JP2020104101A - Method for strengthning removal of diclofenac in sewage by means of enrichment of nitrifying bacteria - Google Patents

Method for strengthning removal of diclofenac in sewage by means of enrichment of nitrifying bacteria Download PDF

Info

Publication number
JP2020104101A
JP2020104101A JP2019203602A JP2019203602A JP2020104101A JP 2020104101 A JP2020104101 A JP 2020104101A JP 2019203602 A JP2019203602 A JP 2019203602A JP 2019203602 A JP2019203602 A JP 2019203602A JP 2020104101 A JP2020104101 A JP 2020104101A
Authority
JP
Japan
Prior art keywords
diclofenac
sewage
removal
nitrifying bacteria
concentrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019203602A
Other languages
Japanese (ja)
Other versions
JP6710359B1 (en
Inventor
耿金菊
Jin Ju Geng
呉剛
Ganag Wu
任洪強
Hong Qiang Ren
許柯
Ke Xu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Application granted granted Critical
Publication of JP6710359B1 publication Critical patent/JP6710359B1/en
Publication of JP2020104101A publication Critical patent/JP2020104101A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/004Apparatus and plants for the biological treatment of water, waste water or sewage comprising a selector reactor for promoting floc-forming or other bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/16Total nitrogen (tkN-N)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

To effectively remove diclofenac by a sewage treatment system.SOLUTION: A method for strengthening the removal of diclofenac in sewage by means of enrichment of nitrifying bacteria, which comprises: 1) a step in which sewage is allowed to flow by gravity into a secondary precipitation tank to carry out solid-liquid separation; 2) a step in which the sewage is treated at an initial concentration of nitrifying sludge of 1000 mg/L, at a pH of 7.5±0.5, at an ammonia oxidation rate (SAOR) of 0.05 to 0.4 mg NH4+-N/g MLSS min, at dissolved oxygen (DO) of 2 to 4 mg/L, and at a hydraulic holding time (HRT) of 0.5 to 10 hours; and 3) a step in which effluent is collected to analyze the results of the treatment.SELECTED DRAWING: Figure 1

Description

本発明は、下水浄化の技術分野に属し、具体的には、硝化細菌を濃縮することにより下水
中のジクロフェナクの除去を強化する方法に関する。
TECHNICAL FIELD The present invention belongs to the technical field of sewage purification, and specifically relates to a method for enhancing the removal of diclofenac in sewage by concentrating nitrifying bacteria.

ジクロフェナクは、抗炎症および鎮痛剤で広く使用される非ステロイド系抗炎症薬であり
、その広範な使用と持続性により、環境水域で大量に検出され、下水処理場は、様々な種
類の水が集まる場所として広く注目されている。新しいタイプの汚染物質として、その生
態環境リスクに関する研究はほとんどないが、既存の研究は、ジクロフェナクがインド白
頭ワシの大きな減弱を引き起こす可能性があることを示す。したがって、下水処理システ
ムでジクロフェナクを効果的に除去する方法は、人々の注目を集めている。
Diclofenac is a non-steroidal anti-inflammatory drug that is widely used in anti-inflammatory and analgesic drugs, and due to its widespread use and persistence, it is detected in large quantities in environmental waters, and sewage treatment plants are exposed to various types of water. It has been widely noticed as a gathering place. As a new type of pollutant, there are few studies on its eco-environmental risk, but existing studies indicate that diclofenac may cause a significant attenuation of Indian Bald Eagles. Therefore, how to effectively remove diclofenac in a sewage treatment system has attracted people's attention.

下水の安全な排出を確保する重要な部分として、下水処理プロセスは、ジクロフェナクの
除去に対する様々な費用対効果の高いプロセスの影響を研究するために非常に重要である
。これらの除去方法はジクロフェナク前駆体をよりよく除去できるが、高度な酸化と消毒
により毒性のより高い中間体が生成される可能性があり、同時に、経済的コストもこれら
の技術の大規模な適用を制限する。生物学的処理は、毒性を低減し、経済的コストが低い
技術として重視すべきである。多数の研究により、アンモニア酸化細菌は生成されたアン
モニアモノオキシゲナーゼによって共代謝されて微量汚染物質を除去することができ、か
つ除去能力が強いことが示されている。しかしながら、実際の汚水における微量汚染物質
、すなわち、ジクロフェナクの除去を強化するための硝化細菌の使用には系統的な研究は
ない。
As an important part of ensuring the safe discharge of sewage, sewage treatment processes are of great importance for studying the impact of various cost-effective processes on the removal of diclofenac. Although these removal methods are better able to remove diclofenac precursors, advanced oxidation and disinfection can produce more toxic intermediates, while at the same time the economic cost of large scale application of these technologies. To limit. Biological treatment should be emphasized as a technology with low toxicity and low economic cost. Numerous studies have shown that ammonia-oxidizing bacteria can be co-metabolized by the produced ammonia monooxygenase to remove trace pollutants, and have a strong removal ability. However, there are no systematic studies on the use of nitrifying bacteria to enhance the removal of trace pollutants, namely diclofenac, in actual wastewater.

従来技術の欠陥を解決するために、本発明の目的は、硝化細菌を濃縮することにより下水
中のジクロフェナクの除去を強化する方法を提供することであり、下水中のジクロフェナ
クを効果的に除去し、下水処理の要件を満たすようにすることができる。
In order to solve the deficiencies of the prior art, the object of the present invention is to provide a method for enhancing the removal of diclofenac in sewage by concentrating nitrifying bacteria, which effectively removes diclofenac in sewage. , Can meet the requirements of sewage treatment.

本発明の技術的解決手段は、硝化細菌を濃縮することにより下水中のジクロフェナクの除
去を強化する方法であり、
まず、MBRにおいてアンモニア態窒素負荷を徐々に増加し、かつ有機炭素負荷を徐々に
低減することにより(流入する有機炭素負荷が0になるまで)、硝化細菌を家畜化および
濃縮し、一般的に、濃縮された硝化細菌の家畜化期間は3か月以上であり、以下のジクロ
フェナク強化除去操作は濃縮および家畜化された硝化スラッジを取る。
1)下水を固液分離のために二次沈殿タンクに流し、分離により上澄み液と沈殿物が得ら
れるステップ、
2)ステップ1)で分離された上澄み液を濃縮および家畜化された硝化スラッジのMBR
にポンピングし、硝化スラッジの初期濃度を1000mg/Lに制御し、pHを7.5±
0.5に調整し、溶存酸素を2〜4mg/Lに制御し、HRTは0.5〜10時間であり
、スラッジ硝化液がポンピングされた高アンモニア窒素廃水によりアンモニア酸化速度(
SAOR)を0.05〜0.4mg NH4 N/g MLSS minに維持するス
テップ、
3)ステップ2)の排水を収集して結果を分析し、水中のジクロフェナクの含有量が排出
基準を満たす場合、消毒のために紫外線消毒タンクに送られた後、排水を都市下水管網に
排出するステップ、
4)満たさない場合、ステップ2)に戻って処理するステップ、を含む。
The technical solution of the present invention is a method for enhancing the removal of diclofenac in sewage by concentrating nitrifying bacteria,
First, in the MBR, by gradually increasing the ammonia nitrogen load and gradually reducing the organic carbon load (until the inflowing organic carbon load is 0), the nitrifying bacteria are domesticated and concentrated, and generally, The period of domestication of concentrated nitrifying bacteria is 3 months or more, and the following diclofenac enhanced removal operation takes concentrated and domesticated nitrifying sludge.
1) a step of flowing sewage into a secondary precipitation tank for solid-liquid separation, and obtaining a supernatant and a precipitate by separation,
2) MBR of the nitrifying sludge that was concentrated and domesticated with the supernatant liquid separated in step 1)
Pump to control the initial concentration of nitrifying sludge to 1000 mg/L, and adjust the pH to 7.5 ±
It was adjusted to 0.5, the dissolved oxygen was controlled to 2 to 4 mg/L, the HRT was 0.5 to 10 hours, and the ammonia oxidation rate (high ammonia nitrogen wastewater pumped with the sludge nitrification solution) (
SAOR) at 0.05-0.4 mg NH4 <+> - N/g MLSS min.
3) Collect the wastewater from step 2), analyze the results, and, if the content of diclofenac in the water meets the emission standard, send it to the UV disinfection tank for disinfection and then discharge the wastewater to the municipal sewer network. Steps to
4) if not, returning to step 2) for processing.

当然に、本発明の一態様として、上記硝化細菌の濃縮と家畜化プロセス中に、油圧保持時
間の影響を補うことができ、アンモニア窒素負荷が徐々に増加し、有機炭素負荷が徐々に
低減するマトリックス濃度の影響と油圧保持時間の影響の協力により、NOBが短期間で
抵抗メカニズムを形成しにくくなり、その抑制と除去に役立つ。
Naturally, as one aspect of the present invention, during the process of concentrating the nitrifying bacteria and the domestication process, it is possible to compensate for the influence of the hydraulic pressure holding time, the ammonia nitrogen load gradually increases, and the organic carbon load gradually decreases. The cooperation of the influence of the matrix concentration and the influence of the hydraulic pressure holding time makes it difficult for NOB to form a resistance mechanism in a short period of time, which is useful for suppressing and removing it.

本発明の別の態様として、硝化細菌の濃縮および家畜化は、スラッジ中の嫌気性細菌の除
去を促進するために過剰な通気方法を採用することもでき、それにより硝化細菌を迅速に
濃縮する。
As another aspect of the present invention, the enrichment and domestication of nitrifying bacteria may employ an excess aeration method to facilitate the removal of anaerobic bacteria in the sludge, thereby rapidly enriching the nitrifying bacteria. ..

本発明の一態様として、前記ステップ2)では、500mg/Lの重炭酸ナトリウムを使
用してpHを調整し、硝化細菌の増殖に必要なpH環境を確保するように、pHをpHセ
ンサーによってリアルタイムで測定し、かつ、必要に応じて重炭酸ナトリウム原液を加え
てpHを7.5±0.5の範囲に制御する。
As one aspect of the present invention, in step 2), the pH is adjusted using 500 mg/L of sodium bicarbonate, and the pH is adjusted in real time by a pH sensor so as to ensure a pH environment necessary for the growth of nitrifying bacteria. And add sodium bicarbonate stock solution if necessary to control the pH within the range of 7.5±0.5.

本発明の一態様として、前記ステップ2)のHRTは6時間に設定される。 As one aspect of the present invention, the HRT in step 2) is set to 6 hours.

本発明の一態様として、前記ステップ2)において、溶存酸素計により溶存酸素濃度を測
定し、かつ、曝気装置のバルブを調整することにより嫌気性物質が沈降しにくくなるよう
にDOを3.2mg/Lに制御する。
As one aspect of the present invention, in the step 2), the dissolved oxygen concentration is measured by a dissolved oxygen meter, and a valve of the aeration device is adjusted to prevent the anaerobic substance from settling down to 3.2 mg of DO. Control to /L.

本発明の一態様として、前記ステップ2)は、パルス曝気を使用し、パルス周波数は10
〜15分で4〜6時間処理する。
In one aspect of the invention, step 2) uses pulsed aeration and the pulse frequency is 10
Process ~15 minutes for 4-6 hours.

本発明の一態様として、ステップ2)において、SAORは0.05mg NH4
/g MLSS minに維持され、好気性時間を短縮し、短距離硝化を向上し、より多
くの曝気エネルギー消費を節約する。
本発明の一態様として、ステップ2)は、パルス曝気法を採用し、パルス曝気処理は、撹
拌機を介して700〜900r/minの速度で4〜6時間行われ、パルス周波数は10
〜15分である。
One aspect of the present invention, in step 2), SAOR is 0.05 mg NH4 + - N
/G MLSS min, which shortens aerobic time, improves short-range nitrification and saves more aeration energy consumption.
As one aspect of the present invention, step 2) adopts a pulse aeration method, and the pulse aeration process is performed for 4 to 6 hours at a speed of 700 to 900 r/min through a stirrer and a pulse frequency of 10.
~15 minutes.

本発明の一態様として、前記MBRの膜要素は、ポリウレタンフォーム材料とゼオライト
充填剤が充填される中空繊維膜であり、有機物の分解を促進し、膜アセンブリの汚染を軽
減する。
In one aspect of the invention, the MBR membrane element is a hollow fiber membrane filled with a polyurethane foam material and a zeolite filler to promote the decomposition of organic matter and reduce fouling of the membrane assembly.

本発明の一態様として、ステップ3)における前記結果分析は、ジクロフェナクの濃度検
出およびジクロフェナクの除去率分析を含む。
As one aspect of the present invention, the result analysis in step 3) includes a concentration detection of diclofenac and a removal rate analysis of diclofenac.

本発明の一態様として、ステップ1)における硝化細菌の濃縮ステップは以下のとおりで
ある。
まず、硝化細菌と流入水の質量比を1:100に、溶存酸素を6mg/Lに維持される条
件で、パルス曝気処理は2〜3時間行われ、静置、濾過して上澄み液を得る。
上澄み液をMBR反応器にポンピングし、15〜25°Cの温度で、pHを7.2〜7.
8に調整し、溶存酸素を1.2〜1.5mg/Lに制御し、接種したスラッジ濃度を15
〜18g/Lになり、次に、濃縮培地を添加し、添加量は0.2mg/Lであり、流入水
の量を一定に維持し、初期のアンモニア態窒素濃度は20〜300mg/Lであり、アン
モニア態窒素濃度が20mg/L未満の場合、流入水のアンモニア態窒素濃度を40〜1
30 mg/Lに増加し、硝化細菌が優勢な細菌群になるように、硝化細菌を濃縮および
培養する。
前記培養培地の組成は、質量比が1:1:5:2:2:3:1:2のMgCl・6H
O、CaCl、NaHCO、KHPO、NHCl、FeSO・7HO、ピ
ルビン酸ナトリウム、および微量元素である。
濃縮と培養のプロセス中に、まず、流入水を撹拌し、110〜115%の還流比に従って
MBR反応器で下水を往復停止し、停止時間は1:1.5であり、往復停止中に電磁ロッ
ドによって連続的に撹拌し、その後スラッジを分離し、分離されたスラッジは、まず、撹
拌速度が200〜300r/minの条件で撹拌し、5〜10分間処理し、濃度係数を0
.85〜0.95に制御し、80〜98%の還流比で還流する。
最後に、処理された下水を沈殿させ、スラッジはまだ還流され、沈降が完了した後、スラ
ッジの還流を停止させ、排水して濃縮し、耐衝撃負荷容量を改善し、MBR膜は、スラッ
ジの保持を促進し、反応器の処理負荷を軽減する。
As one aspect of the present invention, the step of concentrating nitrifying bacteria in step 1) is as follows.
First, pulse aeration treatment is carried out for 2 to 3 hours under the condition that the mass ratio of nitrifying bacteria and influent water is maintained at 1:100 and dissolved oxygen is maintained at 6 mg/L, and the supernatant is obtained by standing and filtering. ..
The supernatant is pumped into the MBR reactor and at a temperature of 15 to 25°C and a pH of 7.2 to 7.
8, the dissolved oxygen was controlled to 1.2 to 1.5 mg/L, and the inoculated sludge concentration was adjusted to 15
-18g/L, then add concentrated medium, the addition amount is 0.2mg/L, the amount of inflow water is kept constant, the initial ammonia nitrogen concentration is 20-300mg/L. Yes, when the ammonia nitrogen concentration is less than 20 mg/L, the ammonia nitrogen concentration of the inflow water is 40 to 1
The nitrifying bacteria are concentrated and cultivated so that the amount is increased to 30 mg/L and the nitrifying bacteria become the dominant bacterial group.
The composition of the culture medium has a mass ratio of 1:1:5:2:2:3:1:2 MgCl 2 .6H 2
O, CaCl 2, NaHCO 3, KH 2 PO 4, NH 4 Cl, FeSO 4 · 7H 2 O, sodium pyruvate, and trace elements.
During the concentration and culturing process, first, the inflow water was stirred, and the sewage was stopped by the MBR reactor according to the reflux ratio of 110-115%, and the stop time was 1:1.5. The sludge is continuously stirred by a rod, and then the sludge is separated. The separated sludge is first stirred at a stirring speed of 200 to 300 r/min, treated for 5 to 10 minutes, and has a concentration coefficient of 0.
. It is controlled to 85 to 0.95 and refluxed at a reflux ratio of 80 to 98%.
Finally, the treated sewage is allowed to settle, the sludge is still refluxed, and after the settling is complete, the sludge's reflux is stopped, drained and concentrated to improve impact load capacity, the MBR membrane is It promotes retention and reduces the processing load on the reactor.

従来技術に比べて、本発明の有益な効果は、以下のとおりである。
1)本発明は、装置がシンプルであり、操作しやすく、コストが低く、汚染がなく、安定
性が高い。
2)本発明の方法は、下水中のジクロフェナクを効果的に除去することができ、下水は排
出基準を満たし、それにより、下水中の残りのジクロフェナクの下流生物への毒性影響を
回避する。
3)現在の下水浄化プロセスの欠点を補い、ジクロフェナクの除去効果が低いという従来
技術の欠点を改善し、下水におけるジクロフェナクの除去のための国内技術のブラックを
埋めた。
4)本発明はまた、硝化細菌を濃縮および家畜化させる方法を提供し、本方法により、優
性株をスクリーニング、濃縮および固定し、硝化細菌が強い適応性を有することを保証し
、同時に全窒素およびアンモニア態窒素を除去することができる。
The beneficial effects of the present invention as compared to the prior art are as follows.
1) The present invention has a simple device, easy to operate, low cost, no pollution, and high stability.
2) The method of the present invention can effectively remove diclofenac in the sewage, and the sewage meets the discharge criteria, thereby avoiding the toxic effects of the remaining diclofenac in the sewage on the downstream organisms.
3) It made up for the shortcomings of the current sewage purification process, improved the shortcomings of the prior art that the removal effect of diclofenac was low, and filled the black of domestic technology for the removal of diclofenac in sewage.
4) The present invention also provides a method for concentrating and domesticating nitrifying bacteria, by which the dominant strains are screened, concentrated and fixed, ensuring that the nitrifying bacteria have a strong adaptability and at the same time total nitrogen. And ammoniacal nitrogen can be removed.

図1は本発明の硝化スラッジを濃縮および家畜化するMBR装置である。FIG. 1 shows an MBR device for concentrating and domesticating the nitrifying sludge of the present invention. 図2は本発明の硝化細菌により下水中のジクロフェナクを除去する装置である。FIG. 2 shows an apparatus for removing diclofenac in sewage by the nitrifying bacteria of the present invention. 図3はジクロフェナクの除去効果に対する本発明のHRTの影響結果図である。FIG. 3 is a graph showing the effect of the HRT of the present invention on the diclofenac removal effect. 図4はジクロフェナクの除去効果に対する本発明のSAORの影響効果図である。FIG. 4 is a graph showing the effect of SAOR of the present invention on the effect of removing diclofenac.

MBRのアンモニア態窒素負荷を徐々に増加し、かつ有機炭素負荷を徐々に低減すること
により(流入する有機炭素負荷が0になるまで)、硝化細菌を家畜化および濃縮し、一般
的に、濃縮された硝化細菌の家畜化期間は3か月以上であり、以下の各強化除去実施例は
いずれも該濃縮および家畜化された硝化スラッジを取る。
By gradually increasing the ammonia nitrogen load of the MBR and gradually reducing the organic carbon load (until the inflowing organic carbon load becomes zero), the nitrifying bacteria are domesticated and concentrated, and generally concentrated. The period of domestication of the nitrifying bacteria thus prepared is 3 months or more, and the enriched and removed nitrifying sludge obtained in each of the following enhanced removal examples is taken.

南京のある都市の下水二次沈殿タンクからの排水を対象として、以下のように下水でのジ
クロフェナク硝化細菌の除去を強化する。
Targeting the drainage from a sewage secondary sedimentation tank in a city in Nanjing, strengthen the removal of diclofenac nitrifying bacteria in the sewage as follows.

実施例1
1)下水を重力により二次沈殿タンクに流し、二次沈殿タンクで固液分離し、分離により
上澄み液と沈殿物が得られる。
2)上澄み液を濃縮および家畜化された硝化スラッジのMBRにポンピングし、硝化スラ
ッジの初期濃度を1000mg/Lに制御し、pHを7.5に調整し、溶存酸素を3.2
mg/Lに制御し、HRTは0.25時間であり、スラッジ硝化液がポンピングされた高
アンモニア窒素廃水によりアンモニア酸化速度(SAOR)を0.1mg NH4
/g MLSS minに維持する。
3)ステップ2)の排水を収集して結果を分析する。
30mLの水サンプルを0.45μmの混合繊維膜で濾過し、濾過後、その後の固相抽出
およびジクロフェナクの定量のために4°Cの冷蔵庫に保存し、各実験を3回繰り返し、
平均値±標準偏差を分析に使用する。
(A)液体クロマトグラフィー−質量分析によるジクロフェナク濃度の決定:
選択された液体クロマトグラフィー−質量分析機器は、米国AB会社のAPI4000選
択された液体クロマトグラフィー−質量分析機器であり、エレクトロスプレーイオン源(
ESI)および負イオン化多重反応モニタリングモード(MRM)を採用する。多重反応
により監視されたパラメータは表1に示すとおりである。


ここで、液相分離に使用されたカラムは、カラム温度30°CのAcquity UPL
C BEH C18カラム(2.1×50 mm、1.7 um)である。選択した移動
相は水(A)とメタノール(B)であり、両方の相に0.1%のアンモニア水を加える。
移動相は使用前に脱気される。液相流量は0.1 mL/minであり、アイソクラティ
ック溶出を使用し、アイソクラティック溶出の手順は10%A:90%Bである。注入量
は5μLであり、オートサンプラーを使用して注入する。
(B)ジクロフェナクの除去率の分析:
ここで、ジクロフェナクの濃度単位はμg/Lである。
ジクロフェナクの除去率=(1−Ct/C0)×100%であり、C0は初期濃度であり
、Ctは反応時間tにおけるジクロフェナク剤の濃度である。
本実施例では、HRTが0.5時間であった場合、ジクロフェナクの除去率が21.84
%であると測定された。
Example 1
1) Sewage is allowed to flow by gravity into a secondary precipitation tank, and solid-liquid separation is performed in the secondary precipitation tank, and a supernatant and a precipitate are obtained by separation.
2) The supernatant was concentrated and pumped into the MBR of domesticated nitrifying sludge, the initial concentration of nitrifying sludge was controlled to 1000 mg/L, the pH was adjusted to 7.5, and the dissolved oxygen was 3.2.
Controls in mg / L, HRT is 0.25 hours, the ammonia oxidation rate by a high ammonia nitrogen wastewater sludge digestion liquid is pumped (SAOR) 0.1mg NH4 + - N
/G MLSS min.
3) Collect the wastewater from step 2) and analyze the results.
A 30 mL water sample was filtered through a 0.45 μm mixed fiber membrane and, after filtration, stored in a refrigerator at 4° C. for subsequent solid phase extraction and quantification of diclofenac, repeating each experiment three times,
Mean ± standard deviation is used for analysis.
(A) Determination of diclofenac concentration by liquid chromatography-mass spectrometry:
The Liquid Chromatography-Mass Spectrometer of choice is the API 4000 Selected Liquid Chromatography-Mass Spectrometer of the US AB company, Electrospray Ion Source (
ESI) and negative ionization multiple reaction monitoring mode (MRM). The parameters monitored by the multiple reaction are shown in Table 1.


Here, the column used for the liquid phase separation was Acquity UPL at a column temperature of 30°C.
C BEH C18 column (2.1 x 50 mm, 1.7 um). The mobile phases selected are water (A) and methanol (B) and 0.1% aqueous ammonia is added to both phases.
The mobile phase is degassed before use. The liquid phase flow rate is 0.1 mL/min, isocratic elution is used, and the isocratic elution procedure is 10% A: 90% B. The injection volume is 5 μL and injection is performed using an autosampler.
(B) Analysis of diclofenac removal rate:
Here, the concentration unit of diclofenac is μg/L.
Removal rate of diclofenac=(1-Ct/C0)×100%, C0 is the initial concentration, and Ct is the concentration of the diclofenac agent at the reaction time t.
In this example, when the HRT was 0.5 hour, the removal rate of diclofenac was 21.84.
% Was determined.

実施例2
HRTは1時間であり、操作方法およびパラメータは実施例1と同じであり、ジクロフェ
ナクの検出方法も実施例1と同じであり、水中のジクロフェナクの除去率が27.49%
であると測定された。
Example 2
HRT is 1 hour, the operating method and parameters are the same as in Example 1, the detection method of diclofenac is the same as in Example 1, and the removal rate of diclofenac in water is 27.49%.
Was measured.

実施例3
HRTは2時間であり、操作方法およびパラメータは実施例1と同じであり、ジクロフェ
ナクの検出方法も実施例1と同じであり、水中のジクロフェナクの除去率が55.14%
であると測定された。
Example 3
The HRT was 2 hours, the operation method and parameters were the same as in Example 1, the diclofenac detection method was the same as in Example 1, and the removal rate of diclofenac in water was 55.14%.
Was measured.

実施例4
HRTは4時間であり、操作方法およびパラメータは実施例1と同じであり、ジクロフェ
ナクの検出方法も実施例1と同じであり、水中のジクロフェナクの除去率が67.25%
であると測定された。
Example 4
HRT was 4 hours, the operating method and parameters were the same as in Example 1, the diclofenac detection method was also the same as in Example 1, and the removal rate of diclofenac in water was 67.25%.
Was measured.

実施例5
HRTは6時間であり、操作方法およびパラメータは実施例1と同じであり、ジクロフェ
ナクの検出方法も実施例1と同じであり、水中のジクロフェナクの除去率が73.16%
であると測定された。
Example 5
The HRT was 6 hours, the operating method and parameters were the same as in Example 1, the diclofenac detection method was the same as in Example 1, and the removal rate of diclofenac in water was 73.16%.
Was measured.

実施例6
HRTは10時間であり、操作方法およびパラメータは実施例1と同じであり、ジクロフ
ェナクの検出方法も実施例1と同じであり、水中のジクロフェナクの除去率が76.79
%であると測定された。
上記実施例1〜6の結果を統計および分析し、ジクロフェナクの除去効果に対する異なる
HRT値の影響結果を取得し、具体的には図3を参照する。
結論1:図3から分かるように、残りのパラメータが一定の場合、ジクロフェナクの除去
率はHRTとともに0.5時間から10時間に徐々に増加する。HRTが0.5時間の場
合、ジクロフェナクの除去率はわずか21.84%であり、HRTは1時間から2時間に
延長され、ジクロフェナクの除去率は27.49%から55.14%に大幅に増加した。
HRTが2時間から10時間に延長されたとき、HRTは55.14%から76.79%
にゆっくりと上昇した。下水処理場の経済的結果と除去率の増加を考慮すると、HRTを
6時間選択することがより適切である。
Example 6
The HRT was 10 hours, the operating method and parameters were the same as in Example 1, the diclofenac detection method was the same as in Example 1, and the removal rate of diclofenac in water was 76.79.
% Was determined.
The results of Examples 1 to 6 above were statistically and analyzed, and the influence results of different HRT values on the removal effect of diclofenac were obtained. Specifically, refer to FIG.
Conclusion 1: As can be seen from Fig. 3, when the remaining parameters are constant, the removal rate of diclofenac gradually increases with HRT from 0.5 hours to 10 hours. When the HRT was 0.5 hours, the removal rate of diclofenac was only 21.84%, the HRT was extended from 1 hour to 2 hours, and the removal rate of diclofenac was significantly increased from 27.49% to 55.14%. Increased.
HRT increased from 55.14% to 76.79% when HRT was extended from 2 hours to 10 hours
Slowly rose to. Considering the economic result of the sewage treatment plant and the increase of removal rate, it is more appropriate to select HRT for 6 hours.

実施例7
初期SAORは0.05mg NH4N/g MLSS minであり、操作方法とパ
ラメータは実施例5と同じであり、ジクロフェナクの検出方法も実施例5と同じであり、
水中のジクロフェナクの除去率が57.05%であると測定された。
Example 7
The initial SAOR is 0.05 mg NH4 - N/g MLSS min, the operating method and parameters are the same as in Example 5, the diclofenac detection method is also the same as in Example 5,
The removal rate of diclofenac in water was determined to be 57.05%.

実施例8
初期SAORは0.1mg NH4N/g MLSS minであり、操作方法とパラ
メータは実施例5と同じであり、ジクロフェナクの検出方法も実施例5と同じであり、水
中のジクロフェナクの除去率が65.22%であると測定された。
Example 8
The initial SAOR was 0.1 mg NH4 - N/g MLSS min, the operation method and parameters were the same as in Example 5, the diclofenac detection method was the same as in Example 5, and the removal rate of diclofenac in water was 65. It was determined to be 0.22%.

実施例9
初期SAORは0.2mg NH4N/g MLSS minであり、操作方法とパラ
メータは実施例5と同じであり、ジクロフェナクの検出方法も実施例5と同じであり、水
中のジクロフェナクの除去率が75.15%であると測定された。
Example 9
The initial SAOR was 0.2 mg NH4 - N/g MLSS min, the operation method and parameters were the same as in Example 5, the diclofenac detection method was the same as in Example 5, and the removal rate of diclofenac in water was 75. It was determined to be .15%.

実施例10
初期SAORは0.4mg NH4N/g MLSS minであり、操作方法とパラ
メータは実施例5と同じであり、ジクロフェナクの検出方法も実施例5と同じであり、水
中のジクロフェナクの除去率が85.66%であると測定された。
ジクロフェナクの除去効果に対するSAORの影響の分析:
結論2:図4からわかるように、残りのパラメータが一定の場合、ジクロフェナクの除去
率はSAORとともに増加する。SAORが0.05 mg NH4N/g MLSS
minの場合、その除去率は57.05%である。SAORが0.4 mg NH4
N/g MLSS minの場合、その除去率は85.66%である。SAORの増加に
伴うジクロフェナク除去率の増加は小さく、また、排出アンモニア態窒素濃度が標準に達
する問題を考慮すると、0.05mg NH4N/g MLSS minのSAORが
最適である。
Example 10
The initial SAOR is 0.4 mg NH4 - N/g MLSS min, the operating method and parameters are the same as in Example 5, the diclofenac detection method is the same as in Example 5, and the removal rate of diclofenac in water is 85. It was determined to be .66%.
Analysis of the effect of SAOR on the removal effect of diclofenac:
Conclusion 2: As can be seen from FIG. 4, when the remaining parameters are constant, the removal rate of diclofenac increases with SAOR. SAOR is 0.05 mg NH4 - N/g MLSS
In the case of min, the removal rate is 57.05%. SAOR is 0.4 mg NH4 -
In the case of N/g MLSS min, the removal rate is 85.66%. The increase of diclofenac removal rate with the increase of SAOR is small, and considering the problem that the concentration of exhausted ammoniacal nitrogen reaches the standard, 0.05 mg NH4 - N/g MLSS min SAOR is optimal.

実施例11
溶存酸素濃度は1mg/Lであり、操作方法とパラメータは実施例7と同じであり、ジク
ロフェナクの検出方法も実施例7と同じであり、水中のジクロフェナクの除去率が42.
18%であると測定された。
Example 11
The dissolved oxygen concentration was 1 mg/L, the operating method and parameters were the same as in Example 7, the diclofenac detection method was the same as in Example 7, and the diclofenac removal rate in water was 42.
It was determined to be 18%.

実施例12
溶存酸素濃度は2mg/Lであり、操作方法とパラメータは実施例7と同じであり、ジク
ロフェナクの検出方法も実施例7と同じであり、水中のジクロフェナクの除去率が56.
50%であると測定された。
Example 12
The dissolved oxygen concentration was 2 mg/L, the operating method and parameters were the same as in Example 7, the diclofenac detection method was the same as in Example 7, and the diclofenac removal rate in water was 56.
It was determined to be 50%.

実施例13
溶存酸素濃度は4mg/Lであり、操作方法とパラメータは実施例7と同じであり、ジク
ロフェナクの検出方法も実施例7と同じであり、水中のジクロフェナクの除去率が54.
08%であると測定された。
Example 13
The dissolved oxygen concentration was 4 mg/L, the operation method and parameters were the same as in Example 7, the diclofenac detection method was the same as in Example 7, and the diclofenac removal rate in water was 54.
It was determined to be 08%.

実施例14
溶存酸素濃度は5mg/Lであり、操作方法とパラメータは実施例7と同じであり、ジク
ロフェナクの検出方法も実施例7と同じであり、水中のジクロフェナクの除去率が45.
05%であると測定された。
ジクロフェナクの除去効果に対する溶存酸素濃度の影響の分析:
結論3:実施例11〜14の結果から分かるように、残りのパラメータが一定の場合、溶
存酸素濃度が2〜4mg/Lの範囲にある場合、ジクロフェナクの除去率は溶存酸素濃度
によってほとんど変化せず、溶存酸素濃度が 2mg/Lまたは4mg/Lを超えると、
ジクロフェナクの除去率が低下し始め、かつ、溶存酸素濃度が3.2mg/Lのときにジ
クロフェナクの除去率が最大になり、実施例7と同じであり、その除去率は57.05%
である。他の考慮事項と組み合わせて、溶存酸素濃度を3.2mg/LのSAORとする
ことが最適である。
Example 14
The dissolved oxygen concentration was 5 mg/L, the operation method and parameters were the same as in Example 7, the diclofenac detection method was the same as in Example 7, and the diclofenac removal rate in water was 45.
It was determined to be 05%.
Analysis of the effect of dissolved oxygen concentration on the removal effect of diclofenac:
Conclusion 3: As can be seen from the results of Examples 11 to 14, when the remaining parameters were constant and when the dissolved oxygen concentration was in the range of 2 to 4 mg/L, the removal rate of diclofenac was almost changed by the dissolved oxygen concentration. If the dissolved oxygen concentration exceeds 2 mg/L or 4 mg/L,
The removal rate of diclofenac begins to decrease, and the removal rate of diclofenac becomes maximum when the dissolved oxygen concentration is 3.2 mg/L, which is the same as in Example 7, and the removal rate is 57.05%.
Is. Optimally, the dissolved oxygen concentration is 3.2 mg/L SAOR in combination with other considerations.

実施例15
MBRのアンモニア態窒素負荷を徐々に増加し、かつ有機炭素負荷を徐々に低減すること
により硝化細菌を家畜化および濃縮し、具体的なステップは以下のとおりである。
まず、硝化細菌と流入水の質量比を1:10になり、溶存酸素を6mg/Lになる条件で
、パルス曝気処理は3時間行われ、静置、濾過して上澄み液を得る。
上澄み液をMBR反応器にポンピングし、25°Cの温度で、pHを7.8に調整し、溶
存酸素を1.5mg/Lに制御し、接種したスラッジ濃度を18g/Lになり、流入量を
一定に保ち、初期アンモニア態窒素濃度は300mg/Lであり、アンモニア態窒素濃度
が20mg/Lに減少すると、流入アンモニア態窒素濃度が130mg/Lに増加する。
115%の還流比に従ってMBR反応器で下水を往復停止し、停止時間は1:1.5であ
り、往復停止中に電磁ロッドによって連続的に撹拌し、その後スラッジを分離し、分離さ
れたスラッジは、まず、撹拌速度が300r/minの条件で撹拌し、次に、80kHz
の超音波周波数で、10分間処理し、濃度係数を0.95に制御し、98%の還流比で還
流する、最後に、処理された下水を静置して沈殿させ、スラッジはまだ還流され、沈降が
完了した後、スラッジの還流を停止させ、排水して濃縮し、3か月の期間で濃縮された硝
化細菌を家畜化し、次に、活性スラッジを濃縮された硝化細菌と混合し、家畜化および濃
縮された硝化スラッジを得る。
分析により、本方法によってスクリーニング、濃縮、および固定された優性株は、硝化細
菌の強い適応性を確保することができ、かつ家畜化および濃縮期間がより短く、わずか7
0日であることがわかった。
Example 15
The nitrifying bacteria are domesticated and concentrated by gradually increasing the ammonia nitrogen load of the MBR and gradually reducing the organic carbon load, and the specific steps are as follows.
First, pulse aeration treatment is performed for 3 hours under the condition that the mass ratio of nitrifying bacteria and inflow water is 1:10 and dissolved oxygen is 6 mg/L, and the mixture is left standing and filtered to obtain a supernatant.
The supernatant liquid was pumped into the MBR reactor, the pH was adjusted to 7.8, the dissolved oxygen was controlled to 1.5 mg/L, the inoculated sludge concentration was 18 g/L, and the inflow was carried out at a temperature of 25°C. Keeping the amount constant, the initial ammonia nitrogen concentration is 300 mg/L, and when the ammonia nitrogen concentration decreases to 20 mg/L, the inflow ammonia nitrogen concentration increases to 130 mg/L.
The sewage is shut down in the MBR reactor according to a reflux ratio of 115%, the shutdown time is 1:1.5, continuously stirred by the electromagnetic rod during the shut down, then the sludge is separated, and the separated sludge is separated. First, stir at a stirring rate of 300 r/min, then at 80 kHz
Treated with ultrasonic frequency of 10 minutes, control the concentration coefficient to 0.95, reflux at 98% reflux ratio, finally, treated sewage is allowed to settle, the sludge is still refluxed. , After the settling is complete, stop the sludge reflux, drain and concentrate, domesticate the concentrated nitrifying bacteria for a period of 3 months, then mix the activated sludge with the concentrated nitrifying bacteria, Obtain domesticated and concentrated nitrifying sludge.
By analysis, the dominant strains screened, enriched and fixed by this method can ensure strong adaptability of nitrifying bacteria and have a shorter domestication and enrichment period, only 7
It turned out to be day 0.

実施例16
実施例15の基礎上で、スラッジを接種するとき、0.2mg/Lの濃縮培地を加え、該
濃縮培地は、質量比が1:1:5:2:2:3:1:2のMgCl・6HO、CaC
、NaHCO、KHPO、NHCl、FeSO・7HO、ピルビン酸ナ
トリウムで、および微量元素である。
分析により、硝化細菌の家畜化と濃縮プロセス中に、濃縮培地を加えた後に得られた硝化
細菌の適応性がより強く、家畜化と濃縮期間は63日であることがわかった。
Example 16
On the basis of Example 15, when inoculating the sludge, 0.2 mg/L concentrated medium was added, the concentrated medium having a mass ratio of 1:1:5:2:2:3:1:2 MgCl 2. 2 · 6H 2 O, CaC
l 2, NaHCO 3, KH 2 PO 4, NH 4 Cl, FeSO 4 · 7H 2 O, sodium pyruvate, and trace elements.
Analysis showed that during the domestication and enrichment process of nitrifying bacteria, the nitrifying bacteria obtained after adding the enriched medium were more adaptable, with a domestication and enrichment period of 63 days.

実施例17
実施例16の家畜化および濃縮された硝化細菌はジクロフェナク下水の処理を実施し、処
理方法および操作パラメータは実施例10と同じであり、水中のジクロフェナクの除去率
は88.25%であると測定され、本発明によって提供される硝化細菌の家畜化および濃
縮の方法は、ジクロフェナクの除去効果をある程度まで改善できることがわかる。
Example 17
The domesticated and concentrated nitrifying bacteria of Example 16 were treated with diclofenac sewage, the treatment method and operating parameters were the same as in Example 10, and the removal rate of diclofenac in water was determined to be 88.25%. It can be seen that the method for domesticating and concentrating nitrifying bacteria provided by the present invention can improve the removal effect of diclofenac to some extent.

Claims (6)

硝化細菌の濃縮による下水中のジクロフェナクの除去を強化する方法であって、
1)下水を固液分離のために二次沈殿タンクに流し、分離により上澄み液と沈殿物が得ら
れるステップと、
2)ステップ1)で分離された上澄み液を濃縮および家畜化された硝化スラッジのMBR
にポンピングし、硝化スラッジの初期濃度を1000mg/Lに制御し、pHを7.5±
0.5に調整し、溶存酸素を2〜4mg/Lに制御し、HRTは0.5〜10時間であり
、スラッジ硝化液がポンピングされた高アンモニア窒素廃水によりアンモニア酸化速度(
SAOR)を0.05〜0.4mg NH4 N/g MLSS minに維持するス
テップと、
3)ステップ2)の排水を収集して結果を分析し、水中のジクロフェナクの含有量が排出
基準を満たす場合、消毒のために紫外線消毒タンクに送られた後、排水を都市下水管網に
排出するステップと、
1)水中のジクロフェナクの含有量が排出基準を満たさない場合、ステップ2)に戻って
処理するステップと、
を含むことを特徴とする、硝化細菌の濃縮による下水中のジクロフェナクの除去を強化す
る方法。
A method for enhancing the removal of diclofenac in sewage by concentrating nitrifying bacteria, comprising:
1) a step of flowing sewage into a secondary precipitation tank for solid-liquid separation, and obtaining a supernatant and a precipitate by separation,
2) MBR of the nitrifying sludge that was concentrated and domesticated with the supernatant liquid separated in step 1)
Pump to control the initial concentration of nitrifying sludge to 1000 mg/L, and adjust the pH to 7.5 ±
It was adjusted to 0.5, the dissolved oxygen was controlled to 2 to 4 mg/L, the HRT was 0.5 to 10 hours, and the ammonia oxidation rate (high ammonia nitrogen wastewater pumped with the sludge nitrification solution) (
A step of maintaining the N / g MLSS min, - a SAOR) 0.05~0.4mg NH4 +
3) Collect the wastewater from step 2), analyze the results, and, if the content of diclofenac in the water meets the emission standard, send it to the UV disinfection tank for disinfection and then discharge the wastewater to the municipal sewer network. Steps to
1) if the content of diclofenac in the water does not meet the emission standards, return to step 2) and process;
A method for enhancing the removal of diclofenac in sewage by concentrating nitrifying bacteria, which comprises:
前記ステップ2)において、500mg/Lの重炭酸ナトリウムを使用してpHを調整し
、pHをpHセンサーによってリアルタイムで測定し、かつ、必要に応じて重炭酸ナトリ
ウム原液を加えてpHを7.5±0.5の範囲に制御する、ことを特徴とする、
請求項1に記載の硝化細菌の濃縮による下水中のジクロフェナクの除去を強化する方法。
In step 2), the pH was adjusted using 500 mg/L sodium bicarbonate, the pH was measured in real time by a pH sensor, and a sodium bicarbonate stock solution was added to adjust the pH to 7.5. It is characterized by controlling within a range of ±0.5,
A method for enhancing the removal of diclofenac in sewage by concentrating the nitrifying bacteria according to claim 1.
前記ステップ2)において、溶存酸素計により溶存酸素濃度を測定し、かつ、曝気装置の
バルブを調整することによりDOを3.2mg/Lに制御する、ことを特徴とする、
請求項1に記載の硝化細菌の濃縮による下水中のジクロフェナクの除去を強化する方法。
In the step 2), the dissolved oxygen concentration is measured by a dissolved oxygen meter, and DO is controlled to 3.2 mg/L by adjusting the valve of the aeration device.
A method for enhancing the removal of diclofenac in sewage by concentrating the nitrifying bacteria according to claim 1.
前記ステップ2)において、HRTは6時間に設定される、ことを特徴とする、
請求項3に記載の硝化細菌の濃縮による下水中のジクロフェナクの除去を強化する方法。
In the step 2), the HRT is set to 6 hours,
A method for enhancing the removal of diclofenac in sewage by concentrating nitrifying bacteria according to claim 3.
ステップ2)において、SAORを0.05mg NH4 N/g MLSS min
に維持する、ことを特徴とする、
請求項1に記載の硝化細菌の濃縮による下水中のジクロフェナクの除去を強化する方法。
In step 2), 0.05 mg of SAOR NH4 + - N / g MLSS min
To maintain,
A method for enhancing the removal of diclofenac in sewage by concentrating the nitrifying bacteria according to claim 1.
ステップ3)における前記結果分析は、ジクロフェナクの濃度検出およびジクロフェナク
の除去率分析を含む、ことを特徴とする、
請求項1に記載の硝化細菌の濃縮による下水中のジクロフェナクの除去を強化する方法。
Wherein the result analysis in step 3) includes diclofenac concentration detection and diclofenac removal rate analysis.
A method for enhancing the removal of diclofenac in sewage by concentrating the nitrifying bacteria according to claim 1.
JP2019203602A 2018-12-27 2019-11-09 A method to enhance the removal of diclofenac in sewage by concentrating nitrifying bacteria Expired - Fee Related JP6710359B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811611209.6A CN109574399B (en) 2018-12-27 2018-12-27 Method for removing diclofenac in sewage in enhanced manner based on enrichment of nitrobacteria
CN201811611209.6 2018-12-27

Publications (2)

Publication Number Publication Date
JP6710359B1 JP6710359B1 (en) 2020-06-17
JP2020104101A true JP2020104101A (en) 2020-07-09

Family

ID=65932063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019203602A Expired - Fee Related JP6710359B1 (en) 2018-12-27 2019-11-09 A method to enhance the removal of diclofenac in sewage by concentrating nitrifying bacteria

Country Status (2)

Country Link
JP (1) JP6710359B1 (en)
CN (1) CN109574399B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031188B (en) * 2021-11-26 2022-08-23 南京高科环境科技有限公司 Method for biodegrading organic micropollutants

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264772A (en) * 2007-03-27 2008-11-06 Asahi Kasei Chemicals Corp Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
JP2009509756A (en) * 2005-10-06 2009-03-12 シーメンス・ウォーター・テクノロジーズ・コーポレーション Dynamic control of membrane bioreactor system
JP2011130685A (en) * 2009-12-22 2011-07-07 Sea Plus Corp Closed circulation type culture method for fishes or shellfishes
JP2013202511A (en) * 2012-03-28 2013-10-07 Swing Corp Removing device and removing method of nitrogen and phosphorus
CN105753154A (en) * 2016-03-21 2016-07-13 广东省微生物研究所 Method for synchronously removing anti-inflammatory agent and ammonia nitrogen on basis of sponge iron-ammonia-oxidizing microorganism system
WO2017153361A1 (en) * 2016-03-09 2017-09-14 Veolia Water Solutions & Technologies Support Biological removal of micropollutants from wastewater
JP2017176967A (en) * 2016-03-29 2017-10-05 栗田工業株式会社 Biological treatment method and biological treatment apparatus
WO2018101888A1 (en) * 2016-11-30 2018-06-07 Nanyang Technological University A bio-bead for biofouling control in membrane bioreactor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245447A (en) * 1999-03-05 2000-09-12 Fuyuki Mitsuyama Useful enteric bacterium and its production
CN100460499C (en) * 2005-12-22 2009-02-11 中国石化上海石油化工股份有限公司 Sequencing batch active sludge process for eliminating ammonia nitrogen from sewage
CN101955256B (en) * 2010-09-19 2013-01-16 东华大学 Method for preparing ibuprofen-degrading bacterial agent
CN102557252B (en) * 2010-12-28 2014-04-16 北京化工大学 Treating method of typical PPCPs (Pharmaceutical and Personal Care Products)
CN107500405A (en) * 2017-09-16 2017-12-22 济南大学 A kind of method for the batch-type anaerobic grain sludge for removing brufen

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009509756A (en) * 2005-10-06 2009-03-12 シーメンス・ウォーター・テクノロジーズ・コーポレーション Dynamic control of membrane bioreactor system
JP2008264772A (en) * 2007-03-27 2008-11-06 Asahi Kasei Chemicals Corp Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
JP2011130685A (en) * 2009-12-22 2011-07-07 Sea Plus Corp Closed circulation type culture method for fishes or shellfishes
JP2013202511A (en) * 2012-03-28 2013-10-07 Swing Corp Removing device and removing method of nitrogen and phosphorus
WO2017153361A1 (en) * 2016-03-09 2017-09-14 Veolia Water Solutions & Technologies Support Biological removal of micropollutants from wastewater
JP2019512380A (en) * 2016-03-09 2019-05-16 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Biological removal of trace pollutants from wastewater
CN105753154A (en) * 2016-03-21 2016-07-13 广东省微生物研究所 Method for synchronously removing anti-inflammatory agent and ammonia nitrogen on basis of sponge iron-ammonia-oxidizing microorganism system
JP2017176967A (en) * 2016-03-29 2017-10-05 栗田工業株式会社 Biological treatment method and biological treatment apparatus
WO2018101888A1 (en) * 2016-11-30 2018-06-07 Nanyang Technological University A bio-bead for biofouling control in membrane bioreactor
JP2020500698A (en) * 2016-11-30 2020-01-16 ナンヤン・テクノロジカル・ユニバーシティー Biobeads for biofouling control in membrane bioreactors

Also Published As

Publication number Publication date
JP6710359B1 (en) 2020-06-17
CN109574399B (en) 2021-07-30
CN109574399A (en) 2019-04-05

Similar Documents

Publication Publication Date Title
CN100398470C (en) Infiltration method for treating garbage
EP3611135B1 (en) Device and method for pharmaceutical wastewater treatment with high efficiency resource recovery and low energy consumption
Chai et al. Partial nitrification in an air-lift reactor with long-term feeding of increasing ammonium concentrations
He et al. Operation stability and recovery performance in an Anammox EGSB reactor after pH shock
Cao et al. Challenges of THP-AD centrate treatment using partial nitritation-anammox (PN/A)–inhibition, biomass washout, low alkalinity, recalcitrant and more
WO2012000162A1 (en) Method for removing carbon and nitrogen contaminants of wastewater in one step
CN102515446B (en) BCM (Biology Cilium Magnetic) biological sewage treatment system and BCM biological sewage treatment process
Lin et al. Acidogenic sludge fermentation to recover soluble organics as the carbon source for denitrification in wastewater treatment: comparison of sludge types
JP4267860B2 (en) Nitrogen and phosphorus simultaneous removal type wastewater treatment method
CN102241459A (en) Method for reinforcing adsorption-biodegradation (AB) denitrification technology by use of heterotrophic nitrification-aerobic denitrification bacteria
CN101863592B (en) Leachate treatment method for small town household refuse landfill sites
CN105330028A (en) Microbial flocculant, compound flocculation system and preparation and application methods thereof
JP6710359B1 (en) A method to enhance the removal of diclofenac in sewage by concentrating nitrifying bacteria
CN102775003B (en) A kind for the treatment of apparatus and treatment process of low concentration VC pharmacy waste water
Selvam et al. Performance of an up-flow anaerobic sludge bed (UASB) reactor for treating landfill leachate containing heavy metals and formaldehyde
CN104192955B (en) The treatment process of ultrafiltration and concentration liquid in a kind of percolate membrane treatment process
CN104828942A (en) New municipal wastewater nitrogen and phosphorus removal treatment process
CN204550200U (en) Municipal effluent denitrogenation dephosphorizing treatment system
Wu et al. Investigation on purification efficiency of anaerobically digested slurry of restaurant food wastes from a large-scale treatment plant.
CN103253836B (en) A kind of percolate deep purifying treatment unit and method
Peng et al. Control of sludge settleability and nitrogen removal under low dissolved oxygen condition
Chiavola et al. Effect of ozonation on sludge reduction in a SBR plant
CN101759327B (en) Method for strengthening sludge reduction of aerobic-sedimentation-anoxic process
Li et al. Effects of oxidation reduction potential in the bypass micro-aerobic sludge zone on sludge reduction for a modified oxic–settling–anaerobic process
Zhang et al. Preliminary study of groundwater denitrification using a composite membrane bioreactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191111

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191111

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200319

R150 Certificate of patent or registration of utility model

Ref document number: 6710359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees