JP2020094630A - Planetary gear device - Google Patents

Planetary gear device Download PDF

Info

Publication number
JP2020094630A
JP2020094630A JP2018232561A JP2018232561A JP2020094630A JP 2020094630 A JP2020094630 A JP 2020094630A JP 2018232561 A JP2018232561 A JP 2018232561A JP 2018232561 A JP2018232561 A JP 2018232561A JP 2020094630 A JP2020094630 A JP 2020094630A
Authority
JP
Japan
Prior art keywords
planetary gear
planetary
gear
tooth
gear device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018232561A
Other languages
Japanese (ja)
Other versions
JP7177680B2 (en
Inventor
美穂 荒木
Miho Araki
美穂 荒木
安弘 岩本
Yasuhiro Iwamoto
安弘 岩本
早貴 深瀬
Saki Fukase
早貴 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Nico Transmission Co Ltd
Original Assignee
Hitachi Nico Transmission Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Nico Transmission Co Ltd filed Critical Hitachi Nico Transmission Co Ltd
Priority to JP2018232561A priority Critical patent/JP7177680B2/en
Publication of JP2020094630A publication Critical patent/JP2020094630A/en
Application granted granted Critical
Publication of JP7177680B2 publication Critical patent/JP7177680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)

Abstract

To provide a planetary gear device that can suppress dynamic load on each planetary gear and equalize static load, provided that a planetary gear with a large eccentric error is used.MEANS FOR SOLVING THE PROBLEM: A planetary gear device includes: a sun gear; multiple planetary gears arranged so as to simultaneously engage the sun gear in the same phase; and an internal gear arranged so as to engage the multiple planetary gears. The planetary gear device is assembled so that a tooth of each planetary gear where cumulative pitch error becomes the largest starts engaging a tooth of another planetary gear by being dislocated each other by a teeth number that is obtained by dividing a tooth number Z of a planetary gear by the number P of planetary gears.SELECTED DRAWING: Figure 1

Description

本発明は、遊星歯車装置に関する。 The present invention relates to a planetary gear device.

まず、図1を用いて、従来の遊星歯車装置を説明する。ここに例示する遊星歯車装置は、主に、太陽歯車21、複数の遊星歯車22(22a、22b、22c)、遊星キャリア23(23a、23b)、内歯車24から構成される、いわゆるスター型と定義される構造の遊星歯車装置20である。なお、遊星歯車22は、その回転中心を所定量偏心させて製造されたものであり、この偏心によって後述する累積ピッチ誤差(偏心誤差)が生じる。 First, a conventional planetary gear device will be described with reference to FIG. The planetary gear device illustrated here is of a so-called star type mainly composed of a sun gear 21, a plurality of planetary gears 22 (22a, 22b, 22c), a planet carrier 23 (23a, 23b), and an internal gear 24. It is a planetary gear device 20 having a defined structure. The planetary gear 22 is manufactured by eccentricizing the rotation center thereof by a predetermined amount, and this eccentricity causes a cumulative pitch error (eccentricity error) described later.

この遊星歯車装置20は、以下のように回転駆動力を伝達する。すなわち、例えば、ガスタービン用の遊星歯車装置の場合、動力源であるガスタービンと連結された入力軸25が回転駆動すると、これと一体となっている太陽歯車21も同時に回転し、これとかみ合う遊星歯車22が回転駆動される。さらに遊星歯車22とかみ合う内歯車24が回転駆動され、これと篏合している出力軸が発電機などの被動機に回転を伝達する。 The planetary gear device 20 transmits the rotational driving force as follows. That is, for example, in the case of a planetary gear device for a gas turbine, when the input shaft 25 connected to the gas turbine that is the power source is rotationally driven, the sun gear 21 integrated with the input shaft 25 also rotates at the same time and meshes therewith. The planetary gear 22 is rotationally driven. Further, an internal gear 24 meshing with the planetary gear 22 is rotationally driven, and an output shaft meshed with the internal gear 24 transmits the rotation to a driven machine such as a generator.

このようなガスタービン用の遊星歯車装置はピッチ円周速が大きいため、一般産業用の歯車装置と比較して、歯車のかみ合いに起因したねじり振動が大きい特徴がある。このねじり振動は、歯面に動荷重を発生させるため、低減が求められる。 Since the planetary gear device for such a gas turbine has a high pitch circumferential speed, it has a feature that torsional vibration caused by the meshing of gears is large as compared with a gear device for general industry. Since this torsional vibration causes a dynamic load on the tooth surface, its reduction is required.

ねじり振動の原因となる起振力は、被動歯車の駆動歯車に対する進み遅れ、すなわち伝達誤差によって発生する。伝達誤差はかみ合いの進行に伴う歯の剛性変動と、歯車の製造誤差によって発生する。 The excitation force that causes the torsional vibration is generated by the advance/lag of the driven gear with respect to the drive gear, that is, a transmission error. The transmission error occurs due to the variation in the rigidity of the teeth as the meshing progresses and the manufacturing error of the gear.

この伝達誤差を低減する遊星歯車装置としては、特許文献1に記載のものが知られており、特許文献1では、遊星歯車の偏心誤差方向が、装置軸直角断面で見た場合に、すべて所定の方向となるように組み立てることで伝達誤差を低減している。 As a planetary gear device that reduces this transmission error, the one described in Patent Document 1 is known, and in Patent Document 1, when the eccentricity error direction of the planetary gear is viewed in a cross section perpendicular to the device axis, all are predetermined. The transmission error is reduced by assembling in the direction of.

特開平11−280853号公報JP-A-11-280853

しかしながら、特許文献1の構成では、期待通りに伝達誤差を低減するには、各遊星歯車の1周分の累積ピッチ誤差(偏心誤差)を結ぶことで形成される波形を、同じくする必要があり、高精度・高額な製造技術が必要とされる。このため、コスト低減などの事情により、加工精度が悪く各遊星歯車によって累積ピッチ誤差の波形が異なり、更に各歯間にピッチ誤差のばらつきがある遊星歯車を使用せざるを得ない場合等には、期待通りに伝達誤差を低減できず、大きなねじり振動に起因する大きな動荷重が各遊星歯車に発生したり、各遊星歯車が負担する静荷重が著しく偏ったりするという問題が生じる場合がある。 However, in the configuration of Patent Document 1, in order to reduce the transmission error as expected, it is necessary to make the waveform formed by connecting the cumulative pitch error (eccentricity error) of one revolution of each planetary gear the same. Highly accurate and expensive manufacturing technology is required. For this reason, due to circumstances such as cost reduction, if the machining accuracy is poor and the planetary gears have different cumulative pitch error waveforms, and there is no choice but to use a planetary gear with pitch error variations between teeth, etc. However, the transmission error cannot be reduced as expected, and a large dynamic load due to a large torsional vibration may be generated in each planetary gear, or a static load carried by each planetary gear may be significantly biased.

そこで、本発明では、仮に各遊星歯車によって累積ピッチ誤差の波形が異なり、更に各歯間にピッチ誤差のばらつきがある遊星歯車を使用する場合であっても、各遊星歯車に掛かる動荷重を抑制したり、静荷重を均等化したりすることができる遊星歯車装置を提供することを目的とする。 Therefore, in the present invention, even if the planetary gears have different cumulative pitch error waveforms and the pitch error varies among the teeth, the dynamic load applied to each planetary gear is suppressed. It is an object of the present invention to provide a planetary gear device capable of performing a uniform load evenly.

課題を解決するために、例えば特許請求の範囲に記載の構造を採用する。 To solve the problem, for example, the structure described in the claims is adopted.

その一例を挙るならば、太陽歯車と、該太陽歯車と同一位相で同時にかみ合うように配置された複数の遊星歯車と、該複数の遊星歯車とかみ合うように配置された内歯車と、を備える遊星歯車装置であって、各遊星歯車の累積ピッチ誤差が最大となる歯が、遊星歯車の歯数Zを遊星歯車の個数pで除した歯数ずつずれてかみ合いが始まるように組み立てる。 To give an example thereof, a sun gear, a plurality of planet gears arranged so as to mesh with the sun gear at the same time, and an internal gear arranged so as to mesh with the plurality of planet gears are provided. In the planetary gear device, the teeth having the maximum cumulative pitch error of each planetary gear are assembled such that the teeth are shifted by the number of teeth Z of the planetary gear divided by the number p of the planetary gears to start meshing.

本発明の遊星歯車装置によれば、仮に偏心誤差が大きい遊星歯車を使用する場合であっても、各遊星歯車に掛かる動荷重を抑制したり、静荷重を均等化したりすることができる。 According to the planetary gear device of the present invention, even if a planetary gear having a large eccentricity error is used, it is possible to suppress the dynamic load applied to each planetary gear and equalize the static load.

従来の遊星歯車装置の構造を説明する構造図である。It is a structural diagram explaining the structure of the conventional planetary gear device. 実施例1の遊星歯車装置の要部を説明する平面図である。FIG. 3 is a plan view illustrating a main part of the planetary gear device according to the first embodiment. 実施例1の各遊星歯車の累積ピッチ誤差を説明する図である。FIG. 5 is a diagram illustrating cumulative pitch error of each planetary gear according to the first embodiment. 実施例2を説明する図である。FIG. 8 is a diagram illustrating a second embodiment. 実施例3を説明する図である。It is a figure explaining Example 3. 実施例4を説明する図である。It is a figure explaining Example 4.

以下、図面を用いて、本発明の遊星歯車装置を説明する。なお、各実施例において、同一構成部品には同符号を使用する。 Hereinafter, the planetary gear device of the present invention will be described with reference to the drawings. In each embodiment, the same reference numerals are used for the same components.

本発明の実施例1に係る遊星歯車装置20を、図2、図3を用いて説明する。なお、図1との共通点は重複説明を省略する。 The planetary gear device 20 according to the first embodiment of the present invention will be described with reference to FIGS. 2 and 3. It should be noted that redundant description is omitted for the common points with FIG.

図2は、図1に例示した構成のうち、本実施例の遊星歯車22の特徴を説明するために必要な構成を抜粋した平面図である。ここに示す遊星歯車22の各々は、Z個の歯を持つ歯車であり、各々の歯には、回転方向と逆方向に向かって、#1から#Zの歯番号を付けている。なお、本実施例では、太陽歯車21と遊星歯車22のすべてのかみ合い部において、同一位相で同時にかみ合うように、太陽歯車21、遊星歯車22、内歯車24等を設計しており、例えば、太陽歯車21の歯数を18、遊星歯車22の歯数を36、内歯車24の歯数を90、遊星歯車22の数を3、とするような組み合わせとする。 FIG. 2 is a plan view in which, out of the configurations illustrated in FIG. 1, the configurations necessary for explaining the features of the planetary gear 22 of the present embodiment are extracted. Each of the planetary gears 22 shown here is a gear having Z teeth, and the teeth are numbered from #1 to #Z in the direction opposite to the rotation direction. In this embodiment, the sun gear 21, the planetary gear 22, the internal gear 24, etc. are designed so that all the meshing parts of the sun gear 21 and the planetary gear 22 are simultaneously meshed in the same phase. The number of teeth of the gear 21 is 18, the number of teeth of the planetary gear 22 is 36, the number of teeth of the internal gear 24 is 90, and the number of the planetary gears 22 is 3.

ここで、遊星歯車22aの任意の歯#n(1≦n≦Z)が太陽歯車21の歯とピッチ点でかみ合っている状態を考える。上述したように本実施例の遊星歯車装置20では、すべてのかみ合い部において、同一位相で同時にかみ合うため、遊星歯車22aの歯#nが太陽歯車21とかみ合っている場合、遊星歯車22b、22cも太陽歯車21とかみ合っているため、以下ではそれらの遊星歯車の歯にも#nという歯番号を付ける。 Here, let us consider a state in which an arbitrary tooth #n (1≦n≦Z) of the planetary gear 22a meshes with a tooth of the sun gear 21 at a pitch point. As described above, in the planetary gear device 20 of the present embodiment, since all meshing portions simultaneously mesh with the same phase, when the teeth #n of the planetary gear 22a mesh with the sun gear 21, the planetary gears 22b and 22c also. Since they mesh with the sun gear 21, the teeth of these planetary gears are also given the tooth numbers #n in the following.

次に、遊星歯車22aの歯#1の決定方法を説明する。 Next, a method of determining the tooth #1 of the planetary gear 22a will be described.

図3に示す3a、3b、3cは、遊星歯車22a、22b、22cの累積ピッチ誤差であり、本実施例では、最終的に図3に示す特性が得られるように遊星歯車装置20を組み立てる。横軸の下方に示す、歯#A、歯#B、歯#Cは、それぞれ、累積ピッチ誤差3aが最大値となる歯、累積ピッチ誤差3bが最大値となる歯、累積ピッチ誤差3cが最大値となる歯であり、累積ピッチ誤差3aが最大値となる歯#Aを、以降では歯#1と定義する。 Reference numerals 3a, 3b and 3c shown in FIG. 3 are cumulative pitch errors of the planetary gears 22a, 22b and 22c. In this embodiment, the planetary gear device 20 is assembled so that the characteristics finally shown in FIG. 3 are obtained. Tooth #A, tooth #B, and tooth #C shown below the horizontal axis have the maximum cumulative pitch error 3a, the maximum cumulative pitch error 3b, and the maximum cumulative pitch error 3c, respectively. The tooth #A having the maximum value of the cumulative pitch error 3a is defined as tooth #1 hereinafter.

このように遊星歯車22aの歯#1を定義した場合、遊星歯車22bの歯#Bと遊星歯車22cの歯#Cは、次の式1、式2により決定することができる。 When the tooth #1 of the planetary gear 22a is defined in this way, the tooth #B of the planetary gear 22b and the tooth #C of the planetary gear 22c can be determined by the following equations 1 and 2.

Figure 2020094630
Figure 2020094630

Figure 2020094630
Figure 2020094630

ただし、Zは遊星歯車の歯数、pは遊星の個数(図2の例では「3」)である。Zがpの倍数でない場合は繰り上げまたは繰り下げによって整数に修正した値を#Bおよび#Cとする。 However, Z is the number of teeth of the planetary gear, and p is the number of planets (“3” in the example of FIG. 2). If Z is not a multiple of p, the values corrected to integers by raising or lowering are set as #B and #C.

このようにして遊星歯車22の歯#1、歯#B、歯#Cを決めた遊星歯車装置20は、以下のように製造されることが望ましい。 The planetary gear device 20 in which the teeth #1, teeth #B, and teeth #C of the planetary gear 22 are determined in this manner is preferably manufactured as follows.

まず、例えば、機械構造用炭素鋼や、機械構造用合金鋼などの柱管を焼準し、ギヤブランクを製作する。次に、例えばホブ切りなどの歯切り加工によって歯を形成する。これにより、遊星歯車22は凡そ完成するが、その後、熱処理を行っても良いし、最後に、研削などの仕上げ加工を施しても良い。 First, for example, a column tube made of carbon steel for machine structure or alloy steel for machine structure is leveled to manufacture a gear blank. Next, teeth are formed by gear cutting such as hobbing. As a result, the planetary gear 22 is almost completed, but thereafter, heat treatment may be performed, and finally, finish processing such as grinding may be performed.

遊星歯車装置20に組み込む遊星歯車22が全て完成すると、遊星歯車22の歯面のピッチ誤差をそれぞれ測定する。そして、測定したピッチ誤差に基づいて累積ピッチ誤差を算出し、累積ピッチ誤差が最大となる歯のそれぞれに何らかのマークを設ける。 When all of the planetary gears 22 incorporated in the planetary gear device 20 are completed, the pitch error of the tooth surface of the planetary gears 22 is measured. Then, the cumulative pitch error is calculated based on the measured pitch error, and some mark is provided on each tooth having the maximum cumulative pitch error.

そして、遊星歯車22aとして選択した遊星歯車22は、マークのある歯が太陽歯車1とかみ合うように組み立てる。また、遊星歯車22bとして選択した遊星歯車22は、マークのある歯から回転逆方向に#B離れた歯が太陽歯車1とかみ合うように組み立て、遊星歯車22cとして選択した遊星歯車22は、マークのある歯から回転逆方向に#C離れた歯が太陽歯車1とかみ合うよう組み立てる。 The planetary gear 22 selected as the planetary gear 22a is assembled so that the marked teeth mesh with the sun gear 1. Further, the planetary gear 22 selected as the planetary gear 22b is assembled so that the tooth separated from the marked tooth by #B in the reverse rotational direction meshes with the sun gear 1, and the planetary gear 22 selected as the planetary gear 22c is Assemble so that the tooth that is #C away from a certain tooth in the reverse rotation direction meshes with the sun gear 1.

このようにして遊星歯車装置20を組み立てることで、遊星歯車22の累積ピッチ誤差が、遊星歯車22aにおいては歯#1で最大となり、遊星歯車22bにおいては歯#Bで最大となり、遊星歯車22cにおいては歯#Cで最大となるため、図3に示すような特性を得ることができる。 By assembling the planetary gear device 20 in this manner, the cumulative pitch error of the planetary gear 22 is maximized at tooth #1 in the planetary gear 22a, maximized at tooth #B in the planetary gear 22b, and is increased at planetary gear 22c. Is the maximum at tooth #C, so that the characteristics shown in FIG. 3 can be obtained.

この結果、本実施例の遊星歯車装置においては、累積ピッチ誤差起因で発生する伝達誤差が各遊星歯車間で異なるため、遊星歯車装置全体での伝達誤差が低減できる。ひいては起振力が低減でき、ねじり振動を低減することができる。 As a result, in the planetary gear device of the present embodiment, the transmission error generated due to the accumulated pitch error differs between the planetary gears, so that the transmission error in the entire planetary gear device can be reduced. As a result, the exciting force can be reduced and the torsional vibration can be reduced.

次に、本発明の実施例2に係る遊星歯車装置を、図4を用いて説明する。なお、実施例1との共通点は重複説明を省略する。 Next, a planetary gear device according to a second embodiment of the present invention will be described with reference to FIG. It should be noted that redundant description is omitted for the common points with the first embodiment.

実施例1では、遊星歯車22の各歯間のピッチ誤差のばらつきを無視しており、故に、図3では、累積ピッチ誤差3a〜3bを滑らかな正弦波状のものとして示した。しかしながら、実際には、遊星歯車22の各歯間のピッチ誤差にばらつきが存在するため、このばらつきを考慮する必要がある。 In the first embodiment, the variation in the pitch error between the teeth of the planetary gear 22 is neglected. Therefore, in FIG. 3, the cumulative pitch errors 3a to 3b are shown as smooth sinusoidal waveforms. However, in reality, since there is a variation in the pitch error between the teeth of the planetary gear 22, it is necessary to consider this variation.

そこで、本実施例では、各々の遊星歯車22に各歯間のピッチ誤差のばらつきが存在する場合であっても、実施例1と同様の効果を得ることを目的とする。 In view of this, the present embodiment aims to obtain the same effect as that of the first embodiment even if there is a variation in pitch error between the teeth of each planetary gear 22.

図4に、各歯間のピッチ誤差がばらつく場合の、遊星歯車22a、22b、22cの累積ピッチ誤差4a、4b、4cを示す。なお、#1、#B、#Cの意味は実施例1と同様である。 FIG. 4 shows cumulative pitch errors 4a, 4b, 4c of the planetary gears 22a, 22b, 22c when the pitch error between the teeth varies. The meanings of #1, #B, and #C are the same as in the first embodiment.

実施例2においては、歯#Bおよび歯#Cは以下のように決める。 In the second embodiment, tooth #B and tooth #C are determined as follows.

まず、遊星歯車22a、22b、22cの任意の歯#nにおける累積ピッチ誤差を、それぞれ、Fpa(n)、Fpb(n)、Fpc(n)とし、これらの偏差平方和をS(n)とすると、S(n)は以下の式3で求められる。 First, the cumulative pitch error at any tooth #n of the planetary gears 22a, 22b, 22c is Fpa(n), Fpb(n), Fpc(n), and the sum of squared deviations thereof is S(n). Then, S(n) is obtained by the following Expression 3.

Figure 2020094630
Figure 2020094630

なお、 In addition,

Figure 2020094630
Figure 2020094630

はFpa(n)、Fpb(n)、Fpc(n)の平均値である。ここで以下の式4のように偏差平方和の平均値Saveを定義する。 Is the average value of Fpa(n), Fpb(n), and Fpc(n). Here, the average value Save of the sum of squared deviations is defined as in the following Expression 4.

Figure 2020094630
Figure 2020094630

そして、式4により求められる偏差平方和の平均値Saveが最大となる、#1、#B、#Cの組み合わせを採用し、実施例1と同様の手順で遊星歯車装置20を組み立てる。 Then, the combination of #1, #B, and #C that maximizes the average value Save of the sum of squared deviations obtained by Expression 4 is adopted, and the planetary gear device 20 is assembled in the same procedure as in the first embodiment.

このように累積ピッチ誤差の偏差平方和を最大にする組み立て方を採用することで、実施例1では考慮していなかった各歯間のピッチ誤差のばらつきが存在する場合であっても、実施例1と同様にねじり振動の抑制を実現することができる。 By adopting the assembling method that maximizes the sum of squared deviations of the cumulative pitch error in this way, even if there is variation in pitch error between teeth that was not considered in Example 1, As in the case of 1, it is possible to realize the suppression of torsional vibration.

次に、本発明の実施例3に係る遊星歯車装置を、図5を用いて説明する。なお、上述する実施例との共通点は重複説明を省略する。 Next, a planetary gear device according to a third embodiment of the present invention will be described with reference to FIG. It should be noted that duplicated description is omitted for common points with the above-described embodiment.

実施例1、2では、各々の遊星歯車22における歯#1、歯#B、歯#Cが略等間隔で設定されるように遊星歯車装置20を組み立てることでねじり振動、すなわち、遊星歯車22に掛かる動荷重を抑制したが、本実施例では、各々の遊星歯車22に掛かる静荷重を均等化することを目的とする。 In the first and second embodiments, the planetary gear device 20 is assembled so that the tooth #1, the tooth #B, and the tooth #C in each planetary gear 22 are set at substantially equal intervals, and thus torsional vibration, that is, the planetary gear 22 Although the dynamic load applied to the planetary gears 22 is suppressed, the present embodiment aims to equalize the static load applied to each planetary gear 22.

図5に、遊星歯車22a、22b、22cの累積ピッチ誤差5a、5b、5cを示す。なお、本実施例においても、#1、#B、#Cの意味は実施例1と同様である。 FIG. 5 shows cumulative pitch errors 5a, 5b, 5c of the planetary gears 22a, 22b, 22c. Also in this embodiment, the meanings of #1, #B and #C are the same as in the first embodiment.

実施例3においては、歯#Bおよび歯#Cは以下のように決める。 In the third embodiment, tooth #B and tooth #C are determined as follows.

すなわち、上述した式3、式4から計算される偏差平方和の平均値Saveが最小となる、#1、#B、#Cの組み合わせを採用し、実施例1と同様の手順で遊星歯車装置20を組み立てる。 That is, the combination of #1, #B, and #C that minimizes the average value Save of the sum of squared deviations calculated from the above-described formulas 3 and 4 is adopted, and the planetary gear device is performed in the same procedure as in the first embodiment. Assemble 20.

このように、累積ピッチ誤差の偏差平方和を最小にする組み立て方を採用すると、図5に示すように、#B、#Cが#1に近接する。この場合、累積ピッチ誤差起因で発生する伝達誤差が各遊星歯車間で近似するため、遊星歯車装置全体での伝達誤差を低減できず、ねじり振動を低減することはできないが、遊星歯車間の荷重を等配させることができる。 In this way, if the assembly method that minimizes the sum of squared deviations of the cumulative pitch error is adopted, #B and #C are close to #1 as shown in FIG. In this case, the transmission error generated due to the accumulated pitch error is approximated between the planetary gears, so the transmission error in the entire planetary gear device cannot be reduced and torsional vibration cannot be reduced, but the load between the planetary gears cannot be reduced. Can be evenly distributed.

次に、本発明の実施例4に係る遊星歯車装置を、図6を用いて説明する。なお、上述する実施例との共通点は重複説明を省略する。 Next, a planetary gear device according to a fourth embodiment of the present invention will be described with reference to FIG. It should be noted that duplicated description is omitted for common points with the above-described embodiment.

実施例1〜3の遊星歯車装置は、太陽歯車21と遊星歯車22のすべてのかみ合い部が同一位相で同時にかみ合うように設計されたものであったが、実施例4の遊星歯車装置は、各かみ合い部が同一位相で同時にはかみ合わず、次々とかみ合う遊星歯車装置である。例えば、太陽歯車21の歯数を19、遊星歯車22の歯数を37、内歯車の歯数を92、遊星歯車の数を3、とするような組み合わせとする。 The planetary gear devices of Examples 1 to 3 were designed such that all the meshing portions of the sun gear 21 and the planetary gear 22 are simultaneously meshed in the same phase, but the planetary gear devices of Example 4 are different from each other. This is a planetary gear device in which the meshing portions have the same phase but do not mesh simultaneously, but mesh one after another. For example, the number of teeth of the sun gear 21 is 19, the number of teeth of the planetary gear 22 is 37, the number of teeth of the internal gear is 92, and the number of planetary gears is 3.

図6に、各かみ合い部が次々とかみ合う場合の、遊星歯車22a、22b、22cの累積ピッチ誤差6a、6b、6cを示す。なお、#1、#B、#Cの意味は実施例1と同様である。 FIG. 6 shows the cumulative pitch errors 6a, 6b, 6c of the planetary gears 22a, 22b, 22c when the meshing portions mesh with each other one after another. The meanings of #1, #B, and #C are the same as in the first embodiment.

実施例4においては、#Bおよび#Cは以下のように決める。 In the fourth embodiment, #B and #C are determined as follows.

すなわち、上述した式3、式4から計算される偏差平方和の平均値Saveが最小となる、#1、#B、#Cの組み合わせを採用し、実施例1と同様の手順で遊星歯車装置20を組み立てる。 That is, the combination of #1, #B, and #C that minimizes the average value Save of the sum of squared deviations calculated from the above-described formulas 3 and 4 is adopted, and the planetary gear device is performed in the same procedure as in the first embodiment. Assemble 20.

このように、累積ピッチ誤差の偏差平方和を最小にする組み立て方を採用すると、かみ合い部が同一位相で同時にかみ合わない遊星歯車装置においても、遊星歯車間の荷重を等配させることができる。 In this way, by adopting the assembling method that minimizes the sum of squared deviations of the accumulated pitch error, even in the planetary gear device in which the meshing portions do not mesh at the same phase, the loads between the planetary gears can be equally distributed.

3a〜3c、4a〜4c、5a〜5c、6a〜6c…累積ピッチ誤差
20…遊星歯車装置、
21…太陽歯車、
22、22a、22b、22c…遊星歯車、
23、23a、23b…遊星キャリア、
24…内歯車、
25…入力軸、
3a to 3c, 4a to 4c, 5a to 5c, 6a to 6c... Cumulative pitch error 20... Planetary gear device,
21... sun gear,
22, 22a, 22b, 22c... Planetary gears,
23, 23a, 23b... planet carrier,
24... Internal gear,
25... Input shaft,

Claims (4)

太陽歯車と、該太陽歯車と同一位相で同時にかみ合うように配置された複数の遊星歯車と、該複数の遊星歯車とかみ合うように配置された内歯車と、を備える遊星歯車装置であって、
各遊星歯車の累積ピッチ誤差が最大となる歯が、遊星歯車の歯数Zを遊星歯車の個数pで除した歯数ずつずれてかみ合いが始まるように組み立てたことを特徴とする遊星歯車装置。
A planetary gear device comprising a sun gear, a plurality of planetary gears arranged to mesh with each other in the same phase as the sun gear, and an internal gear arranged to mesh with the plurality of planetary gears,
A planetary gear device characterized in that the teeth having the maximum cumulative pitch error of each planetary gear are shifted by the number of teeth Z of the planetary gear divided by the number p of planetary gears to start meshing.
太陽歯車と、該太陽歯車と同一位相で同時にかみ合うように配置された複数の遊星歯車と、該複数の遊星歯車とかみ合うように配置された内歯車と、を備える遊星歯車装置であって、
各遊星歯車の累積ピッチ誤差の偏差平方和の平均値が最大となるように組み立てたことを特徴とする遊星歯車装置。
A planetary gear device comprising a sun gear, a plurality of planetary gears arranged to mesh simultaneously with the sun gear in the same phase, and an internal gear arranged to mesh with the plurality of planetary gears,
A planetary gear device, characterized in that it is assembled so that the average value of the sum of squared deviations of the cumulative pitch error of each planetary gear is maximized.
太陽歯車と、該太陽歯車と同一位相で同時にかみ合うように配置された複数の遊星歯車と、該複数の遊星歯車とかみ合うように配置された内歯車と、を備える遊星歯車装置であって、
各遊星歯車の累積ピッチ誤差の偏差平方和の平均値が最小となるように組み立てたことを特徴とする遊星歯車装置。
A planetary gear device comprising a sun gear, a plurality of planetary gears arranged to mesh simultaneously with the sun gear in the same phase, and an internal gear arranged to mesh with the plurality of planetary gears,
A planetary gear device, characterized in that it is assembled so that the average value of the sum of squared deviations of the cumulative pitch error of each planetary gear is minimized.
太陽歯車と、該太陽歯車と次々にかみ合うように配置された複数の遊星歯車と、該複数の遊星歯車とかみ合うように配置された内歯車と、を備える遊星歯車装置であって、
各遊星歯車の累積ピッチ誤差の偏差平方和の平均値が最小となるように組み立てたことを特徴とする遊星歯車装置。
A planetary gear device comprising a sun gear, a plurality of planetary gears arranged to mesh with the sun gear one after another, and an internal gear arranged to mesh with the plurality of planetary gears,
A planetary gear device, characterized in that it is assembled so that the average value of the sum of squared deviations of the cumulative pitch error of each planetary gear is minimized.
JP2018232561A 2018-12-12 2018-12-12 planetary gear Active JP7177680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018232561A JP7177680B2 (en) 2018-12-12 2018-12-12 planetary gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018232561A JP7177680B2 (en) 2018-12-12 2018-12-12 planetary gear

Publications (2)

Publication Number Publication Date
JP2020094630A true JP2020094630A (en) 2020-06-18
JP7177680B2 JP7177680B2 (en) 2022-11-24

Family

ID=71085532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018232561A Active JP7177680B2 (en) 2018-12-12 2018-12-12 planetary gear

Country Status (1)

Country Link
JP (1) JP7177680B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296760A (en) * 1992-04-16 1993-11-09 Toyota Motor Corp Eccentric measuring device for gear tooth
JPH11280853A (en) * 1998-03-26 1999-10-15 Harmonic Drive Syst Ind Co Ltd Method of assemblying planetary gear unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296760A (en) * 1992-04-16 1993-11-09 Toyota Motor Corp Eccentric measuring device for gear tooth
JPH11280853A (en) * 1998-03-26 1999-10-15 Harmonic Drive Syst Ind Co Ltd Method of assemblying planetary gear unit

Also Published As

Publication number Publication date
JP7177680B2 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
JP3540815B2 (en) Phase correction of gear teeth by crowning
JP4366188B2 (en) Gearbox series
KR20070006729A (en) Eccentric oscillating-type planetary gear device
US6682456B2 (en) Multi-mesh gear system
Iglesias et al. Planet position errors in planetary transmission: Effect on load sharing and transmission error
Chen et al. Dynamic characteristics of a planetary gear system based on contact status of the tooth surface
JP4495009B2 (en) Transmission gear and its manufacturing method
JP7177680B2 (en) planetary gear
DE102011001039A1 (en) Adaptive transmission
JP6878036B2 (en) Eccentric swing type gear device
JP6936367B2 (en) High ratio differential reducer
JP5731277B2 (en) Flexure meshing gear device and method of manufacturing external gear used therefor
JP4935510B2 (en) Oscillating gear unit
CN115795703A (en) Method for establishing parallel shaft gear system dynamic simulation model under broken tooth fault
He et al. Multi-Tooth Contact Analysis and Tooth Profile Modification Optimization for Cycloid Drives in Industrial Robots
JP3733908B2 (en) Hypoid gear design method
JP2002266955A (en) Pivoting inscribing engagement planetary gear mechanism and angle transmission error reduction method
JP2008256199A (en) Precessional motion reduction gear
Ye et al. Loaded tooth contact analysis of power-split gear drives considering shaft deformation and assembly errors
JPH04290643A (en) Trochoid type toothed internal type planetary gear structure
JP2005325865A (en) Eccentric swing type planetary gear device
Ren et al. Investigation of the effect of manufacturing errors on dynamic characteristics of herringbone planetary gear trains
Calvin A comparative study between axial and radial fluxfocusing magnetic gear topologies and mechanical gearboxes
US11592098B2 (en) Non-axisymmetiric gear
JP7262087B2 (en) Equal reduction gear by variable linear velocity planetary gear mechanism with two sun gears

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221111

R150 Certificate of patent or registration of utility model

Ref document number: 7177680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150