JP2020101050A - Seismic reinforcement structure - Google Patents

Seismic reinforcement structure Download PDF

Info

Publication number
JP2020101050A
JP2020101050A JP2018241436A JP2018241436A JP2020101050A JP 2020101050 A JP2020101050 A JP 2020101050A JP 2018241436 A JP2018241436 A JP 2018241436A JP 2018241436 A JP2018241436 A JP 2018241436A JP 2020101050 A JP2020101050 A JP 2020101050A
Authority
JP
Japan
Prior art keywords
seismic
building
gap
damping mechanism
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018241436A
Other languages
Japanese (ja)
Other versions
JP7094869B2 (en
Inventor
達彦 前田
Tatsuhiko Maeda
達彦 前田
和宏 佐分利
Kazuhiro Saburi
和宏 佐分利
寛之 増田
Hiroyuki Masuda
寛之 増田
至 ▲徳▼永
至 ▲徳▼永
Itaru Tokunaga
秀俊 ▲高▼山
秀俊 ▲高▼山
Hidetoshi Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2018241436A priority Critical patent/JP7094869B2/en
Publication of JP2020101050A publication Critical patent/JP2020101050A/en
Application granted granted Critical
Publication of JP7094869B2 publication Critical patent/JP7094869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

To provide a seismic reinforcement structure capable of effectively improving the seismic performance of a building while suppressing an increase in column axial force that occurs during an earthquake or the like as much as possible.SOLUTION: A seismic resistant element 10 with a gap that does not act on interlayer deformation of a predetermined gap amount or less but acts on interlayer deformation exceeding the gap amount is arranged on the vertical structure surface of a building 1. A damping mechanism 20 that applies a damping force to the interlayer deformation is arranged on a vertical structure surface different from the vertical structure surface on which the seismic resistant element 10 with a gap is arranged.SELECTED DRAWING: Figure 1

Description

本発明は、建物の鉛直構面に耐震要素や減衰機構を設けて建物を補強する耐震補強構造に関する。 The present invention relates to a seismic reinforcement structure that reinforces a building by providing a seismic element and a damping mechanism on a vertical structure surface of the building.

特許文献1には、耐震要素としての補剛ブレースが建物の最下層階を除く各階の鉛直構面に配置され、層間変形に減衰力を付与する減衰機構としてのオイルダンパーが、最下層階の鉛直構面に配置される建物の耐震補強構造が開示されている。
この耐震補強構造では、最下層階を除く各階に配置した耐震要素としての補剛ブレースにて最下層階を除く各階の剛性を高めて層間変形を抑え、その分、層間変形が大きくなる最下層階のオイルダンパーで集中的に振動を減衰することができるので、減衰機構としてのオイルダンパーを各階の鉛直構面に配置するのに比べて、コストを抑えて効率良く建物を補強することができる。
In Patent Document 1, stiffening braces as seismic resistant elements are arranged on the vertical construction planes of each floor except the lowest floor of the building, and an oil damper as a damping mechanism for imparting damping force to interlayer deformation is provided on the lowest floor. A seismic reinforcement structure for a building arranged on a vertical structure is disclosed.
In this seismic reinforcement structure, stiffening braces as seismic resistant elements placed on each floor except the lowest floors increase the rigidity of each floor except the lowest floors to suppress inter-story deformation, and the inter-story deformation increases correspondingly. Since the vibration can be intensively damped by the oil dampers on the floor, the cost can be reduced and the building can be reinforced efficiently compared to the case where the oil dampers as the damping mechanism are arranged on the vertical structure surface of each floor. ..

特開2000−087589号公報Japanese Patent Laid-Open No. 2000-087589

しかしながら、特許文献1の耐震補強構造では、補剛ブレースにて建物の最下層階を除く各階の剛性が高まり、建物の固有周期が大きく変わることになる。そのため、地震時等に生じる柱軸力も大きくなり、柱の補強等の工事も必要になる可能性がある。 However, in the seismic reinforcement structure of Patent Document 1, the stiffening braces increase the rigidity of each floor except the lowest floor of the building, and the natural period of the building changes significantly. Therefore, the axial force of the column generated during an earthquake may be large, and it may be necessary to reinforce the column.

この実情に鑑み、本発明の主たる課題は、地震時等に生じる柱軸力の増大を極力抑制しながら建物の耐震性能を効果的に向上できる耐震補強構造を提供する点にある。 In view of this actual situation, a main object of the present invention is to provide a seismic strengthening structure capable of effectively improving the seismic performance of a building while suppressing an increase in column axial force that occurs during an earthquake or the like as much as possible.

本発明の第1特徴構成は、所定のギャップ量以下の層間変形に対して作用せずに前記ギャップ量を超える層間変形に対して作用するギャップ付き耐震要素が建物の複数階の鉛直構面に配置され、
層間変形に減衰力を付与する減衰機構が、前記ギャップ付き耐震要素が配置される鉛直構面とは異なる鉛直構面に配置される点にある。
A first characteristic configuration of the present invention is that a seismic resistant element with a gap, which does not act on inter-story deformation below a predetermined gap amount but acts on inter-story deformation exceeding the gap amount, is provided on a vertical structure surface of a plurality of floors of a building. Placed,
A damping mechanism that applies a damping force to the inter-story deformation is located on a vertical construction surface different from the vertical construction surface on which the seismic element with a gap is arranged.

本構成によれば、ギャップ付き耐震要素と減衰機構の組み合わせを採用することで、各階の層間変形がギャップ量以下となる中地震時までは、建物の剛性を高めない状態(固有振動周期を変更しない状態)で、減衰機構にて地震エネルギーを吸収することができる。
そして、少なくとも一部の階の層間変形がギャップ量を超える大地震時には、層間変形がギャップ量を超える一部の階だけのギャップ付き耐震要素にて、その一部の階だけの層間変形を阻止しながら、減衰機構にて地震エネルギーを吸収することができる。
よって、地震時等に生じる柱軸力の増大を極力抑制しながら建物の耐震性能を効果的に向上することができる。
According to this configuration, by adopting a combination of a seismic element with a gap and a damping mechanism, the rigidity of the building is not increased until a mid-earthquake when the inter-story deformation of each floor is less than the gap amount. The seismic energy can be absorbed by the damping mechanism.
Then, at the time of a large earthquake where the interlayer deformation of at least some floors exceeds the gap amount, seismic elements with gaps on only some floors that prevent the interlayer deformation exceed the gap amount prevent the interlayer deformation of only some floors. However, the damping mechanism can absorb the seismic energy.
Therefore, it is possible to effectively improve the seismic performance of the building while suppressing the increase in the axial force of the column that occurs during an earthquake or the like as much as possible.

本発明の第2特徴構成は、複数の前記ギャップ付き耐震要素が、建物の上層側に集中配置され、
複数の前記減衰機構が、建物の下層側に集中配置される点にある。
According to a second characteristic configuration of the present invention, a plurality of the seismic resistant elements with the gaps are concentratedly arranged on the upper layer side of the building,
The plurality of the damping mechanisms are concentrated on the lower layer side of the building.

本構成によれば、地震エネルギーの入力が余り増えない建物の上層側にギャップ付き耐震要素が集中配置され、エネルギー吸収効率の高い建物の下層側に複数の減衰機構が集中配置されるので、ギャップ付き耐震要素にて上層側の各階の層間変形をギャップ量以下に抑えながら減衰機構にて地震エネルギーを効率良く吸収することができ、耐震性能を更に効果的に高めることができる。 According to this configuration, seismic elements with gaps are centrally arranged on the upper side of the building where the input of seismic energy does not increase so much, and multiple damping mechanisms are centrally arranged on the lower side of the building with high energy absorption efficiency. The seismic element can efficiently absorb the seismic energy while suppressing the inter-layer deformation of each floor on the upper layer side to the gap amount or less, and the seismic performance can be further enhanced.

本発明の第3特徴構成は、前記ギャップ付き耐震要素と前記減衰機構とが、建物の一層毎の鉛直構面に交互に配置される点にある。 A third characteristic configuration of the present invention is that the seismic resistant element with a gap and the damping mechanism are alternately arranged on a vertical structure plane of each layer of a building.

本構成によれば、ギャップ付き耐震要素と減衰機構とが建物の一層毎に交互に配置されるので、地震時における建物の上下方向での挙動が揃い易く、建物の上下方向の一部が地震時の弱点になるのを回避しながら、耐震性能を更に効果的に高めることができる。 According to this configuration, since the seismic resistant element with the gap and the damping mechanism are alternately arranged for each layer of the building, the behavior in the vertical direction of the building during an earthquake can be easily aligned, and a part of the vertical direction of the building can be easily damaged. Seismic performance can be improved more effectively while avoiding the weak point of time.

本発明の第4特徴構成は、前記ギャップ付き耐震要素と前記減衰機構とが、建物の同一階に配置される点にある。 A fourth characteristic configuration of the present invention is that the seismic resistant element with a gap and the damping mechanism are arranged on the same floor of a building.

本構成によれば、ギャップ付き耐震要素と減衰機構とが、建物の同一階に配置されるので、建物応答に占める高次モードの影響が大きい場合等に、ギャップ付き耐震要素と減衰機構とが配置される各階で、ギャップ付き耐震要素による耐震作用と減衰機構による耐震作用の双方を享受することができ、耐震性能を更に効果的に高めることができる。 According to this configuration, since the seismic element with a gap and the damping mechanism are arranged on the same floor of the building, the seismic element with a gap and the damping mechanism are separated when the influence of higher-order modes on the building response is large. On each floor to be placed, it is possible to enjoy both the seismic action by the seismic element with a gap and the seismic action by the damping mechanism, and the seismic performance can be further enhanced.

第1実施形態の耐震補強構造を模式的に示す断面図Sectional drawing which shows the seismic-proof reinforcement structure of 1st Embodiment typically. ギャップ付き耐震要素を示す断面図Sectional view showing seismic element with gap 第2実施形態の耐震補強構造を模式的に示す断面図Sectional drawing which shows the seismic-proof reinforcement structure of 2nd Embodiment typically. 第3実施形態の耐震補強構造を模式的に示す断面図Sectional drawing which shows the seismic-proof reinforcement structure of 3rd Embodiment typically.

本発明の耐震補強構造の実施形態を図面に基づいて説明する。
〔第1実施形態〕
この耐震補強構造は、図1に示すように、所定のギャップ量G(図2参照)以下の層間変形に対して作用せずに当該ギャップ量Gを超える層間変形に対して作用するギャップ付き耐震要素10が、建物1の複数階の鉛直構面に配置される。また、建物1の層間変形に減衰力を付与する減衰機構20が、建物1におけるギャップ付き耐震要素10が配置される鉛直構面とは異なる鉛直構面に配置される。なお、建物1の鉛直構面とは、左右方向(構面内水平方向)で隣接する一対の柱2と上下方向(構面内鉛直方向)で隣接する一対の梁3とで囲まれた鉛直な矩形状の面である。
An embodiment of a seismic reinforcement structure of the present invention will be described with reference to the drawings.
[First Embodiment]
As shown in FIG. 1, this seismic retrofit structure does not act on interlayer deformation below a predetermined gap amount G (see FIG. 2) but acts on interlayer deformation exceeding the gap amount G. The elements 10 are arranged on the vertical floors of the building 1 on multiple floors. Further, the damping mechanism 20 that applies a damping force to the inter-story deformation of the building 1 is arranged on a vertical joint surface different from the vertical joint surface on which the seismic element with a gap 10 in the building 1 is arranged. The vertical construction plane of the building 1 is a vertical construction surrounded by a pair of columns 2 that are adjacent in the left-right direction (horizontal direction in the construction plane) and a pair of beams 3 that are adjacent in the vertical direction (vertical direction in the construction plane). It is a rectangular surface.

図1に示すように、減衰機構20は、例えば、建物1の鉛直構面における上下で隣接する梁3の一方側等にV字状等の鋼材製の枠体21を設置するとともに、当該枠体21の先端部等と柱2との間にダンパー22等を設置して構成される。ダンパー22としては、建物1の層間変形における変形速度に減衰力を付与する速度依存型のオイルダンパーや粘性ダンパー、建物1の層間変形における変位に減衰力を付与する変位依存型の履歴系ダンパー(鉛ダンパー等)等の各種のものを適宜に用いることができる。 As shown in FIG. 1, the damping mechanism 20, for example, installs a V-shaped frame 21 made of steel material on one side or the like of vertically adjacent beams 3 in the vertical construction plane of the building 1 and A damper 22 and the like are installed between the tip portion and the like of the body 21 and the pillar 2. The damper 22 is a velocity-dependent oil damper or viscous damper that applies a damping force to the deformation speed of the building 1 between layers, or a displacement-dependent hysteresis system damper (a damper that applies a damping force to the displacement of the building 1 during the layer deformation). Various materials such as lead dampers) can be appropriately used.

ギャップ付き耐震要素10は、詳細は後述するが、例えば、建物1の鉛直構面に斜めに配置される鋼材製等のブレース材11の一端側等を、ギャップ量Gに対応する所定範囲で左右方向に移動自在に取り付けて構成することができる。 The details of the seismic resistant element with a gap 10 will be described later. For example, one end side of a brace member 11 made of steel or the like, which is obliquely arranged on the vertical structure surface of the building 1, is left or right within a predetermined range corresponding to the gap amount G. It can be mounted so as to be movable in any direction.

このように、ギャップ付き耐震要素10と減衰機構20とを組み合わせることで、建物1の各階の層間変形がギャップ量G(図2参照)以下となる中地震時までは、建物1の剛性を高めない状態(固有周期を変更しない状態)で、減衰機構20にて地震エネルギーを吸収することができる。そして、少なくとも一部の階の層間変形がギャップ量Gを超える大地震時には、層間変形がギャップ量Gを超える一部の階だけのギャップ付き耐震要素10を作用させて、その一部の階だけの層間変形を阻止することで、柱2に生じる柱軸力の増大を極力抑制しながら、減衰機構20にて地震エネルギーを吸収することができる。
よって、地震時等に生じる柱軸力の増大を極力抑制しながら、建物1の耐震性能を効果的に向上することができる。
In this way, by combining the seismic resistant element 10 with a gap and the damping mechanism 20, the rigidity of the building 1 is increased until a middle earthquake when the interlayer deformation of each floor of the building 1 is the gap amount G (see FIG. 2) or less. The seismic energy can be absorbed by the damping mechanism 20 in the absence state (the state in which the natural period is not changed). Then, at the time of a large earthquake in which the interlayer deformation of at least some floors exceeds the gap amount G, the seismic resistant elements with gaps 10 of only some floors in which the interlayer deformation exceeds the gap amount G are made to act, and only those floors By preventing the inter-layer deformation of the column, the damping mechanism 20 can absorb the seismic energy while suppressing the increase in the column axial force generated in the column 2.
Therefore, the seismic performance of the building 1 can be effectively improved while suppressing the increase of the column axial force generated at the time of an earthquake or the like as much as possible.

耐震補強の対象とする建物1としては、既存建物と新設建物のいずれであってもよいが、この耐震補強構造は、前述の如く、地震時等に生じる柱軸力の増大を極力抑制しながら、減衰機構20にて地震エネルギーを吸収することができるので、既存建物に対してギャップ付き耐震要素10と減衰機構20を追加的に配置して既存建物を耐震補強する耐震補強工法に好適に用いることができる。 The building 1 targeted for seismic retrofitting may be either an existing building or a new building, but this seismic retrofitting structure, as described above, suppresses an increase in column axial force that occurs during an earthquake as much as possible. Since the damping mechanism 20 can absorb the seismic energy, it is suitable for use in a seismic retrofitting method for seismically reinforcing an existing building by additionally disposing the seismic resistant element 10 with a gap and the damping mechanism 20 to the existing building. be able to.

この第1実施形態では、図1に示すように、地震エネルギーの入力が余り増えない建物1の上層側1Aにギャップ付き耐震要素10が集中配置され、エネルギー吸収効率の高い建物1の下層側1Bに減衰機構20が集中配置される。図示例では、建物1の上層側1Aとして8階以上の各階に2つ(複数の一例)のギャップ付き耐震要素10が配置され、建物1の下層側1Bとして7階以下の各階に2つ(複数の一例)の減衰機構20が配置されており、上層側1Aの階数が下層側1Bの階数より多く、ギャップ付き耐震要素10が減衰機構20より多くなっている。ちなみに、これとは逆に減衰機構20がギャップ付き耐震要素10より多くなっていてもよく、また、減衰機構20とギャップ付き耐震要素10とが同数等であってもよい。
このような構成により、ギャップ付き耐震要素10にて上層側1Aの各階の層間変形をギャップ量G以下に抑えながら減衰機構20にて地震エネルギーを効率良く吸収することができ、耐震性能を更に効果的に高めることができる。
In the first embodiment, as shown in FIG. 1, the seismic resistant elements 10 with gaps are centrally arranged on the upper layer side 1A of the building 1 where the input of seismic energy does not increase so much, and the lower layer side 1B of the building 1 having high energy absorption efficiency. The damping mechanism 20 is centrally arranged. In the illustrated example, two (a plurality of examples) seismic resistant elements with gaps 10 are arranged on each floor of the eighth floor and above as the upper layer side 1A of the building 1, and two on each floor below the seventh floor as the lower layer side 1B of the building 1 ( A plurality of examples) of damping mechanism 20 are arranged, the number of floors on the upper layer side 1A is larger than the number of floors on the lower layer side 1B, and the number of gapped seismic resistant elements 10 is larger than that of the damping mechanism 20. By the way, conversely, the damping mechanism 20 may be larger than the seismic resistant element 10 with a gap, and the damping mechanism 20 and the seismic resistant element 10 with a gap may be the same number.
With such a configuration, the seismic energy can be efficiently absorbed by the damping mechanism 20 while suppressing the interlayer deformation of each floor of the upper layer side 1A by the gap amount G or less in the seismic resistant element 10 with a gap, thereby further improving the seismic performance. Can be increased.

なお、図示例では、ギャップ付き耐震要素10や減衰機構20が、建物1の左右方向で同じ位置となるように各階において左右方向で間隔を空けて配置されているが、ギャップ付き耐震要素10や減衰機構20の各階における配置は適宜変更が可能である。
例えば、ギャップ付き耐震要素10や減衰機構20が、上下で隣接する階の間で建物1の左右方向で異なる位置となるように各階に配置されてもよく、また、各階において左右方向で隣接して配置されてもよい。
更に、各階におけるギャップ付き耐震要素10や減衰機構20の設置数は適宜変更可能であり、建物1全体におけるギャップ付き耐震要素10や減衰機構20の設置数も適宜変更可能である。
また、例えば、減衰機構20が配置される下層側1Bの一部の階の梁を撤去して地震時等に層間変形を生じ易くし、その層間変形を生じ易くした階に他よりも減衰能力の大きな減衰機構20を配置してもよい。
In the illustrated example, the seismic resistant element 10 with a gap and the damping mechanism 20 are arranged in the left-right direction on each floor so as to be at the same position in the lateral direction of the building 1, but the seismic resistant element 10 with a gap and The arrangement of the damping mechanism 20 on each floor can be appropriately changed.
For example, the seismic resistant element with a gap 10 and the damping mechanism 20 may be arranged on each floor so that the floors adjacent to each other in the vertical direction are located at different positions in the horizontal direction of the building 1, or adjacent to each other in the horizontal direction on each floor. May be arranged.
Furthermore, the number of installed seismic resistant elements 10 with damping and damping mechanisms 20 on each floor can be changed as appropriate, and the number of installed seismic resistant elements 10 with damping and damping mechanisms 20 in the entire building 1 can also be modified appropriately.
In addition, for example, the beams of some floors on the lower layer side 1B on which the damping mechanism 20 is arranged are removed to facilitate interlayer deformation at the time of an earthquake, etc. A large damping mechanism 20 may be arranged.

次に、ギャップ付き耐震要素10の具体的構成について説明を加える。
なお、以下に説明するギャップ付き耐震要素10の構成はあくまで一例であり、耐震補強の対象とする建物1の状態や耐震補強レベル等の各種の事情に応じて適宜の構成を採用することができる。
Next, a specific configuration of the seismic resistant element 10 with a gap will be described.
The structure of the seismic resistant element 10 with a gap described below is merely an example, and an appropriate structure can be adopted according to various circumstances such as the state of the building 1 targeted for seismic reinforcing and the seismic reinforcing level. ..

図2に示すように、ギャップ付き耐震要素10を構成するのに、建物1の鉛直構面を構成する各柱2の上下中間部の鉛直構面側、及び、各梁3の左右中間部の鉛直構面側の夫々に、ギャップ付きのブレース材11を連結ボルト12で取り付けるための円形の挿通孔(図示省略)を備えた鋼材製の取り付け部13が突出形成される。
そして、建物1の鉛直構面の4隅の仕口部4を跨ぐ状態で4本のブレース材11の両端部が連結ボルト12及びナット(図示省略)にて取り付け部13に取り付けられる。
そのため、地震時等において、そもそも応力集中が生じ易い仕口部4にギャップ付きのブレース材11による応力が追加されるのを回避しながら建物1の鉛直構面を補強することができる。
As shown in FIG. 2, in constructing the seismic resistant element 10 with a gap, the vertical construction surface side of the upper and lower intermediate portions of each pillar 2 constituting the vertical construction surface of the building 1 and the left and right intermediate portions of each beam 3 are formed. On each of the vertical structure surfaces, a steel material mounting portion 13 having a circular insertion hole (not shown) for mounting the brace material 11 with a gap by the connecting bolt 12 is formed in a protruding manner.
Then, both ends of the four brace members 11 are attached to the attaching portion 13 with connecting bolts 12 and nuts (not shown) while straddling the joint portions 4 at the four corners of the vertical construction surface of the building 1.
Therefore, in the event of an earthquake or the like, the vertical structure surface of the building 1 can be reinforced while avoiding the addition of stress due to the brace material 11 with the gap to the joint portion 4 where stress concentration is likely to occur.

各ブレース材11の下方側の端部には、連結ボルト12のボルト径に対応した孔径の円形のボルト孔11aが形成され、連結ボルト12及びナットにて鉛直構面に直交する軸周りで取り付け部13に回転自在に連結される。
各ブレース材11の上方側の端部には、連結ボルト12が左右方向に沿ってギャップ量Gに対応する所定範囲で左右方向への移動を許容する長孔11bが形成される。そして、各ブレース材11の上方側の端部は、連結ボルト12及びナットにて所定範囲で左右方向に移動自在且つ鉛直構面に直交する軸周りで回転自在に取り付け部13に連結される。
A circular bolt hole 11a having a hole diameter corresponding to the bolt diameter of the connecting bolt 12 is formed at the lower end of each brace member 11, and the connecting bolt 12 and the nut are attached around an axis orthogonal to the vertical construction plane. It is rotatably connected to the portion 13.
An elongated hole 11b is formed at an upper end of each brace member 11 to allow the connecting bolt 12 to move in the left-right direction in a predetermined range corresponding to the gap amount G in the left-right direction. The upper end of each brace member 11 is connected to the mounting portion 13 by a connecting bolt 12 and a nut so as to be movable in the left-right direction within a predetermined range and rotatable about an axis orthogonal to the vertical joint surface.

そのため、ギャップ付き耐震要素10は、それが配置された階の層間変形がギャップ量G以下である場合は、各ブレース材11の上方側の端部の連結ボルト12が長孔11bに沿ってギャップ量Gに対応する所定範囲で左右方向に移動することで、ブレース効果を効かせずに層間変形を適切に許容することができる。
他方、ギャップ付き耐震要素10は、それが配置された階の層間変形がギャップ量Gを超える場合は、各ブレース材11の上方側の端部の連結ボルト12が長孔11bの左右方向の端部に当接して押圧することで、ブレース効果を効かせて層間変形を適切に阻止することができる。
Therefore, in the seismic resistant element 10 with a gap, when the interlayer deformation of the floor in which it is arranged is less than the gap amount G, the connecting bolt 12 at the upper end of each brace member 11 has a gap along the long hole 11b. By moving in the left-right direction within a predetermined range corresponding to the amount G, it is possible to appropriately allow the interlayer deformation without exerting the brace effect.
On the other hand, in the seismic resistant element with a gap 10, when the interlayer deformation of the floor on which it is arranged exceeds the gap amount G, the connecting bolt 12 at the upper end of each brace member 11 has the left and right ends of the elongated hole 11b. By abutting and pressing the portion, the brace effect can be exerted and interlayer deformation can be appropriately prevented.

〔第2実施形態〕
図3は、第2実施形態の耐震補強構造を示している。この第2実施形態の耐震補強構造は、ギャップ付き耐震要素10及び減衰機構20の配置パターンの別実施形態である。
この第2実施形態の耐震補強構造では、ギャップ付き耐震要素10と減衰機構20とが、建物1の一層毎に交互に配置される。図示例では、建物1の奇数階1Cに2つ(複数の一例)の減衰機構20が配置され、建物1の偶数階1Dに2つ(複数の一例)のギャップ付き耐震要素10が配置される。
そのため、地震時等における建物1の上下方向での挙動が揃い易く、建物1の上下方向の一部が弱点になるのを回避しながら耐震性能を効果的に高めることができる。
なお、上記構成とは逆に、建物1の奇数階1Cにギャップ付き耐震要素10が配置され、建物1の偶数階1Dに減衰機構20が配置されてもよい。また、各階におけるギャップ付き耐震要素10や減衰機構20の設置数は適宜変更可能であり、建物1全体におけるギャップ付き耐震要素10や減衰機構20の設置数も適宜変更可能である。
その他の構成は、第1実施形態で説明した構成と同一であるので、同一の構成箇所には同一の番号を付記し、その説明は省略する。
[Second Embodiment]
FIG. 3 shows a seismic reinforcement structure of the second embodiment. The seismic reinforcement structure of the second embodiment is another embodiment of the arrangement pattern of the seismic resistant element 10 with a gap and the damping mechanism 20.
In the seismic reinforcement structure of the second embodiment, the seismic resistant element 10 with a gap and the damping mechanism 20 are alternately arranged for each layer of the building 1. In the illustrated example, two (a plurality of examples) damping mechanisms 20 are arranged on the odd floors 1C of the building 1, and two (a plurality of examples) seismic resistant elements 10 with gaps are arranged on the even floors 1D of the building 1. ..
Therefore, the behavior of the building 1 in the vertical direction is easily aligned during an earthquake or the like, and it is possible to effectively improve the seismic performance while avoiding a part of the building 1 in the vertical direction from becoming a weak point.
Contrary to the above configuration, the seismic resistant element 10 with a gap may be arranged on the odd floor 1C of the building 1 and the damping mechanism 20 may be arranged on the even floor 1D of the building 1. Further, the number of installed seismic resistant elements with a gap 10 or damping mechanism 20 on each floor can be changed as appropriate, and the number of installed seismic resistant elements 10 with a gap or damping mechanism 20 in the entire building 1 can also be changed appropriately.
Since other configurations are the same as the configurations described in the first embodiment, the same components will be denoted by the same reference numerals, and the description thereof will be omitted.

〔第3実施形態〕
図4は、第3実施形態の耐震補強構造を示している。この第3実施形態の耐震補強構造も、ギャップ付き耐震要素10及び減衰機構20の配置パターンの別実施形態である。
この第3実施形態の耐震補強構造では、ギャップ付き耐震要素10と減衰機構20とが、建物1の同一階に配置される。図示例では、建物1の各階における左右方向の異なる鉛直構面にギャップ付き耐震要素10と減衰機構20とが1つずつ配置される。
そのため、建物応答に占める高次モードの影響が大きい場合等に、ギャップ付き耐震要素10と減衰機構20とが配置される建物1の各階で、ギャップ付き耐震要素10による耐震作用と減衰機構20による耐震作用の双方を享受することができ、耐震性能を更に効果的に高めることができる。
なお、各階におけるギャップ付き耐震要素10と減衰機構20の設置数は、複数ずつや同数以外の互いに異なる数などに適宜変更可能である。また、建物1全体におけるギャップ付き耐震要素10や減衰機構20の設置数も適宜変更可能である。
その他の構成は、第1実施形態で説明した構成と同一であるので、同一の構成箇所には同一の番号を付記し、その説明は省略する。
[Third Embodiment]
FIG. 4 shows the seismic retrofit structure of the third embodiment. The seismic retrofit structure of this 3rd Embodiment is another embodiment of the arrangement pattern of the seismic resistant element 10 with a gap, and the damping mechanism 20.
In the seismic retrofit structure of the third embodiment, the seismic resistant element with gap 10 and the damping mechanism 20 are arranged on the same floor of the building 1. In the illustrated example, one seismic element with a gap 10 and one damping mechanism 20 are arranged on different vertical structures in the left and right directions on each floor of the building 1.
Therefore, in the case where the influence of the higher-order mode on the building response is large, etc., the seismic action of the seismic element 10 with a gap and the damping mechanism 20 are used in each floor of the building 1 where the seismic element with a gap 10 and the damping mechanism 20 are arranged. It is possible to enjoy both seismic resistance, and it is possible to further enhance seismic performance.
The number of the seismic resistant elements 10 with gaps and the damping mechanism 20 installed on each floor can be appropriately changed to a plurality or different numbers other than the same number. Further, the number of installed seismic resistant elements with gaps 10 and damping mechanisms 20 in the entire building 1 can be changed as appropriate.
Since other configurations are the same as the configurations described in the first embodiment, the same components will be denoted by the same reference numerals, and the description thereof will be omitted.

〔別実施形態〕
本発明の他の実施形態について説明する。以下に説明する各実施形態の構成は、それぞれ単独で適用することに限らず、他の実施形態の構成と組み合わせて適用することも可能である。
[Another embodiment]
Another embodiment of the present invention will be described. The configurations of the respective embodiments described below are not limited to being applied individually, but may be applied in combination with the configurations of other embodiments.

(1)前述の実施形態では、ギャップ付き耐震要素10や減衰機構20が、建物1の各階に配置される場合を例に示したが、上層側や下層側や上下中間等、建物1の上下方向の一部の階にギャップ付き耐震要素10や減衰機構20が配置されてもよい。 (1) In the above-described embodiment, the case where the seismic resistant element with gap 10 and the damping mechanism 20 are arranged on each floor of the building 1 has been described as an example, but the upper and lower sides of the building 1 such as the upper layer side, the lower layer side, and the upper and lower middles. The seismic resistant element 10 with a gap and the damping mechanism 20 may be arranged on some floors in the direction.

(2)ギャップ付き耐震要素10や減衰機構20の具体的な構成や配置は、前述の実施形態で示した構成や配置に限らず、各種の構成や配置を適宜に採用することが可能である。 (2) The specific configurations and arrangements of the seismic resistant element 10 with a gap and the damping mechanism 20 are not limited to the configurations and arrangements shown in the above-described embodiment, and various configurations and arrangements can be appropriately adopted. ..

1 建物
10 ギャップ付き耐震要素
20 減衰機構
B 建物

1 Building 10 Seismic element with a gap 20 Damping mechanism B Building

Claims (4)

所定のギャップ量以下の層間変形に対して作用せずに前記ギャップ量を超える層間変形に対して作用するギャップ付き耐震要素が建物の鉛直構面に配置され、
層間変形に減衰力を付与する減衰機構が、前記ギャップ付き耐震要素が配置される鉛直構面とは異なる鉛直構面に配置される耐震補強構造。
A seismic resistant element with a gap that does not act on interlayer deformation below a predetermined gap amount but acts on interlayer deformation exceeding the gap amount is arranged on the vertical construction plane of the building,
A seismic strengthening structure in which a damping mechanism for imparting damping force to interlayer deformation is arranged on a vertical structure surface different from the vertical structure surface on which the gap-resistant seismic element is arranged.
複数の前記ギャップ付き耐震要素が、建物の上層側に集中配置され、
複数の前記減衰機構が、建物の下層側に集中配置される請求項1記載の耐震補強構造。
A plurality of the seismic resistant elements with the gaps are centrally arranged on the upper layer side of the building,
The seismic reinforcement structure according to claim 1, wherein the plurality of damping mechanisms are concentratedly arranged on a lower layer side of a building.
前記ギャップ付き耐震要素と前記減衰機構とが、建物の一層毎に交互に配置される請求項1記載の建物の耐震補強構造。 The seismic reinforcement structure for a building according to claim 1, wherein the seismic element with a gap and the damping mechanism are alternately arranged for each layer of the building. 前記ギャップ付き耐震要素と前記減衰機構とが、建物の同一階に配置される請求項1記載の耐震補強構造。

The seismic reinforcement structure according to claim 1, wherein the seismic element with a gap and the damping mechanism are arranged on the same floor of a building.

JP2018241436A 2018-12-25 2018-12-25 Seismic retrofitting structure Active JP7094869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018241436A JP7094869B2 (en) 2018-12-25 2018-12-25 Seismic retrofitting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018241436A JP7094869B2 (en) 2018-12-25 2018-12-25 Seismic retrofitting structure

Publications (2)

Publication Number Publication Date
JP2020101050A true JP2020101050A (en) 2020-07-02
JP7094869B2 JP7094869B2 (en) 2022-07-04

Family

ID=71141187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018241436A Active JP7094869B2 (en) 2018-12-25 2018-12-25 Seismic retrofitting structure

Country Status (1)

Country Link
JP (1) JP7094869B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07279478A (en) * 1994-04-07 1995-10-27 Kajima Corp Earthquake resistant-structure coping with wind load and building thereof
JP2002004628A (en) * 2000-06-20 2002-01-09 Mitsui Constr Co Ltd Damping skeleton structure and building
JP2004232324A (en) * 2003-01-30 2004-08-19 Takenaka Komuten Co Ltd Vibration control system
JP2009019368A (en) * 2007-07-10 2009-01-29 Kajima Corp Damping structure
JP2010261240A (en) * 2009-05-08 2010-11-18 Shimizu Corp Vibration control renovation construction method of existing multistory building
JP2011106217A (en) * 2009-11-20 2011-06-02 Kanagawa Univ Operation control device for buckling restraining brace and structure using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07279478A (en) * 1994-04-07 1995-10-27 Kajima Corp Earthquake resistant-structure coping with wind load and building thereof
JP2002004628A (en) * 2000-06-20 2002-01-09 Mitsui Constr Co Ltd Damping skeleton structure and building
JP2004232324A (en) * 2003-01-30 2004-08-19 Takenaka Komuten Co Ltd Vibration control system
JP2009019368A (en) * 2007-07-10 2009-01-29 Kajima Corp Damping structure
JP2010261240A (en) * 2009-05-08 2010-11-18 Shimizu Corp Vibration control renovation construction method of existing multistory building
JP2011106217A (en) * 2009-11-20 2011-06-02 Kanagawa Univ Operation control device for buckling restraining brace and structure using the same

Also Published As

Publication number Publication date
JP7094869B2 (en) 2022-07-04

Similar Documents

Publication Publication Date Title
JP2011501049A (en) Seismic isolation device for structure, construction method of the device, and seismic isolation member
JP2010266070A (en) Seismic control unit
JP2017150179A (en) Column beam structure having vibration damping structure
JP2007191987A (en) Earthquake resisting brace
JP2010261297A (en) Vibration control structure using multi-story wall
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP6087605B2 (en) Seismic isolation structure
JP2020101050A (en) Seismic reinforcement structure
JP2006257688A (en) Vibration damping type bolt connection structure
KR102124584B1 (en) Vibration reducing device for structure
JP4450391B2 (en) Damping structure and panel for building wall
JP4956765B2 (en) Building structure
JP4049120B2 (en) Building seismic control structure
JP6940945B2 (en) Damping structure
JP6756441B2 (en) Vibration damping device and vibration damping structure of structure
JP2008297727A (en) Seismic reinforcing structure of existing building
JP6411297B2 (en) Damping damper
JP4846424B2 (en) Damping structure of structure
JP5053554B2 (en) Vibration control device
JP7087258B2 (en) Seismic isolation structure
JP2009256957A (en) Viscoelastic brace damper
JP3972892B2 (en) Seismic retrofit method for existing buildings
JP7286463B2 (en) vibration damping device
JP4950615B2 (en) Seismic wall structure
JP5664330B2 (en) Connected structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220622

R150 Certificate of patent or registration of utility model

Ref document number: 7094869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150