JP2020099877A - Water treatment method and apparatus for wastewater containing nitrogen and organic matter - Google Patents

Water treatment method and apparatus for wastewater containing nitrogen and organic matter Download PDF

Info

Publication number
JP2020099877A
JP2020099877A JP2018240688A JP2018240688A JP2020099877A JP 2020099877 A JP2020099877 A JP 2020099877A JP 2018240688 A JP2018240688 A JP 2018240688A JP 2018240688 A JP2018240688 A JP 2018240688A JP 2020099877 A JP2020099877 A JP 2020099877A
Authority
JP
Japan
Prior art keywords
bod
amount
water
kjeldahl nitrogen
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018240688A
Other languages
Japanese (ja)
Inventor
真 源田
Makoto Genda
真 源田
悠 鵜飼
Yu Ukai
悠 鵜飼
吉原 資二
Sukeji Yoshihara
資二 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2018240688A priority Critical patent/JP2020099877A/en
Publication of JP2020099877A publication Critical patent/JP2020099877A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

To provide a technology to achieve a high T-N removal rate in a short treatment time for wastewater containing organic matter and Kjeldahl nitrogen while simultaneously treating the organic matter.SOLUTION: A water treatment method for simultaneously treating organic matter and Kjeldahl nitrogen in the water to be treated by passing water containing organic matter and Kjeldahl nitrogen through a treatment tank filled with a carrier under aerobic conditions, in which the ratio of the amount of BOD and Kjeldahl nitrogen flowing into the treatment tank (amount of BOD/Kjeldahl nitrogen) is maintained within a range of 8 or more.SELECTED DRAWING: Figure 1

Description

本発明は、窒素及び有機物を含む排水を生物学的に処理する排水処理技術に関する。 The present invention relates to wastewater treatment technology for biologically treating wastewater containing nitrogen and organic matter.

従来、一槽の処理槽内において有機物分解・硝化という好気的条件で進行する反応と、脱窒という無酸素条件で進行する反応を行う技術としては、曝気量や曝気時間を調節する手法が広く知られている。 Conventionally, as a technique for performing a reaction that proceeds under aerobic conditions such as organic substance decomposition and nitrification in one treatment tank and a reaction that proceeds under anoxic conditions such as denitrification, there is a method of adjusting the aeration amount and aeration time. Widely known.

特許文献1には、曝気時間を制御して間欠曝気を行うことで、好気環境と無酸素環境を交互に作り、一槽で有機物分解・硝化・脱窒を行い、有機物と窒素を除去する手法が記載されている。 In Patent Document 1, by controlling the aeration time and performing intermittent aeration, an aerobic environment and an anoxic environment are alternately created, and organic matter decomposition, nitrification, and denitrification are performed in one tank to remove organic matter and nitrogen. The method is described.

特許文献2には、曝気箇所及び曝気量を制御することで、槽内に好気領域と無酸素領域を同時に作ることで、一槽で有機物分解・硝化・脱窒を行い、有機物と窒素を除去する手法が記載されている。 In Patent Document 2, by controlling an aeration location and an aeration amount to simultaneously create an aerobic region and an anoxic region in the tank, organic matter decomposition, nitrification, and denitrification are performed in one tank to separate organic matter and nitrogen. The method of removal is described.

特許文献3には、曝気量を制御して極めて低いDO(溶存酸素:Dissolved Oxygen)で運転管理することにより、一槽で有機物分解・硝化・脱窒を行い、有機物と窒素を除去する手法が記載されている。 Patent Literature 3 discloses a method of removing organic matter and nitrogen by performing organic matter decomposition/nitrification/denitrification in a single tank by controlling the amount of aeration and performing operation management with extremely low DO (Dissolved Oxygen). Have been described.

特許文献4には、曝気量を制御して極めて低いDOで運転管理することにより、一槽で硝化・アナモックス反応を行い、窒素を除去する手法が記載されている。 Patent Document 4 describes a method of removing nitrogen by performing an nitrification/anammox reaction in a single tank by controlling the aeration amount and operating and controlling at an extremely low DO.

特開2015−009203Japanese Patent Laid-Open No. 2015-009203 特開2013−103185JP, 2013-103185, A 特開2017−006894JP, 2017-006894, A 特開2017−077509Japanese Unexamined Patent Publication No. 2017-077509

しかしながら、特許文献1〜3に開示されている手法では、T−N(全窒素)除去率が50〜60%ほどと低い、もしくはT−N除去率80〜90%ほどと高くても処理時間が12〜24時間と長い、という問題があった。
また、特許文献4に開示されている手法では、被処理水に含まれる有機物を同時に除去できない、という問題があった。
上記事情に鑑み、本発明が解決しようとする課題は、短い処理時間で有機物と窒素とを同時に高い割合で除去する技術を提供することである。
However, in the methods disclosed in Patent Documents 1 to 3, the processing time is low even if the TN (total nitrogen) removal rate is as low as 50 to 60%, or even if the TN removal rate is as high as 80 to 90%. The problem was that it was as long as 12 to 24 hours.
In addition, the method disclosed in Patent Document 4 has a problem that the organic matter contained in the water to be treated cannot be simultaneously removed.
In view of the above circumstances, the problem to be solved by the present invention is to provide a technique for simultaneously removing organic substances and nitrogen at a high rate in a short processing time.

上記課題は、有機物及びケルダール窒素を含む被処理水を、担体を充填した好気条件下の処理槽に通水することにより、被処理水中の有機物及びケルダール窒素を同時に処理する水処理方法であって、前記処理槽へ流入するBOD(生物学的酸素要求量:Biological Oxygen Demand)量とケルダール窒素量の比(BOD量/ケルダール窒素量)を8以上の範囲に保つことを特徴とする水処理方法または有機物及びケルダール窒素を含む被処理水を、担体を充填した好気条件下の処理槽に通水することにより、被処理水中の有機物及びケルダール窒素を同時に処理する水処理装置であって、前記処理槽へ流入するBOD量とケルダール窒素量の比(BOD量/ケルダール窒素量)を8以上の範囲に保つ手段を備える水処理装置を提供することによって解決される。なお、前記BOD量/ケルダール窒素量の比は質量比を示す。 The above problem is a water treatment method of simultaneously treating organic matter and Kjeldahl nitrogen in treated water by passing treated water containing organic matter and Kjeldahl nitrogen through a treatment tank under aerobic conditions filled with a carrier. The water treatment is characterized in that the ratio of the BOD (Biological Oxygen Demand) amount and the Kjeldahl nitrogen amount (BOD amount/Kjeldahl nitrogen amount) flowing into the treatment tank is kept in a range of 8 or more. Method or water to be treated containing organic matter and Kjeldahl nitrogen, by passing through a treatment tank under aerobic conditions filled with a carrier, a water treatment apparatus for simultaneously treating organic matter and Kjeldahl nitrogen in the water to be treated, The problem is solved by providing a water treatment device provided with means for keeping the ratio of the BOD amount flowing into the treatment tank and the Kjeldahl nitrogen amount (BOD amount/Kjeldahl nitrogen amount) within a range of 8 or more. The ratio of the BOD amount/Kjeldahl nitrogen amount indicates the mass ratio.

前記処理槽にかかるBOD容積負荷が5.5kg/m・d以下であることが好ましい。 The BOD volume load applied to the treatment tank is preferably 5.5 kg/m 3 ·d or less.

前記BOD量/ケルダール窒素量を8以上の範囲に保つ手段として、被処理水流入ラインもしくは処理槽内に有機物の添加を行うことが好ましい。 As a means for keeping the BOD amount/Kjeldahl nitrogen amount in the range of 8 or more, it is preferable to add an organic substance to the treated water inflow line or the treatment tank.

または、前記BOD量/ケルダール窒素量を8以上の範囲に保つ手段として、処理槽の前段に原水調整槽を設け、原水調整槽内に有機物の添加を行うことが好ましい。 Alternatively, as a means for keeping the BOD amount/Kjeldahl nitrogen amount in a range of 8 or more, it is preferable to provide a raw water adjusting tank in front of the treatment tank and add an organic substance into the raw water adjusting tank.

このとき、前記担体がポリビニルアルコールから構成されるゲル状担体であることが好ましい。 At this time, it is preferable that the carrier is a gel carrier composed of polyvinyl alcohol.

本発明によれば、有機物と窒素を含む排水の処理において、既存の方法よりも非常に短い処理時間で有機物と窒素を高い割合で除去する排水処理技術を提供することができる。 According to the present invention, in the treatment of wastewater containing organic matter and nitrogen, it is possible to provide a wastewater treatment technology that removes organic matter and nitrogen at a high rate in a treatment time that is much shorter than existing methods.

本発明の実施形態として、処理槽内に直接有機物の添加を行う際の処理系統の概略図である。As an embodiment of the present invention, it is a schematic diagram of a processing system when adding an organic substance directly into a processing tank. 本発明の実施形態として、被処理水供給ラインに有機物の添加を行う際の処理系統の概略図である。As an embodiment of the present invention, it is a schematic diagram of a treatment system when an organic substance is added to a treated water supply line. 本発明の実施形態として、処理槽の前段に設けた原水調整槽に有機物の添加を行う際の処理系統の概略図である。As an embodiment of the present invention, it is a schematic diagram of a treatment system when an organic substance is added to a raw water conditioning tank provided in a preceding stage of the treatment tank.

本発明では、好気的な条件において、BOD分解・硝化・脱窒という3つの反応を高効率で進行させることを目的としている。一般に知られているように、BOD分解及び硝化は酸素分子を必要とするため、好気的条件下で進行するのに対し、脱窒は無酸素条件下において、硝酸を酸素源として進行する。そのため本発明では、内部まで微生物を担持できる担体を用いて、担体内に好気的環境と無酸素環境を共存させることで、単一槽内でBOD分解・硝化・脱窒の3つの反応を進行させることを可能としている。 In the present invention, it is an object of the present invention to promote three reactions of BOD decomposition, nitrification, and denitrification with high efficiency under aerobic conditions. As is generally known, BOD decomposition and nitrification require molecular oxygen, and thus proceed under aerobic conditions, whereas denitrification proceeds under nitric acid using nitric acid as an oxygen source. Therefore, in the present invention, by using a carrier capable of supporting microorganisms to the inside, coexisting an aerobic environment and anoxic environment in the carrier, three reactions of BOD decomposition, nitrification, and denitrification can be performed in a single tank. It is possible to proceed.

また、脱窒反応には一般的に水素供与体として有機物(BOD) が必要であることが知られている。しかし、好気条件下の槽内ではBOD分解が速やかに進行し、脱窒反応に必要なBODが消費されて脱窒が十分に進行しない。そこで本発明では、処理槽へ流入するBOD量とケルダール窒素量の比(BOD量/ケルダール窒素量)を8以上の範囲に保つことで、脱窒に必要なBODを十分量供給している。しかし、通常の活性汚泥法などではBOD量/ケルダール窒素量を8以上にしたとしても、BOD分解が先に進んでしまうため脱窒は起こらない。そこで本発明では、内部まで微生物を担持できる担体を使用することにより、担体内にBOD分解および硝化反応が進行する好気環境と、脱窒反応が進行する無酸素環境を形成させ、好気条件下の槽内においてBOD分解・硝化だけでなく脱窒も高効率に進行させることができ、高いT−N除去率の達成を可能とした。 Further, it is known that the denitrification reaction generally requires an organic substance (BOD) as a hydrogen donor. However, in a tank under aerobic conditions, BOD decomposition rapidly progresses, BOD required for denitrification reaction is consumed, and denitrification does not proceed sufficiently. Therefore, in the present invention, a sufficient amount of BOD required for denitrification is supplied by maintaining the ratio of the BOD amount flowing into the treatment tank and the Kjeldahl nitrogen amount (BOD amount/Kjeldahl nitrogen amount) within a range of 8 or more. However, even if the BOD amount/Kjeldahl nitrogen amount is set to 8 or more in the ordinary activated sludge method or the like, denitrification does not occur because the BOD decomposition proceeds further. Therefore, in the present invention, by using a carrier capable of supporting microorganisms inside, an aerobic environment in which BOD decomposition and nitrification reaction proceed and an anoxic environment in which denitrification reaction proceeds are formed in the carrier under aerobic conditions. Not only BOD decomposition and nitrification but also denitrification can be advanced in the lower tank with high efficiency, and a high TN removal rate can be achieved.

本発明は、処理槽へ流入するBOD量とケルダール窒素量の比(BOD量/ケルダール窒素量)を8以上の範囲に保つことを特徴とする。 The present invention is characterized in that the ratio of the BOD amount flowing into the treatment tank and the Kjeldahl nitrogen amount (BOD amount/Kjeldahl nitrogen amount) is maintained in a range of 8 or more.

処理槽へ流入するBOD量とケルダール窒素量の比(BOD量/ケルダール窒素量)を8以上の範囲に保つことで、従来よりも短い処理時間で処理槽における高いT−N除去率を達成できる(例えば、後述する実施例においては、BOD量/ケルダール窒素量=8、処理時間2.4時間において、T−N除去率80%以上を達成している)。一方で、処理槽へ流入するBOD量とケルダール窒素量の比が8未満であると、処理槽におけるT−N除去率が低下してしまう。 By maintaining the ratio of the BOD amount flowing into the treatment tank to the Kjeldahl nitrogen amount (BOD amount/Kjeldahl nitrogen amount) in a range of 8 or more, a high TN removal rate in the treatment tank can be achieved in a shorter treatment time than before. (For example, in the examples described later, a BOD amount/Kjeldahl nitrogen amount=8 and a TN removal rate of 80% or more is achieved at a treatment time of 2.4 hours). On the other hand, if the ratio of the amount of BOD flowing into the treatment tank and the amount of Kjeldahl nitrogen is less than 8, the TN removal rate in the treatment tank will decrease.

BOD過負荷により糸状菌の発生やBODの処理残し等の運転に支障をきたす問題の発生を防ぐ観点から、処理槽へ流入するBOD量とケルダール窒素量の比(BOD量/ケルダール窒素量)は20以下が好ましく、15以下がより好ましく、11以下がさらに好ましい。 From the viewpoint of preventing the occurrence of problems such as the generation of filamentous fungi and the unprocessed BOD due to BOD overload, which hinders the operation, the ratio of the BOD amount flowing into the treatment tank and the Kjeldahl nitrogen amount (BOD amount/Kjeldahl nitrogen amount) is 20 or less is preferable, 15 or less is more preferable, and 11 or less is further preferable.

前記処理槽でのBOD容積負荷は、5.5kg/m・d以下が好ましい。BOD容積負荷が好ましい範囲を超えると、BOD過負荷により糸状菌の発生等の運転に支障をきたす問題が発生する可能性がある。BOD容積負荷は5kg/m・d以下であることがより好ましい。 The BOD volume load in the treatment tank is preferably 5.5 kg/m 3 ·d or less. If the BOD volume load exceeds the preferable range, there is a possibility that problems such as the generation of filamentous fungi may occur due to BOD overload, which may impair operation. The BOD volume load is more preferably 5 kg/m 3 ·d or less.

原水のBOD量/ケルダール窒素量が8以上である場合は、調整等をすることなく被処理水として処理槽へ流入させて良い。原水のBOD量とケルダール窒素量の比(BOD量/ケルダール窒素量)が8以上の範囲に入っていない場合は、以下のような手法により、処理槽へ流入するBOD量とケルダール窒素量の比(BOD量/ケルダール窒素量)を8以上の範囲に保つ。ここで原水とは薬品添加等の調整を行っていない工場排水や下水そのものを指し、被処理水とは処理槽へ実際に流入する排水を指す。 When the BOD amount of raw water/Kjeldahl nitrogen amount is 8 or more, it may be allowed to flow into the treatment tank as treated water without adjustment. When the ratio of BOD amount of raw water to Kjeldahl nitrogen amount (BOD amount/Kjeldahl nitrogen amount) is not within the range of 8 or more, the ratio of BOD amount and Kjeldahl nitrogen amount flowing into the treatment tank is calculated by the following method. Keep (BOD amount/Kjeldahl nitrogen amount) in the range of 8 or more. Here, raw water refers to factory effluent or sewage itself that has not been adjusted by adding chemicals, and treated water refers to effluent that actually flows into the treatment tank.

前記調整方法としては、被処理水流入ラインや処理槽内に有機物を添加する方法や、処理槽前段に原水調整槽を設けて、原水調整槽内に有機物を添加する方法が挙げられる。 Examples of the adjusting method include a method of adding an organic substance to the treated water inflow line or the treatment tank, and a method of providing a raw water adjusting tank in the front stage of the treatment tank and adding the organic substance to the raw water adjusting tank.

前記調整方法において添加する有機物は、微生物の活性を阻害しない有機物であればよく、メタノール等のアルコール類や酢酸等の有機酸、グルコース等の糖類等が挙げられる。 The organic substance added in the adjusting method may be any organic substance that does not inhibit the activity of microorganisms, and examples thereof include alcohols such as methanol, organic acids such as acetic acid, and sugars such as glucose.

前記調整方法における有機物添加のタイミングは、処理槽へ流入する被処理水BOD濃度が一定となるようなものが好ましい。被処理水流入ラインや処理槽内に有機物を添加する場合には、下記式で示す必要量を一定の割合で連続的に添加することが好ましい。また、処理槽前段に原水調整槽を設けて、原水調整槽内に有機物を添加する場合には、下記式で示す必要量を一定の割合で連続的に添加する、もしくは、処理槽へ流入する被処理水BOD濃度が一定となるような時間間隔で間欠的に添加することが好ましい。 The timing of adding the organic substance in the adjusting method is preferably such that the BOD concentration of the water to be treated flowing into the treatment tank is constant. When an organic substance is added to the treated water inflow line or the treatment tank, it is preferable to continuously add a necessary amount represented by the following formula at a constant ratio. Further, when a raw water adjusting tank is provided in the front stage of the treatment tank and an organic substance is added to the raw water adjusting tank, the required amount shown by the following formula is continuously added at a constant ratio, or it flows into the treatment tank. It is preferable to add intermittently at a time interval such that the BOD concentration of the water to be treated becomes constant.

前記処理槽に流入する被処理水のBOD濃度は、十分にBOD分解を進行させるという観点から、600mg/L以下が好ましく、550mg/L以下がさらに好ましい。 The BOD concentration of the water to be treated flowing into the treatment tank is preferably 600 mg/L or less, and more preferably 550 mg/L or less, from the viewpoint of sufficiently promoting the BOD decomposition.

前記調整方法により、処理槽へ流入するBOD量とケルダール窒素量の比(BOD量/ケルダール窒素量)を8以上の範囲に保つために添加するBOD量(C)は以下の式(I)および(II)により算出する。 By the adjustment method described above, the BOD amount (C) added to maintain the ratio of the BOD amount flowing into the treatment tank and the Kjeldahl nitrogen amount (BOD amount/Kjeldahl nitrogen amount) in the range of 8 or more is represented by the following formula (I) and Calculated according to (II).

A:必要被処理水BOD濃度(mg/L)、B:原水ケルダール窒素濃度(mg/L)、C:必要BOD添加量(kg/d)D:原水BOD濃度(mg/L)、E:原水流量(m/d) A: Required treated water BOD concentration (mg/L), B: Raw water Kjeldahl nitrogen concentration (mg/L), C: Required BOD addition amount (kg/d) D: Raw water BOD concentration (mg/L), E: Raw water flow rate (m 3 /d)

前記処理槽でのケルダール窒素容積負荷は0.69kg/m・d以下であることが好ましく、0.63kg/m・d以下であることがより好ましい。 Preferably Kjeldahl nitrogen volume loading in the processing bath is not more than 0.69kg / m 3 · d, more preferably not more than 0.63kg / m 3 · d.

前記処理槽でのケルダール窒素濃度は、十分に硝化及び脱窒を進行させるという観点から、75mg/L以下が好ましく、65mg/L以下がさらに好ましい。 From the viewpoint of sufficiently promoting nitrification and denitrification, the Kjeldahl nitrogen concentration in the treatment tank is preferably 75 mg/L or less, more preferably 65 mg/L or less.

前記処理槽における処理時間(HRT:水理学的滞留時間)は、処理槽の小型化の観点から5時間以下であることが好ましく、4時間以下であることがさらに好ましい。また、十分な処理を進行させるために、1時間以上であることが好ましく、2時間以上であることがさらに好ましい。 The treatment time (HRT: hydraulic retention time) in the treatment tank is preferably 5 hours or less, and more preferably 4 hours or less from the viewpoint of miniaturization of the treatment tank. Further, in order to proceed the treatment sufficiently, it is preferably 1 hour or longer, more preferably 2 hours or longer.

本発明が適用できる原水としては、有機物とケルダール窒素がともに含まれる下水や工業排水が挙げられる。 Raw water to which the present invention is applicable includes sewage and industrial wastewater containing both organic matter and Kjeldahl nitrogen.

本発明を適用する原水としては、比較的BOD量に対してケルダール窒素量が多いもの、例えば、原水のBOD量とケルダール窒素量の比(BOD量/ケルダール窒素量)が8未満である原水などが、本発明の適用による脱窒反応の促進によるT-N除去率の向上が顕著に見られるため、より効果的である。 Raw water to which the present invention is applied has a relatively large amount of Kjeldahl nitrogen relative to the amount of BOD, for example, raw water having a ratio of BOD to Kjeldahl nitrogen of raw water (BOD amount/Kjeldahl nitrogen amount) of less than 8. However, the application of the present invention is more effective because the TN removal rate is remarkably improved by promoting the denitrification reaction.

本発明では、処理槽内に微生物を担持できる担体を投入する。 In the present invention, a carrier capable of supporting microorganisms is placed in the treatment tank.

前記担体に担持される微生物としては、硝化反応に関わる菌としてNitroactorやNittosomonas、BOD分解及び脱窒に関わる菌としてPseudomonasやParacoccusなどが挙げられる。 Examples of the microorganisms carried on the carrier include Nitroactor and Nittosomonas as bacteria involved in nitrification reaction, and Pseudomonas and Paracoccus as bacteria involved in BOD decomposition and denitrification.

前記担体はPVA、PEGなど有機性高分子から成るもの、活性炭やセラミックスなど無機物から成るものなど、表面及び内部に微生物を担持できる担体を適宜使用できる。 As the carrier, a carrier that can support microorganisms on the surface and inside can be appropriately used, such as a carrier composed of an organic polymer such as PVA or PEG or a carrier composed of an inorganic substance such as activated carbon or ceramics.

前記担体の形状は、球形、四角形、円筒形等いずれの形でも使用可能である。担体の表面及び内部に微細構造を持ち、微生物を担体表面及び内部に担持できるものが好ましい。微生物を担体表面及び内部に担持することで、酸素が容易に供給される担体表面付近の領域と、酸素が少ないもしくは無酸素の担体内部の領域が形成され、好気条件下で進行する有機物分解・硝化反応と、無酸素条件下で進行する脱窒反応を同時に進行させやすくなるためである。 The carrier may have any shape such as a sphere, a quadrangle, and a cylinder. A carrier having a fine structure on the surface and inside of the carrier and capable of supporting microorganisms on the surface and inside of the carrier is preferable. By supporting microorganisms on the surface and inside the carrier, a region near the surface of the carrier to which oxygen is easily supplied and a region inside the carrier that is low in oxygen or oxygen-free are formed, and organic matter decomposition proceeds under aerobic conditions. -This is because it is easy to simultaneously promote the nitrification reaction and the denitrification reaction that proceeds under anoxic conditions.

担体の球相当径は、1〜10mmであることが好ましい。球相当径が小さい場合、処理槽に担体の流出を防ぐためのスクリーンを設置した場合に、スクリーンの網目を小さくする必要があり、目詰まりを起こすおそれがある。そのため、球相当径は2mm以上であることがより好ましい。一方、球相当径が10mmを超える場合、担体の流動性が低下するおそれがある。そのため、球相当径は6mm以下であることがより好ましい。ここで、球相当径とは粒子の体積と等しい体積を有する球の直径である。 The equivalent spherical diameter of the carrier is preferably 1 to 10 mm. If the equivalent-sphere diameter is small, it is necessary to reduce the mesh size of the screen when a screen for preventing the carrier from flowing out is installed in the processing tank, which may cause clogging. Therefore, the equivalent spherical diameter is more preferably 2 mm or more. On the other hand, if the equivalent-sphere diameter exceeds 10 mm, the fluidity of the carrier may decrease. Therefore, the equivalent spherical diameter is more preferably 6 mm or less. Here, the equivalent sphere diameter is the diameter of a sphere having a volume equal to the volume of particles.

担体の比重は水よりわずかに大きく、処理槽から流失しない程度に、当該処理槽の中で揺動させることができる比重であることが好ましい。本発明の処理方法において、比重が水よりわずかに大きい担体を用いることにより、担体を流出させることなく、より安定的に排水を処理することができる。かかる観点から、担体の比重は1.001以上であることが好ましく、1.005以上であることがより好ましい。一方、比重は1.2以下であることが好ましく、1.1以下であることがより好ましく、1.05以下であることがさらに好ましい。 The specific gravity of the carrier is slightly larger than that of water, and it is preferable that the carrier can be swung in the treatment tank so that the carrier is not washed away. In the treatment method of the present invention, by using a carrier having a specific gravity slightly higher than that of water, wastewater can be treated more stably without causing the carrier to flow out. From this viewpoint, the specific gravity of the carrier is preferably 1.001 or more, more preferably 1.005 or more. On the other hand, the specific gravity is preferably 1.2 or less, more preferably 1.1 or less, and further preferably 1.05 or less.

連通孔内のDO濃度は担体表面からの距離によって変わる。そのため、好気的条件となる担体表面には硝化菌が担持され、無酸素条件となる担体内部には脱窒菌が担持される。連通孔の孔径は、細菌のみが担体内部に棲息できる孔径であることが好ましい。担体の表面付近の孔径が0.1〜100μmであることが好ましい。孔径が0.1μm未満の場合、細菌が担体内部に進入できないことがある。表面付近の孔径は0.5μm以上であることがより好ましい。一方、表面付近の孔径が100μmを超える場合、細菌以外の大きな生物が侵入し、硝化速度及び脱窒速度が低下するおそれがある。孔径は50μm以下であることがより好ましい。なお、連通孔の孔径は、電子顕微鏡を用いた観察などの方法により測定することができる。 The DO concentration in the communication hole changes depending on the distance from the surface of the carrier. Therefore, nitrifying bacteria are carried on the surface of the carrier under aerobic conditions, and denitrifying bacteria are carried inside the carrier under anoxic conditions. The pore size of the communication pores is preferably such that only bacteria can live inside the carrier. The pore diameter near the surface of the carrier is preferably 0.1 to 100 μm. If the pore size is less than 0.1 μm, bacteria may not be able to enter the carrier. The pore diameter near the surface is more preferably 0.5 μm or more. On the other hand, when the pore diameter near the surface exceeds 100 μm, large organisms other than bacteria may invade and the nitrification rate and denitrification rate may decrease. More preferably, the pore size is 50 μm or less. The diameter of the communication hole can be measured by a method such as observation using an electron microscope.

槽容積に対する担体の体積割合(充填率)は、排水のケルダール窒素濃度や流量に応じて適宜決めることができる。担体の充填率が高いほど硝化反応及び脱窒反応を効率よく進行させることができるが、充填率が高すぎると担体の流動性が下がり反応効率が低下することがある。充填率は30%以下であることが好ましく、25%以下であることがより好ましい。一方、処理槽で安定的に排水処理を行う観点から、充填率は5%以上であることが好ましい。 The volume ratio (filling rate) of the carrier to the tank volume can be appropriately determined according to the Kjeldahl nitrogen concentration of the waste water and the flow rate. The higher the packing rate of the carrier, the more efficiently the nitrification reaction and the denitrification reaction can proceed, but if the packing rate is too high, the fluidity of the carrier may decrease and the reaction efficiency may decrease. The filling rate is preferably 30% or less, and more preferably 25% or less. On the other hand, from the viewpoint of performing stable wastewater treatment in the treatment tank, the filling rate is preferably 5% or more.

前記担体に微生物を担持させる方法としては、微生物の生物活性を損なうことなく担体に固定化できる手法であればよく、担体を充填し好気条件に調整した馴養槽内に有機物及びケルダール窒素を含有する被処理水を連続的に流入させるという方法や、別途培養したBOD分解に関わる菌、硝化反応に関わる菌、及び脱窒に関わる菌などを担体作製時に担体内に包括固定する方法などが挙げられる。 As a method for supporting the microorganisms on the carrier, any method may be used as long as it can be immobilized on the carrier without impairing the biological activity of the microorganisms, and contains organic matter and Kjeldahl nitrogen in the acclimatization tank filled with the carrier and adjusted to aerobic conditions. The method of continuously injecting treated water to be treated, the method of entrapping separately cultivated BOD-decomposing bacteria, nitrification-related bacteria, and denitrifying-related bacteria in a carrier during entrapping To be

処理槽内のpHは5.0〜9.0であることが好ましい。pHがこの範囲であると細菌が生育しやすく、硝化速度及び脱窒速度を適度に保持できる傾向にある。pHは5.5以上であることがより好ましく、6.0以上であることがさらに好ましい。一方、pHは8.7以下であることがより好ましく、8.3以下であることがさらに好ましい。 The pH in the treatment tank is preferably 5.0 to 9.0. When the pH is within this range, bacteria are likely to grow and the nitrification rate and denitrification rate tend to be maintained at an appropriate level. The pH is more preferably 5.5 or higher, and further preferably 6.0 or higher. On the other hand, the pH is more preferably 8.7 or less, further preferably 8.3 or less.

処理槽内の温度は10〜40℃であることが好ましい。温度がこの範囲であると細菌が生育しやすく、硝化速度及び脱窒速度を適度に保持できる傾向にある。温度は20℃以上であることがより好ましい。一方、温度は35℃以下であることがより好ましい。 The temperature in the processing tank is preferably 10 to 40°C. When the temperature is within this range, bacteria are likely to grow and the nitrification rate and denitrification rate tend to be maintained at an appropriate level. The temperature is more preferably 20° C. or higher. On the other hand, the temperature is more preferably 35°C or lower.

処理槽内のDOは0.5〜9.0mg/Lであることが好ましい。DOが0.5mg/L未満の場合、硝化速度が低下するおそれがある。DOは1.0mg/L以上であることがより好ましく、2.0mg/L以上であることがさらに好ましい。一方、DOが9.0mg/Lを超える場合、脱窒速度が低下するおそれがある。DOは8.0mg/L以下であることがより好ましく、7.0mg/L以下であることがさらに好ましい。なお、DOは、隔膜電極法などの方法により測定することができる。 The DO in the treatment tank is preferably 0.5 to 9.0 mg/L. If the DO is less than 0.5 mg/L, the nitrification rate may decrease. DO is more preferably 1.0 mg/L or more, further preferably 2.0 mg/L or more. On the other hand, if the DO exceeds 9.0 mg/L, the denitrification rate may decrease. DO is more preferably 8.0 mg/L or less, and further preferably 7.0 mg/L or less. The DO can be measured by a method such as a diaphragm electrode method.

<実施例1>
以下に示す被処理水及び処理装置を用いて生物処理を行った。
(被処理水)下水排水BOD250mg/L, ケルダール窒素50mg/Lに対しBOD量/ケルダール窒素量=8とするために原水調整槽にメタノールを添加し、BOD400mg/L, ケルダール窒素50mg/Lに調整した。流入量は0.42L/hrである。この際のBOD容積負荷は4kg/m・d、ケルダール窒素容積負荷は0.5kg/m・dである。
上記調整に際しては、前記添加BOD量の計算式(I)及び(II)を用いて以下のように計算した。

目標被処理水BOD濃度(A)=ケルダール窒素濃度50mg/L(B)×8=400mg/L
必要BOD添加量(C)={(A)−原水BOD濃度(D)}/1000×原水流量(E)(m/d)
=(400−250)/1000×(0.42×24/1000)
=0.0015kg/d
=1.5g/d

(処理装置)処理槽1Lに担体0.2L(充填率20%)を投入した。ここで用いた担体はポリビニルアルコールからなる球状ゲル担体である。この担体の球相当径は4mmであり、比重は1.025であり、担体内の連通孔の孔径は0.5〜20μmである。
処理槽底部には散気管が設置されており、散気管に接続されたブロワーから送られてくる空気により、被処理水の曝気を行う。また、処理槽出口には担体の流出を防ぐためのスクリーンが設置されている。
処理槽内は温度30±2℃、pH7.5〜8.3、DO4〜7mg/Lで管理されている。
被処理水の流入量は0.42L/hrであり、HRTは2.4hrである。
<Example 1>
Biological treatment was performed using the following treated water and treatment equipment.
(Water to be treated) Sewage drainage BOD 250 mg/L, Kjeldahl Nitrogen 50 mg/L, BOD amount/Kjeldahl Nitrogen amount=8, methanol is added to the raw water adjusting tank to adjust BOD 400 mg/L, Kjeldahl nitrogen 50 mg/L. did. The inflow rate is 0.42 L/hr. At this time, the BOD volume load is 4 kg/m 3 ·d and the Kjeldahl nitrogen volume load is 0.5 kg/m 3 ·d.
At the time of the above adjustment, the calculation was performed as follows using the formulas (I) and (II) for the added BOD amount.

Target treated water BOD concentration (A)=Kjeldahl nitrogen concentration 50 mg/L (B)×8=400 mg/L
Required BOD addition amount (C)={(A)-raw water BOD concentration (D)}/1000×raw water flow rate (E) (m 3 /d)
= (400-250)/1000 x (0.42 x 24/1000)
= 0.0015 kg/d
=1.5 g/d

(Processing device) 0.2 L of carrier (filling rate 20%) was put into 1 L of the processing tank. The carrier used here is a spherical gel carrier made of polyvinyl alcohol. The equivalent sphere diameter of this carrier is 4 mm, the specific gravity is 1.025, and the diameter of the communication holes in the carrier is 0.5 to 20 μm.
An air diffuser is installed at the bottom of the treatment tank, and the water to be treated is aerated by the air sent from the blower connected to the air diffuser. A screen is installed at the outlet of the processing tank to prevent the carrier from flowing out.
The inside of the treatment tank is controlled at a temperature of 30±2° C., a pH of 7.5 to 8.3, and a DO of 4 to 7 mg/L.
The inflow rate of the water to be treated is 0.42 L/hr and the HRT is 2.4 hr.

以上の被処理水及び処理装置を用いて行った生物処理の結果は以下の通りである。
(結果)処理槽出口から得られた処理水の水質を分析したところ、BOD9mg/L,T−N10mg/L,NH4−N(アンモニア態窒素)0.5mg/L,NOx−N(硝酸・亜硝酸態窒素)5mg/Lとなった。BOD除去率は98%、T−N除去率は80%であった。
The results of the biological treatment performed using the above-mentioned treated water and treatment equipment are as follows.
(Results) When the water quality of the treated water obtained from the outlet of the treatment tank was analyzed, BOD 9 mg/L, T-N 10 mg/L, NH4-N (ammonia nitrogen) 0.5 mg/L, NOx-N (nitric acid/nitrous acid) Nitrate nitrogen) became 5 mg/L. The BOD removal rate was 98% and the TN removal rate was 80%.

<実施例2>
以下の被処理水及び実施例1と同様の処理設備を用いて生物処理を行った。
(被処理水)下水排水BOD250mg/L,ケルダール窒素50mg/Lに対しBOD量/ケルダール窒素量=10とするために実施例1と同様に前記式(I)及び(II)により必要BOD量を計算し、原水調整槽にメタノール2.5g/dを添加し、BOD500mg/L,ケルダール窒素50mg/Lに調整した。流入量は0.42L/hrであり、HRTは2.4hrである。この際のBOD容積負荷は5kg/m・d、ケルダール窒素容積負荷は0.5kg/m・dであった。(結果)処理槽出口から得られた処理水の水質を分析したところ、BOD9mg/L,T−N8mg/L,NH4−N0.4mg/L,NOx−N4mg/Lとなった。BOD除去率は98%、T−N除去率は84%であった。
<Example 2>
Biological treatment was performed using the following treated water and the same treatment equipment as in Example 1.
(Water to be treated) Sewage drainage BOD 250 mg/L, Kjeldahl nitrogen 50 mg/L, BOD amount/Kjeldahl nitrogen amount=10, so that the required BOD amount is calculated by the above formulas (I) and (II) as in Example 1. After calculation, 2.5 g/d of methanol was added to the raw water adjusting tank to adjust the BOD to 500 mg/L and the Kjeldahl nitrogen to 50 mg/L. The inflow is 0.42 L/hr and the HRT is 2.4 hr. At this time, the BOD volume load was 5 kg/m 3 ·d and the Kjeldahl nitrogen volume load was 0.5 kg/m 3 ·d. (Results) When the water quality of the treated water obtained from the outlet of the treatment tank was analyzed, it was BOD 9 mg/L, T-N 8 mg/L, NH4-N 0.4 mg/L, NOx-N 4 mg/L. The BOD removal rate was 98% and the TN removal rate was 84%.

<実施例3>
以下の被処理水及び実施例と同様の処理設備を用いて生物処理を行った。
(被処理水)下水排水BOD250mg/L, ケルダール窒素50mg/Lに対しBOD量/ケルダール窒素量=12とするために実施例1と同様に前記式(I)及び(II)により必要BOD量を計算し、原水調整槽にメタノールを3.5g/d添加し、BOD600mg/L,ケルダール窒素50mg/Lに調整した。流入量は0.42L/hrであり、HRTは2.4hrである。この際のBOD容積負荷は6kg/m・d、ケルダール窒素容積負荷は0.5kg/m・dである。
(結果)処理槽出口から得られた処理水の水質を分析したところ、BOD10mg/L,T−N15mg/L,NH4−N9mg/L,NOx−N0.4mg/Lとなった。BOD除去率は98%、T−N除去率は70%であった。この条件では、T−N除去率は70%と向上がみられたものの、BODが高負荷であったために処理槽内に糸状菌が多く発生した。
<Example 3>
Biological treatment was carried out using the following treated water and the same treatment equipment as in the examples.
(Water to be treated) To obtain BOD amount/Kjeldahl nitrogen amount=12 for sewage drainage BOD 250 mg/L and Kjeldahl nitrogen 50 mg/L, the required BOD amount is calculated by the above formulas (I) and (II) in the same manner as in Example 1. After calculation, 3.5 g/d of methanol was added to the raw water adjusting tank to adjust the BOD to 600 mg/L and the Kjeldahl nitrogen to 50 mg/L. The inflow is 0.42 L/hr and the HRT is 2.4 hr. At this time, the BOD volume load is 6 kg/m 3 ·d and the Kjeldahl nitrogen volume load is 0.5 kg/m 3 ·d.
(Result) When the water quality of the treated water obtained from the outlet of the treatment tank was analyzed, it was BOD 10 mg/L, T-N 15 mg/L, NH4-N 9 mg/L, NOx-N 0.4 mg/L. The BOD removal rate was 98% and the TN removal rate was 70%. Under this condition, although the TN removal rate was improved to 70%, a large amount of filamentous fungi was generated in the treatment tank due to the high load of BOD.

<比較例1>
以下の被処理水及び実施例1と同様の処理設備を用いて生物処理を行った。
(被処理水)下水排水BOD250mg/L, ケルダール窒素50mg/Lをそのまま使用した。流入量は0.42L/hrであり、HRTは2.4hrである。この際のBOD容積負荷は2.5kg/m・d、ケルダール窒素容積負荷は0.5kg/m・dである。
(結果)処理槽出口から得られた処理水の水質を分析したところ、BOD9mg/L,T−N26mg/L,NH4−N0.5mg/L,NOx−N24mg/Lとなった。BOD除去率は96%、T−N除去率は48%であった。
<Comparative Example 1>
Biological treatment was performed using the following treated water and the same treatment equipment as in Example 1.
(Water to be treated) Sewage drainage BOD 250 mg/L and Kjeldahl nitrogen 50 mg/L were used as they were. The inflow is 0.42 L/hr and the HRT is 2.4 hr. The BOD volume load at this time is 2.5 kg/m 3 ·d, and the Kjeldahl nitrogen volume load is 0.5 kg/m 3 ·d.
(Results) When the water quality of the treated water obtained from the outlet of the treatment tank was analyzed, it was BOD 9 mg/L, T-N 26 mg/L, NH4-N 0.5 mg/L, NOx-N 24 mg/L. The BOD removal rate was 96% and the TN removal rate was 48%.

<考察>
以上の実施例及び比較例の結果から、被処理水のBOD濃度とケルダール窒素濃度の比を8以上に保つことにより、短い処理時間において高いT−N除去率を達成できた。また、実施例1および2と実施例3を比較すると、実施例1および2においては糸状菌の発生が抑えられ、より安定的な運転が可能である。
<Discussion>
From the results of the above Examples and Comparative Examples, by maintaining the ratio of the BOD concentration of the water to be treated and the Kjeldahl nitrogen concentration at 8 or more, a high TN removal rate could be achieved in a short treatment time. Further, comparing Examples 1 and 2 with Example 3, in Examples 1 and 2, generation of filamentous fungi is suppressed, and more stable operation is possible.

1 処理槽
2 原水調整槽
3 被処理水及び被処理水ライン
4 処理水及び処理水ライン
5 添加BOD及びBOD添加ライン
6 担体
7 スクリーン
8 散気管
9 ブロワー
10 原水ポンプ


1 Treatment Tank 2 Raw Water Conditioning Tank 3 Treated Water and Treated Water Line 4 Treated Water and Treated Water Line 5 Addition BOD and BOD Addition Line 6 Carrier 7 Screen 8 Diffuser 9 Blower 10 Raw Water Pump


Claims (9)

有機物及びケルダール窒素を含む被処理水を、担体を充填した好気条件下の処理槽に通水することにより、被処理水中の有機物及びケルダール窒素を同時に処理する水処理方法であって、前記処理槽へ流入するBOD量とケルダール窒素量の比(BOD量/ケルダール窒素量)を8以上の範囲に保つことを特徴とする水処理方法。 A water treatment method for simultaneously treating organic matter and Kjeldahl nitrogen in treated water by passing water to be treated containing organic matter and Kjeldahl nitrogen through a treatment tank filled with a carrier under aerobic conditions, wherein the treatment A water treatment method characterized in that the ratio of the BOD amount flowing into the tank to the Kjeldahl nitrogen amount (BOD amount/Kjeldahl nitrogen amount) is kept in a range of 8 or more. 前記処理槽にかかるBOD容積負荷が5.5kg/m・d以下である請求項1に記載の水処理方法。 The water treatment method according to claim 1, wherein the BOD volume load applied to the treatment tank is 5.5 kg/m 3 ·d or less. 前記BOD量/ケルダール窒素量を8以上の範囲に保つ手段として、被処理水流入ラインもしくは処理槽内に有機物の添加を行う、請求項1または2に記載の水処理方法。 The water treatment method according to claim 1 or 2, wherein an organic substance is added to a treated water inflow line or a treatment tank as a means for maintaining the BOD amount/Kjeldahl nitrogen amount in a range of 8 or more. 前記BOD量/ケルダール窒素量を8以上の範囲に保つ手段として、処理槽の前段に原水調整槽を設け、原水調整槽内に有機物の添加を行う請求項1または2に記載の水処理方法。 The water treatment method according to claim 1, wherein a raw water adjusting tank is provided in front of the treatment tank, and an organic substance is added to the raw water adjusting tank as a means for keeping the BOD amount/Kjeldahl nitrogen amount in a range of 8 or more. 前記担体がポリビニルアルコールから構成されるゲル状担体である、請求項1〜4のいずれかに記載の水処理方法。 The water treatment method according to claim 1, wherein the carrier is a gel carrier composed of polyvinyl alcohol. 有機物及びケルダール窒素を含む被処理水を、担体を充填した好気条件下の処理槽に通水することにより、被処理水中の有機物及びケルダール窒素を同時に処理する水処理装置であって、前記処理槽へ流入するBOD量とケルダール窒素量の比(BOD量/ケルダール窒素量)を8以上の範囲に保つ手段を備える水処理装置。 A water treatment device for simultaneously treating organic matter and Kjeldahl nitrogen in water to be treated by passing water to be treated containing organic matter and Kjeldahl nitrogen through a treatment tank filled with a carrier under aerobic conditions. A water treatment device comprising means for keeping the ratio of the BOD amount flowing into the tank to the Kjeldahl nitrogen amount (BOD amount/Kjeldahl nitrogen amount) within a range of 8 or more. 前記処理槽にかかるBOD容積負荷が5.5kg/m・d以下である請求項6に記載の水処理装置。 The water treatment apparatus according to claim 6, wherein the BOD volume load applied to the treatment tank is 5.5 kg/m 3 ·d or less. 前記BOD量/ケルダール窒素量を8以上の範囲に保つ手段として、被処理水流入ラインもしくは処理槽内に有機物の添加を行う手段または処理槽の前段に原水調整槽を設け、原水調整槽内に有機物の添加を行う手段を備える、請求項6または7に記載の水処理装置。 As a means for maintaining the BOD amount/Kjeldahl nitrogen amount in the range of 8 or more, a means for adding organic substances to the treated water inflow line or the treatment tank or a raw water adjusting tank provided in the preceding stage of the treatment tank is provided in the raw water adjusting tank. The water treatment device according to claim 6 or 7, further comprising means for adding an organic substance. 前記担体がポリビニルアルコールから構成されるゲル状担体である、請求項6〜8のいずれかに記載の水処理装置。


The water treatment device according to claim 6, wherein the carrier is a gel carrier composed of polyvinyl alcohol.


JP2018240688A 2018-12-25 2018-12-25 Water treatment method and apparatus for wastewater containing nitrogen and organic matter Pending JP2020099877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018240688A JP2020099877A (en) 2018-12-25 2018-12-25 Water treatment method and apparatus for wastewater containing nitrogen and organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018240688A JP2020099877A (en) 2018-12-25 2018-12-25 Water treatment method and apparatus for wastewater containing nitrogen and organic matter

Publications (1)

Publication Number Publication Date
JP2020099877A true JP2020099877A (en) 2020-07-02

Family

ID=71140567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018240688A Pending JP2020099877A (en) 2018-12-25 2018-12-25 Water treatment method and apparatus for wastewater containing nitrogen and organic matter

Country Status (1)

Country Link
JP (1) JP2020099877A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0947782A (en) * 1995-08-09 1997-02-18 Kurita Water Ind Ltd Waste water treating device
JPH09299988A (en) * 1996-05-17 1997-11-25 Hitachi Plant Eng & Constr Co Ltd Nitrificating and denitrificating method and device therefor
JP2007237158A (en) * 2006-03-03 2007-09-20 Linde Kca Dresden Gmbh Process for biological purification of waste water with simultaneous decomposition of organic and nitrogen-containing compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0947782A (en) * 1995-08-09 1997-02-18 Kurita Water Ind Ltd Waste water treating device
JPH09299988A (en) * 1996-05-17 1997-11-25 Hitachi Plant Eng & Constr Co Ltd Nitrificating and denitrificating method and device therefor
JP2007237158A (en) * 2006-03-03 2007-09-20 Linde Kca Dresden Gmbh Process for biological purification of waste water with simultaneous decomposition of organic and nitrogen-containing compounds

Similar Documents

Publication Publication Date Title
JP4224951B2 (en) Denitrification method
KR20190075188A (en) Treatment apparatus for wastewater with high strength nitrogen using microorganism immobilized high molecule media
JP2010221192A (en) Waste water treatment method
JP2006289311A (en) Method for treating drainage
JP2018138292A (en) Water treatment method and apparatus
JP2011078938A (en) Waste water treatment method
JP2006325512A (en) Waste water-treating system
JP2003047990A (en) Biological denitrifier
JP5306296B2 (en) Waste water treatment apparatus and waste water treatment method
KR101872161B1 (en) Nitrogen and phosphorus removal device for wastewater
JP2011143365A (en) Method and apparatus for treating wastewater
JP5240465B2 (en) Storage system and storage method for anaerobic microorganism-immobilized carrier
JP2020099877A (en) Water treatment method and apparatus for wastewater containing nitrogen and organic matter
JP6811360B2 (en) Water treatment method
JP2016049512A (en) Anaerobic ammonia oxidation treatment method, anaerobic ammonia oxidation treatment apparatus, and denitrification method of organic waste water
JP4596533B2 (en) Wastewater treatment method
JP3858271B2 (en) Wastewater treatment method and apparatus
JPH06496A (en) Advanced treatment of sewage
JP2020014983A (en) Method of cleaning microorganism carrier
JP5558866B2 (en) Water treatment apparatus and water treatment method
KR20040066549A (en) Method for treatment to efficiently nitrogen inside the livestock raising waste water
JP7181251B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP7228487B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP2010221193A (en) Waste water treatment method
JP4490659B2 (en) Sewage treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210607

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221101