JP2020099977A - 軌道生成装置、軌道生成方法、及びロボットシステム - Google Patents

軌道生成装置、軌道生成方法、及びロボットシステム Download PDF

Info

Publication number
JP2020099977A
JP2020099977A JP2018240926A JP2018240926A JP2020099977A JP 2020099977 A JP2020099977 A JP 2020099977A JP 2018240926 A JP2018240926 A JP 2018240926A JP 2018240926 A JP2018240926 A JP 2018240926A JP 2020099977 A JP2020099977 A JP 2020099977A
Authority
JP
Japan
Prior art keywords
acceleration
trajectory
node
speed
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018240926A
Other languages
English (en)
Other versions
JP7042209B2 (ja
Inventor
中須 信昭
Nobuaki Nakasu
信昭 中須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018240926A priority Critical patent/JP7042209B2/ja
Priority to US16/683,350 priority patent/US11577391B2/en
Priority to CN201911266701.9A priority patent/CN111443703B/zh
Publication of JP2020099977A publication Critical patent/JP2020099977A/ja
Application granted granted Critical
Publication of JP7042209B2 publication Critical patent/JP7042209B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0251Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0221Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40446Graph based
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40454Max velocity, acceleration limit for workpiece and arm jerk rate as constraints

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

【課題】ロボットをより速く動作させ得る軌道を生成する。【解決手段】ロボットの軌道を生成する軌道生成装置であって、前記軌道を生成するための複数のノードから成る軌道探査グラフを生成する軌道探査グラフ生成部と、前記ロボットの現ノードにおける姿勢及び加速方向に基づいて第1加速度上限値を取得する加速度上限値取得部と、取得された前記第1加速度上限値に基づき、前記現ノードから前記現ノードに隣接する次ノードへ移動するときの速度を表す第1速度及び加速度を設定する速度・加速度設定部と、前記現ノードから前記次ノードへのコストとして、設定された前記第1速度及び前記加速度を用いて移動時間を算出するノードコスト算出部と、算出された前記コストに基づき、前記軌道探査グラフにおける前記ノードの経路を前記軌道として探査する軌道探査部と、を備えることを特徴とする。【選択図】図2

Description

本発明は、軌道生成装置、軌道生成方法、及びロボットシステムに関する。
特許文献1には、「モータによって駆動する複数の回転軸を有する回転アームを備え、予め教示されたプログラムに従って動作する多関節型ロボットの制御装置であって、前記モータの現在位置と目標位置の回転位置情報から算出する該当の回転軸廻りのアームの慣性項と、前記アームを加速する方向情報を加味して算出する重力項とにより前記回転軸の現在位置と目標位置での許容最大加速度を算出する手段を設けたロボットの制御装置」が開示されている。
特開2006−119958号公報
一般に、先端にハンドを有するアームを備えたロボットは、その姿勢によってハンドを移動させ得る速度が異なる。すなわち、該ロボットは、アームを縮めている状態の方が、アームを伸ばしている状態に比べて、ハンドをより速く移動させる能力を有する。
しかしながら、従来、このようなロボットの軌道を設定する場合、アームを伸ばしている状態の加速度上限値が、全姿勢共通の加速度上限値とされている。このため、ロボットは、例えば、アームを縮めている状態等において本来可能な速度でハンドを移動させることができず、有する能力を活かしきることができない。
特許文献1に記載の制御装置では、現在位置と目標位置(軌道の始点と終点)におけるロボットの姿勢を考慮して許容最大加速度が算出されている。しかしながら、軌道の途中におけるロボットの姿勢は考慮されていないため、よって、特許文献1に記載の制御装置でも、ロボットが有する能力を活かしきれているとは言い難い。
本発明はこのような状況に鑑みてなされたものであり、ロボットをより速く動作させることができる軌道を生成することを目的とする。
本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下のとおりである。
上記課題を解決すべく、本発明の一態様に係る軌道生成装置は、ロボットの軌道を生成する軌道生成装置であって、前記軌道を生成するための複数のノードから成る軌道探査グラフを生成する軌道探査グラフ生成部と、前記ロボットの現ノードにおける姿勢及び加速方向に基づいて第1加速度上限値を取得する加速度上限値取得部と、取得された前記第1加速度上限値に基づき、前記現ノードから前記現ノードに隣接する次ノードへ移動するときの速度を表す第1速度及び加速度を設定する速度・加速度設定部と、前記現ノードから前記次ノードへのコストとして、設定された前記第1速度及び前記加速度を用いて移動時間を算出するノードコスト算出部と、算出された前記コストに基づき、前記軌道探査グラフにおいて総コストが最小となる前記ノードの経路を前記軌道として探査する軌道探査部と、を備えることを特徴とする。
本発明の一態様によれば、ロボットをより速く動作させることができる軌道を生成することが可能となる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
図1は、本発明の一実施の形態に係るロボットシステムの構成例を示す図である。 図2は、軌道生成装置の第1の構成例を示す機能ブロック図である。 図3は、最大速度情報の一例を示す図である。 図4は、第1加速度上限値情報の一例を示す図である。 図5は、軌道生成処理の一例を説明するフローチャートである。 図6は、軌道探査グラフの一例を示す図である。 図7は、ノード番号が付与された軌道探査グラフの一例を示す図である。 図8は、軌道生成装置の第1の構成例によるコスト算出処理の一例を説明するフローチャートである。 図9は、現ノード、次ノードの位置関係を示す図である。 図10は、コストの一例を示す図である。 図11は、軌道生成装置の第2の構成例を示す機能ブロック図である。 図12は、ハンドによる把持物の把持状態の一例を示す図である。 図13は、第2加速度上限値情報の一例を示す図である。 図14は、軌道生成装置の第2の構成例によるコスト算出処理の一例を説明するフローチャートである。 図15は、出力画面の表示例を示す図である。
以下、本発明の一実施の形態を図面に基づいて説明する。なお、本実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合及び原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、「Aからなる」、「Aより成る」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合及び原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似又は類似するもの等を含むものとする。
<本発明の一実施の形態に係るロボットシステム10の構成例>
図1は、本発明の一実施の形態に係るロボットシステム10の構成例を示している。
該ロボットシステム10は、ロボット1、軌道生成装置11、作業指示装置12、撮像装置13、及び制御装置14を備える。
ロボット1は、例えば、6軸(6関節)を有する多関節型ロボットであり、複数のアーム2、及びハンド3を備える。ハンド3は、アーム2の先端に取り付けられている。ハンド3は、複数の指(例えば、図12の指31〜34)を有しており、物体(把持物)Tを把持することができる。なお、ロボット1の軸数やハンド3の指の数は上記した例に限られない。
本実施の形態において、ハンド3の位置及び姿勢は、ロボットが有する6軸(関節)の回転角(j,j,j,j,j,j)、または、ハンド3の所定の基準点のxyz座標及びxyz軸周りの回転角(x,y,z,φ,θ,ψ)を用いて表す。なお、ハンド3の位置及び姿勢は、ロボット1の姿勢と読み替えることができる。
軌道生成装置11は、作業指示装置12から通知される軌道の始点及び終点に従い、ハンド3の軌道を生成して制御装置14に出力する。
作業指示装置12は、例えば、ユーザからの入力に基づき、ロボット1に作業を行わせる際のハンド3が通過する軌道の始点及び終点を決定して軌道生成装置11に通知する。また、作業指示装置12は、撮像装置13から入力されるロボット1の周辺画像に基づき、軌道の始点、及び終点を決定して軌道生成装置11に通知するようにしてもよい。
撮像装置13は、ロボット1を含むその周辺を撮像し、その結果得られる周辺画像を作業指示装置12に出力する。
制御装置14は、軌道生成装置11から入力される軌道情報に基づいてロボット1の動作を制御する。
<軌道生成装置11の第1の構成例>
次に、図2は、軌道生成装置11の第1の構成例である軌道生成装置111を示している。
軌道生成装置111は、例えば、CPU(Central Processing Unit)、メモリ、ストレージ等を有するPC(パーソナルコンピュータ)からなる。軌道生成装置111は、軌道生成部21、記憶部22、入力部23、表示部24、及び通信部25を備える。
軌道生成部21は、軌道探査グラフ生成部211、速度・加速度設定部212、加速度上限値取得部213、ノードコスト算出部214、及び軌道探査部215の各機能ブロックを有する。軌道生成部21の各機能ブロックは、PCのCPUが所定のプログラムを実行することによって実現される。
軌道探査グラフ生成部211は、軌道生成に用いる軌道探査グラフを生成する。速度・加速度設定部212は、軌道生成における現ノードの速度Vを取得する。速度Vは、本発明の第2速度に相当する。また、速度・加速度設定部212は、現ノードと障害物との距離に基づき、最大速度情報221を参照し、現ノードから次ノードへの速度V’を取得する。速度V’は、本発明の第2速度に相当する。さらに、速度・加速度設定部212は、速度Vおよび速度V’に基づき、現ノードから次ノードへの加速度aを算出する。
加速度上限値取得部213は、現ノードにおけるハンド3の位置及び姿勢、並びに加速方向に基づき、第1加速度上限値情報222を参照して、加速度上限値amaxを取得する。加速度上限値amaxは、本発明の第1加速度上限値に相当する。
ノードコスト算出部214は、現ノードから次ノードへ異動する場合のコストを算出する。本実施の形態では、コストとして現ノードから次ノードへの移動時間を算出する。
軌道探査部215は、算出されたコストに基づき、総コストが最小となる経路を軌道として探査する。
記憶部22には、最大速度情報221、第1加速度上限値情報222、及びロボット情報223が予め格納されている。記憶部22は、例えばPCのストレージまたはメモリによって実現される。
図3は、最大速度情報221の一例を示している。最大速度情報221には、把持物の重量別に、現ノードと障害物との距離に対応付けて最大速度が記録されている。なお、最大速度は、所定の計算や教師有り学習によって予め決められている値である。例えば、ノードと障害物との距離が50[mm]未満の場合、最大速度は30[mm/s]とされている。また例えば、ノードと障害物との距離が50以上100[mm]未満の場合、最大速度は300[mm/s]とされている。
図4は、第1加速度上限値情報222の一例を示している。第1加速度上限値情報222には、ハンド3の位置及び姿勢、並びにその加速方向に対応付けて加速度上限値amaxが記録されている。なお、加速度上限値amaxは、所定の計算や教師有り学習によって予め決められている値である。図4の例では、ハンド3の位置及び姿勢、並びに加速方向は、ロボット1が有する6軸の回転角によって表記されており、この場合、最大加速度は最大角加速度と読み替えればよい。なお、第1加速度上限値情報222におけるハンド3の位置及び姿勢、並びにその加速方向の表記は、ハンド3のxyz座標及びxyz軸周りの回転角を用いてもよい。
図2に戻る。ロボット情報223には、ロボット1が備える複数のアーム2それぞれの長さ、6軸(関節)それぞれの稼働範囲、ハンド3の指の摩擦係数等が記録されている。
入力部23は、ユーザからの各種の操作を受け付ける。入力部23は、例えばPCが備えるキーボード、マウス等の入力デバイスからなる。
表示部24は、例えば、出力画面50(図15)等を表示する。表示部24は、例えばPCが備えるディスプレイからなる。
通信部25は、所定のネットワークを介して作業指示装置12や制御装置14と通信を行う。通信部25は、例えばPCが備える通信モジュールからなる。
<軌道生成装置111による軌道生成処理>
次に、図5は、軌道生成装置111による軌道生成処理の一例を説明するフローチャートである。
この軌道生成処理は、例えばユーザからの所定の開始操作に応じて開始される。
はじめに、軌道探査グラフ生成部211が、作業指示装置12から軌道の始点及び終点、並びに把持物Tの重量を取得する(ステップS1)。次に、軌道探査グラフ生成部211が、軌道の始点と終点との間に複数のノードを設けた軌道探査グラフを生成する(ステップS2)。
図6は、軌道探査グラフ生成部211によって生成される軌道探査グラフの一例を示している。図7は、軌道探査グラフの各ノードに付与されたノード番号の一例を示している。本実施の形態の場合、軌道探査グラフは、横軸がハンド3の位置及び姿勢を示し、縦軸がハンド3の速度を示す12次元空間である。
軌道探査グラフには、始点及び終点が設定され、ロボット1の周辺に存在する障害物の位置がマスクされる。そして、軌道探査グラフにおける各ノード(始点、終点、遷移不可能領域を含む)には、例えば、図7に示すように、ノード番号(N1,N2等)が付与される。
図5に戻る。次に、速度・加速度設定部212、加速度上限値取得部213、及びノードコスト算出部214がコスト算出処理を実行する(ステップS3)。
図8は、ステップS3におけるコスト算出処理の一例を詳述するフローチャートである。図9は、現ノードと次ノードの位置関係の一例を示している。図9におけるVは現ノードの速度、V’は現ノードから次ノードへの速度、aは速度Vから速度V’への加速度、Lは現ノードから障害物までの距離、sは現ノードと次ノードとの距離である。
まず、ノードコスト算出部214が、全てのノードを順次、現ノードに指定し、軌道探査グラフから現ノードの位置及び姿勢を取得して速度・加速度設定部212、加速度上限値取得部213に通知する。この通知に応じ、速度・加速度設定部212が、現ノードの速度Vを取得する(ステップS11)。いまの場合、初めに始点N1が現ノードに指定される。そして、現ノード(始点)N1における速度Vとして0が取得される。
次に、ノードコスト算出部214が、現ノードの上下左右に隣接するノード(斜め方向を含む最大8個のノード)を順次、次ノードに指定する。いまの場合、現ノードN1に対してノードN11,N12,N2が順次、次ノードに指定される。そして、速度・加速度設定部212が、最大速度情報221を参照し、現ノードと障害物との距離Lに対応する、現ノードから次ノードへの速度V’を取得する。さらに、速度・加速度設定部212が、速度Vおよび速度V’に基づき、次式(1)に従って、現ノードから次ノードへの加速度aを算出する(ステップS12)。
Figure 2020099977
次に、加速度上限値取得部213が、第1加速度上限値情報222を参照して、把持物Tの重量、現ノードにおけるハンド3の位置及び姿勢、並びに現ノードから次ノードへの加速度aの方向に対応する加速度上限値amaxを取得する(ステップS13)。
次に、速度・加速度設定部212が、ステップS12で算出した加速度aの絶対値が、ステップS13で取得された加速度上限値amaxよりも大きいか否かを判断する(ステップS14)。ここで、加速度aの絶対値が加速度上限値amaxよりも大きいと判断した場合(ステップS14でYES)、速度・加速度設定部212が、次式(2)に従って、現ノードから次ノードへの速度V’を修正し、それに伴い加速度aも修正(再算出)する(ステップS15)。
Figure 2020099977
なお、式(2)における0.9は速度V’を減速させるための係数である。この係数は0.9に限らず、1未満の値であればよい。
この後、ステップS14,S15が繰り返されて、またはステップS15が実行されずに、加速度aの絶対値が加速度上限値amaxよりも大きくない(加速度aの絶対値が加速度上限値amax以下である)と判断された場合(ステップS14でNO)、ノードコスト算出部214が、現ノードから次ノードへのコストとして、その移動時間tを、速度V’、加速度a、及び現ノードから次ノードまでの距離sを用い、次式(3)に従って算出する(ステップS16)。
Figure 2020099977
次に、ノードコスト算出部214が、現ノードの上下左右に隣接するノードのうち、次ノードに指定していないノードが残っているか否かを判断する(ステップS17)。ここで、ノードコスト算出部214が、次ノードに指定していないノードが残っていると判断した場合(ステップS17でYES)、処理をステップS12に戻し、新たに次ノードを指定してステップS12〜S17が繰り返される。なお、現ノードN1に対するノードN2は,速度0のままハンド3の位置が変化するような遷移であるため,ノードN1からノードN2への遷移は不可能である。このように遷移不可能領域のノードを次ノードに指定した場合、ステップS12〜S16の処理を省略する。
その後、次ノードに指定していないノードが残っていないと判断した場合(ステップS17でNO)、ノードコスト算出部214が、全てのノード(次ノードとしてコストが算出されなかったノード(ステップS12〜S16を省略したノード)を除く)のうち、現ノードに指定していないノードが残っているか否かを判断する(ステップS18)。ここで、ノードコスト算出部214が、現ノードに指定していないノードが残っていると判断した場合(ステップS18でYES)、処理をステップS11に戻し、これまでの現ノードの上下左右に隣接するノードのうち、コストを算出したノードのいずれかを新たな現ノードに指定してステップS11以降が繰り返される。
その後、ノードコスト算出部214が、全てのノード(次ノードとしてコストが算出されなかったノード(ステップS12〜S16を省略したノード)を除く)のうち、現ノードに指定していないノードが残っていないと判断した場合(ステップS18でNO)、ノード算出処理は終了される。
図10は、ノード算出処理の結果得られるコストの一例を示している。
例えば、始点ノードN1が現ノードに指定されている場合、次ノードN11へのコストは0.5、次ノードN12へのコストは0.6と算出されている。次ノードN2へは遷移不可能のためコストが算出されていない。また、例えば、ノードN11が現ノードに指定されている場合、次ノードN1,N21は、速度が正であるにも拘わらず、位置が変化しないという遷移となるためコストが算出されていない。次ノードN12へのコストは0.6、次ノードN21へのコストは0.4、次ノードN22へのコストは0.5と算出されている。
図5に戻る。次に、軌道探査部215が、図10に示されたようなコスト算出処理の結果に基づき、総コストが最小となる経路を軌道として探査する(ステップS4)。具体的には、図10に太線で示すように、総コストが最少となるノードN1,N11,N23,N34、・・・、N8を通過する経路が探査される。そして、探査された経路と各ノードから次ノードへの速度V’及び加速度aを含む軌道情報が軌道生成装置111から制御装置14に出力される。以上で、軌道生成処理の説明を終了する。
以上説明したように、軌道生成装置111による軌道生成処理によれば、軌道上の各ノードにおけるハンド3の位置及び姿勢に基づいて加速度上限値amaxが設定される。よって、ハンドの移動の速度V’を一定ではなく、ロボット1が有する能力を活かして変化させることができ、より速く移動可能な軌道を生成することが可能となる。
<軌道生成装置11の第2の構成例>
次に、図11は、軌道生成装置11の第2の構成例である軌道生成装置112を示している。
軌道生成装置112は、軌道生成装置111(図2)に対して、軌道生成部21に把持情報取得部216を追加するとともに、記憶部22に第2加速度上限値情報224を追加したものである。なお、軌道生成装置112の構成要素のうち、軌道生成装置111の構成要素と共通するものについては同一の符号を付し、その説明を省略する。
軌道生成装置112は、軌道生成装置111(図2)と同様、把持物Tの重量、各ノードにおけるハンド3の位置及び姿勢に応じて加速度上限値amaxと設定するとともに、ハンド3による把持物Tの把持状態に応じて加速度上限値a’maxを設定し、加速度上限値amaxと加速度上限値a’maxの小さい方を採用して、現ノードから次ノードまでの速度V’を決定するようになされている。加速度上限値a’maxは、本発明の第2加速度上限値に相当する。
ここで、ハンド3による把持物Tの把持状態について説明する。図12は、ハンド3による把持物Tの把持状態の一例を示している。
同図に示されるように、ハンド3の4本の指31〜34が把持物Tの長辺を図中の上下方向から力を加えて把持している場合、ハンド3を図中の上下方向に加速して移動させても把持物Tは滑り落ちにくいが、ハンド3を図中の左右方向に加速して移動させると把持物Tは滑り落ちてしまう可能性が高い。そこで、軌道生成装置112では、ハンド3を図中の左右方向に加速して移動させる場合は、図中の上下方向に加速して移動させる場合に比べて、加速度上限値a’maxを低く設定できるようになされている。
図11に戻る。把持情報取得部216は、制御装置14からハンド3による把持物Tの把持状態を表す把持情報を取得する。ここで、把持情報とは、ハンド3が把持物Tを把持して移動するときの加速方向、ハンド3の摩擦係数、及び、ハンド3の把持位置(例えば、4本の指31〜34の中心)から把持物Tの重心までの距離を含む。また、把持情報取得部216は、取得した把持情報に基づき、第2加速度上限値情報224を参照して加速度上限値a’maxを設定する。
図13は、第2加速度上限値情報224の一例を示している。第2加速度上限値情報224には、ハンド3の指31〜34における摩擦係数、ハンド3の加速方向、及び、ハンド3の把持位置から把持物Tの重心までの距離に対応付けて加速度上限値a’maxが記録されている。なお、加速度上限値a’maxは、所定の計算や教師有り学習によって予め決められている値である。図13の例では、ハンド3の加速方向が、xyz座標及びxyz軸周りの回転角を用いて表記されているが、ロボット1が有する6軸の回転角によって表記するようにしてもよい。
<軌道生成装置112による軌道生成処理>
次に、軌道生成装置112による軌道生成処理について説明する。軌道生成装置112による軌道生成処理は、軌道生成装置111による軌道生成処理(図5)と同様であるが、ステップS3におけるコスト算出処理が異なる。そこで、軌道生成装置112による軌道生成処理の全体の説明は省略し、軌道生成装置112によるコスト算出処理について説明する。
図14は、軌道生成装置112によるコスト算出処理の一例を詳述するフローチャートである。
軌道生成装置112によるコスト算出処理は、軌道生成装置111によるコスト算出処理(図8)に対し、ステップS11とステップS12の間に、ステップS21,S22を追加するとともに、ステップS14をS23に置換したものである。
すなわち、軌道生成装置112によるコスト算出処理では、ノードコスト算出部214が、現ノードに指定し、現ノードの位置及び姿勢を取得する。また、速度・加速度設定部212が、現ノードの速度Vを取得する(ステップS11)。
次に、把持情報取得部216が、制御装置14からロボット1のハンド3による把持物Tの把持状態を表す把持情報を取得する(ステップS21)。次に、把持情報取得部216が、取得した把持情報に基づき、第2加速度上限値情報224を参照して加速度上限値a’maxを設定する(ステップS22)。
次に、ノードコスト算出部214が次ノードを指定し、速度・加速度設定部212が、現ノードから次ノードへの速度V’を取得するとともに、現ノードから次ノードへの加速度aを算出する(ステップS12)。
次に、加速度上限値取得部213が加速度上限値amaxを取得する(ステップS13)。
次に、速度・加速度設定部212が、ステップS12で算出した加速度aの絶対値が、ステップS22で取得された加速度上限値a’maxとステップS13で取得された加速度上限値amaxとの小さい方よりも大きいか否かを判断する(ステップS23)。ここで、加速度aの絶対値の方が、加速度上限値a’maxとamaxの小さい方よりも大きいと判断した場合(ステップS23でYES)、速度・加速度設定部212が、現ノードから次ノードへの速度V’を修正し、それに伴い加速度aも修正(再算出)する(ステップS15)。
この後、ステップS23,S15が繰り返されて、または、ステップS15が実行されずに、速度・加速度設定部212が、加速度aの絶対値が加速度上限値a’maxとamaxの小さい方よりも大きくない(加速度aの絶対値が加速度上限値a’maxとamaxの小さい方以下である)と判断した場合(ステップS23でNO)、ノードコスト算出部214が、現ノードから次ノードへのコストとして、その移動時間tを算出する(ステップS16)。
次に、ノードコスト算出部214が、次ノードに指定していないノードが残っているか否かを判断し(ステップS17)、次ノードに指定していないノードが残っていると判断した場合(ステップS17でYES)、処理をステップS12に戻し、新たに次ノードを指定してステップS12〜S17が繰り返される。なお、現ノードN1に対するノードN2のように遷移不可能領域のノードに指定された場合、ステップS12〜S16の処理は省略される。
その後、次ノードに指定していないノードが残っていないと判断した場合(ステップS17でNO)、ノードコスト算出部214が、現ノードに指定していないノードが残っているか否かを判断し(ステップS18)、現ノードに指定していないノードが残っていると判断した場合(ステップS18でYES)、処理をステップS11に戻し、新たな現ノードを指定してステップS11以降が繰り返される。
その後、ノードコスト算出部214が、現ノードに指定していないノードが残っていないと判断した場合(ステップS18でNO)、ノード算出処理は終了される。
以上説明したように、軌道生成装置112による軌道生成処理によれば、ロボット1のハンド3による把持状態に応じて加速度上限値a’maxが設定され、また、軌道上の各ノードにおけるハンド3の位置及び姿勢に基づいて加速度上限値amaxが設定され、加速度上限値a’maxとamaxの小さい方が採用される。よって、把持物Tを滑り落としてしまうことを抑止しつつ、ハンドの移動の速度V’を一定ではなく、ロボット1が有する能力を活かして変化させることができ、より速く移動可能な軌道を生成することが可能となる。
<出力画面50の表示例>
次に、図15は、軌道生成装置11の表示部24に表示される出力画面50の表示例を示している。
出力画面50には、軌道表示領域51、速度表示領域52、及び加速度表示領域53が設けられる。
軌道表示領域51には、生成された軌道がロボット1とともに立体的に表示される。該表示によれば、ユーザはロボット1のハンド3が通過する軌道を立体的に把握することができる。
速度表示領域52には、ハンド3を軌道上で移動させるときの速度の変化を表すグラフが表示される。該グラフの横軸は時間(軌道の始点からの距離でもよい)、縦軸は速度、破線は速度の上限値、実線は制御装置14から制御される実際の速度である。該グラフによれば、従来、一定であった速度が変化していることがわかり、軌道の全体に亘り、速度を略上限値に近い値で制御できることが分かる。
加速度表示領域53には、ハンド3を軌道上で移動させるときの加速度の変化を表すグラフが表示される。該グラフの横軸は時間(軌道の始点からの距離でもよい)、縦軸は加速度である。破線は加速度の上限値、実線は制御装置14から制御される実際の加速度である。該グラフによれば、軌道の途中において加速度を変化させていることが分かり、実際の加速度が上限値にまで達することがあるので、ロボット1が有する能力を活かしていることが分かる。
本発明は、上記した実施形態や変形例に限定されるものではなく、さらに様々な変形例が含まれる。例えば、上記した各実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明が、必ずしも説明した全ての構成要素を備えるものに限定されるものではない。また、ある実施形態の構成の一部を、他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に、他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
本発明は、軌道生成装置、軌道生成方法、及びロボットシステムだけでなく、コンピュータが読み取り可能なプログラム等の様々な態様で提供することができる。
1・・・ロボット、2・・・アーム、3・・・ハンド、10・・・ロボットシステム、11・・・軌道生成装置、12・・・作業指示装置、13・・・撮像装置、14・・・制御装置、21・・・軌道生成部、22・・・記憶部、23・・・入力部、24・・・表示部、25・・・通信部、31〜34・・・指、50・・・出力画面、51・・・軌道表示領域、52・・・速度表示領域、53・・・加速度表示領域、111・・・軌道生成装置、112・・・軌道生成装置、211・・・軌道探査グラフ生成部、212・・・速度・加速度設定部、213・・・加速度上限値取得部、214・・・ノードコスト算出部、215・・・軌道探査部、216・・・把持情報取得部、221・・・最大速度情報、222・・・第1加速度上限値情報、223・・・ロボット情報、224・・・第2加速度上限値情報

Claims (7)

  1. ロボットの軌道を生成する軌道生成装置であって、
    前記軌道を生成するための複数のノードから成る軌道探査グラフを生成する軌道探査グラフ生成部と、
    前記ロボットの現ノードにおける姿勢及び加速方向に基づいて第1加速度上限値を取得する加速度上限値取得部と、
    取得された前記第1加速度上限値に基づき、前記現ノードから前記現ノードに隣接する次ノードへ移動するときの速度を表す第1速度及び加速度を設定する速度・加速度設定部と、
    前記現ノードから前記次ノードへのコストとして、設定された前記第1速度及び前記加速度を用いて移動時間を算出するノードコスト算出部と、
    算出された前記コストに基づき、前記軌道探査グラフにおける前記ノードの経路を前記軌道として探査する軌道探査部と、
    を備えることを特徴とする軌道生成装置。
  2. 請求項1に記載の軌道生成装置であって、
    速度・加速度設定部は、前記現ノードにおける速度を表す第2速度を取得し、前記現ノードと障害物との距離に基づいて前記第1速度を取得し、前記第1速度及び前記第2速度に基づいて前記加速度を算出する
    ことを特徴とする軌道生成装置。
  3. 請求項1に記載の軌道生成装置であって、
    速度・加速度設定部は、前記加速度の絶対値が前記第1加速度上限値よりも大きい場合、前記第1速度及び前記加速度を修正する
    ことを特徴とする軌道生成装置。
  4. 請求項1に記載の軌道生成装置であって、
    前記加速度上限値取得部は、予め生成された第1加速度上限値情報を参照し、前記ロボットの現ノードにおける姿勢及び加速方向に基づいて前記第1加速度上限値を取得する
    ことを特徴とする軌道生成装置。
  5. 請求項1に記載の軌道生成装置であって、
    前記ロボットのハンドによる把持物の把持状態を表す把持情報を取得し、前記把持情報に基づいて第2加速度上限値を取得する把持情報取得部を、
    備え、
    前記速度・加速度設定部は、取得された前記第1加速度上限値及び前記第2加速度上限値の小さい方に基づき、前記第1速度及び前記加速度を設定する
    ことを特徴とする軌道生成装置。
  6. ロボットの軌道を生成する軌道生成装置による軌道生成方法であって、
    前記軌道を生成するための複数のノードから成る軌道探査グラフを生成する軌道探査グラフ生成ステップと、
    前記ロボットの現ノードにおける姿勢及び加速方向に基づいて第1加速度上限値を取得する加速度上限値取得ステップと、
    取得された前記第1加速度上限値に基づき、前記現ノードから前記現ノードに隣接する次ノードへ移動するときの速度を表す第1速度及び加速度を設定する速度・加速度設定ステップと、
    前記現ノードから前記次ノードへのコストとして、設定された前記第1速度及び前記加速度を用いて移動時間を算出するノードコスト算出ステップと、
    算出された前記コストに基づき、前記軌道探査グラフにおける前記ノードの経路を前記軌道として探査する軌道探査ステップと、
    を含むことを特徴とする軌道生成方法。
  7. ロボットと、前記ロボットの軌道を生成する軌道生成装置と、生成された前記軌道に基づいて前記ロボットを制御する制御装置と、を備えるロボットシステムであって、
    前記軌道生成装置は、
    前記軌道を生成するための複数のノードから成る軌道探査グラフを生成する軌道探査グラフ生成部と、
    前記ロボットの現ノードにおける姿勢及び加速方向に基づいて第1加速度上限値を取得する加速度上限値取得部と、
    取得された前記第1加速度上限値に基づき、前記現ノードから前記現ノードに隣接する次ノードへ移動するときの速度を表す第1速度及び加速度を設定する速度・加速度設定部と、
    前記現ノードから前記次ノードへのコストとして、設定された前記第1速度及び前記加速度を用いて移動時間を算出するノードコスト算出部と、
    算出された前記コストに基づき、前記軌道探査グラフにおける前記ノードの経路を前記軌道として探査する軌道探査部と、
    を備える
    ことを特徴とするロボットシステム。
JP2018240926A 2018-12-25 2018-12-25 軌道生成装置、軌道生成方法、及びロボットシステム Active JP7042209B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018240926A JP7042209B2 (ja) 2018-12-25 2018-12-25 軌道生成装置、軌道生成方法、及びロボットシステム
US16/683,350 US11577391B2 (en) 2018-12-25 2019-11-14 Trajectory generation device, trajectory generation method, and robot system
CN201911266701.9A CN111443703B (zh) 2018-12-25 2019-12-11 轨道生成装置、轨道生成方法以及机器人系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018240926A JP7042209B2 (ja) 2018-12-25 2018-12-25 軌道生成装置、軌道生成方法、及びロボットシステム

Publications (2)

Publication Number Publication Date
JP2020099977A true JP2020099977A (ja) 2020-07-02
JP7042209B2 JP7042209B2 (ja) 2022-03-25

Family

ID=71098299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018240926A Active JP7042209B2 (ja) 2018-12-25 2018-12-25 軌道生成装置、軌道生成方法、及びロボットシステム

Country Status (3)

Country Link
US (1) US11577391B2 (ja)
JP (1) JP7042209B2 (ja)
CN (1) CN111443703B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116968037B (zh) * 2023-09-21 2024-01-23 杭州芯控智能科技有限公司 一种多机械臂协同任务调度方法
CN117688823B (zh) * 2024-02-04 2024-05-14 北京航空航天大学 一种岩土颗粒轨迹预测方法、电子设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002073130A (ja) * 2000-06-13 2002-03-12 Yaskawa Electric Corp ロボットの大域動作経路計画方法とその制御装置
JP2006119958A (ja) * 2004-10-22 2006-05-11 Matsushita Electric Ind Co Ltd ロボット制御装置およびその制御方法
US20110106307A1 (en) * 2009-10-30 2011-05-05 Samsung Electronics Co., Ltd. Path planning apparatus of robot and method and computer-readable medium thereof
WO2014068975A1 (ja) * 2012-11-05 2014-05-08 パナソニック株式会社 自律走行装置の走行情報生成装置、方法、及びプログラム、並びに自律走行装置
JP2015058492A (ja) * 2013-09-18 2015-03-30 セイコーエプソン株式会社 制御装置、ロボットシステム、ロボット、ロボット動作情報生成方法及びプログラム
JP2016528620A (ja) * 2013-08-02 2016-09-15 アイカム リサーチ コーポレーション 多軸数値制御機械のための位置決め経路の自動的な開発及び最適化のための装置、システム及び方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032189A (ja) * 2007-07-30 2009-02-12 Toyota Motor Corp ロボットの動作経路生成装置
CN105138000A (zh) * 2015-08-06 2015-12-09 大连大学 最优化基座位姿扰动的七自由度空间机械臂轨迹规划方法
CN107160394B (zh) * 2017-05-27 2019-12-10 西安精雕软件科技有限公司 一种直线运动模组精确控制方法
JP7080649B2 (ja) * 2018-01-17 2022-06-06 キヤノン株式会社 制御方法、物品の製造方法、制御プログラム、記録媒体、ロボットシステム、制御装置
US11458626B2 (en) * 2018-02-05 2022-10-04 Canon Kabushiki Kaisha Trajectory generating method, and trajectory generating apparatus
US11117569B2 (en) * 2018-06-27 2021-09-14 Baidu Usa Llc Planning parking trajectory generation for self-driving vehicles using optimization method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002073130A (ja) * 2000-06-13 2002-03-12 Yaskawa Electric Corp ロボットの大域動作経路計画方法とその制御装置
JP2006119958A (ja) * 2004-10-22 2006-05-11 Matsushita Electric Ind Co Ltd ロボット制御装置およびその制御方法
US20110106307A1 (en) * 2009-10-30 2011-05-05 Samsung Electronics Co., Ltd. Path planning apparatus of robot and method and computer-readable medium thereof
WO2014068975A1 (ja) * 2012-11-05 2014-05-08 パナソニック株式会社 自律走行装置の走行情報生成装置、方法、及びプログラム、並びに自律走行装置
JP2016528620A (ja) * 2013-08-02 2016-09-15 アイカム リサーチ コーポレーション 多軸数値制御機械のための位置決め経路の自動的な開発及び最適化のための装置、システム及び方法
JP2015058492A (ja) * 2013-09-18 2015-03-30 セイコーエプソン株式会社 制御装置、ロボットシステム、ロボット、ロボット動作情報生成方法及びプログラム

Also Published As

Publication number Publication date
CN111443703A (zh) 2020-07-24
US20200198137A1 (en) 2020-06-25
CN111443703B (zh) 2023-05-09
JP7042209B2 (ja) 2022-03-25
US11577391B2 (en) 2023-02-14

Similar Documents

Publication Publication Date Title
CN107116565B (zh) 控制装置、机器人以及机器人系统
JP6380828B2 (ja) ロボット、ロボットシステム、制御装置、及び制御方法
JP6429450B2 (ja) 情報処理装置、情報処理方法
US9193072B2 (en) Robot and control method thereof
JP2019018272A (ja) モーション生成方法、モーション生成装置、システム及びコンピュータプログラム
JP2019214084A (ja) 経路計画装置、経路計画方法、及び経路計画プログラム
JP2010155328A (ja) 軌道計画装置及び軌道計画方法、並びにコンピューター・プログラム
WO2019009350A1 (ja) 経路出力方法、経路出力システム及び経路出力プログラム
JP2013132731A (ja) ロボット制御システム、ロボットシステム及びロボット制御方法
JP2012056023A (ja) ロボットの動作生成システム及び動作生成方法
JP2012187697A (ja) ロボットの軌道計画システム及び軌道計画方法
JP2020099977A (ja) 軌道生成装置、軌道生成方法、及びロボットシステム
CN116635193A (zh) 监督式自主抓取
JP2018153874A (ja) 提示装置、提示方法およびプログラム、ならびに作業システム
JP2020093364A (ja) 軌道生成装置
JP2020097073A (ja) 制御装置
TW202132071A (zh) 機器人控制裝置、機器人控制方法以及學習模型產生裝置
Dai et al. Manipulator path-planning avoiding obstacle based on screw theory and ant colony algorithm
WO2020012712A1 (ja) 把持姿勢評価装置及び把持姿勢評価プログラム
JP6455869B2 (ja) ロボット、ロボットシステム、制御装置、及び制御方法
US20240083023A1 (en) Robot model learning device, robot model machine learning method, recording medium storing robot model machine learning program, robot control device, robot control method, and recording medium storing robot control program
CN116802020A (zh) 用于监督式自主抓取的用户界面
JP7159525B2 (ja) ロボット制御装置、学習装置、及びロボット制御システム
JP2015116631A (ja) 制御装置、ロボット、制御方法及びロボットシステム
JP2019155509A (ja) ロボットの制御装置、制御方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R151 Written notification of patent or utility model registration

Ref document number: 7042209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151