JP2020097793A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2020097793A5 JP2020097793A5 JP2020019213A JP2020019213A JP2020097793A5 JP 2020097793 A5 JP2020097793 A5 JP 2020097793A5 JP 2020019213 A JP2020019213 A JP 2020019213A JP 2020019213 A JP2020019213 A JP 2020019213A JP 2020097793 A5 JP2020097793 A5 JP 2020097793A5
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- alloy plate
- rolling
- plate material
- following equation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims 9
- 229910000881 Cu alloy Inorganic materials 0.000 claims 8
- 238000000034 method Methods 0.000 claims 6
- 238000005097 cold rolling Methods 0.000 claims 3
- 238000005096 rolling process Methods 0.000 claims 3
- 238000010438 heat treatment Methods 0.000 claims 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- 239000000203 mixture Substances 0.000 claims 2
- 101700034707 IACS Proteins 0.000 claims 1
- 238000000137 annealing Methods 0.000 claims 1
- 238000005266 casting Methods 0.000 claims 1
- 229910052804 chromium Inorganic materials 0.000 claims 1
- 229910052803 cobalt Inorganic materials 0.000 claims 1
- 239000010949 copper Substances 0.000 claims 1
- 238000001887 electron backscatter diffraction Methods 0.000 claims 1
- 238000000265 homogenisation Methods 0.000 claims 1
- 238000005098 hot rolling Methods 0.000 claims 1
- 239000012535 impurity Substances 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229910052749 magnesium Inorganic materials 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 238000003801 milling Methods 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 238000005496 tempering Methods 0.000 claims 1
- 238000009864 tensile test Methods 0.000 claims 1
- 229910052718 tin Inorganic materials 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 229910052726 zirconium Inorganic materials 0.000 claims 1
Claims (7)
導電率が38%IACS以上であり、
圧延平行方向、圧延方向に対し45°の方向、および圧延垂直方向の各方向にそれぞれ切り出した3種類の試験片について、引張試験を行なうことによって得られた公称応力−公称歪曲線から求められる値と、電子後方散乱回折(EBSD)法によって得られたCube方位面積率の値を、下記(1)式に代入して、パラメータAx(x:0°、45°、90°)の各方向の値A0°、A45°およびA90°を求め、求めた前記各方向の値A0°、A45°およびA90°を、下記(2)式に代入して算出される算術平均値Aave.が、4.0〜13.0GPa・%の範囲であり、かつ、前記算術平均値Aave.および前記パラメータAxの値を下記(3)式に代入して算出されるパラメータBx(x:0°、45°、90°)の前記各方向の値B 0° 、B 45° およびB 90° が、いずれも10%以下となることを特徴とする銅合金板材。
但し、Sc:Cube方位面積率(%)、σnは公称応力(GPa)、εnは公称歪(%)、そして、ELは破断伸び(%)を表す。
Conductivity is 38% IACS or higher,
A value obtained from the nominal stress-nominal strain curve obtained by performing a tensile test on three types of test pieces cut out in each of the rolling parallel direction, the direction of 45 ° with respect to the rolling direction, and the rolling vertical direction. And, by substituting the value of the Cube azimuth area ratio obtained by the electron rear scattering diffraction (EBSD) method into the following equation (1), in each direction of the parameter Ax (x: 0 °, 45 °, 90 °). The arithmetic average value calculated by obtaining the values A 0 ° , A 45 ° and A 90 ° and substituting the obtained values A 0 ° , A 45 ° and A 90 ° in each direction into the following equation (2). Aave. is Ri range der of 4.0~13.0GPa ·%, and the arithmetic average value Aave. and the parameters Bx (x where the value of the parameter Ax is calculated by substituting the following equation (3) : 0 °, 45 °, the copper alloy sheet wherein the respective directions of the value B 0 °, B 45 ° and B 90 ° are both characterized by Rukoto Do and 10% or less of 90 °).
However, Sc : Cube azimuth area ratio (%), σ n represents the nominal stress (GPa), ε n represents the nominal strain (%), and EL represents the elongation at break (%).
銅合金素材に、鋳造[工程1]、均質化処理[工程2]、熱間圧延[工程3]、面削[工程4]、冷間圧延[工程5]、溶体化熱処理[工程6]、中間熱処理[工程7]、仕上げ冷間圧延[工程8]、矯正[工程9]、および調質焼鈍[工程10]を順次施し、
前記仕上げ冷間圧延[工程8]における圧延時の材料の最大温度TRを、75℃以上100℃以下に制御し、
前記矯正[工程9]における材料の伸び率δを、0.1〜1.0%とし、そして、
前記調質焼鈍[工程10]の材料温度TA(℃)を、前記伸び率δとの関係で下記(5)式に示す不等式の関係を満たすように制御することを特徴とする銅合金板材の製造方法。
55×δ+450≧TA≧55×δ+350 ・・・(5) The method for producing a copper alloy plate according to claim 1 or 2.
Casting [process 1], homogenization treatment [process 2], hot rolling [process 3], face milling [process 4], cold rolling [process 5], solution heat treatment [process 6], Intermediate heat treatment [step 7], finish cold rolling [step 8], straightening [step 9], and temper tempering [step 10] are performed in sequence.
Wherein the maximum temperature T R of the rolled upon material in the finish cold rolling [step 8], and controls the 75 ° C. or higher 100 ° C. or less,
The elongation rate δ of the material in the straightening [step 9] is set to 0.1 to 1.0%, and
A copper alloy plate material characterized in that the material temperature TA (° C.) of the temper annealing [step 10] is controlled so as to satisfy the relationship of the inequality shown in the following equation (5) in relation to the elongation rate δ. Manufacturing method.
55 × δ + 450 ≧ T A ≧ 55 × δ + 350 ··· (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020019213A JP7113039B2 (en) | 2020-02-06 | 2020-02-06 | Copper alloy sheet material, its manufacturing method, drawn products, electrical and electronic component members, electromagnetic wave shielding materials, and heat dissipation components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020019213A JP7113039B2 (en) | 2020-02-06 | 2020-02-06 | Copper alloy sheet material, its manufacturing method, drawn products, electrical and electronic component members, electromagnetic wave shielding materials, and heat dissipation components |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018233487A Division JP6928597B2 (en) | 2018-12-13 | 2018-12-13 | Copper alloy plate material and its manufacturing method, drawn products, electrical and electronic parts parts, electromagnetic wave shielding materials and heat dissipation parts |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2020097793A JP2020097793A (en) | 2020-06-25 |
JP2020097793A5 true JP2020097793A5 (en) | 2021-09-09 |
JP7113039B2 JP7113039B2 (en) | 2022-08-04 |
Family
ID=71106449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020019213A Active JP7113039B2 (en) | 2020-02-06 | 2020-02-06 | Copper alloy sheet material, its manufacturing method, drawn products, electrical and electronic component members, electromagnetic wave shielding materials, and heat dissipation components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7113039B2 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4642701B2 (en) * | 2006-05-26 | 2011-03-02 | Jx日鉱日石金属株式会社 | Cu-Ni-Si alloy strips with excellent plating adhesion |
JP5170864B2 (en) * | 2006-09-13 | 2013-03-27 | 古河電気工業株式会社 | Copper-based precipitation type alloy sheet for contact material and method for producing the same |
CN102105610B (en) * | 2008-06-03 | 2013-05-29 | 古河电气工业株式会社 | Copper alloy sheet material and manufacturing method thereof |
JP5961335B2 (en) * | 2010-04-05 | 2016-08-02 | Dowaメタルテック株式会社 | Copper alloy sheet and electrical / electronic components |
CN106661673A (en) * | 2014-07-09 | 2017-05-10 | 古河电气工业株式会社 | Copper alloy sheet material, connector, and method for producing copper alloy sheet material |
JP2017089003A (en) * | 2015-11-03 | 2017-05-25 | 株式会社神戸製鋼所 | Copper alloy sheet for heat radiation component |
JP6542817B2 (en) * | 2016-10-12 | 2019-07-10 | Jx金属株式会社 | Copper alloy for electronic materials |
-
2020
- 2020-02-06 JP JP2020019213A patent/JP7113039B2/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2558564B1 (en) | 2xxx series aluminum lithium alloys having low strength differential | |
TWI465591B (en) | Cu-Ni-Si alloy and its manufacturing method | |
TWI382097B (en) | Cu-Ni-Si-Co-Cr alloy for electronic materials | |
CN106591650A (en) | Method for improving stress corrosion resisting performance of aluminum lithium alloy | |
EP3085799B1 (en) | Copper alloy and method for manufacturing the same | |
JP6406971B2 (en) | Method for producing aluminum alloy member | |
US11591682B2 (en) | Cu—Co—Si—Fe—P-based alloy with excellent bending formability and production method thereof | |
KR20170140771A (en) | High-strength 6000-based alloy thick plate having uniform strength in plate thickness direction and method for manufacturing the same | |
JP2019507252A5 (en) | ||
US9496064B2 (en) | Copper alloy for electric and electronic device, copper alloy sheet for electric and electronic device, conductive component for electric and electronic device, and terminal | |
CN107779708A (en) | A kind of high intensity super-light Mg-Li alloy and preparation method thereof | |
US10072321B2 (en) | Copper nickel alloy | |
JP5555154B2 (en) | Copper alloy for electrical and electronic parts and method for producing the same | |
CN106011523A (en) | Copper alloy sheet and press-molded product with same | |
JP6730784B2 (en) | Cu-Ni-Co-Si alloy for electronic parts | |
JP6821290B2 (en) | Cu-Ni-Co-Si alloy for electronic components | |
JP2020097793A5 (en) | ||
US10358697B2 (en) | Cu—Co—Ni—Si alloy for electronic components | |
WO2016002352A1 (en) | Copper alloy, cold-rolled metal plate and method for manufacturing same | |
US20220372596A1 (en) | Copper alloys | |
JP3763234B2 (en) | Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy | |
JP6246174B2 (en) | Cu-Co-Ni-Si alloy for electronic parts | |
JP2018204115A (en) | Copper alloy having excellent heat resistance | |
JPH0826442B2 (en) | Thermomechanical treatment method for beryllium copper alloy | |
CN116024454B (en) | Method for producing copper alloy material having workability and machinability, and copper alloy material produced thereby |