rolling rolls) extending in the width direction of the slab 10 as shown in FIG. In the continuous casting machine, in addition to the configuration shown in FIGS. 2 and 3 as the reduction roll in the roll segment, the roll is divided into a plurality of rolls in the width direction of the slab 10 in order to reduce the reaction force from the slab 10 to the reduction roll. There are rolling rolls in the form described above. However, in a portion between a plurality of reduction rolls, the reduction roll may not be sufficient in a portion where the reduction roll is not in contact with the slab, so that it exists in the slab center portion of that portion. It may be difficult to reduce the porosity. Therefore, it is preferable to perform the reduction of the cast slab 10 by using a reduction roll extending in the width direction of the cast slab 10.

<実験4>
本発明者らは、実験1と同様にして、図1に示す連続鋳造機1を用いて、炭素濃度が0.05〜1.00質量%の範囲ではあるが成分が異なる複数種の溶鋼9を準備し、鋳片10を20回鋳造した(本発明例400及び401)。本発明例400では、全ての連続鋳造で、図2及び図3に示すロールセグメント15で鋳片10を5mm圧下した。一方、本発明例401では、図1の圧下帯14の鋳片支持ロール6を、図2及び図3に示す形態ではなく、鋳片幅方向でロールを2分割した形態に代えて、全ての連続鋳造で鋳片10を5mm圧下した。そして、本発明例400及び401でもまた、実験1と同様に最大ポロシティ径を算出した。本発明例400及び401での最大ポロシティ径の平均(mm)、最大値、最小値、最大値と最小値との差を表4に示す。
<Experiment 4>
Similar to Experiment 1, the inventors of the present invention used the continuous casting machine 1 shown in FIG. 1, and used a plurality of types of molten steel 9 having different carbon concentrations in the range of 0.05 to 1.00 mass% but different components. Was prepared, and the slab 10 was cast 20 times (invention examples 400 and 401). In Example 400 of the present invention, the slab 10 was pressed by 5 mm by the roll segment 15 shown in FIGS. 2 and 3 in all continuous casting. On the other hand, in Inventive Example 401, the slab support roll 6 of the strip 14 of FIG. 1 is not the form shown in FIGS. 2 and 3, but is a form in which the roll is divided into two in the slab width direction. The slab 10 was pressed down by 5 mm by continuous casting. Then, also in Inventive Examples 400 and 401, the maximum porosity diameter was calculated as in Experiment 1. Table 4 shows the average (mm) of the maximum porosity diameters, the maximum value, the minimum value, and the difference between the maximum value and the minimum value in Examples 400 and 401 of the present invention.

表4からわかる通り、鋳片幅方向に延在する1対の圧下ロールで圧下を行った本発明例400では、20回のうちの最大ポロシティ径の平均は0.75mmとなり、最小値が0.6mmとなった。一方で、鋳片幅方向でロールを2分割した形態の圧下ロールで鋳片の圧下を行った本発明例401では、20回のうちの最大ポロシティ径の平均は0.83mmとなり、最小値が0.7mmとなった。鋳片幅方向に延在する形態の圧下ロールを用いた本発明例400は、最大ポロシティ径の平均が、鋳片幅方向で分割した形態の圧下ロールを用いた本発明例401のそれよりも下回った上に、最大ポロシティ径の最小値も下回った。すなわち、鋳片幅方向で分割した形態の圧下ロールを用いるより、鋳片幅方向に延在する形態の圧下ロールを用いる方が、ポロシティをより確実に低減できることがわかった。 As can be seen from Table 4, in Example 400 of the present invention in which reduction was performed by a pair of reduction rolls extending in the slab width direction, the average of the maximum porosity diameters of 20 times was 0.75 mm, and the minimum value was 0. It became 0.6 mm. On the other hand, in Inventive Example 401 in which the slab was reduced by a reduction roll having a form in which the roll was divided into two in the width direction of the slab, the average of the maximum porosity diameter of 20 times was 0.83 mm, and the minimum value was It became 0.7 mm. The present invention example 400 using the reduction roll of the form extending in the slab width direction has an average of the maximum porosity diameter is larger than that of the present invention example 401 using the reduction roll of the form divided in the slab width direction. In addition to falling below the minimum value of the maximum porosity diameter. That is, it was found that the porosity can be reduced more reliably by using the reduction roll extending in the width direction of the slab than by using the reduction roll divided in the width direction of the slab.

以上の通り、本発明者らが見出した条件で鋼を連続鋳造することで、数千トン重の大きな力で圧下する必要がなく、数百トン重の一般的な力による圧下で鋳片内のポロシティが抑えられた鋳片が鋳造可能である。延いては、該鋳片から得られる鋼材の内部品質を高めることが可能である。 As described above, by continuously casting the steel under the conditions found by the present inventors, it is not necessary to perform reduction with a large force of several thousand tons, and the inside of the slab is reduced by a general force of several hundreds of tons. It is possible to cast a slab with suppressed porosity. By extension, it is possible to improve the internal quality of the steel material obtained from the cast slab.

1 連続鋳造機
2 タンディッシュ
3 スライディングノズル
4 浸漬ノズル
5 鋳型
6 鋳片支持ロール
7 搬送ロール
8 鋳片切断機
9 溶鋼
10 鋳片
10a 鋳片(切断後)
11 凝固シェル
12 未凝固層
13 凝固完了位置
14 圧下帯
15 ロールセグメント
16 フレーム
16’ フレーム
17 タイロッド
18 皿バネ
19 ウオームジャッキ
20 モーター
21 ロールチョック
30 二次冷却帯
DESCRIPTION OF SYMBOLS 1 Continuous casting machine 2 Tundish 3 Sliding nozzle 4 Immersion nozzle 5 Mold 6 Cast strip support roll 7 Conveying roll 8 Cast strip cutting machine 9 Molten steel 10 Cast strip 10a Cast strip (after cutting)
11 Solidified Shell 12 Unsolidified Layer 13 Solidification Completed Position 14 Rolling Zone 15 Roll Segment 16 Frame 16' Frame 17 Tie Rod 18 Disc Spring 19 Worm Jack 20 Motor 21 Roll Chock 30 Secondary Cooling Zone

Claims (3)

連続鋳造用鋳型に溶鋼を注入しつつ該溶鋼を凝固させ鋳片を形成し、該鋳片を前記鋳型から引き抜き、
前記鋳片に向けて冷却水を吹付けて前記鋳片内の溶鋼を凝固させた後に該鋳片を圧下する鋼の連続鋳造方法であって、
前記圧下を開始する位置で、前記鋳片の表面温度を600℃以下且つ前記鋳片の中心温度と前記表面温度との差を400℃以上とし、前記鋳片内の溶鋼の凝固が完了する凝固完了位置において鋳片厚み方向中心部の凝固組織を柱状晶及び/または分岐柱状晶とし、
前記鋳片を5mm以上圧下する鋼の連続鋳造方法。
Forming a cast piece by solidifying the molten steel while injecting the molten steel into a continuous casting mold, and pulling out the cast piece from the mold,
A method for continuous casting of steel, comprising cooling the slab after solidifying molten steel in the slab by spraying cooling water toward the slab,
At the position where the reduction is started, the surface temperature of the slab is 600° C. or less and the difference between the center temperature of the slab and the surface temperature is 400° C. or more, and solidification of the molten steel in the slab is completed. At the completion position, the solidified structure of the central portion in the thickness direction of the cast piece is columnar crystals and/or branched columnar crystals,
A continuous casting method for steel, wherein the slab is rolled down by 5 mm or more.
前記鋳片を10mm以上圧下する請求項1に記載の鋼の連続鋳造方法。 The continuous casting method for steel according to claim 1, wherein the slab is reduced by 10 mm or more. 鋳片幅方向に延在する1対の圧下ロールで前記圧下を行う請求項1または請求項2に記載の鋼の連続鋳造方法。 The continuous casting method for steel according to claim 1 or 2, wherein the rolling is performed by a pair of rolling rolls extending in the width direction of the slab.
JP2018246440A 2018-12-28 2018-12-28 Steel continuous casting method for steel Pending JP2020104149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018246440A JP2020104149A (en) 2018-12-28 2018-12-28 Steel continuous casting method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018246440A JP2020104149A (en) 2018-12-28 2018-12-28 Steel continuous casting method for steel

Publications (1)

Publication Number Publication Date
JP2020104149A true JP2020104149A (en) 2020-07-09

Family

ID=71450293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018246440A Pending JP2020104149A (en) 2018-12-28 2018-12-28 Steel continuous casting method for steel

Country Status (1)

Country Link
JP (1) JP2020104149A (en)

Similar Documents

Publication Publication Date Title
KR102635630B1 (en) Continuous casting method of steel
JP6115735B2 (en) Steel continuous casting method
EP3219408B1 (en) Continuous casting method for steel
JP5835531B2 (en) Continuous casting method for slabs for extra heavy steel plates
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP5444807B2 (en) Method for preventing surface cracks in continuous cast slabs
JP6075336B2 (en) Steel continuous casting method
JP5085451B2 (en) Billet continuous casting method
JP5045408B2 (en) Manufacturing method of continuous cast slab
JP6044746B1 (en) Steel continuous casting method
JP5870966B2 (en) Manufacturing method of continuous cast slab
JP2020104149A (en) Steel continuous casting method for steel
JP6439663B2 (en) Steel continuous casting method
JP5929836B2 (en) Steel continuous casting method
JP2011152580A (en) Continuous casting method for steel
JPWO2019203137A1 (en) Continuous casting method for steel
RU2779384C1 (en) Method for continuous casting of steel
JP5920083B2 (en) Continuous casting method for steel slabs
TWI580496B (en) Continuous Casting of Steel
WO2016121355A1 (en) Continuous casting method for steel
JP5915453B2 (en) Steel continuous casting method
JP4723451B2 (en) Continuous casting method of high carbon steel related to internal cracks derived from recuperation
JP2012086260A (en) Light rolling reduction controlling method of cast slab in continuous casting
JP2012066302A (en) Continuous casting method and continuous casting apparatus of steel
JP2018192527A (en) Steel continuous casting method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327