JP2020104093A - Sterilization method for aqueous system and removal method for aqueous nitrosamine compound - Google Patents
Sterilization method for aqueous system and removal method for aqueous nitrosamine compound Download PDFInfo
- Publication number
- JP2020104093A JP2020104093A JP2019090822A JP2019090822A JP2020104093A JP 2020104093 A JP2020104093 A JP 2020104093A JP 2019090822 A JP2019090822 A JP 2019090822A JP 2019090822 A JP2019090822 A JP 2019090822A JP 2020104093 A JP2020104093 A JP 2020104093A
- Authority
- JP
- Japan
- Prior art keywords
- water
- precursor
- sterilization method
- bromine
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- -1 nitrosamine compound Chemical class 0.000 title claims abstract description 127
- 238000000034 method Methods 0.000 title claims abstract description 79
- 230000001954 sterilising effect Effects 0.000 title claims abstract description 69
- 238000004659 sterilization and disinfection Methods 0.000 title claims abstract description 69
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 214
- 239000000203 mixture Substances 0.000 claims abstract description 132
- 239000002243 precursor Substances 0.000 claims abstract description 89
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 63
- 239000000460 chlorine Substances 0.000 claims abstract description 63
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 63
- 239000007800 oxidant agent Substances 0.000 claims abstract description 60
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910052794 bromium Inorganic materials 0.000 claims abstract description 43
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims abstract description 37
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 35
- 239000012528 membrane Substances 0.000 claims description 93
- 238000000926 separation method Methods 0.000 claims description 46
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 claims description 37
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims description 30
- 229910052736 halogen Inorganic materials 0.000 claims description 27
- 150000002367 halogens Chemical class 0.000 claims description 27
- 238000006864 oxidative decomposition reaction Methods 0.000 claims description 25
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical group ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 claims description 20
- 239000007795 chemical reaction product Substances 0.000 claims description 17
- 238000001223 reverse osmosis Methods 0.000 claims description 15
- 150000003839 salts Chemical class 0.000 claims description 12
- 230000001590 oxidative effect Effects 0.000 claims description 11
- CODNYICXDISAEA-UHFFFAOYSA-N bromine monochloride Chemical compound BrCl CODNYICXDISAEA-UHFFFAOYSA-N 0.000 claims description 8
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 5
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 claims description 4
- 229960000620 ranitidine Drugs 0.000 claims description 4
- 125000003277 amino group Chemical group 0.000 claims description 3
- MZGNSEAPZQGJRB-UHFFFAOYSA-N dimethyldithiocarbamic acid Chemical compound CN(C)C(S)=S MZGNSEAPZQGJRB-UHFFFAOYSA-N 0.000 claims description 3
- VMOWKUTXPNPTEN-UHFFFAOYSA-N n,n-dimethylpropan-2-amine Chemical compound CC(C)N(C)C VMOWKUTXPNPTEN-UHFFFAOYSA-N 0.000 claims description 3
- XKLJHFLUAHKGGU-UHFFFAOYSA-N nitrous amide Chemical compound ON=N XKLJHFLUAHKGGU-UHFFFAOYSA-N 0.000 claims description 3
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 claims description 3
- 229960002447 thiram Drugs 0.000 claims description 3
- 125000001246 bromo group Chemical group Br* 0.000 claims description 2
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 15
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- UMFJAHHVKNCGLG-UHFFFAOYSA-N n-Nitrosodimethylamine Chemical compound CN(C)N=O UMFJAHHVKNCGLG-UHFFFAOYSA-N 0.000 description 104
- 238000012360 testing method Methods 0.000 description 82
- 238000006243 chemical reaction Methods 0.000 description 24
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- 238000003860 storage Methods 0.000 description 21
- 239000000126 substance Substances 0.000 description 19
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical compound ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 description 18
- 238000005374 membrane filtration Methods 0.000 description 18
- 230000035484 reaction time Effects 0.000 description 16
- 230000000844 anti-bacterial effect Effects 0.000 description 15
- JGJLWPGRMCADHB-UHFFFAOYSA-N hypobromite Chemical compound Br[O-] JGJLWPGRMCADHB-UHFFFAOYSA-N 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 238000000691 measurement method Methods 0.000 description 14
- 239000010865 sewage Substances 0.000 description 14
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 14
- 239000003814 drug Substances 0.000 description 13
- 229940079593 drug Drugs 0.000 description 13
- 239000003899 bactericide agent Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 239000000243 solution Substances 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- CUILPNURFADTPE-UHFFFAOYSA-N hypobromous acid Chemical compound BrO CUILPNURFADTPE-UHFFFAOYSA-N 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 7
- 238000010998 test method Methods 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 239000005708 Sodium hypochlorite Substances 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- 229920002647 polyamide Polymers 0.000 description 6
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- SXDBWCPKPHAZSM-UHFFFAOYSA-N bromic acid Chemical compound OBr(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-N 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000000417 fungicide Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 235000019270 ammonium chloride Nutrition 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229940005991 chloric acid Drugs 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000000855 fungicidal effect Effects 0.000 description 3
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Inorganic materials Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- QDWYPRSFEZRKDK-UHFFFAOYSA-M sodium;sulfamate Chemical compound [Na+].NS([O-])(=O)=O QDWYPRSFEZRKDK-UHFFFAOYSA-M 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 239000002349 well water Substances 0.000 description 3
- 235000020681 well water Nutrition 0.000 description 3
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- XTEGARKTQYYJKE-UHFFFAOYSA-N chloric acid Chemical compound OCl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-N 0.000 description 2
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- VYECFMCAAHMRNW-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O.NS(O)(=O)=O VYECFMCAAHMRNW-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- BMWPPNAUMLRKML-UHFFFAOYSA-N Bromochloroacetonitrile Chemical compound ClC(Br)C#N BMWPPNAUMLRKML-UHFFFAOYSA-N 0.000 description 1
- ZKQDCIXGCQPQNV-UHFFFAOYSA-N Calcium hypochlorite Chemical compound [Ca+2].Cl[O-].Cl[O-] ZKQDCIXGCQPQNV-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- RTDCJKARQCRONF-UHFFFAOYSA-N N-Nitrosomethylethylamine Chemical compound CCN(C)N=O RTDCJKARQCRONF-UHFFFAOYSA-N 0.000 description 1
- WNYADZVDBIBLJJ-UHFFFAOYSA-N N-Nitrosopyrrolidine Chemical compound O=NN1CCCC1 WNYADZVDBIBLJJ-UHFFFAOYSA-N 0.000 description 1
- WBNQDOYYEUMPFS-UHFFFAOYSA-N N-nitrosodiethylamine Chemical compound CCN(CC)N=O WBNQDOYYEUMPFS-UHFFFAOYSA-N 0.000 description 1
- ZKXDGKXYMTYWTB-UHFFFAOYSA-N N-nitrosomorpholine Chemical compound O=NN1CCOCC1 ZKXDGKXYMTYWTB-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- WOHVONCNVLIHKY-UHFFFAOYSA-L [Ba+2].[O-]Cl=O.[O-]Cl=O Chemical compound [Ba+2].[O-]Cl=O.[O-]Cl=O WOHVONCNVLIHKY-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- JGDITNMASUZKPW-UHFFFAOYSA-K aluminium trichloride hexahydrate Chemical compound O.O.O.O.O.O.Cl[Al](Cl)Cl JGDITNMASUZKPW-UHFFFAOYSA-K 0.000 description 1
- 229940009861 aluminum chloride hexahydrate Drugs 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- KHPLPBHMTCTCHA-UHFFFAOYSA-N ammonium chlorate Chemical compound N.OCl(=O)=O KHPLPBHMTCTCHA-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- ISFLYIRWQDJPDR-UHFFFAOYSA-L barium chlorate Chemical compound [Ba+2].[O-]Cl(=O)=O.[O-]Cl(=O)=O ISFLYIRWQDJPDR-UHFFFAOYSA-L 0.000 description 1
- HPEWZLCIOKVLBZ-UHFFFAOYSA-N barium hypochlorite Chemical compound [Ba+2].Cl[O-].Cl[O-] HPEWZLCIOKVLBZ-UHFFFAOYSA-N 0.000 description 1
- 159000000009 barium salts Chemical class 0.000 description 1
- BEHLMOQXOSLGHN-UHFFFAOYSA-N benzenamine sulfate Chemical compound OS(=O)(=O)NC1=CC=CC=C1 BEHLMOQXOSLGHN-UHFFFAOYSA-N 0.000 description 1
- SXDBWCPKPHAZSM-UHFFFAOYSA-M bromate Inorganic materials [O-]Br(=O)=O SXDBWCPKPHAZSM-UHFFFAOYSA-M 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- FECFIIXKXJBOSU-UHFFFAOYSA-N butylsulfamic acid Chemical group CCCCNS(O)(=O)=O FECFIIXKXJBOSU-UHFFFAOYSA-N 0.000 description 1
- YALMXYPQBUJUME-UHFFFAOYSA-L calcium chlorate Chemical compound [Ca+2].[O-]Cl(=O)=O.[O-]Cl(=O)=O YALMXYPQBUJUME-UHFFFAOYSA-L 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 229940077239 chlorous acid Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 150000007973 cyanuric acids Chemical class 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 230000000249 desinfective effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- BAQKWXACUNEBOT-UHFFFAOYSA-N dibutylsulfamic acid Chemical compound CCCCN(S(O)(=O)=O)CCCC BAQKWXACUNEBOT-UHFFFAOYSA-N 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- YGNOYUCUPMACDT-UHFFFAOYSA-N dimethylsulfamic acid Chemical compound CN(C)S(O)(=O)=O YGNOYUCUPMACDT-UHFFFAOYSA-N 0.000 description 1
- XRVWREPFYXZOPK-UHFFFAOYSA-N dipropylsulfamic acid Chemical compound CCCN(S(O)(=O)=O)CCC XRVWREPFYXZOPK-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- IOISAJSHULNACL-UHFFFAOYSA-N ethyl(methyl)sulfamic acid Chemical compound CCN(C)S(O)(=O)=O IOISAJSHULNACL-UHFFFAOYSA-N 0.000 description 1
- SIVVHUQWDOGLJN-UHFFFAOYSA-N ethylsulfamic acid Chemical compound CCNS(O)(=O)=O SIVVHUQWDOGLJN-UHFFFAOYSA-N 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Substances OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 1
- YZVQGLCYZLGIAM-UHFFFAOYSA-N methyl(propyl)sulfamic acid Chemical compound CCCN(C)S(O)(=O)=O YZVQGLCYZLGIAM-UHFFFAOYSA-N 0.000 description 1
- MYMDOKBFMTVEGE-UHFFFAOYSA-N methylsulfamic acid Chemical compound CNS(O)(=O)=O MYMDOKBFMTVEGE-UHFFFAOYSA-N 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- AMULHDKUJWPBKU-UHFFFAOYSA-L nickel(2+);dichlorite Chemical compound [Ni+2].[O-]Cl=O.[O-]Cl=O AMULHDKUJWPBKU-UHFFFAOYSA-L 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 description 1
- SATVIFGJTRRDQU-UHFFFAOYSA-N potassium hypochlorite Chemical compound [K+].Cl[O-] SATVIFGJTRRDQU-UHFFFAOYSA-N 0.000 description 1
- VISKNDGJUCDNMS-UHFFFAOYSA-M potassium;chlorite Chemical compound [K+].[O-]Cl=O VISKNDGJUCDNMS-UHFFFAOYSA-M 0.000 description 1
- JWQSOOZHYMZRBT-UHFFFAOYSA-N propan-2-ylsulfamic acid Chemical group CC(C)NS(O)(=O)=O JWQSOOZHYMZRBT-UHFFFAOYSA-N 0.000 description 1
- HLIBNTOXKQCYMV-UHFFFAOYSA-N propylsulfamic acid Chemical compound CCCNS(O)(=O)=O HLIBNTOXKQCYMV-UHFFFAOYSA-N 0.000 description 1
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 1
- 229960002218 sodium chlorite Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 159000000008 strontium salts Chemical class 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical class NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
本発明は、水系の殺菌方法、および水系のニトロソアミン化合物の除去方法に関する。 The present invention relates to an aqueous sterilization method and an aqueous nitrosamine compound removal method.
ニトロソアミン化合物の一種であるN−ニトロソジメチルアミン(NDMA)について、世界保健機関(WHO)は飲料水水質ガイドライン値として100ng/Lを提示しており、国によっては10ng/Lとされている。このNDMAは、NDMA前駆物質と、水の消毒用に使用されるクロラミンとから生成されることが報告されている(特許文献1、非特許文献1参照)。NDMA前駆物質等のニトロソアミン化合物前駆物質としては、ジメチルアミンやトリメチルアミン等のアミン類が報告されている(非特許文献2参照)。 Regarding N-nitrosodimethylamine (NDMA), which is a kind of nitrosamine compound, the World Health Organization (WHO) presents a drinking water quality guideline value of 100 ng/L, and it is set to 10 ng/L in some countries. It has been reported that this NDMA is produced from an NDMA precursor and chloramine used for disinfection of water (see Patent Document 1 and Non-Patent Document 1). As nitrosamine compound precursors such as NDMA precursors, amines such as dimethylamine and trimethylamine have been reported (see Non-Patent Document 2).
NDMA前駆物質を含む水としては、下水二次処理水等が挙げられる。下水二次処理水等のNDMA前駆物質を含有する水の消毒等にクロラミンを使用する場合があり、クロラミンを使用すると、NDMAが副生物として生成する場合がある。また、これら下水二次処理水等の排水は水中にアンモニアを含有する場合があり、この場合、水の消毒等に一般的な消毒剤である次亜塩素酸を使用すると、水中でアンモニアと次亜塩素酸とが反応してクロラミンが形成され、クロラミンとNDMA前駆物質とが反応してNDMAが生成する場合もある。 Examples of the water containing the NDMA precursor include sewage secondary treated water. Chloramine may be used for disinfection of water containing an NDMA precursor such as sewage secondary treated water, and when chloramine is used, NDMA may be produced as a by-product. In addition, wastewater such as sewage secondary treated water may contain ammonia in the water.In this case, if hypochlorous acid, which is a general disinfectant for disinfecting water, is used, the In some cases, chloramine is reacted with chloramine to form chloramine, and chloramine is reacted with NDMA precursor to produce NDMA.
これらの場合、消毒処理の後段で逆浸透膜(RO膜)や、紫外線(UV)を使った促進酸化処理等により、NDMAを除去する必要がある。 In these cases, it is necessary to remove NDMA by a reverse osmosis membrane (RO membrane), an accelerated oxidation treatment using ultraviolet rays (UV), or the like after the disinfection treatment.
したがって、ニトロソアミン化合物前駆物質を含有する水において、十分な殺菌効果を有しながら、ニトロソアミン化合物の生成量を抑制することができる、水系の殺菌方法が求められている。 Therefore, in water containing a nitrosamine compound precursor, there is a demand for a water-based sterilization method capable of suppressing the amount of nitrosamine compound produced while having a sufficient bactericidal effect.
本発明の目的は、ニトロソアミン化合物前駆物質を含有する前駆物質含有水において、十分な殺菌効果を有しながら、ニトロソアミン化合物の生成量を抑制することができる、水系の殺菌方法を提供することにある。 An object of the present invention is to provide a water-based sterilization method capable of suppressing the production amount of a nitrosamine compound while having a sufficient sterilization effect in a precursor-containing water containing a nitrosamine compound precursor. ..
また、本発明の目的は、ニトロソアミン化合物前駆物質を含有する前駆物質含有水について、生成したニトロソアミン化合物を除去することができる、水系のニトロソアミン化合物の除去方法を提供することにある。 Another object of the present invention is to provide a method for removing a water-based nitrosamine compound, which is capable of removing the produced nitrosamine compound from the precursor-containing water containing the nitrosamine compound precursor.
本発明は、ニトロソアミン化合物前駆物質を含有する前駆物質含有水に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む安定化組成物を添加する、水系の殺菌方法である。 The present invention is a water-based sterilization method in which a stabilizing composition containing a bromine-based oxidizing agent or a chlorine-based oxidizing agent and a sulfamic acid compound is added to precursor-containing water containing a nitrosamine compound precursor.
前記水系の殺菌方法において、前記ニトロソアミン化合物前駆物質が、ジメチルアミン、トリメチルアミン、N,N−ジメチルイソプロピルアミン、N,N−ジメチルベンジルアミン、ラニチジン、テトラメチルチウラムジスルフィド、ジメチルジチオカルバメート、ポリジアリルジメチルアンモニウムクロライド、アミノ基を含むポリマのうち少なくとも1つを含むことが好ましい。 In the aqueous sterilization method, the nitrosamine compound precursor is dimethylamine, trimethylamine, N,N-dimethylisopropylamine, N,N-dimethylbenzylamine, ranitidine, tetramethylthiuram disulfide, dimethyldithiocarbamate, polydiallyldimethylammonium. It is preferable to contain at least one of chloride and a polymer containing an amino group.
前記水系の殺菌方法において、前記前駆物質含有水中の前記ニトロソアミン化合物前駆物質の濃度が、ニトロソアミン化合物生成能として100ng/L以上であることが好ましい。 In the water-based sterilization method, the concentration of the nitrosamine compound precursor in the precursor-containing water is preferably 100 ng/L or more as a nitrosamine compound-forming ability.
前記水系の殺菌方法において、前記ニトロソアミン化合物前駆物質が、ジメチルアミン、トリメチルアミン、N,N−ジメチルベンジルアミンのうち少なくとも1つを含み、前記前駆物質含有水中の前記ニトロソアミン化合物前駆物質の濃度が100μg/L以上であることが好ましい。 In the aqueous sterilization method, the nitrosamine compound precursor contains at least one of dimethylamine, trimethylamine, and N,N-dimethylbenzylamine, and the concentration of the nitrosamine compound precursor in the precursor-containing water is 100 μg/ It is preferably L or more.
前記水系の殺菌方法において、前記臭素系酸化剤が、臭素、塩化臭素、または臭素化合物と塩素系酸化剤との反応物であることが好ましい。 In the aqueous sterilization method, it is preferable that the bromine-based oxidizing agent is bromine, bromine chloride, or a reaction product of a bromine compound and a chlorine-based oxidizing agent.
前記水系の殺菌方法において、前記塩素系酸化剤が、次亜塩素酸またはその塩であることが好ましい。 In the aqueous sterilization method, it is preferable that the chlorine-based oxidizing agent is hypochlorous acid or a salt thereof.
前記水系の殺菌方法において、前記前駆物質含有水中の有効ハロゲン濃度(有効塩素換算濃度)が3mgCl/L以内となるように前記安定化組成物を添加することが好ましい。 In the water-based sterilization method, it is preferable to add the stabilizing composition so that the effective halogen concentration (concentration of effective chlorine) in the precursor-containing water is within 3 mgCl/L.
前記水系の殺菌方法において、前記前駆物質含有水と前記安定化組成物とが連続して接触する時間を5時間以内とすることが好ましい。 In the water-based sterilization method, it is preferable that the time period during which the precursor-containing water and the stabilizing composition are continuously contacted is within 5 hours.
前記水系の殺菌方法において、前記前駆物質含有水に前記安定化組成物を添加した後に、分離膜処理、酸化分解処理のうち少なくとも1つの処理を行うことが好ましい。 In the water-based sterilization method, it is preferable to perform at least one treatment of a separation membrane treatment and an oxidative decomposition treatment after adding the stabilizing composition to the precursor-containing water.
前記水系の殺菌方法において、前記分離膜処理において用いられる分離膜が、逆浸透膜であることが好ましい。 In the aqueous sterilization method, the separation membrane used in the separation membrane treatment is preferably a reverse osmosis membrane.
本発明は、ニトロソアミン化合物前駆物質を含有する前駆物質含有水に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む安定化組成物を添加し、その後段で逆浸透膜処理、酸化分解処理の順で処理を行う、水系のニトロソアミン化合物の除去方法である。 The present invention adds a stabilizing composition containing a bromine-based oxidizing agent or a chlorine-based oxidizing agent and a sulfamic acid compound to precursor-containing water containing a nitrosamine compound precursor, and then reverse osmosis membrane treatment and oxidation are performed in the subsequent stage. This is a method for removing an aqueous nitrosamine compound, which is carried out in the order of decomposition treatment.
本発明により、ニトロソアミン化合物前駆物質を含有する前駆物質含有水において、十分な殺菌効果を有しながら、ニトロソアミン化合物の生成量を抑制することができる、水系の殺菌方法が提供される。 The present invention provides a water-based sterilization method capable of suppressing the amount of nitrosamine compound produced in a precursor-containing water containing a nitrosamine compound precursor while having a sufficient sterilization effect.
また、本発明により、ニトロソアミン化合物前駆物質を含有する前駆物質含有水について、生成したニトロソアミン化合物を除去することができる、水系のニトロソアミン化合物の除去方法が提供される。 The present invention also provides a method for removing a water-based nitrosamine compound, which is capable of removing the produced nitrosamine compound from the precursor-containing water containing the nitrosamine compound precursor.
本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. The present embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.
本発明の実施の形態に係る水系の殺菌方法は、ニトロソアミン化合物前駆物質を含有するニトロソアミン化合物前駆物質含有水(以下、単に「前駆物質含有水」と呼ぶ場合がある。)に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む安定化組成物を添加する方法である。 In the water-based sterilization method according to the embodiment of the present invention, a nitrosamine compound precursor-containing water containing a nitrosamine compound precursor (hereinafter sometimes simply referred to as “precursor-containing water”) is added to a bromine-based oxidizing agent. Alternatively, it is a method of adding a stabilizing composition containing a chlorine-based oxidizing agent and a sulfamic acid compound.
「臭素系酸化剤とスルファミン酸化合物とを含む安定化組成物」は、「臭素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜臭素酸組成物であってもよいし、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物であってもよい。「塩素系酸化剤とスルファミン酸化合物とを含む安定化組成物」は、「塩素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜塩素酸組成物であってもよいし、「塩素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜塩素酸組成物であってもよい。 The "stabilized composition containing a bromine-based oxidizing agent and a sulfamic acid compound" may be a stabilized hypobromite composition containing a mixture of a "bromine-based oxidizing agent" and a "sulfamic acid compound". A stabilized hypobromite composition containing a "reaction product of a brominated oxidant and a sulfamic acid compound" may be used. The "stabilized composition containing a chlorine-based oxidizing agent and a sulfamic acid compound" may be a stabilized hypochlorous acid composition containing a mixture of a "chlorine-based oxidizing agent" and a "sulfamic acid compound". A stabilized hypochlorous acid composition containing a “reaction product of a chlorine-based oxidizing agent and a sulfamic acid compound” may be used.
すなわち、本発明の実施形態に係る殺菌方法では、前駆物質含有水中に、「臭素系酸化剤」と「スルファミン酸化合物」との混合物、または「塩素系酸化剤」と「スルファミン酸化合物」との混合物を添加する。これにより、前駆物質含有水中で、安定化次亜臭素酸組成物または安定化次亜塩素酸組成物が生成すると考えられる。 That is, in the sterilization method according to the embodiment of the present invention, in the precursor-containing water, a mixture of "bromine-based oxidizing agent" and "sulfamic acid compound", or "chlorine-based oxidizing agent" and "sulfamic acid compound" Add the mixture. It is believed that this produces a stabilized hypobromous acid composition or a stabilized hypochlorous acid composition in the precursor-containing water.
また、本発明の実施形態に係る殺菌方法では、前駆物質含有水中に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」である安定化次亜臭素酸組成物、または「塩素系酸化剤とスルファミン酸化合物との反応生成物」である安定化次亜塩素酸組成物を添加する。 Further, in the sterilization method according to the embodiment of the present invention, in the precursor-containing water, a stabilized hypobromite composition that is a "reaction product of a bromine-based oxidant and a sulfamic acid compound", or "chlorine-based oxidation A stabilized hypochlorous acid composition, which is a "reaction product of an agent and a sulfamic acid compound" is added.
具体的には本発明の実施形態に係る殺菌方法では、前駆物質含有水中に、「臭素」、「塩化臭素」、「次亜臭素酸」または「臭化ナトリウムと次亜塩素酸との反応物」と、「スルファミン酸化合物」との混合物を添加する。または、前駆物質含有水中に、「次亜塩素酸」と、「スルファミン酸化合物」との混合物を添加する。 Specifically, in the sterilization method according to the embodiment of the present invention, in the precursor-containing water, "bromine", "bromine chloride", "hypobromous acid" or "reaction product of sodium bromide and hypochlorous acid" And a "sulfamic acid compound". Alternatively, a mixture of "hypochlorous acid" and "sulfamic acid compound" is added to the precursor-containing water.
また、本発明の実施形態に係る殺菌方法では、前駆物質含有水中に、例えば、「臭素とスルファミン酸化合物との反応生成物」、「塩化臭素とスルファミン酸化合物との反応生成物」、「次亜臭素酸とスルファミン酸化合物との反応生成物」、または「臭化ナトリウムと次亜塩素酸との反応物と、スルファミン酸化合物と、の反応生成物」である安定化次亜臭素酸組成物を添加する。または、前駆物質含有水中に、「次亜塩素酸とスルファミン酸化合物との反応生成物」である安定化次亜塩素酸組成物を添加する。 In the sterilization method according to the embodiment of the present invention, in the precursor-containing water, for example, "reaction product of bromine and sulfamic acid compound", "reaction product of bromine chloride and sulfamic acid compound", "next Stabilized hypobromous acid composition which is "reaction product of bromic acid and sulfamic acid compound" or "reaction product of reaction product of sodium bromide and hypochlorous acid with sulfamic acid compound" Is added. Alternatively, a stabilized hypochlorous acid composition which is a “reaction product of a hypochlorous acid and a sulfamic acid compound” is added to precursor-containing water.
本実施形態に係る殺菌方法において、安定化次亜臭素酸組成物または安定化次亜塩素酸組成物は、クロラミン等の塩素系酸化剤と同等以上の殺菌効果、バイオファウリング抑制効果を発揮するにも関わらず、クロラミンと比較するとニトロソアミン化合物前駆物質と反応しにくいため、ニトロソアミン化合物前駆物質含有水の殺菌剤として用いても、ニトロソアミン化合物の生成量を抑制することができる。このため、本実施形態に係る殺菌方法で用いられる安定化次亜臭素酸組成物または安定化次亜塩素酸組成物は、ニトロソアミン化合物前駆物質含有水の殺菌剤としては好適である。 In the sterilization method according to the present embodiment, the stabilized hypobromous acid composition or the stabilized hypochlorous acid composition exhibits a bactericidal effect equal to or higher than that of a chlorine-based oxidizing agent such as chloramine, and a biofouling suppression effect. Nevertheless, since it is less likely to react with the nitrosamine compound precursor as compared with chloramine, the amount of nitrosamine compound produced can be suppressed even when used as a bactericide for water containing the nitrosamine compound precursor. Therefore, the stabilized hypobromous acid composition or the stabilized hypochlorous acid composition used in the sterilization method according to this embodiment is suitable as a bactericidal agent for water containing a nitrosamine compound precursor.
本実施形態に係る殺菌方法のうち、「臭素系酸化剤とスルファミン酸化合物とを含む安定化組成物」は、「塩素系酸化剤とスルファミン酸化合物とを含む安定化組成物」に比べて殺菌効果が高いため好ましい。 Among the sterilization methods according to the present embodiment, "a stabilizing composition containing a bromine-based oxidizing agent and a sulfamic acid compound" is more sterilized than a "stabilizing composition containing a chlorine-based oxidizing agent and a sulfamic acid compound". It is preferable because it is highly effective.
本実施形態に係る殺菌方法のうち、「臭素系酸化剤」が、臭素である場合、塩素系酸化剤が存在しないため、殺菌処理の後段で分離膜処理を行う場合、分離膜への劣化影響が著しく低い。 In the sterilization method according to the present embodiment, when the "bromine-based oxidizing agent" is bromine, there is no chlorine-based oxidizing agent, and therefore when the separation membrane treatment is performed after the sterilization treatment, the deterioration effect on the separation membrane Is extremely low.
本実施形態に係る逆浸透膜を用いる殺菌方法では、例えば、前駆物質含有水中に、「臭素系酸化剤」または「塩素系酸化剤」と「スルファミン酸化合物」とを薬注ポンプ等により注入してもよい。「臭素系酸化剤」または「塩素系酸化剤」と「スルファミン酸化合物」とは別々に前駆物質含有水に添加してもよく、または、原液同士で混合させてから前駆物質含有水に添加してもよい。 In the sterilization method using the reverse osmosis membrane according to the present embodiment, for example, in the precursor-containing water, "bromine-based oxidizing agent" or "chlorine-based oxidizing agent" and "sulfamic acid compound" is injected by a chemical injection pump or the like. May be. The "bromine-based oxidizer" or "chlorine-based oxidizer" and the "sulfamic acid compound" may be added separately to the precursor-containing water, or they may be added to the precursor-containing water after mixing the undiluted solutions. May be.
また、例えば、前駆物質含有水中に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」または「塩素系酸化剤とスルファミン酸化合物との反応生成物」を薬注ポンプ等により注入してもよい。 In addition, for example, by injecting "reaction product of bromine-based oxidizing agent and sulfamic acid compound" or "reaction product of chlorine-based oxidizing agent and sulfamic acid compound" into the precursor-containing water by a chemical injection pump or the like. Good.
安定化次亜臭素酸組成物または安定化次亜塩素酸組成物は、水系に連続的に添加してもよいし、間欠的に添加してもよく、経済性等の点から間欠的に添加することが好ましい。 The stabilized hypobromous acid composition or the stabilized hypochlorous acid composition may be added continuously to the water system, may be added intermittently, and is added intermittently from the viewpoint of economic efficiency. Preferably.
ニトロソアミン化合物の前駆体であるニトロソアミン化合物前駆物質としては、例えば、ジメチルアミン(DMA)等の2級アミン化合物、トリメチルアミン(TMA)、N,N−ジメチルイソプロピルアミン(DMiPA)、N,N−ジメチルベンジルアミン(DMBzA)、ラニチジン(Ranitidine:RNTD)、テトラメチルチウラムジスルフィド、ジメチルジチオカルバメート、等の3級アミン化合物、ポリジアリルジメチルアンモニウムクロライド等の4級アミン化合物、アミノ基を含むポリマ等のアミン化合物等が挙げられる。 Examples of the nitrosamine compound precursor which is a precursor of the nitrosamine compound include secondary amine compounds such as dimethylamine (DMA), trimethylamine (TMA), N,N-dimethylisopropylamine (DMiPA), and N,N-dimethylbenzyl. Tertiary amine compounds such as amines (DMBzA), Ranitidine (RNTD), tetramethylthiuram disulfide, dimethyldithiocarbamate, quaternary amine compounds such as polydiallyldimethylammonium chloride, amine compounds such as polymers containing amino groups, etc. Are listed.
ニトロソアミン化合物としては、N−ニトロソジメチルアミン(NDMA)、N−ニトロソジエチルアミン(NDEA)、N−ニトロソモルフォリン(NMOR)、N−ニトロソメチルエチルアミン(NMEA)、N−ニトロソピロリジン(NPYR)等が挙げられる。 Examples of the nitrosamine compound include N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosomorpholine (NMOR), N-nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR) and the like. To be
ニトロソアミン化合物前駆物質がニトロソアミン化合物を生成する生成能の評価として、公的に定められたものはないが、本明細書においてニトロソアミン化合物生成能は、「対象水に、初期の全塩素濃度が10mgCl/Lとなるようにモノクロラミンを添加した条件で、pH6.0、温度25℃、反応時間120時間静置して、生成するニトロソアミン化合物の濃度」と規定する。 Although there is no officially defined evaluation of the ability of a nitrosamine compound precursor to produce a nitrosamine compound, in the present specification, the nitrosamine compound production ability is defined as "the initial total chlorine concentration in target water is 10 mgCl/ The concentration of the nitrosamine compound formed is defined as "the concentration of the nitrosamine compound produced by allowing the mixture to stand at a pH of 6.0, a temperature of 25°C, and a reaction time of 120 hours under the condition that monochloramine is added.
前駆物質含有水中のニトロソアミン化合物前駆物質の濃度は、ニトロソアミン化合物生成能として100ng/L以上であることが好ましく、1000ng/L〜100000ng/Lの範囲であることがより好ましい。前駆物質含有水中のニトロソアミン化合物前駆物質の濃度がニトロソアミン化合物生成能として100ng/L未満であると、クロラミン等の従来から使用されている殺菌剤との、NDMA生成抑制効果の違いが不明瞭となる場合がある。 The concentration of the nitrosamine compound precursor in the precursor-containing water is preferably 100 ng/L or more, more preferably 1000 ng/L to 100000 ng/L, as the nitrosamine compound forming ability. When the concentration of the nitrosamine compound precursor in the precursor-containing water is less than 100 ng/L as the nitrosamine compound-forming ability, the difference in the NDMA generation-inhibiting effect from the conventionally used fungicides such as chloramine becomes unclear. There are cases.
前駆物質含有水中のニトロソアミン化合物前駆物質の濃度は、例えば、ジメチルアミン(DMA)、またはトリメチルアミン(TMA)、またはN,N−ジメチルベンジルアミン(DMBzA)として10μg/L以上であることが好ましく、100μg/L以上であることがより好ましく、100μg/L〜100000μg/Lの範囲であることがさらに好ましい。前駆物質含有水中のニトロソアミン化合物前駆物質の濃度が、10μg/L未満であると、クロラミン等の従来から使用されている殺菌剤との、NDMA生成抑制効果の違いが不明瞭となる場合がある。 The concentration of the nitrosamine compound precursor in the precursor-containing water is, for example, preferably 10 μg/L or more as dimethylamine (DMA), trimethylamine (TMA), or N,N-dimethylbenzylamine (DMBzA), and 100 μg /L or more, more preferably 100 μg/L to 100,000 μg/L. When the concentration of the nitrosamine compound precursor in the precursor-containing water is less than 10 μg/L, the difference in the NDMA production suppressing effect from the conventionally used fungicides such as chloramine may become unclear.
前駆物質含有水中の有効ハロゲン濃度(有効塩素換算濃度)が3mgCl/L以内となるように安定化組成物を添加することが好ましく、1mgCl/L以内となるように安定化組成物を添加することがより好ましい。有効ハロゲン濃度(有効塩素換算濃度)が3mgCl/Lを超えると、設備中の配管等の金属部材が腐食する場合がある。 It is preferable to add the stabilizing composition so that the effective halogen concentration (effective chlorine conversion concentration) in the precursor-containing water is within 3 mgCl/L, and the stabilizing composition is added within 1 mgCl/L. Is more preferable. If the effective halogen concentration (effective chlorine conversion concentration) exceeds 3 mgCl/L, metal members such as pipes in the equipment may be corroded.
前駆物質含有水と安定化組成物とが連続して接触する時間を5時間以内とすることが好ましく、3時間以内とすることが好ましい。前駆物質含有水と安定化組成物とが連続して接触する時間が5時間を超えると、わずかにNDMA生成量が増加する可能性がある。 The time during which the precursor-containing water and the stabilizing composition are continuously contacted is preferably within 5 hours, more preferably within 3 hours. If the duration of continuous contact between the precursor-containing water and the stabilizing composition exceeds 5 hours, the NDMA production amount may slightly increase.
本実施形態に係る殺菌方法において、「臭素系酸化剤」または「塩素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比は、1以上であることが好ましく、1以上2以下の範囲であることがより好ましい。「臭素系酸化剤」または「塩素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比が1未満であると、有効成分が不安定化する可能性があり、また、殺菌処理の後段で分離膜処理を行う場合、分離膜を劣化させる可能性があり、2を超えると、製造コストが増加する場合がある。 In the sterilization method according to the present embodiment, the ratio of the equivalent of the "sulfamic acid compound" to the equivalent of the "bromine-based oxidizing agent" or the "chlorine-based oxidizing agent" is preferably 1 or more, and in the range of 1 or more and 2 or less. Is more preferable. If the ratio of the equivalent of the "sulfamic acid compound" to the equivalent of the "bromine-based oxidant" or the "chlorine-based oxidizer" is less than 1, the active ingredient may be destabilized, and the latter stage of sterilization treatment may occur. When the separation membrane treatment is carried out at 1, the separation membrane may be deteriorated, and when it exceeds 2, the production cost may increase.
本実施形態に係る殺菌方法により、殺菌処理水中のニトロソアミン化合物の濃度を、例えば、100ng/L以下、好ましくは10ng/L以下とすることができる。 By the sterilization method according to this embodiment, the concentration of the nitrosamine compound in the sterilized water can be set to, for example, 100 ng/L or less, preferably 10 ng/L or less.
臭素系酸化剤としては、臭素(液体臭素)、塩化臭素、臭素酸、臭素酸塩、次亜臭素酸等が挙げられる。次亜臭素酸は、臭化ナトリウム等の臭化物と次亜塩素酸等の塩素系酸化剤とを反応させて生成させたものであってもよい。 Examples of the bromine-based oxidizing agent include bromine (liquid bromine), bromine chloride, bromic acid, bromate, hypobromite, and the like. The hypobromous acid may be produced by reacting a bromide such as sodium bromide with a chlorine-based oxidizing agent such as hypochlorous acid.
これらのうち、臭素を用いた「臭素とスルファミン酸化合物(臭素とスルファミン酸化合物の混合物)」または「臭素とスルファミン酸化合物との反応生成物」の製剤は、「次亜塩素酸と臭素化合物とスルファミン酸」の製剤および「塩化臭素とスルファミン酸」の製剤等に比べて、臭素酸の副生が少なく、殺菌処理の後段で分離膜処理を行う場合、分離膜をより劣化させないため、殺菌剤としてはより好ましい。 Among these, the preparation of "bromine and sulfamic acid compound (mixture of bromine and sulfamic acid compound)" or "reaction product of bromine and sulfamic acid compound" using bromine is "hypochlorous acid and bromine compound". Compared to "sulfamic acid" formulations and "bromine chloride and sulfamic acid" formulations, etc., there is less bromic acid by-product, and when the separation membrane treatment is performed in the latter stage of the sterilization treatment, the separation membrane is not further deteriorated. Is more preferable.
すなわち、本発明の実施形態に係る殺菌方法では、前駆物質含有水中に、臭素と、スルファミン酸化合物とを添加する(臭素とスルファミン酸化合物の混合物を添加する)ことが好ましい。また、前駆物質含有水中に、臭素とスルファミン酸化合物との反応生成物を添加することが好ましい。 That is, in the sterilization method according to the embodiment of the present invention, it is preferable to add bromine and a sulfamic acid compound (add a mixture of bromine and a sulfamic acid compound) to the precursor-containing water. Further, it is preferable to add the reaction product of bromine and the sulfamic acid compound to the precursor-containing water.
臭素化合物としては、臭化ナトリウム、臭化カリウム、臭化リチウム、臭化アンモニウムおよび臭化水素酸等が挙げられる。これらのうち、製剤コスト等の点から、臭化ナトリウムが好ましい。 Examples of the bromine compound include sodium bromide, potassium bromide, lithium bromide, ammonium bromide and hydrobromic acid. Of these, sodium bromide is preferable from the viewpoint of formulation cost and the like.
塩素系酸化剤としては、例えば、塩素ガス、二酸化塩素、次亜塩素酸またはその塩、亜塩素酸またはその塩、塩素酸またはその塩、過塩素酸またはその塩、塩素化イソシアヌル酸またはその塩等が挙げられる。これらのうち、塩としては、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等の次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸アルカリ金属塩、亜塩素酸バリウム等の亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケル等の他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウム等の塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウム等の塩素酸アルカリ土類金属塩等が挙げられる。これらの塩素系酸化剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。塩素系酸化剤としては、取り扱い性等の点から、次亜塩素酸ナトリウムを用いるのが好ましい。 Examples of the chlorine-based oxidizing agent include chlorine gas, chlorine dioxide, hypochlorous acid or a salt thereof, chlorous acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, chlorinated isocyanuric acid or a salt thereof. Etc. Among these, as salts, for example, sodium hypochlorite, alkali metal hypochlorite such as potassium hypochlorite, calcium hypochlorite, alkaline earth hypochlorite such as barium hypochlorite. Metal salts, alkali metal chlorites such as sodium chlorite, potassium chlorite, alkaline earth metal chlorites such as barium chlorite, and other metal chlorites such as nickel chlorite , Chloric acid alkali metal salts such as ammonium chlorate, sodium chlorate and potassium chlorate, and alkaline earth metal chlorate salts such as calcium chlorate and barium chlorate. These chlorine-based oxidizing agents may be used alone or in combination of two or more. It is preferable to use sodium hypochlorite as the chlorine-based oxidant from the viewpoint of handleability and the like.
スルファミン酸化合物は、以下の一般式(1)で示される化合物である。
R2NSO3H (1)
(式中、Rは独立して水素原子または炭素数1〜8のアルキル基である。)
The sulfamic acid compound is a compound represented by the following general formula (1).
R 2 NSO 3 H (1)
(In the formula, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)
スルファミン酸化合物としては、例えば、2個のR基の両方が水素原子であるスルファミン酸(アミド硫酸)の他に、N−メチルスルファミン酸、N−エチルスルファミン酸、N−プロピルスルファミン酸、N−イソプロピルスルファミン酸、N−ブチルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数1〜8のアルキル基であるスルファミン酸化合物、N,N−ジメチルスルファミン酸、N,N−ジエチルスルファミン酸、N,N−ジプロピルスルファミン酸、N,N−ジブチルスルファミン酸、N−メチル−N−エチルスルファミン酸、N−メチル−N−プロピルスルファミン酸等の2個のR基の両方が炭素数1〜8のアルキル基であるスルファミン酸化合物、N−フェニルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数6〜10のアリール基であるスルファミン酸化合物、またはこれらの塩等が挙げられる。スルファミン酸塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩、アンモニウム塩およびグアニジン塩等が挙げられる。スルファミン酸化合物およびこれらの塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。スルファミン酸化合物としては、環境負荷等の点から、スルファミン酸(アミド硫酸)を用いるのが好ましい。 Examples of the sulfamic acid compound include N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, N-, as well as sulfamic acid (amidosulfate) in which both two R groups are hydrogen atoms. A sulfamic acid compound in which one of two R groups such as isopropylsulfamic acid and N-butylsulfamic acid is a hydrogen atom and the other is an alkyl group having 1 to 8 carbon atoms, N,N-dimethylsulfamic acid, N, Of two R groups such as N-diethylsulfamic acid, N,N-dipropylsulfamic acid, N,N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid and N-methyl-N-propylsulfamic acid. Sulfamic acid in which one of two R groups such as a sulfamic acid compound and N-phenylsulfamic acid, both of which are alkyl groups having 1 to 8 carbon atoms, is a hydrogen atom, and the other is an aryl group having 6 to 10 carbon atoms Examples thereof include compounds, salts thereof, and the like. As the sulfamate, for example, alkali metal salts such as sodium salt, potassium salt, calcium salt, strontium salt, alkaline earth metal salts such as barium salt, manganese salt, copper salt, zinc salt, iron salt, cobalt salt, Other metal salts such as nickel salts, ammonium salts, guanidine salts and the like can be mentioned. The sulfamic acid compounds and salts thereof may be used alone or in combination of two or more. As the sulfamic acid compound, it is preferable to use sulfamic acid (amidosulfuric acid) from the viewpoint of environmental load.
本実施形態に係る殺菌方法において、前駆物質含有水中に、さらにアルカリを存在させてもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ等が挙げられる。低温の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用してもよい。また、アルカリは、固形でなく、水溶液として用いてもよい。 In the sterilization method according to this embodiment, an alkali may be further present in the precursor-containing water. Examples of the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. From the viewpoint of product stability at low temperatures, sodium hydroxide and potassium hydroxide may be used in combination. Further, the alkali may be used as an aqueous solution instead of being a solid.
本実施形態に係る殺菌方法ではニトロソアミン化合物の生成量を抑制することができるが、殺菌処理でわずかにニトロソアミン化合物が生成した場合に、生成したニトロソアミン化合物を除去するために、前駆物質含有水に安定化組成物を添加する殺菌処理の後段において、分離膜処理、酸化分解処理のうち少なくとも1つの処理を行うことが好ましく、分離膜処理を行い、さらに酸化分解処理を行うことがより好ましい。本実施形態に係る殺菌方法ではニトロソアミン化合物の生成量を抑制することができるため、後段の酸化分解処理で用いる電力が削減可能であり、処理コストを低減することができる。 In the sterilization method according to the present embodiment, it is possible to suppress the amount of nitrosamine compound produced, but when a slight amount of nitrosamine compound is produced by the sterilization treatment, in order to remove the produced nitrosamine compound, the precursor-containing water is stable. At least one of a separation membrane treatment and an oxidative decomposition treatment is preferably performed after the sterilization treatment for adding the chemical composition, and more preferably a separation membrane treatment and an oxidative decomposition treatment are further performed. In the sterilization method according to the present embodiment, the production amount of the nitrosamine compound can be suppressed, so that the electric power used in the subsequent oxidative decomposition treatment can be reduced and the treatment cost can be reduced.
分離膜としては、逆浸透膜(RO膜)、ナノろ過膜(NF膜)、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)等が挙げられる。これらのうち、特に逆浸透膜(RO膜)に、本実施形態に係る殺菌方法による分離膜のバイオファウリング抑制方法を好適に適用することができる。また、逆浸透膜として昨今主流であるポリアミド系高分子膜に本実施形態に係る殺菌方法による分離膜のバイオファウリング抑制方法を好適に適用することができる。ポリアミド系高分子膜は、酸化剤に対する耐性が比較的低く、遊離塩素等をポリアミド系高分子膜に連続的に接触させると、膜性能の著しい低下が起こる。しかしながら、本実施形態に係る殺菌方法による分離膜のバイオファウリング抑制方法ではポリアミド高分子膜においても、このような著しい膜性能の低下が起こりにくい。 Examples of the separation membrane include a reverse osmosis membrane (RO membrane), a nanofiltration membrane (NF membrane), a microfiltration membrane (MF membrane), and an ultrafiltration membrane (UF membrane). Of these, the method for suppressing biofouling of a separation membrane by the sterilization method according to the present embodiment can be preferably applied particularly to a reverse osmosis membrane (RO membrane). In addition, the method for suppressing biofouling of a separation membrane by the sterilization method according to the present embodiment can be preferably applied to a polyamide-based polymer membrane that has recently become the mainstream as a reverse osmosis membrane. The polyamide-based polymer film has a relatively low resistance to an oxidizing agent, and when free chlorine or the like is continuously brought into contact with the polyamide-based polymer film, the film performance is significantly deteriorated. However, with the method for suppressing biofouling of a separation membrane by the sterilization method according to the present embodiment, such a significant decrease in membrane performance is unlikely to occur even in a polyamide polymer membrane.
酸化分解処理を行うための酸化分解装置としては、オゾン発生装置や、紫外線照射装置等が挙げられる。酸化分解処理として促進酸化処理(AOP:Advanced Oxidation Process)を行ってもよい。促進酸化処理としては、酸化剤として過酸化水素、オゾン、次亜塩素酸等を用いるUV酸化処理、オゾンと過酸化水素による酸化処理等が挙げられる。 Examples of the oxidative decomposition device for performing the oxidative decomposition treatment include an ozone generator and an ultraviolet irradiation device. As the oxidative decomposition treatment, an advanced oxidation treatment (AOP) may be performed. Examples of the accelerated oxidation treatment include UV oxidation treatment using hydrogen peroxide, ozone, hypochlorous acid, etc. as an oxidant, and oxidation treatment with ozone and hydrogen peroxide.
本実施形態に係る殺菌方法を用いる水処理装置としては、例えば、被処理水の生物処理を行う生物処理装置と、ニトロソアミン化合物前駆物質を含有する生物処理水(前駆物質含有水)に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む安定化組成物を添加する添加手段と、安定化組成物を添加した殺菌処理水について逆浸透膜処理等の分離膜処理を行う分離膜装置と、分離膜処理の透過水について酸化分解処理を行う酸化分解処理装置と、を備える水処理装置が挙げられる。 Examples of the water treatment device that uses the sterilization method according to the present embodiment include a biological treatment device that performs biological treatment of treated water, biological treatment water that contains a nitrosamine compound precursor (precursor-containing water), and bromine-based water. Addition means for adding a stabilizing composition containing an oxidizing agent or chlorine-based oxidizing agent and a sulfamic acid compound, and a separation membrane device for performing separation membrane treatment such as reverse osmosis membrane treatment on sterilized water to which the stabilizing composition is added And a oxidative decomposition treatment device that performs an oxidative decomposition treatment on the permeated water of the separation membrane treatment.
また、例えば、被処理水の生物処理を行う生物処理装置と、生物処理水について限外ろ過膜(UF膜)等を用いた膜ろ過処理を行う膜ろ過装置と、生物処理水および膜ろ過処理水の少なくとも1つ(前駆物質含有水)に、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む安定化組成物を添加する添加手段と、安定化組成物を添加した殺菌処理水について逆浸透膜処理等の分離膜処理を行う分離膜装置と、分離膜処理の透過水について酸化分解処理を行う酸化分解処理装置と、を備える水処理装置が挙げられる。生物処理装置と膜ろ過装置との間に生物処理水を貯留する貯留槽(第1貯留槽)を設けてもよく、膜ろ過装置と分離膜装置との間に膜ろ過処理水を貯留する貯留槽(第2貯留槽)を設けてもよく、生物処理装置と第1貯留槽との間、第1貯留槽と膜ろ過装置との間、膜ろ過装置と第2貯留槽との間、および貯留槽と分離膜装置との間の少なくとも1つにおいて、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む安定化組成物を添加してもよい。酸化分解処理された酸化分解処理水は、再利用されてもよいし、環境中(例えば、地下水脈等)に放出されてもよい。分離膜処理の濃縮水(例えば、逆浸透膜処理のRO濃縮水)は、環境中(例えば、海洋等)に放出されてもよい。 In addition, for example, a biological treatment device that performs biological treatment of the water to be treated, a membrane filtration device that performs membrane filtration treatment of the biological treatment water using an ultrafiltration membrane (UF membrane), biological treatment water and membrane filtration treatment. Addition means for adding a stabilizing composition containing a bromine-based oxidizing agent or chlorine-based oxidizing agent and a sulfamic acid compound to at least one of water (precursor-containing water), and sterilized water containing the stabilizing composition added The water treatment device includes a separation membrane device that performs a separation membrane treatment such as reverse osmosis membrane treatment, and an oxidative decomposition treatment device that performs an oxidative decomposition treatment on permeated water of the separation membrane treatment. A storage tank (first storage tank) for storing the biologically treated water may be provided between the biological treatment apparatus and the membrane filtration apparatus, and a storage for storing the membrane filtration treated water between the membrane filtration apparatus and the separation membrane apparatus. A tank (second storage tank) may be provided, between the biological treatment device and the first storage tank, between the first storage tank and the membrane filtration device, between the membrane filtration device and the second storage tank, and A stabilizing composition containing a bromine-based oxidant or a chlorine-based oxidant and a sulfamic acid compound may be added to at least one of the storage tank and the separation membrane device. The oxidative decomposition-treated water that has been subjected to the oxidative decomposition treatment may be reused or may be released into the environment (for example, a groundwater vein). The concentrated water for separation membrane treatment (for example, RO concentrated water for reverse osmosis membrane treatment) may be released into the environment (for example, the ocean).
図1に、このような水処理装置の一例の概略構成を示す。図1の水処理装置1は、第1貯留槽10と、膜ろ過装置12と、第2貯留槽14と、分離膜装置16と、酸化分解処理装置18とを備える。 FIG. 1 shows a schematic configuration of an example of such a water treatment device. The water treatment device 1 of FIG. 1 includes a first storage tank 10, a membrane filtration device 12, a second storage tank 14, a separation membrane device 16, and an oxidative decomposition treatment device 18.
図1の水処理装置1において、第1貯留槽10の入口には、配管20が接続されている。第1貯留槽10の出口と膜ろ過装置12の入口とは、配管22により接続されている。膜ろ過装置12の出口と第2貯留槽14の入口とは、配管24により接続されている。第2貯留槽14の出口と分離膜装置16の入口とは、配管26により接続されている。分離膜装置16の透過水出口と酸化分解処理装置18の入口とは、配管28により接続され、分離膜装置16の濃縮水出口には、配管30が接続されている。酸化分解処理装置18の出口には、配管32が接続されている。配管20,22,24,26のうち少なくとも1つには、安定化組成物を添加する安定化組成物添加配管34,36,38,40が接続されている。水処理装置1は、第1貯留槽10の前段に生物処理装置を備えてもよい。 In the water treatment device 1 of FIG. 1, a pipe 20 is connected to the inlet of the first storage tank 10. The outlet of the first storage tank 10 and the inlet of the membrane filtration device 12 are connected by a pipe 22. The outlet of the membrane filtration device 12 and the inlet of the second storage tank 14 are connected by a pipe 24. The outlet of the second storage tank 14 and the inlet of the separation membrane device 16 are connected by a pipe 26. The permeated water outlet of the separation membrane device 16 and the inlet of the oxidative decomposition treatment device 18 are connected by a pipe 28, and the concentrated water outlet of the separation membrane device 16 is connected by a pipe 30. A pipe 32 is connected to the outlet of the oxidative decomposition treatment device 18. At least one of the pipes 20, 22, 24 and 26 is connected with stabilizing composition addition pipes 34, 36, 38 and 40 for adding the stabilizing composition. The water treatment device 1 may include a biological treatment device before the first storage tank 10.
処理対象である前駆物質含有水(例えば、生物処理装置等からの生物処理水)は、配管20を通して必要に応じて第1貯留槽10へ送液され、貯留された後、配管22を通して膜ろ過装置12へ送液される。膜ろ過装置12において、膜ろ過処理が行われる(膜ろ過工程)。膜ろ過処理で得られた膜ろ過処理水は、配管24を通して必要に応じて第2貯留槽14へ送液され、貯留された後、配管26を通して分離膜装置16へ送液される。ここで、配管20,22,24,26のうちの少なくとも1つにおいて、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む安定化組成物が添加される(添加工程)。分離膜装置16において、安定化組成物を添加した殺菌処理水について逆浸透膜処理等の分離膜処理が行われる(分離膜処理工程)。分離膜処理で得られた透過水は、配管28を通して酸化分解処理装置18へ送液される。分離膜処理で得られた濃縮水は、配管30を通して排出される。酸化分解処理装置18において、透過水について酸化分解処理が行われる(酸化分解処理工程)。酸化分解処理で得られた酸化分解処理水は、配管32を通して処理水として排出される。安定化組成物は、第1貯留槽10、第2貯留槽14において添加されてもよい。 Precursor-containing water to be treated (for example, biologically treated water from a biological treatment apparatus or the like) is sent to the first storage tank 10 through the pipe 20 as needed, and after being stored, membrane filtration is performed through the pipe 22. Liquid is sent to the device 12. Membrane filtration is performed in the membrane filtration device 12 (membrane filtration step). The membrane filtration treated water obtained by the membrane filtration treatment is sent to the second storage tank 14 as necessary through the pipe 24, is stored, and then is fed to the separation membrane device 16 through the pipe 26. Here, in at least one of the pipes 20, 22, 24, and 26, a stabilizing composition containing a bromine-based oxidizing agent or a chlorine-based oxidizing agent and a sulfamic acid compound is added (adding step). In the separation membrane device 16, the separation membrane treatment such as reverse osmosis membrane treatment is performed on the sterilized water to which the stabilizing composition is added (separation membrane treatment step). The permeated water obtained by the separation membrane treatment is sent to the oxidative decomposition treatment device 18 through the pipe 28. The concentrated water obtained by the separation membrane treatment is discharged through the pipe 30. In the oxidative decomposition treatment device 18, the permeated water is subjected to oxidative decomposition treatment (oxidative decomposition treatment step). The oxidative decomposition treated water obtained by the oxidative decomposition treatment is discharged as treated water through the pipe 32. The stabilizing composition may be added in the first storage tank 10 and the second storage tank 14.
臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む安定化組成物を分離膜装置の前段において添加することによって、分離膜のファウリングが抑制される。分離膜のファウリングが抑制されると、分離膜表面の濃度分極が抑制されるため、分離膜の溶質(例えば、ニトロソアミン化合物)の排除率が高く保たれる。このため、分離膜の透過水に流入するニトロソアミン化合物の量が抑制され、さらに後段の酸化分解処理装置で効率的にニトロソアミン化合物を分解することができ、水処理装置全体として、効率的にニトロソアミン化合物を除去することができる。 Fouling of the separation membrane is suppressed by adding the stabilizing composition containing the bromine-based oxidant or the chlorine-based oxidant and the sulfamic acid compound in the preceding stage of the separation membrane device. When the fouling of the separation membrane is suppressed, the concentration polarization on the surface of the separation membrane is suppressed, so that the solute (for example, nitrosamine compound) exclusion rate of the separation membrane is kept high. Therefore, the amount of the nitrosamine compound flowing into the permeated water of the separation membrane is suppressed, and the nitrosamine compound can be efficiently decomposed in the subsequent oxidative decomposition treatment device, so that the entire water treatment device can be efficiently decomposed. Can be removed.
以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[安定化次亜臭素酸組成物(臭素ベース:組成物1)の調製]
窒素雰囲気下で、液体臭素:17重量%(wt%)、スルファミン酸:14重量%、水酸化ナトリウム:18重量%、水:残分を混合して、安定化次亜臭素酸組成物(組成物1)を調製した。組成物1のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は7.5重量%であった。
[Preparation of stabilized hypobromite composition (bromine base: composition 1)]
Under a nitrogen atmosphere, liquid bromine: 17% by weight (wt%), sulfamic acid: 14% by weight, sodium hydroxide: 18% by weight, water: balance were mixed to prepare a stabilized hypobromite composition (composition). The product 1) was prepared. Composition 1 had a pH of 14 and an effective halogen concentration (effective chlorine conversion concentration) of 7.5% by weight.
[モノクロラミン(組成物2)の調製]
塩化アンモニウム:0.15重量%、12%次亜塩素酸ナトリウム水溶液:1.0重量%を水中に別々に添加して組成物2を調製した。
[Preparation of monochloramine (composition 2)]
Composition 2 was prepared by separately adding ammonium chloride: 0.15% by weight and 12% sodium hypochlorite aqueous solution: 1.0% by weight to water.
[安定化次亜臭素酸組成物(塩素系酸化剤+臭化物イオンベース:組成物3)の調製]
臭化ナトリウム:11重量%、12%次亜塩素酸ナトリウム水溶液:50重量%、スルファミン酸ナトリウム:14重量%、水酸化ナトリウム:8重量%、水:残分を混合して、組成物を調製した。組成物3のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は6重量%であった。組成物3の詳細な調製方法は以下の通りである。
[Preparation of Stabilized Hypobromous Acid Composition (Chlorine Oxidizer+Bromide Ion Base: Composition 3)]
Sodium bromide: 11% by weight, 12% sodium hypochlorite aqueous solution: 50% by weight, sodium sulfamate: 14% by weight, sodium hydroxide: 8% by weight, water: balance to prepare a composition did. Composition 3 had a pH of 14 and an effective halogen concentration (effective chlorine conversion concentration) of 6% by weight. The detailed preparation method of the composition 3 is as follows.
反応容器に17gの水を入れ、11gの臭化ナトリウムを加え撹拌して溶解させた後、50gの12%次亜塩素酸ナトリウム水溶液を加え混合し、次いで14gのスルファミン酸ナトリウムを加え撹拌して溶解させた後、8gの水酸化ナトリウムを加え撹拌し溶解させて目的の組成物3を得た。 In a reaction vessel, 17 g of water was added, and 11 g of sodium bromide was added and stirred to dissolve, then, 50 g of 12% sodium hypochlorite aqueous solution was added and mixed, and then 14 g of sodium sulfamate was added and stirred. After dissolution, 8 g of sodium hydroxide was added and stirred to dissolve to obtain the target composition 3.
[安定化次亜臭素酸組成物(塩化臭素ベース:組成物4)の調製]
塩化臭素、スルファミン酸ナトリウム、水酸化ナトリウムを含有する組成物を使用した。組成物のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は7重量%であった。
[Preparation of stabilized hypobromite composition (bromine chloride base: Composition 4)]
A composition containing bromine chloride, sodium sulfamate, sodium hydroxide was used. The composition had a pH of 14 and an effective halogen concentration (effective chlorine conversion concentration) of 7% by weight.
[安定化次亜塩素酸組成物(組成物5)の調製]
12%次亜塩素酸ナトリウム水溶液:50重量%、スルファミン酸:10重量%、水酸化ナトリウム:8重量%、水:残分を混合して、組成物を調製した。組成物のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は6重量%であった。
[Preparation of Stabilized Hypochlorous Acid Composition (Composition 5)]
A composition was prepared by mixing 12% aqueous sodium hypochlorite solution: 50% by weight, sulfamic acid: 10% by weight, sodium hydroxide: 8% by weight, and water: residue. The composition had a pH of 14 and an effective halogen concentration (effective chlorine conversion concentration) of 6% by weight.
<NDMA生成への殺菌剤の種類の影響>
NDMA生成に対する、殺菌剤の種類の影響を調べるため、以下の試験1(試験水:下水二次処理水)、試験2(試験水:純水+DMA)、試験3(試験水:純水+TMA)、試験4(試験水:純水+DMBzA)を実施した。
<Influence of bactericide type on NDMA generation>
In order to investigate the effect of the type of bactericide on NDMA production, the following test 1 (test water: sewage secondary treated water), test 2 (test water: pure water + DMA), test 3 (test water: pure water + TMA) , Test 4 (test water: pure water+DMBzA) were performed.
(試験条件1)
試験方法:試験水に薬剤を添加し、pHを6に調整し、120時間静置した後、NDMA濃度を測定
試験水:下水二次処理水(NDMA生成能:1229ng/L)
薬剤:組成物1(実施例1−1)、組成物2(比較例1−1)
薬剤濃度:有効ハロゲン濃度(有効塩素換算濃度)として10mg/Lとなるよう添加 有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR−3900」)を使用してDPD法により測定
反応水温:25℃
反応時間:120時間
NDMA測定方法:非特許文献3に記載の方法に則り、高速液体クロマトグラフィ(Shimazu製、LC−10ADvp、SIL−10ADvp、CTO−10ACvp)、陰イオン除去装置(日理工業製)、光化学反応器(日理工業製)、化学発光検出器(JASCO製、CL−2027 plus)を使用して測定した。カラムはGLサイエンス製 InertSustain AQ−C18、溶離液は1mMリン酸緩衝液−メタノール混合液(混合比95:5、pH6.9)を用いて測定した。
(Test condition 1)
Test method: A chemical was added to test water, pH was adjusted to 6, and the mixture was allowed to stand for 120 hours, and then NDMA concentration was measured. Test water: Sewage secondary treated water (NDMA generation capacity: 1229 ng/L)
Drug: Composition 1 (Example 1-1), Composition 2 (Comparative Example 1-1)
Chemical concentration: added so that the effective halogen concentration (effective chlorine conversion concentration) is 10 mg/L. Effective halogen concentration measurement method: Measured by the DPD method using a residual chlorine measuring device (Hach, "DR-3900") Reaction water temperature: 25°C
Reaction time: 120 hours NDMA measurement method: according to the method described in Non-Patent Document 3, high performance liquid chromatography (Shimadzu, LC-10ADvp, SIL-10ADvp, CTO-10ACvp), anion removal device (Nichiri Kogyo). , Photochemical reactor (manufactured by Nichiri Kogyo) and chemiluminescence detector (manufactured by JASCO, CL-2027 plus). The column was measured using Inert Sustain AQ-C18 manufactured by GL Science, and the eluent was a 1 mM phosphate buffer-methanol mixed solution (mixing ratio 95:5, pH 6.9).
(試験結果)
試験結果を表1に示す。
(Test results)
The test results are shown in Table 1.
比較例1のクロラミンと比較して、実施例の安定化組成物は、NDMAの生成量が著しく低かった。 Compared to the chloramine of Comparative Example 1, the stabilized composition of Example produced a significantly lower amount of NDMA.
(試験条件2)
試験方法:試験水に薬剤を添加し、pHを6に調整し、120時間静置した後、NDMA濃度を測定
試験水:純水+ジメチルアミン(DMA)(DMA濃度:100μg/L、NDMA生成能:173ng/L)
薬剤:組成物1(実施例1−2)、組成物2(比較例1−2)
薬剤濃度:有効ハロゲン濃度(有効塩素換算濃度)として10mg/Lとなるよう添加 有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR−3900」)を使用してDPD法により測定
反応水温:25℃
反応時間:120時間
NDMA測定方法:試験条件1に記載の方法と同様にして、高速液体クロマトグラフィと化学発光検出器を用いて測定
(Test condition 2)
Test method: A chemical was added to test water, pH was adjusted to 6, and allowed to stand for 120 hours, and then NDMA concentration was measured Test water: pure water+dimethylamine (DMA) (DMA concentration: 100 μg/L, NDMA generation Noh: 173 ng/L)
Drug: Composition 1 (Example 1-2), Composition 2 (Comparative Example 1-2)
Chemical concentration: added so that the effective halogen concentration (effective chlorine conversion concentration) is 10 mg/L. Effective halogen concentration measurement method: Measured by the DPD method using a residual chlorine measuring device (Hach, "DR-3900") Reaction water temperature: 25°C
Reaction time: 120 hours NDMA measurement method: measured using a high performance liquid chromatography and a chemiluminescence detector in the same manner as in the test condition 1.
(試験結果)
試験結果を表2に示す。
(Test results)
The test results are shown in Table 2.
比較例1のクロラミンと比較して、実施例の安定化組成物は、NDMAの生成量が著しく低かった。 Compared to the chloramine of Comparative Example 1, the stabilized composition of Example produced a significantly lower amount of NDMA.
(試験条件3)
試験方法:試験水に薬剤を添加し、pHを6に調整し、120時間静置した後、NDMA濃度を測定
試験水:純水+トリメチルアミン(TMA)(TMA濃度:100μg/L、NDMA生成能:115ng/L)
薬剤:組成物1(実施例1−3)、組成物2(比較例1−3)
薬剤濃度:有効ハロゲン濃度(有効塩素換算濃度)として10mg/Lとなるよう添加 有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR−3900」)を使用してDPD法により測定
反応水温:25℃
反応時間:120時間
NDMA測定方法:試験条件1に記載の方法と同様にして、高速液体クロマトグラフィと化学発光検出器を用いて測定
(Test condition 3)
Test method: A drug was added to test water, pH was adjusted to 6, and allowed to stand for 120 hours, and then NDMA concentration was measured Test water: pure water + trimethylamine (TMA) (TMA concentration: 100 μg/L, NDMA generation ability : 115 ng/L)
Drug: Composition 1 (Example 1-3), Composition 2 (Comparative Example 1-3)
Chemical concentration: added so that the effective halogen concentration (effective chlorine conversion concentration) is 10 mg/L. Effective halogen concentration measurement method: Measured by the DPD method using a residual chlorine measuring device (Hach, "DR-3900") Reaction water temperature: 25°C
Reaction time: 120 hours NDMA measurement method: measured using a high performance liquid chromatography and a chemiluminescence detector in the same manner as in the test condition 1.
(試験結果)
試験結果を表3に示す。
(Test results)
The test results are shown in Table 3.
比較例1のクロラミンと比較して、実施例の安定化組成物は、NDMAの生成量が著しく低かった。 Compared to the chloramine of Comparative Example 1, the stabilized composition of Example produced a significantly lower amount of NDMA.
(試験条件4)
試験方法:試験水に薬剤を添加し、pHを6に調整し、120時間静置した後、NDMA濃度を測定
試験水:純水+N,N−ジメチルベンジルアミン(DMBzA)(DMBzA濃度:100μg/L、NDMA生成能:39500ng/L)
薬剤:組成物1(実施例1−4)、組成物2(比較例1−4)
薬剤濃度:有効ハロゲン濃度(有効塩素換算濃度)として10mg/Lとなるよう添加 有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR−3900」)を使用してDPD法により測定
反応水温:25℃
反応時間:120時間
NDMA測定方法:試験条件1に記載の方法と同様にして、高速液体クロマトグラフィと化学発光検出器を用いて測定
(Test condition 4)
Test method: A drug was added to test water, pH was adjusted to 6, and allowed to stand for 120 hours, and then NDMA concentration was measured Test water: pure water+N,N-dimethylbenzylamine (DMBzA) (DMBzA concentration: 100 μg/ L, NDMA generation capacity: 39500 ng/L)
Drug: Composition 1 (Example 1-4), Composition 2 (Comparative Example 1-4)
Chemical concentration: added so that the effective halogen concentration (effective chlorine conversion concentration) is 10 mg/L. Effective halogen concentration measurement method: Measured by the DPD method using a residual chlorine measuring device (Hach, "DR-3900") Reaction water temperature: 25°C
Reaction time: 120 hours NDMA measurement method: measured using a high performance liquid chromatography and a chemiluminescence detector in the same manner as in the test condition 1.
(試験結果)
試験結果を表4に示す。
(Test results)
The test results are shown in Table 4.
比較例1のクロラミンと比較して、実施例の安定化組成物は、NDMAの生成量が著しく低かった。 Compared to the chloramine of Comparative Example 1, the stabilized composition of Example produced a significantly lower amount of NDMA.
<NDMA生成に対する殺菌剤濃度と反応時間の影響>
NDMA生成に対する殺菌剤の濃度と反応時間の影響を調べるため、以下の試験5(試験水:下水二次処理水)、試験6(試験水:純水+DMA)を実施した。
<Effect of fungicide concentration and reaction time on NDMA production>
The following test 5 (test water: secondary treated sewage water) and test 6 (test water: pure water+DMA) were carried out in order to investigate the influence of the concentration of the bactericide and the reaction time on NDMA production.
(試験条件5)
試験方法:試験水に薬剤を添加し、pHを6に調整し、所定時間静置した後、NDMA濃度を測定
試験水:下水二次処理水(NDMA生成能:1229ng/L)
薬剤:組成物1(実施例1−5)
薬剤濃度:有効ハロゲン濃度(有効塩素換算濃度)として1mg/L、3mg/L、10mg/Lとなるよう添加
有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR−3900」)を使用してDPD法により測定
反応水温:25℃
反応時間:0時間、5時間、120時間
NDMA測定方法:試験条件1に記載の方法と同様にして、高速液体クロマトグラフィと化学発光検出器を用いて測定
(Test condition 5)
Test method: A chemical was added to test water, pH was adjusted to 6, and after standing for a predetermined time, NDMA concentration was measured Test water: Sewage secondary treated water (NDMA generation capacity: 1229 ng/L)
Drug: Composition 1 (Examples 1-5)
Chemical concentration: added so that the effective halogen concentration (effective chlorine conversion concentration) is 1 mg/L, 3 mg/L, 10 mg/L Effective halogen concentration measurement method: Residual chlorine measurement device (Hach, "DR-3900") Measured by DPD method using water Reaction water temperature: 25°C
Reaction time: 0 hours, 5 hours, 120 hours NDMA measuring method: measured by using a high performance liquid chromatography and a chemiluminescence detector in the same manner as in the test condition 1.
(試験結果)
実施例1−5における、NDMA生成量に対する殺菌剤の濃度と反応時間の影響を図2に示す。
(Test results)
FIG. 2 shows the effects of the concentration of the bactericide and the reaction time on the NDMA production in Example 1-5.
反応時間、すなわち前駆物質含有水と安定化組成物とが連続して接触する時間は、5時間以内であるか、または、安定化組成物の添加濃度は、3mgCl/L以下であることが好ましいことがわかる。 The reaction time, that is, the time during which the precursor-containing water and the stabilizing composition are continuously in contact with each other is preferably 5 hours or less, or the addition concentration of the stabilizing composition is preferably 3 mgCl/L or less. I understand.
(試験条件6)
試験方法:試験水に薬剤を添加し、pHを6に調整し、所定時間静置した後、NDMA濃度を測定
試験水:純水+ジメチルアミン(DMA)(DMA濃度:100μg/L、NDMA生成能:173ng/L)
薬剤:組成物1(実施例1−6)
薬剤濃度:有効ハロゲン濃度(有効塩素換算濃度)として1mg/L、3mg/L、10mg/Lとなるよう添加
有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR−3900」)を使用してDPD法により測定
反応水温:25℃
反応時間:0時間、5時間、120時間
NDMA測定方法:試験条件1に記載の方法と同様にして、高速液体クロマトグラフィと化学発光検出器を用いて測定
(Test condition 6)
Test method: A chemical was added to test water, pH was adjusted to 6, and allowed to stand for a predetermined time, and then NDMA concentration was measured Test water: pure water+dimethylamine (DMA) (DMA concentration: 100 μg/L, NDMA generation Noh: 173 ng/L)
Drug: Composition 1 (Examples 1-6)
Chemical concentration: added so that the effective halogen concentration (effective chlorine conversion concentration) is 1 mg/L, 3 mg/L, 10 mg/L Effective halogen concentration measurement method: Residual chlorine measurement device (Hach, "DR-3900") Measured by DPD method using water Reaction water temperature: 25°C
Reaction time: 0 hours, 5 hours, 120 hours NDMA measuring method: measured by using a high performance liquid chromatography and a chemiluminescence detector in the same manner as in the test condition 1.
(試験結果)
実施例1−6における、NDMA生成量に対する殺菌剤の濃度と反応時間の影響を図3に示す。
(Test results)
FIG. 3 shows the effects of the concentration of the bactericide and the reaction time on the amount of NDMA produced in Examples 1-6.
反応時間、すなわち前駆物質含有水と安定化組成物とが連続して接触する時間は、5時間以内であるか、または、安定化組成物の添加濃度は、3mgCl/L以下であることが好ましいことがわかる。 The reaction time, that is, the time during which the precursor-containing water and the stabilizing composition are continuously in contact with each other is preferably 5 hours or less, or the addition concentration of the stabilizing composition is preferably 3 mgCl/L or less. I understand.
<殺菌試験1>
以下の条件で、模擬水に対する殺菌剤の殺菌力を比較した。
<Sterilization test 1>
The sterilizing power of the bactericide against simulated water was compared under the following conditions.
(試験条件)
模擬水:相模原井水に普通ブイヨンを添加し、一般細菌数が8.5×106CFU/mLとなるよう調整した模擬水
薬剤:組成物1(実施例1−7)、組成物2(比較例1−5)
薬剤濃度:有効ハロゲン濃度(有効塩素換算濃度)として1mg/Lとなるよう添加
有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR−3900」)を使用してDPD法により測定
(Test conditions)
Simulated water: Simulated water prepared by adding ordinary broth to Sagamihara well water to adjust the number of general bacteria to 8.5×10 6 CFU/mL Drug: Composition 1 (Example 1-7), Composition 2 ( Comparative Example 1-5)
Chemical concentration: added so that the effective halogen concentration (effective chlorine conversion concentration) is 1 mg/L. Effective halogen concentration measurement method: Measured by the DPD method using a residual chlorine measuring device (Hach, "DR-3900")
(評価方法)
薬剤添加後1時間後の一般細菌数を、菌数測定キット(3M社製、ペトリフィルムACプレート)を使用して測定
(Evaluation method)
The number of general bacteria one hour after the addition of the drug is measured using a bacterial count measurement kit (3M, Petrifilm AC plate)
(試験結果)
試験結果を表5に示す。
(Test results)
The test results are shown in Table 5.
1時間後の菌数は組成物2よりも組成物1の方が減少しており、殺菌力のより高い組成物1が好ましいことがわかる。 The number of bacteria after 1 hour was smaller in the composition 1 than in the composition 2, and it can be seen that the composition 1 having higher bactericidal activity is preferable.
<殺菌試験2>
以下の条件で、下水二次処理水に対する組成物1の殺菌力を確認した。
<Sterilization test 2>
The sterilizing power of the composition 1 against the secondary treated sewage water was confirmed under the following conditions.
(試験条件)
試験水:下水二次処理水
薬剤:組成物1(実施例1−8)
薬剤濃度:有効ハロゲン濃度(有効塩素換算濃度)として2mg/Lとなるよう添加
有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR−3900」)を使用してDPD法により測定
(Test conditions)
Test water: Sewage secondary treated water Agent: Composition 1 (Examples 1-8)
Chemical concentration: Added so that the effective halogen concentration (effective chlorine conversion concentration) is 2 mg/L. Effective halogen concentration measurement method: Measured by the DPD method using a residual chlorine measuring device (Hach, "DR-3900")
(評価方法)
薬剤添加後1時間後の一般細菌数を、菌数測定キット(ニプロ社製、シートチェックR2A)を使用して測定
(Evaluation method)
Measurement of the number of general bacteria 1 hour after the addition of chemicals using a bacterial count kit (Nipro, Sheet Check R2A)
(試験結果)
試験結果を表6に示す。
(Test results)
The test results are shown in Table 6.
下水二次処理水においても、組成物1を添加することで、1時間後の菌数は大幅に減少しており、組成物1によって下水二次処理水においても十分な殺菌効果が期待できることがわかる。 Also in the sewage secondary treated water, the addition of the composition 1 significantly reduced the number of bacteria after 1 hour, and the composition 1 can be expected to have a sufficient bactericidal effect even in the sewage secondary treated water. Recognize.
<NDMA生成への殺菌剤の種類の影響2>
NDMA生成に対する、殺菌剤の種類の影響を調べるため、添加する薬剤を組成物3、組成物4、組成物5とした以外は、試験条件4と同じ条件で試験を行った。
<Effect of type of fungicide on NDMA generation 2>
In order to investigate the effect of the type of bactericide on NDMA production, a test was conducted under the same conditions as test condition 4, except that the added chemicals were composition 3, composition 4, and composition 5.
(試験結果)
試験結果を表7に示す。
(Test results)
The test results are shown in Table 7.
前述の比較例1のクロラミンと比較して、実施例の安定化組成物は、NDMAの生成量が著しく低かった。 Compared to the chloramine of Comparative Example 1 described above, the stabilized composition of Example had a significantly lower amount of NDMA produced.
<各種試験水のNDMA生成能>
下記に示す各種試験水のNDMA生成能を表8に示す。
<NDMA generation ability of various test waters>
Table 8 shows the NDMA generation ability of various test waters shown below.
(下水二次処理水)
試験条件1と同じ試験水を使用した。
(ジメチルアミン(DMA)溶液)
試験条件2と同じ試験水を使用した。
(トリメチルアミン(TMA)溶液)
試験条件3と同じ試験水を使用した。
(N−ジメチルベンジルアミン(DMBzA)溶液)
試験条件4と同じ試験水を使用した。
(アンモニア:1mg/L溶液)
塩化アンモニウム3.15mgを1000mLの水に溶解したものを使用した。
(アンモニア:1mg/L+NaCl:500mg/L溶液)
塩化アンモニウム3.15mgと塩化ナトリウム500mgを1000mLの水に溶解したものを使用した。
(相模原井水)
相模原井水を使用した。
(Sewage secondary treated water)
The same test water as the test condition 1 was used.
(Dimethylamine (DMA) solution)
The same test water as the test condition 2 was used.
(Trimethylamine (TMA) solution)
The same test water as the test condition 3 was used.
(N-dimethylbenzylamine (DMBzA) solution)
The same test water as the test condition 4 was used.
(Ammonia: 1 mg/L solution)
A solution prepared by dissolving 3.15 mg of ammonium chloride in 1000 mL of water was used.
(Ammonia: 1 mg/L+NaCl: 500 mg/L solution)
A solution prepared by dissolving 3.15 mg of ammonium chloride and 500 mg of sodium chloride in 1000 mL of water was used.
(Isui Sagamihara)
Sagamihara Imizu was used.
地下水(相模原井水)等の一般的な環境水に比べ、下水二次処理水や、特定のNDMA前駆物質を含む水は、NDMA生成能が大幅に高いことがわかる。 It can be seen that sewage secondary treated water and water containing a specific NDMA precursor have significantly higher NDMA generation ability than general environmental water such as groundwater (Sagamihara well water).
<RO膜への劣化影響>
組成物1または組成物2を含有する試験水に、RO膜を所定時間浸漬させ、浸漬前後のRO膜の排除率を確認した。結果を表9に示す。
<Degradation effect on RO membrane>
The RO membrane was immersed in test water containing the composition 1 or the composition 2 for a predetermined time, and the rejection rate of the RO membrane before and after the immersion was confirmed. The results are shown in Table 9.
[RO膜排除率への影響比較試験]
以下の条件で、浸漬用模擬水に、組成物1または組成物2を所定濃度添加し、pHを7に調整し、所定時間静置したのち、RO膜の排除率への影響を比較した。
[Comparison test on the effect on RO membrane rejection rate]
Under the following conditions, the composition 1 or the composition 2 was added to the simulated water for immersion at a predetermined concentration, the pH was adjusted to 7, and the mixture was allowed to stand for a predetermined time, and then the influence on the rejection rate of the RO membrane was compared.
(浸漬条件)
・浸漬用模擬水:純水に塩化ナトリウム:1.2g/L、塩化カルシウム:0.1g/L、炭酸水素ナトリウム0.08g/L、塩化アルミニウム6水和物:0.009g/Lとなるようにこれらを添加したものを使用
・薬剤:組成物1または組成物2を、有効ハロゲン濃度(有効塩素換算濃度)として300mg/Lとなるように添加
・pH:7
・分離膜:日東電工(株)製、ポリアミド系高分子逆浸透膜 ESPA2
・浸漬時間:100h
・水温:25℃
(Immersion condition)
-Simulated water for immersion: in pure water, sodium chloride: 1.2 g/L, calcium chloride: 0.1 g/L, sodium hydrogen carbonate 0.08 g/L, aluminum chloride hexahydrate: 0.009 g/L As such, these are added.-Chemical agent: Composition 1 or Composition 2 is added so that the effective halogen concentration (effective chlorine conversion concentration) is 300 mg/L. pH: 7
・Separation membrane: Nitto Denko KK, polyamide polymer reverse osmosis membrane ESPA2
・Dip time: 100 h
・Water temperature: 25℃
(RO膜排除率評価条件)
・試験装置:平膜試験装置
・阻止率評価用模擬水:純水に塩化ナトリウム:1.2g/L、塩化カルシウム:0.1g/L、炭酸水素ナトリウム0.08g/Lとなるようにこれらを添加し、pHを7に調整したものを使用
・透過水量:40L/m2/h
・水温:25℃
(RO membrane exclusion rate evaluation conditions)
-Testing device: flat membrane tester-Rejection rate evaluation simulated water: Pure water with sodium chloride: 1.2 g/L, calcium chloride: 0.1 g/L, sodium hydrogen carbonate 0.08 g/L Was used to adjust the pH to 7. Permeate flow rate: 40 L/m 2 /h
・Water temperature: 25℃
(RO膜排除率の計算方法)
(100−[透過水導電率/給水導電率]×100)
(Calculation method of RO membrane rejection rate)
(100−[permeate conductivity/feed water conductivity]×100)
組成物1、組成物2ともにRO膜排除率への影響は、極めて低く、同程度であった。 The influences of the composition 1 and the composition 2 on the RO membrane rejection rate were extremely low and were comparable.
<RO膜でのファウリング抑制効果>
組成物1を含有する試験水を、RO膜に通水させ、RO膜でのバイオファウリングの抑制効果を確認した。組成物1を含有する試験水をRO膜に通水したときの通水差圧の推移を図4に示す。
<Fouling suppression effect with RO membrane>
Test water containing the composition 1 was passed through the RO membrane, and the effect of suppressing biofouling on the RO membrane was confirmed. FIG. 4 shows the transition of the water flow differential pressure when the test water containing the composition 1 was passed through the RO membrane.
[バイオファウリング抑制試験]
以下の条件で、模擬排水に、組成物1を所定濃度添加し、RO膜の通水差圧を測定した。
[Biofouling suppression test]
Composition 1 was added to the simulated wastewater at a predetermined concentration under the following conditions, and the water flow differential pressure of the RO membrane was measured.
(試験条件)
・模擬排水:相模原井水に酢酸:5mg/Lを添加したものを使用
・pH:7
・薬剤:組成物1を、1日3時間のみ、有効塩素として1mg/Lとなるように添加
・分離膜:日東電工(株)製、ポリアミド系高分子逆浸透膜 ESPA2
・水温:14〜17℃
(Test conditions)
・Mock drainage: Sagamihara well water with acetic acid: 5 mg/L added ・pH: 7
・Drug: Composition 1 was added only for 3 hours a day so that the available chlorine was 1 mg/L. Separation membrane: Nitto Denko Corp., polyamide polymer reverse osmosis membrane ESPA2
・Water temperature: 14-17℃
(RO膜通水差圧の計算方法)
RO膜通水差圧=RO膜給水圧−RO膜濃縮水圧
(Calculation method of RO membrane water differential pressure)
RO membrane water differential pressure = RO membrane water supply pressure-RO membrane concentrated water pressure
組成物1によって、RO膜のバイオファウリングを効果的に抑制することができた。 Composition 1 was able to effectively suppress the biofouling of the RO membrane.
<他の副生成物について>
NDMA以外の消毒副生成物の生成に対する、殺菌剤の種類の影響を調べるため、以下の試験を実施した。
<About other by-products>
The following tests were conducted to investigate the effect of the type of fungicide on the production of disinfection byproducts other than NDMA.
(試験条件1)
試験方法:試験水に薬剤を添加し、pHを7に調整し、5時間または120時間静置した後、各種成分の濃度を測定
試験水:下水二次処理水
薬剤:組成物1、組成物2
薬剤濃度:有効ハロゲン濃度(有効塩素換算濃度)として5mg/Lまたは100mg/Lとなるよう添加
有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR−3900」)を使用してDPD法により測定
反応水温:25℃
反応時間:5時間または120時間
測定方法物質:トリハロメタン、臭素酸、塩素酸、ハロ酢酸、ブロモクロロアセトニトリル
(Test condition 1)
Test method: A drug is added to test water, pH is adjusted to 7, and after standing for 5 hours or 120 hours, the concentrations of various components are measured Test water: Secondary sewage treated water Drug: Composition 1, composition Two
Chemical concentration: added so that the effective halogen concentration (effective chlorine conversion concentration) will be 5 mg/L or 100 mg/L Effective halogen concentration measurement method: Using a residual chlorine measuring device (Hach, "DR-3900") Measurement by DPD method Reaction water temperature: 25°C
Reaction time: 5 hours or 120 hours Measurement method substance: trihalomethane, bromic acid, chloric acid, haloacetic acid, bromochloroacetonitrile
(試験結果)
試験結果を表10に示す。
(Test results)
The test results are shown in Table 10.
組成物1は、NDMA以外の消毒副生成物の生成量も低かった。 Composition 1 also produced low amounts of disinfection byproducts other than NDMA.
以上の通り、実施例の安定化組成物により、ニトロソアミン化合物前駆物質を含有する前駆物質含有水において、十分な殺菌効果を有しながら、ニトロソアミン化合物の生成量を抑制することができた。 As described above, the stabilizing compositions of the examples were able to suppress the amount of nitrosamine compound produced in the precursor-containing water containing the nitrosamine compound precursor while having a sufficient bactericidal effect.
1 水処理装置、10 第1貯留槽、12 膜ろ過装置、14 第2貯留槽、16 分離膜装置、18 酸化分解処理装置、20,22,24,26,28,30,32 配管、34,36,38,40 安定化組成物添配管。 1 water treatment device, 10 1st storage tank, 12 membrane filtration device, 14 2nd storage tank, 16 separation membrane device, 18 oxidation decomposition treatment device, 20, 22, 24, 26, 28, 30, 32 pipe, 34, 36, 38, 40 Stabilizing composition added piping.
Claims (11)
前記ニトロソアミン化合物前駆物質が、ジメチルアミン、トリメチルアミン、N,N−ジメチルイソプロピルアミン、N,N−ジメチルベンジルアミン、ラニチジン、テトラメチルチウラムジスルフィド、ジメチルジチオカルバメート、ポリジアリルジメチルアンモニウムクロライド、アミノ基を含むポリマのうち少なくとも1つを含むことを特徴とする、水系の殺菌方法。 The water-based sterilization method according to claim 1,
The nitrosamine compound precursor is a polymer containing dimethylamine, trimethylamine, N,N-dimethylisopropylamine, N,N-dimethylbenzylamine, ranitidine, tetramethylthiuram disulfide, dimethyldithiocarbamate, polydiallyldimethylammonium chloride, amino group. A water-based sterilization method comprising at least one of the above.
前記前駆物質含有水中の前記ニトロソアミン化合物前駆物質の濃度が、ニトロソアミン化合物生成能として100ng/L以上であることを特徴とする、水系の殺菌方法。 The water-based sterilization method according to claim 1 or 2,
The concentration of the nitrosamine compound precursor in the precursor-containing water is 100 ng/L or more as a nitrosamine compound-forming ability, and a water-based sterilization method.
前記ニトロソアミン化合物前駆物質が、ジメチルアミン、トリメチルアミン、N,N−ジメチルベンジルアミンのうち少なくとも1つを含み、前記前駆物質含有水中の前記ニトロソアミン化合物前駆物質の濃度が100μg/L以上であることを特徴とする、水系の殺菌方法。 The water-based sterilization method according to claim 1,
The nitrosamine compound precursor contains at least one of dimethylamine, trimethylamine, and N,N-dimethylbenzylamine, and the concentration of the nitrosamine compound precursor in the precursor-containing water is 100 μg/L or more. The water-based sterilization method.
前記臭素系酸化剤が、臭素、塩化臭素、または臭素化合物と塩素系酸化剤との反応物であることを特徴とする、水系の殺菌方法。 The water-based sterilization method according to any one of claims 1 to 4,
The water-based sterilization method, wherein the bromine-based oxidizing agent is bromine, bromine chloride, or a reaction product of a bromine compound and a chlorine-based oxidizing agent.
前記塩素系酸化剤が、次亜塩素酸またはその塩であることを特徴とする、水系の殺菌方法。 The water-based sterilization method according to any one of claims 1 to 5,
The water-based sterilization method, wherein the chlorine-based oxidizing agent is hypochlorous acid or a salt thereof.
前記前駆物質含有水中の有効ハロゲン濃度(有効塩素換算濃度)が3mgCl/L以内となるように前記安定化組成物を添加することを特徴とする、水系の殺菌方法。 The water-based sterilization method according to any one of claims 1 to 6,
A method for sterilizing an aqueous system, characterized in that the stabilizing composition is added so that the effective halogen concentration (concentration of effective chlorine) in the precursor-containing water is within 3 mgCl/L.
前記前駆物質含有水と前記安定化組成物とが連続して接触する時間を5時間以内とすることを特徴とする、水系の殺菌方法。 The water-based sterilization method according to any one of claims 1 to 7,
A method for sterilizing an aqueous system, characterized in that the time period during which the precursor-containing water and the stabilizing composition are continuously contacted is within 5 hours.
前記前駆物質含有水に前記安定化組成物を添加した後に、分離膜処理、酸化分解処理のうち少なくとも1つの処理を行うことを特徴とする、水系の殺菌方法。 The water-based sterilization method according to any one of claims 1 to 7,
After adding the stabilizing composition to the precursor-containing water, at least one treatment of a separation membrane treatment and an oxidative decomposition treatment is performed, and a water-based sterilization method.
前記分離膜処理において用いられる分離膜が、逆浸透膜であることを特徴とする、水系の殺菌方法。 The water-based sterilization method according to claim 9,
The separation membrane used in the separation membrane treatment is a reverse osmosis membrane, which is an aqueous sterilization method.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11202106443YA SG11202106443YA (en) | 2018-12-27 | 2019-07-12 | Sterilization method for water system, method of removing nitrosamine compound from water system and drinking water production method |
US17/417,485 US20210387886A1 (en) | 2018-12-27 | 2019-07-12 | Sterilization method for water system, method of removing nitrosamine compound from water system and drinking water production method |
PCT/JP2019/027763 WO2020136963A1 (en) | 2018-12-27 | 2019-07-12 | Sterilization method for water system, method of removing nitrosamine compound from water system and drinking water production method |
CN201980085264.2A CN113226995B (en) | 2018-12-27 | 2019-07-12 | Method for sterilizing water system, method for removing nitrosamine compound in water system, and method for producing drinking water |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018245052 | 2018-12-27 | ||
JP2018245052 | 2018-12-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020104093A true JP2020104093A (en) | 2020-07-09 |
JP7250612B2 JP7250612B2 (en) | 2023-04-03 |
Family
ID=71447646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019090822A Active JP7250612B2 (en) | 2018-12-27 | 2019-05-13 | Water-based sterilization method and water-based nitrosamine compound removal method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7250612B2 (en) |
CN (1) | CN113226995B (en) |
SG (1) | SG11202106443YA (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022176477A1 (en) * | 2021-02-17 | 2022-08-25 | オルガノ株式会社 | Urea treatment apparatus and urea treatment method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63175689A (en) * | 1987-01-12 | 1988-07-20 | Nippon Denki Kankyo Eng Kk | Treatment method for drain containing amine compound |
JPH0924379A (en) * | 1995-07-14 | 1997-01-28 | Toshiba Corp | Treatment of waste water |
JPH10290996A (en) * | 1997-02-20 | 1998-11-04 | Hitachi Plant Eng & Constr Co Ltd | Denitrification apparatus for water |
WO2005019117A1 (en) * | 2003-08-14 | 2005-03-03 | Acculab Co., Ltd. | Method of controlling microbial fouling in aqueous system |
US20060278586A1 (en) * | 2005-06-10 | 2006-12-14 | Nalepa Christopher J | Highly concentrated, biocidally active compositions and aqueous mixtures and methods of making the same |
JP2016120466A (en) * | 2014-12-25 | 2016-07-07 | オルガノ株式会社 | Filtration treatment system and filtration treatment method |
US20170188583A1 (en) * | 2014-05-15 | 2017-07-06 | Bromine Compounds Ltd. | Biocidal composition for cleaning hard surfaces contaminated with proteinaceous and fatty residues |
US20180000100A1 (en) * | 2015-01-23 | 2018-01-04 | Albemarle Corporation | Microbiocidal Control in the Processing of Poultry |
JP2018114472A (en) * | 2017-01-19 | 2018-07-26 | 三浦工業株式会社 | Water treatment system |
JP2018183751A (en) * | 2017-04-27 | 2018-11-22 | オルガノ株式会社 | Water treatment method and water treatment apparatus using reverse osmosis membrane |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006263510A (en) * | 2005-03-22 | 2006-10-05 | Kurita Water Ind Ltd | Slime preventing agent for membrane separation and membrane separation method |
JP5099045B2 (en) * | 2009-03-02 | 2012-12-12 | 栗田工業株式会社 | Reverse osmosis membrane separation method |
JP2010201312A (en) * | 2009-03-02 | 2010-09-16 | Kurita Water Ind Ltd | Membrane separation method |
JP6655295B2 (en) * | 2014-03-20 | 2020-02-26 | オルガノ株式会社 | Water treatment agent composition, method for producing water treatment agent composition, and water treatment method |
JP6649697B2 (en) * | 2015-05-12 | 2020-02-19 | オルガノ株式会社 | Water sterilization method |
-
2019
- 2019-05-13 JP JP2019090822A patent/JP7250612B2/en active Active
- 2019-07-12 SG SG11202106443YA patent/SG11202106443YA/en unknown
- 2019-07-12 CN CN201980085264.2A patent/CN113226995B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63175689A (en) * | 1987-01-12 | 1988-07-20 | Nippon Denki Kankyo Eng Kk | Treatment method for drain containing amine compound |
JPH0924379A (en) * | 1995-07-14 | 1997-01-28 | Toshiba Corp | Treatment of waste water |
JPH10290996A (en) * | 1997-02-20 | 1998-11-04 | Hitachi Plant Eng & Constr Co Ltd | Denitrification apparatus for water |
WO2005019117A1 (en) * | 2003-08-14 | 2005-03-03 | Acculab Co., Ltd. | Method of controlling microbial fouling in aqueous system |
US20060278586A1 (en) * | 2005-06-10 | 2006-12-14 | Nalepa Christopher J | Highly concentrated, biocidally active compositions and aqueous mixtures and methods of making the same |
US20170188583A1 (en) * | 2014-05-15 | 2017-07-06 | Bromine Compounds Ltd. | Biocidal composition for cleaning hard surfaces contaminated with proteinaceous and fatty residues |
JP2016120466A (en) * | 2014-12-25 | 2016-07-07 | オルガノ株式会社 | Filtration treatment system and filtration treatment method |
US20180000100A1 (en) * | 2015-01-23 | 2018-01-04 | Albemarle Corporation | Microbiocidal Control in the Processing of Poultry |
JP2018114472A (en) * | 2017-01-19 | 2018-07-26 | 三浦工業株式会社 | Water treatment system |
JP2018183751A (en) * | 2017-04-27 | 2018-11-22 | オルガノ株式会社 | Water treatment method and water treatment apparatus using reverse osmosis membrane |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022176477A1 (en) * | 2021-02-17 | 2022-08-25 | オルガノ株式会社 | Urea treatment apparatus and urea treatment method |
Also Published As
Publication number | Publication date |
---|---|
CN113226995A (en) | 2021-08-06 |
JP7250612B2 (en) | 2023-04-03 |
CN113226995B (en) | 2023-10-27 |
SG11202106443YA (en) | 2021-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6401491B2 (en) | Method for inhibiting slime of separation membrane, slime inhibitor composition for reverse osmosis membrane or nanofiltration membrane, and method for producing slime inhibitor composition for separation membrane | |
JP4966936B2 (en) | Anti-slime composition for separation membrane, method for membrane separation, and method for producing anti-slime composition for separation membrane | |
JP6534524B2 (en) | Filtration treatment system and filtration treatment method | |
WO2016104356A1 (en) | Method for controlling slime on separation membrane | |
JP6807219B2 (en) | Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method | |
KR102494388B1 (en) | Reverse osmosis membrane treatment method, water-based biofouling inhibition method and apparatus therefor | |
JP7013141B2 (en) | Water treatment method using reverse osmosis membrane | |
KR102291224B1 (en) | Water treatment method and water treatment device using reverse osmosis membrane | |
JP6970516B2 (en) | Water treatment method using reverse osmosis membrane | |
JP6513424B2 (en) | Method of sterilizing separation membrane | |
JP7250612B2 (en) | Water-based sterilization method and water-based nitrosamine compound removal method | |
WO2020136963A1 (en) | Sterilization method for water system, method of removing nitrosamine compound from water system and drinking water production method | |
JP6630562B2 (en) | Slime suppression method for separation membrane | |
JP6682401B2 (en) | Water treatment method using reverse osmosis membrane | |
TWI703094B (en) | Water treatment method using osmosis membrane | |
JP6823401B2 (en) | Method for treating water containing low molecular weight organic substances and method for modifying reverse osmosis membranes | |
JP7498580B2 (en) | Disinfectant, method for producing disinfectant, disinfection method, slime inhibitor for separation membrane, and method for inhibiting slime in separation membrane | |
JP7050414B2 (en) | Water treatment method using reverse osmosis membrane | |
JP7008470B2 (en) | Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system | |
JP6974936B2 (en) | Water treatment method using reverse osmosis membrane | |
JP7141919B2 (en) | Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method, and water treatment system | |
WO2020179789A1 (en) | Water treatment method and water treatment device using reverse osmosis membrane | |
TW202333807A (en) | Method for suppressing microorganism contamination in water system | |
TW202333806A (en) | Microorganism contamination prevention method for water system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220308 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230322 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7250612 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |