JP7262087B2 - Equal reduction gear by variable linear velocity planetary gear mechanism with two sun gears - Google Patents

Equal reduction gear by variable linear velocity planetary gear mechanism with two sun gears Download PDF

Info

Publication number
JP7262087B2
JP7262087B2 JP2021538054A JP2021538054A JP7262087B2 JP 7262087 B2 JP7262087 B2 JP 7262087B2 JP 2021538054 A JP2021538054 A JP 2021538054A JP 2021538054 A JP2021538054 A JP 2021538054A JP 7262087 B2 JP7262087 B2 JP 7262087B2
Authority
JP
Japan
Prior art keywords
gear
planetary gear
teeth
planetary
sun gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021538054A
Other languages
Japanese (ja)
Other versions
JP2022516874A (en
Inventor
▲燦▼ ▲羅▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2022516874A publication Critical patent/JP2022516874A/en
Application granted granted Critical
Publication of JP7262087B2 publication Critical patent/JP7262087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/2863Arrangements for adjusting or for taking-up backlash
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/023Mounting or installation of gears or shafts in the gearboxes, e.g. methods or means for assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H2001/2881Toothed gearings for conveying rotary motion with gears having orbital motion comprising two axially spaced central gears, i.e. ring or sun gear, engaged by at least one common orbital gear wherein one of the central gears is forming the output

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Description

本発明は遊星歯車機構伝動装置の技術分野に関し、特に、太陽歯車を2つ備える可変線速度遊星歯車機構を有し、各歯車の歯数の組み合わせが歯車の組数にマッチし、実際的な組み立てが可能で均等に動作する減速機に関する。 TECHNICAL FIELD The present invention relates to the technical field of a planetary gear mechanism transmission, and more particularly, it has a variable linear velocity planetary gear mechanism with two sun gears, and the combination of the number of teeth of each gear matches the number of gear groups, which is practical. It relates to a speed reducer that can be assembled and operates evenly.

通常の遊星歯車機構は機械分野の一般的な構造であり、太陽歯車と、内歯車と、遊星キャリヤとの3つの部品を有し、遊星キャリヤには複数の遊星歯車軸が設けられ、各遊星歯車軸に1つの歯車だけが設けられるため、通常の遊星歯車である。通常の遊星歯車機構と違って、本発明に記載の太陽歯車を2つ備える可変線速度遊星歯車機構は左太陽歯車と、右太陽歯車と、遊星歯車を備える遊星キャリヤとの3つの部品によって構成される。遊星キャリヤは2つ以上の遊星歯車軸線を備え、各遊星歯車軸線には左側から左遊星歯車、右遊星歯車がこの順に設けられる。太陽歯車を2つ備える可変線速度遊星歯車機構は本分野の命名規則に従えば「二重太陽歯車の外噛合遊星歯車機構」と称すべきである。本分野では「太陽歯車を2つ備える可変線速度遊星歯車機構」は独立的な遊星歯車機構と認められず、このような遊星歯車機構は「ファーガソン不思議機械」で、実際的な組み立てが不可能で、均等に動作できないものとされている。本発明者は次のように提案する。歯車の組数を2以上とし、値域規定パラメータを設定し、歯数の組み合わせが歯車の組数にマッチすることをルールとして、遊星歯車の製造組み立て規則を適用し、歯車のピッチ円半径の規定を適用し、遊星キャリヤを入力端に接続し、一方の太陽歯車をロック端に接続し、他方の太陽歯車を出力端に接続することにより、太陽歯車を2つ備える可変線速度遊星歯車機構は実際的な組み立てが可能で均等に動作する減速機として成立する。歯車の組数が2未満である場合に、遊星歯車機構の動作が不均等で、動作中に大きな振動が伴う。歯数の組み合わせが値域規定パラメータに合致しない場合に、減速機は成立しない。例えば、左太陽歯車、右太陽歯車、左遊星歯車、右遊星歯車の歯数の組み合わせが60、80、18、24である場合に、歯数の組み合わせにより値域規定パラメータの値が1.0になり、規定に合致せず、太陽歯車を2つ備える可変線速度遊星歯車機構は減速伝動を行うことができない。歯数の組み合わせが歯車の組数にマッチしない場合に、太陽歯車可変線速度遊星歯車機構は実際的に組み立てることができない。例えば、左太陽歯車、右太陽歯車、左遊星歯車、右遊星歯車の歯数の組み合わせが99、100、100、101で、歯車の組数が2である場合に、歯数の組み合わせが歯車の組数にマッチせず、当該太陽歯車を2つ備える可変線速度遊星歯車機構は実際的に組み立てることができない。遊星歯車の製造組み立て規則に合致せず、歯車のピッチ円半径の規定に合致しないため、本分野では太陽歯車を2つ備える可変線速度遊星歯車機構は実際的に組み立てられないものとされている。 A normal planetary gear mechanism is a common structure in the mechanical field, and has three parts: a sun gear, an internal gear, and a planetary carrier. It is a normal planetary gear since only one gear is provided on the gear shaft. Different from the ordinary planetary gear mechanism, the variable linear velocity planetary gear mechanism with two sun gears according to the present invention is composed of three parts: a left sun gear, a right sun gear and a planetary carrier with planetary gears. be done. The planetary carrier has two or more planetary gear axes, and each planetary gear axis is provided with a left planetary gear and a right planetary gear in this order from the left side. A variable linear velocity planetary gear mechanism with two sun gears should be called a "double sun gear external meshing planetary gear mechanism" according to the nomenclature in the art. In this field, "a variable linear velocity planetary gear mechanism with two sun gears" is not recognized as an independent planetary gear mechanism, and such a planetary gear mechanism is a "Ferguson wonder machine" and practical assembly is impossible. It is said that they cannot operate evenly. The inventor proposes as follows. Set the number of gear groups to 2 or more, set the value range defining parameter, and apply the manufacturing and assembly rules for planetary gears with the rule that the combination of the number of teeth matches the number of gear groups, and specify the pitch circle radius of the gear. and connecting the planet carrier to the input end, one sun gear to the locking end, and the other sun gear to the output end, the variable linear velocity planetary gear mechanism with two sun gears is It is established as a speed reducer that can be practically assembled and operates evenly. If the number of sets of gears is less than 2, the operation of the planetary gear mechanism is uneven, accompanied by large vibrations during operation. If the combination of the number of teeth does not match the range defining parameters, the speed reducer will not work. For example, when the combinations of the number of teeth of the left sun gear, the right sun gear, the left planetary gear, and the right planetary gear are 60, 80, 18, and 24, the value of the range defining parameter becomes 1.0 depending on the combination of the numbers of teeth. Therefore, the variable linear velocity planetary gear mechanism with two sun gears cannot perform reduction transmission. If the combination of the number of teeth does not match the number of sets of gears, the sun gear variable linear velocity planetary gear mechanism cannot be practically assembled. For example, if the combinations of the number of teeth of the left sun gear, the right sun gear, the left planetary gear, and the right planetary gear are 99, 100, 100, and 101, and the number of gear sets is 2, the combination of the number of teeth is A variable linear velocity planetary gear mechanism with two such sun gears, which does not match the number of sets, cannot be practically assembled. In this field, it is considered that a variable linear velocity planetary gear mechanism with two sun gears cannot be practically assembled because it does not conform to the manufacturing and assembly rules for planetary gears and does not conform to the pitch circle radius regulations of gears. .

本発明の目的は太陽歯車を2つ備える可変線速度遊星歯車機構を利用して、歯車の組数を2以上とし、値域規定パラメータを設定し、歯数の組み合わせが歯車の組数にマッチすることをルールとして歯数の組み合わせ及び歯車の組数を設定し、遊星歯車の製造組み立て規則を適用し、歯車のピッチ円半径の規定を適用し、3つの部品と入力端、出力端、ロック端との接続方法を決定して、実際的な組み立てが可能で均等に動作する減速機を構成することである。 The object of the present invention is to use a variable linear velocity planetary gear mechanism with two sun gears, set the number of gear groups to two or more, set a range defining parameter, and match the number of teeth to the number of gear groups. Based on this rule, the combination of the number of teeth and the number of sets of gears are set, the manufacturing and assembly rules for planetary gears are applied, the pitch circle radius of gears is applied, and the three parts, input end, output end, and lock end, are applied. and to construct a speed reducer that can be practically assembled and operates uniformly.

太陽歯車を2つ備える可変線速度遊星歯車機構による均等減速機は、太陽歯車を2つ備える可変線速度遊星歯車機構と、入力端と、出力端と、ロック端と、軸受などの補助的な装置とを含む。 A uniform reducer by a variable linear velocity planetary gear mechanism with two sun gears comprises a variable linear velocity planetary gear mechanism with two sun gears, an input end, an output end, a lock end, and an auxiliary such as a bearing. device.

太陽歯車を2つ備える可変線速度遊星歯車機構は左太陽歯車と、右太陽歯車と、遊星歯車を備える遊星キャリヤとの3つの部品によって構成される。左太陽歯車、右太陽歯車は左側からこの順に内側に位置し、前記太陽歯車は歯車であり、2つの太陽歯車のピッチ円半径が異なる。遊星歯車を備える遊星キャリヤは外側に位置し、遊星キャリヤは遊星キャリヤ上の軸受によって各遊星歯車を支持し、各遊星歯車が同じであり、遊星キャリヤによって支持される遊星歯車の軸線の数量は歯車の組数Kである。3つの部品は公転軸線と称する共通の回転軸線を有し、各遊星歯車軸線を公転軸線の周りに均一に配置し、各遊星歯車軸線はいずれも公転軸線に平行であり、且つ各遊星歯車軸線の公転軸線に対する距離が等しく、当該距離が基準中心距離である。各遊星歯車はその軸線に左側から、左遊星歯車、右遊星歯車の2つの歯車が左右の順に設けられ、各対の左遊星歯車と右遊星歯車がそれぞれ接続され、左遊星歯車と右遊星歯車は回転数は同じであるがピッチ円半径は異なる。左遊星歯車が左太陽歯車に噛合し、右遊星歯車が右太陽歯車に噛合し、2つの太陽歯車は互いに接続せず噛合しない。軸受を設けて、3つの部品が相対的に回転できるようにし、各遊星歯車が遊星キャリヤに追従して公転軸線の周りを公転し且つその遊星歯車軸線の周りを自転できるようにし、3つの部品が公転軸線の方向に沿って相対的に摺動できないようにし、遊星歯車と遊星キャリヤは公転軸線に平行の方向に沿って相対的に摺動できないようにする。左遊星歯車と右遊星歯車のピッチ円線速度が異なり、左太陽歯車と右太陽歯車のピッチ円線速度も異なり、同一の遊星歯車機構に2つのピッチ円線速度があるため、「可変線速度遊星歯車機構」と称する。前記遊星キャリヤが各遊星歯車を支持する方式は二通りあり、方式1は遊星歯車を軸とし、遊星キャリヤを軸受とすることであり、図1、図3に示すとおりである。方式2は遊星キャリヤを軸とし、遊星歯車を軸受とすることであり、図2、図4に示すとおりである。遊星キャリヤが各遊星歯車を支持するこの2つの方式は技術効果が同じであり、他の構造が同じである条件下では、減速機の伝動比が完全に同じである。前記歯数の組み合わせとは、左太陽歯車の歯数、右太陽歯車の歯数、左遊星歯車の歯数及び右遊星歯車の歯数、この4つの歯車の歯数のそれぞれのセットである。「右太陽歯車の歯数*左遊星歯車の歯数/(左太陽歯車の歯数*右遊星歯車の歯数)」が本発明の値域規定パラメータになる。 A variable linear velocity planetary gear mechanism with two sun gears is composed of three parts: a left sun gear, a right sun gear, and a planetary carrier with planetary gears. The left sun gear and the right sun gear are positioned inward in this order from the left side, the sun gear is a gear, and the two sun gears have different pitch circle radii. A planetary carrier with planetary gears is located outside, the planetary carrier supports each planetary gear by bearings on the planetary carrier, each planetary gear is the same, and the number of planetary gear axes supported by the planetary carrier is equal to the gear is the number of sets K of . The three parts have a common axis of rotation called the axis of revolution, with each planetary gear axis evenly spaced around the revolution axis, each planetary gear axis parallel to the orbital axis, and each planetary gear axis are equal to the axis of revolution, and this distance is the reference center distance. Each planetary gear is provided with two gears, a left planetary gear and a right planetary gear, in the order from left to right on its axis, and each pair of left planetary gear and right planetary gear is connected to each other, and the left planetary gear and right planetary gear are connected to each other. have the same number of revolutions but different pitch circle radii. The left planetary gear meshes with the left sun gear, the right planetary gear meshes with the right sun gear, and the two sun gears do not connect or mesh with each other. A bearing is provided to allow the three parts to rotate relative to each other, so that each planetary gear follows the planetary carrier to revolve around its revolution axis and rotate around its planetary gear axis, and the three parts are prevented from sliding relative to each other along the direction of the axis of revolution, and the planetary gear and the planetary carrier are prevented from sliding relative to each other along the direction parallel to the axis of revolution. The left planetary gear and the right planetary gear have different pitch linear velocities, the left sun gear and the right sun gear have different pitch linear velocities, and the same planetary gear mechanism has two pitch linear velocities. planetary gear mechanism”. There are two methods for the planetary carrier to support each planetary gear. Method 1 is to use the planetary gear as a shaft and the planetary carrier as a bearing, as shown in FIGS. Method 2 uses a planetary carrier as an axis and a planetary gear as a bearing, as shown in FIGS. The two ways that the planetary carrier supports each planetary gear have the same technical effect, and under the condition that other structures are the same, the transmission ratio of the speed reducer is exactly the same. The combination of the number of teeth is a set of the number of teeth of the left sun gear, the number of teeth of the right sun gear, the number of teeth of the left planetary gear, the number of teeth of the right planetary gear, and the number of teeth of these four gears. "Number of teeth of right sun gear*Number of teeth of left planetary gear/(Number of teeth of left sun gear*Number of teeth of right planetary gear)" is the value range defining parameter of the present invention.

前記値域規定パラメータとしては、各歯数の組み合わせにより値域規定パラメータの値が0.875より大きく、1.142857未満で且つ1.0ではない。 As for the range defining parameter, the value of the range defining parameter is greater than 0.875, less than 1.142857, and not 1.0 for each combination of numbers of teeth.

太陽歯車を2つ備える可変線速度遊星歯車機構の歯車の組数Kは2以上の整数とし、歯数の組み合わせ及び歯車の組数を設定する時の、歯数の組み合わせが歯車の組数にマッチするルールは次のとおりである。左太陽歯車の歯数と右太陽歯車の歯数の差の絶対値が2の倍数である場合に、歯車の組数は2とし、左太陽歯車の歯数と右太陽歯車の歯数の差の絶対値が3の倍数でる場合に、歯車の組数は3とし、左太陽歯車の歯数と右太陽歯車の歯数の差の絶対値が4の倍数である場合に、歯車の組数は4、2のいずれかとし、左太陽歯車の歯数と右太陽歯車の歯数の差の絶対値が5の倍数である場合に、歯車の組数は5とし、左太陽歯車の歯数と右太陽歯車の歯数の差の絶対値が6の倍数である場合に、歯車の組数は6、3、2のいずれかとし、左太陽歯車の歯数と右太陽歯車の歯数の差の絶対値が8の倍数である場合に、歯車の組数は8、4、2のいずれかとし、左太陽歯車の歯数と右太陽歯車の歯数の差の絶対値が10の倍数である場合に、歯車の組数は5、2のいずれかとする。隣り合う遊星歯車が互いに衝突し合うことを避けるために歯車の組数は大きすぎるようにすべきでない。 The gear set number K of the variable linear velocity planetary gear mechanism having two sun gears is an integer of 2 or more, and when setting the number of teeth and the number of gear sets, the combination of the number of teeth is the number of gear sets. The rules to match are: When the absolute value of the difference between the number of teeth of the left sun gear and the number of teeth of the right sun gear is a multiple of 2, the number of gear sets shall be 2, and the difference between the number of teeth of the left sun gear and the number of teeth of the right sun gear When the absolute value of is a multiple of 3, the number of gear groups shall be 3, and when the absolute value of the difference between the number of teeth of the left sun gear and the number of teeth of the right sun gear is a multiple of 4, the number of gear groups is either 4 or 2, and when the absolute value of the difference between the number of teeth of the left sun gear and the number of teeth of the right sun gear is a multiple of 5, the number of gear sets is 5, and the number of teeth of the left sun gear When the absolute value of the difference between the number of teeth of the right sun gear and the number of teeth of the right sun gear is a multiple of 6, the number of sets of gears shall be either 6, 3, or 2, and the number of teeth of the left sun gear and the number of teeth of the right sun gear shall be When the absolute value of the difference is a multiple of 8, the number of gear sets shall be 8, 4, or 2, and the absolute value of the difference between the number of teeth of the left sun gear and the number of teeth of the right sun gear shall be a multiple of 10. , the number of sets of gears is either 5 or 2. The number of gear sets should not be too large to avoid neighboring planetary gears colliding with each other.

太陽歯車を2つ備える遊星歯車機構には公転軸線に垂直で、左遊星歯車のそれぞれに接する断面が設けられ、左断面と称する。一定の距離を置いて、公転軸線に垂直で、右遊星歯車のそれぞれに接するもう1つの断面が設けられ、右断面と称する。左断面、右断面において、遊星歯車の1つの歯の断面のエッジカーブにおける、当該歯底中点から次の歯底中点までは完全な歯と称し、歯の断面のエッジカーブの形状が正弦曲線のような形状であるかどうかに関わらず、当該歯底中点の位相角値は0で、当該歯の歯先中点の位相角値はπであり、次の歯底中点の位相角値は2πである。このように、ピッチ円弧を横座標軸とすると、歯の断面のエッジカーブの各点には対応の横座標値、つまり位相角値がある。このように歯の断面のエッジカーブにおける各点に位相角値を与える方法は、モータ分野ではよく用いられ、機械分野で理解されることだろう。図6を参照する。前記次の歯底中点は当該歯で位相角値が2πになる点で、隣り合う前の歯で位相角値が4πになる点でもあり、隣り合う次の歯で位相角値が0になる点でもある。太陽歯車を2つ備える可変線速度遊星歯車機構の各遊星歯車に、左断面、右断面の両方に接する径方向断面が設けられ、これにより左遊星歯車歯の位相角値と右遊星歯車歯の位相角値が等しい径方向断面は必ず存在し、当該径方向断面は等相面であり、等相面と左断面における歯の断面のエッジカーブとの交点は左等相点であり、等相面と右断面における歯の断面のエッジカーブとの交点は右等相点であり、当該左等相点、当該右等相点の位相角値は等相角値aであり、aの値の範囲は0から2πである。本発明で各遊星歯車は少なくとも1つの等相面を有する。左遊星歯車の歯数と右遊星歯車の歯数が等しい場合に、当該遊星歯車は無数の等相面を有する。太陽歯車を2つ備える可変線速度遊星歯車機構において、歯車の組数Kが設定され、時計回りの方向における、1つ目の遊星歯車軸線と公転軸線の属する平面は第1取付け面であり、2つ目の遊星歯車軸線と公転軸線の属する平面は第2取付け面であり、3つ目の遊星歯車軸線と公転軸線の属する平面は第3取付け面であり、このようにして第4取付け面、第5取付け面、第6取付け面、第7取付け面、そして最終的にK番目の遊星歯車軸線と公転軸線の属する平面として第K取付け面を決定する。隣り合う取付け面の夾角は(360度/K)である。左太陽歯車の歯数を歯車の組数Kで割って、剰余を得て、剰余値は0から(K-1)の範囲にあり、整数である。隣り合う遊星歯車の等相角値の差は(2π*剰余値/K)である。 A planetary gear mechanism with two sun gears is provided with a section perpendicular to the axis of revolution and in contact with each of the left planetary gears, which is called the left section. At a certain distance, another section perpendicular to the axis of revolution and tangential to each of the right planetary gears is provided, referred to as the right section. In the left cross section and right cross section, in the edge curve of one tooth cross section of the planetary gear, from the midpoint of the root to the midpoint of the next root is called a complete tooth, and the shape of the edge curve of the cross section of the tooth is sine. Regardless of whether it is curved or not, the phase angle value of the root midpoint is 0, the phase angle value of the tip midpoint of the tooth is π, and the phase of the next root midpoint is The angular value is 2π. Thus, with the pitch arc as the abscissa axis, each point on the edge curve of the tooth cross-section has a corresponding abscissa value, or phase angle value. This method of giving a phase angle value to each point on the edge curve of the tooth cross section is commonly used in the motor field and will be understood in the mechanical field. Please refer to FIG. The midpoint of the next tooth bottom is the point where the phase angle value of the tooth is 2π, and the point where the phase angle value of the adjacent previous tooth is 4π, and the phase angle value of the next adjacent tooth is 0. It is also a point. Each planetary gear of a variable linear velocity planetary gear mechanism with two sun gears is provided with a radial section that contacts both the left section and the right section, which gives the phase angle value of the left planetary gear tooth and the value of the right planetary gear tooth. There always exists a radial section with the same phase angle value, the radial section is an equiphase surface, and the intersection of the equiphase surface and the edge curve of the tooth section in the left section is the left equiphase point. The intersection of the surface and the edge curve of the tooth section in the right section is the right equiphase point, the left equiphase point, the phase angle value of the right equiphase point is the equiphase angle value a, and the value of a The range is 0 to 2π. In the present invention each planetary gear has at least one equiphase surface. When the number of teeth of the left planetary gear and the number of teeth of the right planetary gear are equal, the planetary gear has an infinite number of equiphase surfaces. In a variable linear velocity planetary gear mechanism having two sun gears, the number of sets of gears K is set, and the plane to which the first planetary gear axis and the revolution axis belong in the clockwise direction is the first mounting surface, The plane to which the second planetary gear axis and the revolution axis belong is the second mounting surface, the plane to which the third planetary gear axis and the revolution axis belong is the third mounting surface, and thus the fourth mounting surface. , the fifth mounting surface, the sixth mounting surface, the seventh mounting surface, and finally the Kth mounting surface as the plane to which the Kth planetary gear axis and revolution axis belong. The included angle between adjacent mounting surfaces is (360 degrees/K). The number of teeth of the left sun gear is divided by the number of gear sets K to obtain a remainder, and the remainder value ranges from 0 to (K-1) and is an integer. The difference between equiphase angle values of adjacent planetary gears is (2π*remainder value/K).

遊星歯車の製造組み立て規則は次のとおりである。各遊星歯車を製造する時は、1つ目の遊星歯車には、等相角値がaになるように等相面を選択し、ここでaは一般に0とし、2つ目の遊星歯車には、等相角値が(a+1*2π*剰余値/K)になるように等相面を選択し、3つ目の遊星歯車には、等相角値が(a+2*2π*剰余値/K)になるように等相面を選択し、このようにして4つ目の遊星歯車、5つ目の遊星歯車、6つ目の遊星歯車、7つ目の遊星歯車を順次に製造し、最終的にK番目の遊星歯車において、等相角値が(a+(K-1)*2π*剰余値/K)になるように等相面を選択する。各遊星歯車を組み立てる時は、2つの太陽歯車、遊星キャリヤを公転軸線上の所定の位置に組み立て、各取付け面を確定し、1つ目の遊星歯車の等相角値がaである等相面を第1取付け面に重ね合わせ、左右等相点を基準中心距離以内にセットして、1つ目の遊星歯車を組み立て、2つ目の遊星歯車の等相角値が(a+1*2π*剰余値/K)である等相面を第2取付け面に重ね合わせ、左右等相点を基準中心距離以内にセットして、2つ目の遊星歯車を組み立て、3つ目の遊星歯車の等相角値が(a+2*2π*剰余値/K)である等相面を第3取付け面に重ね合わせ、左右等相点を基準中心距離以内にセットして、3つ目の遊星歯車を組み立て、このようにして4つ目の遊星歯車、5つ目の遊星歯車、6つ目の遊星歯車、7つ目の遊星歯車を順次に組み立て、最終的にはK番目の遊星歯車の等相角値が(a+(K-1)*2π*剰余値/K)である等相面を第K取付け面に重ね合わせ、左右等相点を基準中心距離以内にセットして、K番目の遊星歯車を組み立てる。 The manufacturing and assembly rules for planetary gears are as follows. When manufacturing each planetary gear, for the first planetary gear, the equiphase surface is selected so that the equiphase angle value is a, where a is generally 0, and for the second planetary gear, selects an equiphase surface such that the equiphase angle value is (a+1*2π*modulus value/K), and for the third planetary gear, the equiphase angle value is (a+2*2π*modulus value/ K), and thus manufacturing the 4th planetary gear, the 5th planetary gear, the 6th planetary gear, the 7th planetary gear in sequence, Finally, in the K-th planetary gear, an equiphase surface is selected so that the equiphase angle value is (a+(K−1)*2π*remainder/K). When assembling each planetary gear, two sun gears and planetary carriers are assembled at predetermined positions on the revolution axis, each mounting surface is determined, and the equiphase angle value of the first planetary gear is a. The surface is superimposed on the first mounting surface, the left and right equiphase points are set within the reference center distance, the first planetary gear is assembled, and the equiphase angle value of the second planetary gear is (a+1*2π* The equiphase surface that is the remainder value /K) is superimposed on the second mounting surface, the left and right equiphase points are set within the reference center distance, the second planetary gear is assembled, and the third planetary gear etc. The equiphase surface whose phase angle value is (a+2*2π*remainder/K) is superimposed on the third mounting surface, and the left and right equiphase points are set within the reference center distance to assemble the third planetary gear. , in this way, the fourth planetary gear, the fifth planetary gear, the sixth planetary gear, and the seventh planetary gear are sequentially assembled, and finally the equiphase angle of the Kth planetary gear is An equiphase surface whose value is (a+(K−1)*2π*remainder value/K) is superimposed on the Kth mounting surface, and the left and right equiphase points are set within the reference center distance, and the Kth planetary gear Assemble the

歯車のピッチ円半径の規定は次のとおりである。左太陽歯車の歯数/左遊星歯車の歯数=左太陽歯車のピッチ円半径/左遊星歯車のピッチ円半径で、且つ左太陽歯車のピッチ円半径+左遊星歯車のピッチ円半径=基準中心距離であるように、左太陽歯車のピッチ円半径及び左遊星歯車のピッチ円半径を設定する。また右太陽歯車の歯数/右遊星歯車の歯数=右太陽歯車のピッチ円半径/右遊星歯車のピッチ円半径で、且つ右太陽歯車のピッチ円半径+右遊星歯車のピッチ円半径=基準中心距離であるように、右太陽歯車のピッチ円半径及び右遊星歯車のピッチ円半径を設定する。左太陽歯車、各左遊星歯車、右太陽歯車、各右遊星歯車はいずれも当該規定に合致すべきである。本分野で周知しているように、基準中心距離、歯車のピッチ円半径は実際には一定の範囲の偏差が認められる。 The regulations for the pitch circle radius of gears are as follows. The number of teeth of the left sun gear/the number of teeth of the left planetary gear = the pitch circle radius of the left sun gear/the pitch circle radius of the left planetary gear, and the pitch circle radius of the left sun gear + the pitch circle radius of the left planetary gear = the reference center Set the pitch radius of the left sun gear and the pitch radius of the left planetary gear to be the distance. The number of teeth of the right sun gear/the number of teeth of the right planetary gear = the pitch circle radius of the right sun gear/the pitch circle radius of the right planetary gear, and the pitch circle radius of the right sun gear + the pitch circle radius of the right planetary gear = the reference Set the pitch radius of the right sun gear and the pitch radius of the right planetary gear to be the center distance. The left sun gear, each left planetary gear, the right sun gear, each right planetary gear should all meet this regulation. As is well known in this field, the reference center distance and pitch circle radius of the gear are actually allowed to deviate within a certain range.

太陽歯車を2つ備える可変線速度遊星歯車機構の3つの部品と入力端、出力端、ロック端の接続方法は二通りあり、いずれかの接続方法で減速機を構成し、それぞれの伝動比が異なる。接続方法1として、遊星キャリヤが入力端に接続され、左太陽歯車が出力端に接続され、右太陽歯車がロック端に接続され、遊星キャリヤから左太陽歯車への伝動の伝動比は左伝動比であり、左伝動比=1/(1-右太陽歯車の歯数*左遊星歯車の歯数/(左太陽歯車の歯数*右遊星歯車の歯数))である。接続方法2として、遊星キャリヤが入力端に接続され、右太陽歯車が出力端に接続され、左太陽歯車がロック端に接続され、遊星キャリヤから右太陽歯車への伝動の伝動比は右伝動比であり、右伝動比=1/(1-左太陽歯車の歯数*右遊星歯車の歯数/(右太陽歯車の歯数*左遊星歯車の歯数))である。導くと、右伝動比=左伝動比の反数+1.0ということが分かる。接続方法1は図1、図2を参照し、接続方法2は図3、図4を参照する。伝動比の値が正である場合に、入力端の回転数と出力端の回転数の方向が同じであり、伝動比の値が負である場合に、入力端の回転数と出力端の回転数の方向が逆である。入力端は動力装置に接続されて、動力を入力する。出力端は動力使用装置に接続されて、動力を出力する。ロック端は減速機筐体などの回転数ゼロの装置に接続され、ロック端の回転数はゼロである。ロック端の接続をそのまま保持し、入力端に接続する部品と出力端に接続する部品を入れ替えると、減速機が加速器になり、当該加速器の伝動比は対応の減速機の伝動比の逆数である。前記接続とは機械接続装置を介して2つの対象を接続することであり、これにより2つの対象の回転数が完全に同じである。「*」は乗算記号、「/」は除算記号、「=」は等号記号、「-」は減算記号、「+」は加算記号であり、「π」は円周率記号で位相角度を表す。 There are two ways to connect the three parts of the variable linear velocity planetary gear mechanism with two sun gears, the input end, the output end and the lock end. different. As connection method 1, the planet carrier is connected to the input end, the left sun gear is connected to the output end, the right sun gear is connected to the lock end, and the transmission ratio of the transmission from the planet carrier to the left sun gear is the left transmission ratio and the left transmission ratio=1/(1−number of teeth of right sun gear*number of teeth of left planetary gear/(number of teeth of left sun gear*number of teeth of right planetary gear)). As connection method 2, the planet carrier is connected to the input end, the right sun gear is connected to the output end, the left sun gear is connected to the lock end, and the transmission ratio of the transmission from the planet carrier to the right sun gear is the right transmission ratio and the right transmission ratio=1/(1−number of teeth of left sun gear*number of teeth of right planetary gear/(number of teeth of right sun gear*number of teeth of left planetary gear)). As a result, it can be seen that the right transmission ratio = the reciprocal of the left transmission ratio + 1.0. 1 and 2 for connection method 1, and FIGS. 3 and 4 for connection method 2. FIG. When the transmission ratio value is positive, the direction of the rotation speed of the input end and the rotation speed of the output end is the same; when the value of the transmission ratio is negative, the rotation speed of the input end and the rotation speed of the output end The direction of the numbers is reversed. The input end is connected to the power device to input power. The output end is connected to a power using device to output power. The lock end is connected to a zero rotation speed device such as a speed reducer housing, and the rotation speed of the lock end is zero. Keeping the lock end connection as it is, if the part connected to the input end and the part connected to the output end are exchanged, the reducer becomes an accelerator, and the transmission ratio of the accelerator is the reciprocal of the transmission ratio of the corresponding reducer. . Said connection is the connection of two objects via a mechanical connection device, so that the rotational speeds of the two objects are exactly the same. “*” is the multiplication sign, “/” is the division sign, “=” is the equal sign, “-” is the subtraction sign, “+” is the addition sign, and “π” is the pi sign, which indicates the phase angle. show.

歯車の組数が2以上であることは、本発明の減速機が均等に動作するための条件である。太陽歯車を2つ備える可変線速度遊星歯車機構の歯数の組み合わせが歯車の組数にマッチするというルールは、本分野ではこれまでになく、本発明が初めて提案したことである。値域規定パラメータが、本発明の要件である。本分野では通常の遊星歯車機構の遊星歯車の組み立て条件はあるが、その形式も内容も本発明に記載の「遊星歯車の製造組み立て規則」と完全に異なるもので、本発明は太陽歯車を2つ備える可変線速度遊星歯車機構の遊星歯車の製造組み立てルール(規則)を初めて提案している。本分野では基準中心距離をめぐって1ペア2つの通常の歯車のピッチ円半径を設定する方法はあるが、本発明は同じ基準中心距離をめぐって左太陽歯車、左遊星歯車及び右太陽歯車、右遊星歯車という2ペア4つの歯車のピッチ円半径を同時に設定する方法、つまり歯車のピッチ円半径の規定を初めて提案している。 The fact that the number of sets of gears is two or more is a condition for the speed reducer of the present invention to operate uniformly. The rule that the combination of the number of teeth of the variable linear velocity planetary gear mechanism with two sun gears matches the number of gear sets has never been proposed in this field, and the present invention proposes it for the first time. A range defining parameter is a requirement of the present invention. In this field, there are general conditions for assembling planetary gears of a planetary gear mechanism, but the format and contents thereof are completely different from the "manufacturing and assembling rules for planetary gears" described in the present invention. For the first time, we have proposed manufacturing and assembling rules (rules) for planetary gears in a variable linear velocity planetary gear mechanism. In this field, there is a method of setting the pitch circle radius of a pair of two normal gears around the reference center distance, but the present invention is the left sun gear, the left planetary gear, the right sun gear, and the right planetary gear around the same reference center distance. It is the first time to propose a method of setting the pitch radii of two pairs of four gears at the same time, that is, to define the pitch radii of gears.

前記軸受などの補助的な装置としては機械分野の従来の技術を用い、軸受の支持効果は本発明の要件を満たさなければならない。本発明に記載の歯車は円筒歯車、円弧歯車、平歯車、はすば歯車(ベベルギヤ)などの様々な形態の歯車を含む。減速機のコア特性は伝動比であり、均等な動作である。太陽歯車を2つ備える可変線速度遊星歯車機構のコア特性は実際的に組み立てられることであり、本発明では歯数の組み合わせ、歯車の組数、接続方法によって伝動比が決まり、均等な動作が決まり、遊星歯車の製造組み立て規則、歯車のピッチ円半径の規定によって実際的に組み立てられることが決まる。減速機の各部品と各装置の材質、減速機の基準中心距離の長さ、歯車の歯たけと歯幅と転位係数などのパラメータ、及び組み立て、潤滑補助材は機械的特性、耐久性などの実際の特性によって決まり、これは本分野の通常の知識で解決できる事項で、伝動比、実際的に組み立てられることと関係ないため、本明細書では具体的な説明はしない。 The auxiliary devices such as bearings are conventional techniques in the mechanical field, and the supporting effect of the bearings must meet the requirements of the present invention. Gears according to the present invention include various forms of gears such as cylindrical gears, arc gears, spur gears, and helical gears (bevel gears). The core characteristics of the reducer are the transmission ratio and the even action. The core characteristic of the variable linear velocity planetary gear mechanism with two sun gears is that it can be assembled practically. The actual assembly is determined according to the planetary gear manufacturing and assembly rules and the regulation of the pitch circle radius of the gear. Parameters such as the material of each part and device of the reducer, the length of the reference center distance of the reducer, the tooth depth, tooth width, and shift coefficient of the gear, as well as the mechanical properties, durability, etc. It depends on the actual characteristics, which is a matter that can be solved by ordinary knowledge in this field, and has nothing to do with the transmission ratio and the actual assembly, so no specific description is given in this specification.

本発明の有益な効果は次のとおりである。太陽歯車を2つ備える可変線速度遊星歯車機構を利用して、2以上の歯車の組数、値域規定パラメータ、歯数の組み合わせと歯車の組数がマッチするというルール、遊星歯車の製造組み立て規則、歯車のピッチ円半径の規定を提案し、遊星キャリヤを入力端に接続し、一方の太陽歯車をロック端に接続し、他方の太陽歯車を出力端に接続すれば、実際的な組み立てが可能で均衡に動作する減速機を構成することを提案している。従来の減速機は主に歯車減速機、通常の遊星歯車機構による減速機、波動歯車減速機、サイクロイド減速機である。歯車減速機、通常の遊星歯車機構による減速機は伝動比の値が小さく、大きな伝動比値を得るには複雑な直列多段型減速を必要とする。波動歯車減速機、サイクロイド減速機の方が伝動比値は大きいが、構造が複雑でコストも高いため、大出力の伝達には適さない。本発明の減速機は伝動時に入力端から出力端まで歯車噛合のレベルが少なく、損失が少なく、構造がシンプルでコストが安く、伝動効率が高く、伝動比値の範囲が大きく、小出力の伝達にも大出力の伝達にも適し、従来の減速機に取って代わることができる。 Beneficial effects of the present invention are as follows. Using a variable linear velocity planetary gear mechanism with two sun gears, the number of sets of two or more gears, the value range defining parameter, the rule that the combination of the number of teeth matches the number of sets of gears, and the rules for manufacturing and assembling planetary gears. , Proposing the definition of the gear pitch radius, connecting the planetary carrier to the input end, connecting one sun gear to the locking end, and connecting the other sun gear to the output end, a practical assembly is possible. proposed to construct a speed reducer that operates in equilibrium with Conventional reduction gears are mainly gear reduction gears, normal planetary gear reduction gears, strain wave gear reduction gears, and cycloidal reduction gears. A gear reducer, usually a reducer based on a planetary gear mechanism, has a small transmission ratio value, and requires a complicated serial multi-stage reduction to obtain a large transmission ratio value. Strain wave gear reducers and cycloidal reducers have a higher transmission ratio value, but are not suitable for high power transmission due to their complicated structure and high cost. The speed reducer of the present invention has a low level of gear meshing from the input end to the output end during transmission, low loss, simple structure, low cost, high transmission efficiency, large transmission ratio value range, and small power transmission. It is also suitable for high power transmission and can replace the traditional speed reducer.

図1は左太陽歯車が出力端に接続され、遊星キャリヤが軸受とされる本発明の太陽歯車を2つ備える可変線速度遊星歯車機構による均等減速機の構造模式図である。FIG. 1 is a structural schematic diagram of an equal reduction gear with a variable linear velocity planetary gear mechanism having two sun gears of the present invention, in which a left sun gear is connected to an output end and a planetary carrier serves as a bearing. 図2は左太陽歯車が出力端に接続され、遊星キャリヤが軸とされる本発明の太陽歯車を2つ備える可変線速度遊星歯車機構による均等減速機的構造模式図である。FIG. 2 is a structural schematic diagram of an equal reduction gear by a variable linear velocity planetary gear mechanism having two sun gears according to the present invention, in which the left sun gear is connected to the output end and the planetary carrier is the axis. 図3は右太陽歯車が出力端に接続され、遊星キャリヤが軸受とされる本発明の太陽歯車を2つ備える可変線速度遊星歯車機構による均等減速機の構造模式図である。FIG. 3 is a structural schematic diagram of an equal reduction gear with a variable linear velocity planetary gear mechanism having two sun gears of the present invention, in which the right sun gear is connected to the output end and the planetary carrier serves as a bearing. 図4は右太陽歯車が出力端に接続され、遊星キャリヤが軸とされる本発明の太陽歯車を2つ備える可変線速度遊星歯車機構による均等減速機の構造模式図である。FIG. 4 is a structural schematic diagram of an equal reduction gear with a variable linear velocity planetary gear mechanism having two sun gears of the present invention, in which the right sun gear is connected to the output end and the planetary carrier is the axis. 図5は本発明の実施例1に係る、太陽歯車を2つ備える可変線速度遊星歯車機構による均等減速機の構造模式図である。図中、8は右太陽歯車と可変接続を構成したロック端であり、ブレーキキャリパーが接地したディスクブレーキとして符号で示される。FIG. 5 is a structural schematic diagram of an equal reduction gear using a variable linear velocity planetary gear mechanism having two sun gears according to Embodiment 1 of the present invention. In the figure, 8 is a locking end that forms a variable connection with the right sun gear and is symbolized as a disc brake with the brake caliper grounded. 図6は遊星歯車の左断面と右断面の重なった等相面の模式図である。1は左歯車の当該歯底中点、2は左歯車の歯先中点、3は左歯車の次の歯底中点、4は右歯車の当該歯底中点、5は右歯車の歯先中点、6は右歯車の次の歯底中点であり、7は径方向断面、つまり等相面である。FIG. 6 is a schematic diagram of an equiphase surface in which the left cross section and the right cross section of the planetary gear overlap. 1 is the corresponding bottom midpoint of the left gear, 2 is the top midpoint of the left gear, 3 is the next bottom midpoint of the left gear, 4 is the corresponding bottom midpoint of the right gear, 5 is the right gear tooth The pre-midpoint, 6, is the next root midpoint of the right gear, and 7 is the radial section, or equiphase surface.

図1から図5の各図で、1は左太陽歯車、2は右太陽歯車、3は遊星キャリヤ、4は左遊星歯車、5は右遊星歯車、6は入力端、7は出力端、8はロック端である。 1 to 5, 1 is the left sun gear, 2 is the right sun gear, 3 is the planetary carrier, 4 is the left planetary gear, 5 is the right planetary gear, 6 is the input end, 7 is the output end, 8 is the lock end.

図1から図5の各図中、本分野の共通認識に基づいて各遊星歯車機構は全体の半分の模式図として示され、各部品については接続及び構造上の関係性を示しているが、実際の寸法が反映されていなく、軸受、ベアリング、筐体などの補助的な装置は省略されており、入力矢印で入力端を模式的に示し、出力矢印で出力端を模式的に示し、接地符号で回転数ゼロのロック端を模式的に示す。 1 to 5, each planetary gear mechanism is shown as a schematic diagram of half of the whole based on common recognition in this field, and connections and structural relationships are shown for each part, The actual dimensions are not reflected, auxiliary devices such as bearings, bearings, and housings are omitted, the input arrow schematically indicates the input end, the output arrow schematically indicates the output end, and the ground The symbol schematically indicates the lock end at zero rotation speed.

(実施例1)
太陽歯車を2つ備える可変線速度遊星歯車機構による均等減速機は、太陽歯車を2つ備える可変線速度遊星歯車機構と、入力端6と、出力端7と、ロック端8と、軸受などの補助的な装置とを含む。図5が参照されるとおり、図中軸受などの補助的な装置は描画されず、ロック端はブレーキキャリパーが接地したディスクブレーキとして示される。
(Example 1)
A uniform reduction gear by a variable linear velocity planetary gear mechanism having two sun gears includes a variable linear velocity planetary gear mechanism having two sun gears, an input end 6, an output end 7, a lock end 8, bearings, etc. Ancillary equipment. As shown in FIG. 5, ancillary devices such as bearings are not drawn in the figure, and the locking end is shown as a disc brake with the brake caliper grounded.

太陽歯車を2つ備える可変線速度遊星歯車機構は左太陽歯車1と、右太陽歯車2と、遊星歯車を備える遊星キャリヤ3との3つの部品によって構成される。左太陽歯車1、右太陽歯車2は左右の順に順次外側に位置し、2つの太陽歯車のピッチ円半径が異なる。遊星歯車を備える遊星キャリヤ3は内側に位置し、遊星キャリヤ3は各遊星歯車を支持し、各遊星歯車が同じである。3つの部品は公転軸線と称する共通の回転軸線を有し、各遊星歯車軸線を公転軸線の周りに均一に配置し、各遊星歯車軸線はいずれも公転軸線に平行であり、且つ各遊星歯車軸線の公転軸線に対する距離が等しく、当該距離が基準中心距離である。各遊星歯車はその軸線に左右の順に、順次左遊星歯車4、右遊星歯車5の2つの歯車が設けられ、各対の左遊星歯車4と右遊星歯車5がそれぞれ接続され、左遊星歯車4と右遊星歯車5は回転数は同じであるがピッチ円半径は異なる。左遊星歯車4が左太陽歯車1に噛合し、右遊星歯車5が右太陽歯車2に噛合し、2つの太陽歯車は互いに接続せず噛合しない。軸受を設けて、3つの部品が相対的に回転できるようにし、各遊星歯車が遊星キャリヤ3に追従して公転軸線の周りを公転し且つその遊星歯車軸線の周りを自転できるようにし、3つの部品が公転軸線の方向に沿って相対的に摺動できないようにし、遊星歯車と遊星キャリヤ3は公転軸線に平行の方向に沿って相対的に摺動できないようにする。前記遊星キャリヤ3が各遊星歯車を支持する方式は二通りあり、本実施例では、遊星歯車を軸とし、遊星キャリヤ3を軸受とする方式1を用いる。 A variable linear velocity planetary gear mechanism with two sun gears is composed of three parts: a left sun gear 1, a right sun gear 2, and a planetary carrier 3 with planetary gears. The left sun gear 1 and the right sun gear 2 are positioned on the outer side in order from left to right, and the two sun gears have different pitch circle radii. A planetary carrier 3 with planetary gears is located inside, the planetary carrier 3 supports each planetary gear, each planetary gear being identical. The three parts have a common axis of rotation called the axis of revolution, with each planetary gear axis evenly spaced around the revolution axis, each planetary gear axis parallel to the orbital axis, and each planetary gear axis are equal to the axis of revolution, and this distance is the reference center distance. Each planetary gear is provided with two gears, a left planetary gear 4 and a right planetary gear 5, in left and right order on its axis, and each pair of left planetary gear 4 and right planetary gear 5 are connected to each other. and the right planetary gear 5 have the same rotational speed but different pitch circle radii. The left planetary gear 4 meshes with the left sun gear 1, the right planetary gear 5 meshes with the right sun gear 2, and the two sun gears do not connect or mesh with each other. Bearings are provided to allow the three parts to rotate relative to each other, so that each planetary gear can follow the planetary carrier 3 to revolve around its revolution axis and rotate around its planetary gear axis, The parts are prevented from sliding relative to each other along the direction of the axis of revolution, and the planetary gear and planet carrier 3 are prevented from sliding relative to each other along the direction parallel to the axis of revolution. There are two methods for the planetary carrier 3 to support each planetary gear. In this embodiment, the planetary gear is used as a shaft and the planetary carrier 3 is used as a bearing.

本実施例の歯数の組み合わせにより値域規定パラメータの値が357/361となり、約0.9889196676であり、値域規定パラメータの要件に合致する。 The combination of tooth numbers in this example results in a range defining parameter value of 357/361, which is approximately 0.9889196676, meeting the range defining parameter requirements.

本実施例で歯数の組み合わせは、左太陽歯車の歯数38、右太陽歯車の歯数42、左遊星歯車の歯数17、右遊星歯車の歯数19と設定し、歯車の組数Kは4とし、歯数の組み合わせが歯車の組数にマッチするというルールに合致する。歯車の組数が大きくはないため、隣り合う遊星歯車が互いに衝突し合うことはない。 In this embodiment, the number of teeth of the left sun gear is 38, the number of teeth of the right sun gear is 42, the number of teeth of the left planetary gear is 17, and the number of teeth of the right planetary gear is 19. is 4 and matches the rule that the combination of the number of teeth matches the number of sets of gears. Since the number of sets of gears is not large, adjacent planetary gears do not collide with each other.

本実施例では遊星歯車の製造組み立て規則を適用する。本実施例で剰余値は2である。各遊星歯車を製造する時は、1つ目の遊星歯車には、等相角値が0であるように等相面を選択し、2つ目の遊星歯車には、等相角値がπであるように等相面を選択し、3つ目の遊星歯車には、等相角値が0であるように等相面を選択し、4つ目の遊星歯車には、等相角値がπであるように等相面を選択する。各遊星歯車を組み立てる時は、2つの太陽歯車、遊星キャリヤ3を公転軸線上の所定の位置に組み立て、各取付け面を確定し、1つ目の遊星歯車の等相角値が0である等相面を第1取付け面に重ね合わせ、左右等相点を基準中心距離以内にセットして、1つ目の遊星歯車を組み立て、2つ目の遊星歯車の等相角値がπである等相面を第2取付け面に重ね合わせ、左右等相点を基準中心距離以内にセットして、2つ目の遊星歯車を組み立て、3つ目の遊星歯車の等相角値が0である等相面を第3取付け面に重ね合わせ、左右等相点を基準中心距離以内にセットして、3つ目の遊星歯車を組み立て、4つ目の遊星歯車の等相角値がπである等相面を第4取付け面に重ね合わせ、左右等相点を基準中心距離以内にセットして、4つ目の遊星歯車を組み立てる。 In this embodiment, manufacturing and assembly rules for planetary gears are applied. The remainder value is two in this example. When manufacturing each planetary gear, for the first planetary gear, the equiphase surface is selected to have an equiphase angle value of 0, and for the second planetary gear, an equiphase angle value of π , for the third planetary gear select an equiphase surface such that the equiphase angle value is 0, and for the fourth planetary gear select an equiphase angle value Choose an equiphase surface such that is π. When assembling each planetary gear, the two sun gears and the planetary carrier 3 are assembled at a predetermined position on the revolution axis, each mounting surface is fixed, and the equiphase angle value of the first planetary gear is 0, etc. The phase surface is superimposed on the first mounting surface, the left and right equiphase points are set within the reference center distance, the first planetary gear is assembled, and the equiphase angle value of the second planetary gear is π, etc. The phase surface is superimposed on the second mounting surface, the left and right equiphase points are set within the reference center distance, the second planetary gear is assembled, and the equiphase angle value of the third planetary gear is 0, etc. The phase surface is superimposed on the third mounting surface, the left and right equiphase points are set within the reference center distance, the third planetary gear is assembled, and the equiphase angle value of the fourth planetary gear is π, etc. The phase surface is superimposed on the fourth mounting surface, the left and right equiphase points are set within the reference center distance, and the fourth planetary gear is assembled.

本実施例で基準中心距離を200mmとし、左太陽歯車のピッチ円半径は138.1818182mmであり、左遊星歯車のピッチ円半径は61.8181818mmであり、右太陽歯車のピッチ円半径は137.704918mmであり、右遊星歯車のピッチ円半径は62.295082mmである。歯車のピッチ円半径の規定に合致する。 In this embodiment, the reference center distance is 200 mm, the pitch radius of the left sun gear is 138.1818182 mm, the pitch radius of the left planetary gear is 61.8181818 mm, and the pitch radius of the right sun gear is 137.704918 mm. and the pitch circle radius of the right planetary gear is 62.295082 mm. Conforms to the gear pitch circle radius regulations.

本実施例は接続方法1を用いて減速機を構成し、遊星キャリヤ3が入力端6に接続され、左太陽歯車1が出力端7に接続され、右太陽歯車2がロック端8に接続され、遊星キャリヤ3から左太陽歯車1への伝動の伝動比は左伝動比であり、左伝動比=1/(1-右太陽歯車の歯数*左遊星歯車の歯数/(左太陽歯車の歯数*右遊星歯車の歯数))=90.25である。入力端6は動力装置、即ちエンジンに接続されて、動力を入力する。出力端7は動力使用装置、即ちメインローターに接続されて、動力を出力する。右太陽歯車2は機械接続装置、即ちディスクブレーキを介してロック端8に接続され、当該接続は一定の接続ではなく、可変接続である。ディスクブレーキは本分野の従来の製品であり、ブレーキディスクを右太陽歯車2に接続させ、ブレーキキャリパーをロック端8に接続させる。ブレーキキャリパーがブレーキディスクを嵌めた場合に、右太陽歯車2の回転数はゼロであり、入力端6の入力した動力は完全に出力端7に伝達され、ブレーキキャリパーがブレーキディスクを離した場合に、右太陽歯車2が自由になる。右太陽歯車2が自由である時には抵抗が非常に小さく、出力端7に抵抗があると、入力端6の入力した動力が右太陽歯車2に伝達されて空回りさせ、出力端7は動力を得ることができない。したがって本実施例の減速機はヘリコプターのメインローターの伝動に用いることができ、右太陽歯車2とロック端8とが可変接続されるため、クラッチとしての機能を備える減速機である。軸受などの補助的な装置としては機械分野の従来の技術を用い、軸受の支持効果は本実施例の要件を満たさなければならない。 This embodiment uses the connection method 1 to configure the speed reducer, the planetary carrier 3 is connected to the input end 6, the left sun gear 1 is connected to the output end 7, and the right sun gear 2 is connected to the lock end 8. , the transmission ratio of the transmission from the planetary carrier 3 to the left sun gear 1 is the left transmission ratio, and the left transmission ratio = 1/(1 - the number of teeth of the right sun gear * the number of teeth of the left planetary gear / (the number of teeth of the left sun gear The number of teeth*the number of teeth of the right planetary gear))=90.25. The input end 6 is connected to a power device, namely an engine, to input power. The output end 7 is connected to the power using device, namely the main rotor, to output power. The right sun gear 2 is connected to the lock end 8 via a mechanical connection, ie a disc brake, which is not a constant connection but a variable connection. The disc brake is a conventional product in the field, with the brake disc connected to the right sun gear 2 and the brake caliper connected to the locking end 8 . When the brake caliper engages the brake disc, the rotation speed of the right sun gear 2 is zero, the power input from the input end 6 is completely transmitted to the output end 7, and the brake caliper releases the brake disc. , the right sun gear 2 becomes free. When the right sun gear 2 is free, the resistance is very small, and when there is resistance at the output end 7, the power input from the input end 6 is transmitted to the right sun gear 2, causing it to idle, and the output end 7 obtains power. I can't. Therefore, the speed reducer of this embodiment can be used for the transmission of the main rotor of a helicopter, and since the right sun gear 2 and the lock end 8 are variably connected, the speed reducer functions as a clutch. Auxiliary devices such as bearings use conventional techniques in the mechanical field, and the support effect of the bearings must meet the requirements of this embodiment.

本実施例の減速機の動作時の運動関係は、遊星キャリヤ3の回転方向と左太陽歯車1の回転方向が同じであることである。 The relationship of motion during operation of the speed reducer of this embodiment is that the rotational direction of the planetary carrier 3 and the rotational direction of the left sun gear 1 are the same.

ヘリコプターのメインローターの総伝動比は80から100あたりであり、従来のメインローターの伝動にはこれほどの総伝動比を得るには一般に主減速機としての2段遊星歯車機構にかさ歯車減速機を加えて3段の直列減速を用いる必要があり、主減速機において入力端から出力端まで歯車噛合が4階層(レベル)であり、損失が大きく、構造が複雑でコストが高く、伝動効率が低く、メインローターの伝動ではさらにクラッチを単独に設ける必要がある。本実施例の減速機は入力端から出力端まで歯車噛合が2階層(レベル)だけであり、損失が小さく、構造がシンプルでコストが安く、伝動効率が高く、クラッチを単独に設ける必要がなく、本実施例の減速機は従来の減速機の代わりにヘリコプターのメインローターの伝動に用いることができる。 The total transmission ratio of the main rotor of a helicopter is around 80 to 100, and in order to obtain such a total transmission ratio in the conventional main rotor transmission, a two-stage planetary gear mechanism as the main reducer and a bevel gear reducer are generally used. In addition, it is necessary to use a three-stage series reduction, and in the main reduction gear, there are four levels of gear meshing from the input end to the output end. It is low, and it is necessary to provide a separate clutch for the transmission of the main rotor. The speed reducer of this embodiment has only two levels of gear meshing from the input end to the output end, so the loss is small, the structure is simple, the cost is low, the transmission efficiency is high, and there is no need to provide a separate clutch. , the speed reducer of this embodiment can be used for the transmission of the main rotor of the helicopter instead of the conventional speed reducer.

(実施例2)
太陽歯車を2つ備える可変線速度遊星歯車機構による均等減速機は、太陽歯車を2つ備える可変線速度遊星歯車機構と、入力端6と、出力端7と、ロック端8と、軸受などの補助的な装置とを含む。図1が参照されるとおり、図中軸受などの補助的な装置は描画されていない。
(Example 2)
A uniform reduction gear by a variable linear velocity planetary gear mechanism having two sun gears includes a variable linear velocity planetary gear mechanism having two sun gears, an input end 6, an output end 7, a lock end 8, bearings, etc. Ancillary equipment. Referring to FIG. 1, ancillary equipment such as bearings are not drawn in the figure.

太陽歯車を2つ備える可変線速度遊星歯車機構の構成、構造は実施例1と同じである。前記遊星キャリヤ3が各遊星歯車を支持する方式は二通りあり、本実施例では方式1を用い、図1に示されるように、遊星歯車を軸とし、遊星キャリヤ3を軸受とする。方式2を用いる場合、図2に示されるように、遊星歯車を軸受とし、遊星キャリヤを軸とする。遊星キャリヤ3が各遊星歯車を支持するこの2つの方式は技術効果が同じである。 The configuration and structure of the variable linear velocity planetary gear mechanism having two sun gears are the same as those of the first embodiment. There are two methods for supporting the planetary gears by the planetary carrier 3. Method 1 is used in this embodiment. As shown in FIG. When using Method 2, as shown in FIG. 2, the planetary gear is the bearing and the planetary carrier is the axis. The two ways in which the planetary carrier 3 supports each planetary gear have the same technical effect.

本実施例の歯数の組み合わせにより値域規定パラメータの値が220/221となり、約0.9954751131であり、値域規定パラメータの要件に合致する。 The combination of the number of teeth in this example results in a range defining parameter value of 220/221, which is approximately 0.9954751131, meeting the range defining parameter requirements.

本実施例で歯数の組み合わせは、左太陽歯車の歯数26、右太陽歯車の歯数22、左遊星歯車の歯数20、右遊星歯車の歯数17と設定し、歯車の組数Kは4とし、歯数の組み合わせが歯車の組数にマッチするというルールに合致する。歯車の組数が大きくはないため、隣り合う遊星歯車が互いに衝突し合うことはない。 In this embodiment, the number of teeth of the left sun gear is 26, the number of teeth of the right sun gear is 22, the number of teeth of the left planetary gear is 20, and the number of teeth of the right planetary gear is 17. is 4 and matches the rule that the combination of the number of teeth matches the number of sets of gears. Since the number of sets of gears is not large, adjacent planetary gears do not collide with each other.

本実施例では遊星歯車の製造組み立て規則を適用する。本実施例で剰余値は2である。各遊星歯車を製造する時は、1つ目の遊星歯車には、等相角値が0であるように等相面を選択し、2つ目の遊星歯車には、等相角値がπであるように等相面を選択し、3つ目の遊星歯車には、等相角値が0であるように等相面を選択し、4つ目の遊星歯車には、等相角値がπであるように等相面を選択する。各遊星歯車を組み立てる時は、2つの太陽歯車、遊星キャリヤ3を公転軸線上の所定の位置に組み立て、各取付け面を確定し、1つ目の遊星歯車の等相角値が0である等相面を第1取付け面に重ね合わせ、左右等相点を基準中心距離以内にセットして、1つ目の遊星歯車を組み立て、2つ目の遊星歯車の等相角値がπである等相面を第2取付け面に重ね合わせ、左右等相点を基準中心距離以内にセットして、2つ目の遊星歯車を組み立て、3つ目の遊星歯車の等相角値が0である等相面を第3取付け面に重ね合わせ、左右等相点を基準中心距離以内にセットして、3つ目の遊星歯車を組み立て、4つ目の遊星歯車の等相角値がπである等相面を第4取付け面に重ね合わせ、左右等相点を基準中心距離以内にセットして、4つ目の遊星歯車を組み立てる。 In this embodiment, manufacturing and assembly rules for planetary gears are applied. The remainder value is two in this example. When manufacturing each planetary gear, for the first planetary gear, the equiphase surface is selected to have an equiphase angle value of 0, and for the second planetary gear, an equiphase angle value of π , for the third planetary gear select an equiphase surface such that the equiphase angle value is 0, and for the fourth planetary gear select an equiphase angle value Choose an equiphase surface such that is π. When assembling each planetary gear, the two sun gears and the planetary carrier 3 are assembled at a predetermined position on the revolution axis, each mounting surface is fixed, and the equiphase angle value of the first planetary gear is 0, etc. The phase surface is superimposed on the first mounting surface, the left and right equiphase points are set within the reference center distance, the first planetary gear is assembled, and the equiphase angle value of the second planetary gear is π, etc. The phase surface is superimposed on the second mounting surface, the left and right equiphase points are set within the reference center distance, the second planetary gear is assembled, and the equiphase angle value of the third planetary gear is 0, etc. The phase surface is superimposed on the third mounting surface, the left and right equiphase points are set within the reference center distance, the third planetary gear is assembled, and the equiphase angle value of the fourth planetary gear is π, etc. The phase surface is superimposed on the fourth mounting surface, the left and right equiphase points are set within the reference center distance, and the fourth planetary gear is assembled.

本実施例で基準中心距離を30mmとし、左太陽歯車のピッチ円半径は16.96562174mmであり、左遊星歯車のピッチ円半径は13.03437826mmであり、右太陽歯車のピッチ円半径は16.92307692mmであり、右遊星歯車のピッチ円半径は13.07692308mmである。歯車のピッチ円半径の規定に合致する。 In this embodiment, the reference center distance is 30 mm, the pitch radius of the left sun gear is 16.96562174 mm, the pitch radius of the left planetary gear is 13.03437826 mm, and the pitch radius of the right sun gear is 16.92307692 mm. and the pitch circle radius of the right planetary gear is 13.07692308 mm. Conforms to the gear pitch circle radius regulations.

本実施例は接続方法1を用いて減速機を構成し、遊星キャリヤ3が入力端6に接続され、左太陽歯車1が出力端7に接続され、右太陽歯車2がロック端8に接続され、遊星キャリヤ3から左太陽歯車1への伝動の伝動比は左伝動比であり、左伝動比=1/(1-右太陽歯車の歯数*左遊星歯車の歯数/(左太陽歯車の歯数*右遊星歯車の歯数))=221である。入力端6は動力装置に接続されて、動力を入力する。出力端7は動力使用装置に接続されて、動力を出力する。ロック端8は減速機筐体に接続され、ロック端8の回転数はゼロである。軸受などの補助的な装置としては機械分野の従来の技術を用い、軸受の支持効果は本実施例の要件を満たさなければならない。 This embodiment uses the connection method 1 to configure the speed reducer, the planetary carrier 3 is connected to the input end 6, the left sun gear 1 is connected to the output end 7, and the right sun gear 2 is connected to the lock end 8. , the transmission ratio of the transmission from the planetary carrier 3 to the left sun gear 1 is the left transmission ratio, and the left transmission ratio = 1/(1 - the number of teeth of the right sun gear * the number of teeth of the left planetary gear / (the number of teeth of the left sun gear The number of teeth*the number of teeth of the right planetary gear))=221. The input end 6 is connected to a power device to input power. The output end 7 is connected to a power using device to output power. The lock end 8 is connected to the speed reducer housing, and the rotation speed of the lock end 8 is zero. Auxiliary devices such as bearings use conventional techniques in the mechanical field, and the support effect of the bearings must meet the requirements of this embodiment.

本実施例の減速機の動作時の運動関係は、遊星キャリヤ3の回転方向と左太陽歯車1の回転方向が同じであることである。 The relationship of motion during operation of the speed reducer of this embodiment is that the rotational direction of the planetary carrier 3 and the rotational direction of the left sun gear 1 are the same.

伝動比値は約220であり、高速モータを取り付けたロボットジョイントの減速機に用いる伝動比値である。従来のロボットジョイントの減速機は主にサイクロイド減速機の1種で即ちRV減速機であり、RV減速機はこれほどの伝動比値を実現できるが、構造が複雑でコストが高い。本実施例の減速機は構造がシンプルでコストが安く、RV減速機の代わりに用いることができる。 The transmission ratio value is about 220, which is the transmission ratio value used for the speed reducer of the robot joint attached to the high speed motor. Conventional robot joint reduction gears are mainly cycloidal reduction gears, namely RV reduction gears. Although the RV reduction gears can achieve such a transmission ratio value, they are complicated in structure and high in cost. The speed reducer of this embodiment has a simple structure, is inexpensive, and can be used in place of the RV speed reducer.

接続方法2を用いて減速機を構成する場合、遊星キャリヤ3が各遊星歯車を支持する方式は方式1を用い、図3を参照する。同様に接続方法2を用い、遊星キャリヤ3が各遊星歯車を支持する方式は方式2を用い、図4を参照する。遊星キャリヤ3が各遊星歯車を支持するこの2つの方式は技術効果が同じである。遊星キャリヤ3が入力端6に接続され、右太陽歯車2が出力端7に接続され、左太陽歯車1がロック端8に接続され、遊星キャリヤ3から右太陽歯車2への伝動の伝動比は右伝動比であり、右伝動比=1/(1-左太陽歯車の歯数*右遊星歯車の歯数/(右太陽歯車の歯数*左遊星歯車の歯数))=-220である。伝動比は負の値であり、遊星キャリヤ3の回転方向と右太陽歯車2の回転方向は逆である。 If the connection method 2 is used to configure the speed reducer, the planetary carrier 3 supports each planetary gear using the method 1, see FIG. Similarly, connection method 2 is used, and the planetary carrier 3 supports each planetary gear using method 2, see FIG. The two ways in which the planetary carrier 3 supports each planetary gear have the same technical effect. The planet carrier 3 is connected to the input end 6, the right sun gear 2 is connected to the output end 7, the left sun gear 1 is connected to the lock end 8, and the transmission ratio of the transmission from the planet carrier 3 to the right sun gear 2 is right transmission ratio, right transmission ratio=1/(1−number of teeth of left sun gear*number of teeth of right planetary gear/(number of teeth of right sun gear*number of teeth of left planetary gear))=-220 . The transmission ratio is a negative value and the direction of rotation of the planetary carrier 3 and the direction of rotation of the right sun gear 2 are opposite.

上記では本発明の原理の基本、主な特徴及び利点を記載し、それらを説明している。当業者が分かるように、本発明は前記実施例に限定されず、前記実施例と明細書において説明されるのは本発明の原理の説明に過ぎず、本発明の趣旨や範囲から逸脱していなければ本発明には様々な変化と改善が可能であり、これらの変化や改善も本発明の保護を求める範囲に含まれる。本発明の保護を求める範囲は添付の特許請求の範囲及び均等なものによって限定される。

The foregoing has described and explained the basic principles, main features and advantages of the present invention. It will be appreciated by those skilled in the art that the present invention is not limited to the foregoing embodiments, and that the foregoing embodiments and specification are merely illustrative of the principles of the invention and do not depart from the spirit or scope of the invention. Otherwise, various changes and improvements are possible in the present invention, and these changes and improvements are also included in the scope of protection of the present invention. The scope of protection sought for the invention is limited by the appended claims and their equivalents.

Claims (2)

太陽歯車を2つ備える可変線速度遊星歯車機構と、入力端と、出力端と、ロック端と、
軸受という補助的な装置とを含む、太陽歯車を2つ備える可変線速度遊星歯車機構による
均等減速機であって、
太陽歯車を2つ備える可変線速度遊星歯車機構は左太陽歯車と、右太陽歯車と、遊星歯
車を備える遊星キャリヤとによって構成され、遊星キャリヤは各遊星歯車を支持し、各遊
星歯車軸線の公転軸線に対する距離、即ち基準中心距離が等しく、各遊星歯車はその軸線
上に、順次、左遊星歯車、右遊星歯車の2つの歯車が設けられ、
左太陽歯車の歯数、右太陽歯車の歯数、左遊星歯車の歯数及び右遊星歯車の歯数の4つ
の歯車の歯数のそれぞれのセットは歯数の組み合わせであり、右太陽歯車の歯数×左遊星
歯車の歯数/(左太陽歯車の歯数×右遊星歯車の歯数)は値域規定パラメータであり、遊
星キャリヤによって支持される遊星歯車の軸線の数量は歯車の組数Kであり、
前記値域規定パラメータとしては、各歯数の組み合わせにより値域規定パラメータの値
が0.875より大きく、1.142857未満で且つ1.0でなく、
前記歯車の組数Kは2以上の整数とし、歯数の組み合わせ及び歯車の組数を設定する時
の、歯数の組み合わせが歯車の組数にマッチするルールとしては、
(1)左太陽歯車の歯数と右太陽歯車の歯数の差の絶対値が2の倍数である場合に、歯
車の組数は2とし、
(2)左太陽歯車の歯数と右太陽歯車の歯数の差の絶対値が3の倍数である場合に、歯
車の組数は3とし、
(3)左太陽歯車の歯数と右太陽歯車の歯数の差の絶対値が4の倍数である場合に、歯
車の組数は4、2のいずれかとし、
(4)左太陽歯車の歯数と右太陽歯車の歯数の差の絶対値が5の倍数である場合に、歯
車の組数は5とし、
(5)左太陽歯車の歯数と右太陽歯車の歯数の差の絶対値が6の倍数である場合に、歯
車の組数は6、3、2のいずれかとし、
(6)左太陽歯車の歯数と右太陽歯車の歯数の差の絶対値が8の倍数である場合に、歯
車の組数は8、4、2のいずれかとし、
(7)左太陽歯車の歯数と右太陽歯車の歯数の差の絶対値が10の倍数である場合に、
歯車の組数は5、2のいずれかとし
前記遊星歯車の製造組み立て規則としては、左太陽歯車の歯数を歯車の組数Kで割って
、剰余を得て、剰余値は0から(K-1)の範囲にあり、整数であり、各遊星歯車を製造
する時は、1つ目の遊星歯車には、等相角値がaになるように等相面を選択し、2つ目の
遊星歯車には、等相角値が(a+1×2π×剰余値/K)になるように等相面を選択し、
3つ目の遊星歯車には、等相角値が(a+2×2π×剰余値/K)になるように等相面を
選択し、このようにして4つ目の遊星歯車、5つ目の遊星歯車、6つ目の遊星歯車、7つ
目の遊星歯車を順次製造し、最終的にK番目の遊星歯車において、等相角値が(a+(K
-1)×2π×剰余値/K)になるように等相面を選択し、各遊星歯車を組み立てる時は
、2つの太陽歯車、遊星キャリヤを公転軸線上の所定の位置に組み立て、各取付け面を確
定し、1つ目の遊星歯車の等相角値がaである等相面を第1取付け面に重ね合わせ、左右
等相点を基準中心距離以内にセットして、1つ目の遊星歯車を組み立て、2つ目の遊星歯
車の等相角値が(a+1×2π×剰余値/K)である等相面を第2取付け面に重ね合わせ
、左右等相点を基準中心距離以内にセットして、2つ目の遊星歯車を組み立て、3つ目の
遊星歯車の等相角値が(a+2×2π×剰余値/K)である等相面を第3取付け面に重ね
合わせ、左右等相点を基準中心距離以内にセットして、3つ目の遊星歯車を組み立て、こ
のように順次4つ目の遊星歯車、5つ目の遊星歯車、6つ目の遊星歯車、7つ目の遊星歯
車などを組み立て、最終的にはK番目の遊星歯車の等相角値が(a+(K-1)×2π×
剰余値/K)である等相面を第K取付け面に重ね合わせ、左右等相点を基準中心距離以内
にセットして、K番目の遊星歯車を組み立て、
前記歯車のピッチ円半径としては、左太陽歯車の歯数/左遊星歯車の歯数=左太陽歯車
のピッチ円半径/左遊星歯車のピッチ円半径で、且つ左太陽歯車のピッチ円半径+左遊星
歯車のピッチ円半径=基準中心距離であるように、基準中心距離をめぐって左太陽歯車の
ピッチ円半径及び左遊星歯車のピッチ円半径を設定し、また右太陽歯車の歯数/右遊星歯
車の歯数=右太陽歯車のピッチ円半径/右遊星歯車のピッチ円半径で、且つ右太陽歯車の
ピッチ円半径+右遊星歯車のピッチ円半径=基準中心距離であるように、基準中心距離を
めぐって右太陽歯車のピッチ円半径及び右遊星歯車のピッチ円半径を設定することを特徴
とする、前記太陽歯車を2つ備える可変線速度遊星歯車機構による均等減速機。
A variable linear velocity planetary gear mechanism comprising two sun gears, an input end, an output end, a lock end,
An equal reduction gear with a variable linear speed planetary gear mechanism having two sun gears, including an auxiliary device called a bearing,
A variable linear speed planetary gear mechanism with two sun gears is composed of a left sun gear, a right sun gear, and a planetary carrier with planetary gears, the planetary carrier supporting each planetary gear and allowing each planetary gear axis to revolve. The distance to the axis, that is, the reference center distance is equal, and each planetary gear is provided with two gears, the left planetary gear and the right planetary gear, on the axis in order,
The number of teeth of the left sun gear, the number of teeth of the right sun gear, the number of teeth of the left planetary gear, and the number of teeth of the right planetary gear. The number of teeth × the number of teeth of the left planetary gear / (the number of teeth of the left sun gear × the number of teeth of the right planetary gear) is the range defining parameter, and the number of planetary gear axes supported by the planetary carrier is the number of gear sets K and
As the value range defining parameter, the value of the range defining parameter is greater than 0.875, less than 1.142857 and not 1.0 for each combination of numbers of teeth,
The gear set number K is an integer of 2 or more, and when setting the number of teeth and the number of gear sets, the rule that the combination of the number of teeth matches the number of gear sets is as follows:
(1) When the absolute value of the difference between the number of teeth of the left sun gear and the number of teeth of the right sun gear is a multiple of 2, the number of gear sets is 2;
(2) When the absolute value of the difference between the number of teeth of the left sun gear and the number of teeth of the right sun gear is a multiple of 3, the number of gear sets is 3;
(3) When the absolute value of the difference between the number of teeth of the left sun gear and the number of teeth of the right sun gear is a multiple of 4, the number of gear sets is either 4 or 2;
(4) When the absolute value of the difference between the number of teeth of the left sun gear and the number of teeth of the right sun gear is a multiple of 5, the number of gear sets is 5;
(5) when the absolute value of the difference between the number of teeth of the left sun gear and the number of teeth of the right sun gear is a multiple of 6, the number of sets of gears is 6, 3, or 2;
(6) when the absolute value of the difference between the number of teeth of the left sun gear and the number of teeth of the right sun gear is a multiple of 8, the number of gear sets is 8, 4, or 2;
(7) when the absolute value of the difference between the number of teeth of the left sun gear and the number of teeth of the right sun gear is a multiple of 10,
The number of sets of gears is either 5 or 2 ,
The manufacturing and assembling rule of the planetary gear is that the number of teeth of the left sun gear is divided by the number of gear sets K to obtain a remainder, the remainder being an integer ranging from 0 to (K-1), When manufacturing each planetary gear, for the first planetary gear, the equiphase surface is selected so that the equiphase angle value is a, and for the second planetary gear, the equiphase angle value is ( a+1 ×× remainder/K), and
For the third planetary gear, the equiphase surface is selected so that the equiphase angle value is (a+2 ×× remainder/K), and thus the fourth planetary gear, the fifth The planetary gear, the 6th planetary gear, and the 7th planetary gear are manufactured in order, and finally the equiphase angle value of the K-th planetary gear is (a + (K
-1) Select the equiphase surface to be ×× remainder value/K), and when assembling each planetary gear, assemble two sun gears, a planetary carrier at a predetermined position on the revolution axis, and each mounting Determine the surface, superimpose the equiphase surface with the equiphase angle value a of the first planetary gear on the first mounting surface, set the left and right equiphase points within the reference center distance, and Assemble the planetary gears, superimpose the equiphase surface of the second planetary gear whose equiphase angle value is (a + 1 ×× remainder value / K) on the second mounting surface, and place the left and right equiphase points within the reference center distance to assemble the second planetary gear, and superimpose the equiphase surface of the third planetary gear whose equiphase angle value is (a + 2 ×× remainder value / K) on the third mounting surface, Set the left and right equiphase points within the reference center distance, assemble the third planetary gear, and in this way sequentially 4th planetary gear, 5th planetary gear, 6th planetary gear, 7 Assemble the second planetary gear, etc., and finally the equiphase angle value of the Kth planetary gear is (a + (K - 1) ××
The equiphase surface that is the remainder value /K) is superimposed on the Kth mounting surface, the left and right equiphase points are set within the reference center distance, and the Kth planetary gear is assembled,
As the pitch radius of the gear, the number of teeth of the left sun gear/the number of teeth of the left planetary gear = the pitch radius of the left sun gear/the pitch radius of the left planetary gear, and the pitch radius of the left sun gear + the left The pitch circle radius of the left sun gear and the pitch circle radius of the left planetary gear are set around the reference center distance so that the pitch circle radius of the planetary gear = the reference center distance, and the number of teeth of the right sun gear/the number of teeth of the right planetary gear Right around the reference center distance such that the number of teeth = the pitch circle radius of the right sun gear/the pitch circle radius of the right planetary gear, and the pitch circle radius of the right sun gear + the pitch circle radius of the right planetary gear = the reference center distance. An equal reduction gear using a variable linear velocity planetary gear mechanism having two sun gears, characterized in that the pitch circle radius of the sun gear and the pitch circle radius of the right planetary gear are set.
太陽歯車を2つ備える可変線速度遊星歯車機構の3つの部品と入力端、出力端、ロック
端の接続方法は二通りあり、いずれかの接続方法で減速機を構成し、それぞれの伝動比が
異なり、具体的には、
接続方法1として、遊星キャリヤが入力端に接続され、左太陽歯車が出力端に接続され
、右太陽歯車がロック端に接続され、遊星キャリヤから左太陽歯車への伝動の伝動比は左
伝動比であり、左伝動比=1/(1-右太陽歯車の歯数×左遊星歯車の歯数/(左太陽歯
車の歯数×右遊星歯車の歯数))であり、
接続方法2として、遊星キャリヤが入力端に接続され、右太陽歯車が出力端に接続され
、左太陽歯車がロック端に接続され、遊星キャリヤから右太陽歯車への伝動の伝動比は右
伝動比であり、右伝動比=1/(1-左太陽歯車の歯数×右遊星歯車の歯数/(右太陽歯
車の歯数×左遊星歯車の歯数))であることを特徴とする請求項1に記載の太陽歯車を2
つ備える可変線速度遊星歯車機構による均等減速機。
There are two ways to connect the three parts of the variable linear velocity planetary gear mechanism with two sun gears, the input end, the output end and the lock end. Differently, specifically:
As connection method 1, the planet carrier is connected to the input end, the left sun gear is connected to the output end, the right sun gear is connected to the lock end, and the transmission ratio of the transmission from the planet carrier to the left sun gear is the left transmission ratio , and the left transmission ratio = 1/(1 - the number of teeth of the right sun gear × the number of teeth of the left planetary gear / (the number of teeth of the left sun gear × the number of teeth of the right planetary gear)),
As connection method 2, the planet carrier is connected to the input end, the right sun gear is connected to the output end, the left sun gear is connected to the lock end, and the transmission ratio of the transmission from the planet carrier to the right sun gear is the right transmission ratio and the right transmission ratio = 1/(1-number of teeth of left sun gear x number of teeth of right planetary gear/(number of teeth of right sun gear x number of teeth of left planetary gear)) 2 the sun gear according to item 1
Equal reduction gear with variable linear speed planetary gear mechanism.
JP2021538054A 2019-01-11 2019-12-27 Equal reduction gear by variable linear velocity planetary gear mechanism with two sun gears Active JP7262087B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910028861.3 2019-01-11
CN201910028861.3A CN111434949A (en) 2019-01-11 2019-01-11 Double-sun-wheel line-speed-variable planetary row speed reducer
PCT/CN2019/129366 WO2020143488A1 (en) 2019-01-11 2019-12-27 Balanced speed reducer of variable line speed planetary row having double sun gears

Publications (2)

Publication Number Publication Date
JP2022516874A JP2022516874A (en) 2022-03-03
JP7262087B2 true JP7262087B2 (en) 2023-04-21

Family

ID=71520944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021538054A Active JP7262087B2 (en) 2019-01-11 2019-12-27 Equal reduction gear by variable linear velocity planetary gear mechanism with two sun gears

Country Status (6)

Country Link
US (1) US11441641B2 (en)
EP (1) EP3910213A4 (en)
JP (1) JP7262087B2 (en)
KR (1) KR20210096248A (en)
CN (2) CN111434949A (en)
WO (1) WO2020143488A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060095A (en) 2008-09-05 2010-03-18 Hiroshi Mizuno Planetary gear speed reducer
JP2010144839A (en) 2008-12-18 2010-07-01 Mitsuba Corp Speed reducer for electric motor and electric motor with speed reducer
CN107420499A (en) 2017-07-25 2017-12-01 罗灿 Become linear speed planet row gearing

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1259059B (en) * 1992-03-04 1996-03-11 Vanni Gallocchio SPEED REDUCER
US6080077A (en) * 1999-02-15 2000-06-27 Igor Kamlukin Planetary gear drive train
DE19928385A1 (en) * 1999-06-21 2000-12-28 Zahnradfabrik Friedrichshafen Planetary gear has sun wheel, two hollow wheels, tilted axles, pinion cage, cogging parts, support bearing
JP2001132822A (en) * 1999-11-01 2001-05-18 Nok Corp Gear device
JP3777929B2 (en) * 1999-12-24 2006-05-24 アイシン精機株式会社 Transmission
JP3867469B2 (en) * 2000-03-15 2007-01-10 セイコーエプソン株式会社 Gear device
FR2955368B1 (en) * 2010-01-19 2012-05-18 Skf Aerospace France SPEED REDUCER AND TRANSMISSION MECHANISM COMPRISING SUCH REDUCER FOR PILOTING AN AIRCRAFT
JP5434706B2 (en) * 2010-03-15 2014-03-05 株式会社リコー Rotation transmission mechanism with planetary gear mechanism and image forming apparatus
US20120302392A1 (en) * 2011-05-23 2012-11-29 Chao-Tien Liu Epicyclic Gear Train Transmission Assembly
CN102192291A (en) * 2011-05-24 2011-09-21 江苏省金象减速机有限公司 Two-stage gear-drive-type speed reducer with gear ratio configured randomly and method of parameter configuration
KR20140115360A (en) * 2012-02-27 2014-09-30 혼다 기켄 고교 가부시키가이샤 Drive device for vehicle
JP5932520B2 (en) * 2012-06-27 2016-06-08 本田技研工業株式会社 Power transmission device
JP5543569B2 (en) 2012-11-17 2014-07-09 稔 中川 Ring gear continuously variable transmission mechanism
CN103112346B (en) 2013-03-08 2015-07-08 吉林大学 Double-planet row type oil and electricity series-parallel type hybrid power system
CN103423386B (en) 2013-07-27 2016-01-13 顺德职业技术学院 Six fast transmission device of dual-clutch transmissions
CN103438163B (en) 2013-07-27 2016-08-10 顺德职业技术学院 A kind of multi-speed planetary gear type double-clutch gearbox
US10233997B2 (en) * 2015-07-29 2019-03-19 Sikorsky Aircraft Corporation Planetary gear sets for power transmissions
CN105202118A (en) * 2015-09-16 2015-12-30 贵州群建精密机械有限公司 Small-module planetary gear reducer and manufacturing method thereof
US11181170B2 (en) * 2016-06-06 2021-11-23 National University Corporation Yokohama National University Planetary gear device and planetary gear device design program
CN206647505U (en) 2017-04-10 2017-11-17 深圳市万维博新能源技术有限公司 Double sun gears input planetary structure
JP6583347B2 (en) * 2017-05-19 2019-10-02 トヨタ自動車株式会社 Gear transmission
CN107387671A (en) * 2017-07-25 2017-11-24 罗灿 Dual input planet row decelerator
CN107366716B (en) * 2017-08-08 2019-05-07 深圳先进技术研究院 A kind of three-level reduction planetary retarder, industrial robot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060095A (en) 2008-09-05 2010-03-18 Hiroshi Mizuno Planetary gear speed reducer
JP2010144839A (en) 2008-12-18 2010-07-01 Mitsuba Corp Speed reducer for electric motor and electric motor with speed reducer
CN107420499A (en) 2017-07-25 2017-12-01 罗灿 Become linear speed planet row gearing

Also Published As

Publication number Publication date
US11441641B2 (en) 2022-09-13
WO2020143488A1 (en) 2020-07-16
CN111801514B (en) 2022-05-03
EP3910213A1 (en) 2021-11-17
KR20210096248A (en) 2021-08-04
EP3910213A4 (en) 2022-07-20
JP2022516874A (en) 2022-03-03
CN111801514A (en) 2020-10-20
US20220065328A1 (en) 2022-03-03
CN111434949A (en) 2020-07-21

Similar Documents

Publication Publication Date Title
US10415672B2 (en) Drives with partial cycloid teeth profile
JP4365070B2 (en) Planetary gear reducer
CN110848332B (en) Intersecting-axis non-circular-face gear transmission mechanism
JP6936367B2 (en) High ratio differential reducer
JP7262087B2 (en) Equal reduction gear by variable linear velocity planetary gear mechanism with two sun gears
TW202232012A (en) Harmonic speed reducer
US11441640B2 (en) Balanced speed reducer of dual-ring gear variable-line-speed planetary row
JPH0534538B2 (en)
JP2017040348A (en) Planetary gear device and its design method
WO2019200898A1 (en) Improved planetary gear reducer
CN115523263A (en) Differential gear speed reducer with wide speed ratio selectable range and simple structure
JP2015117763A (en) Series of speed-incrementing/speed-reducer units and speed-incrementing/speed-reducer units
WO2019200899A1 (en) Novel planetary gear reducer
CN112049915B (en) Multi-shaft differential device
KR102430059B1 (en) Design method for cycloid gear
TWI675161B (en) A speed reducer with inner teeth flexspline
CN209943434U (en) Planetary reducer
CN115875409A (en) Structure of planetary gear reducer with large transmission ratio, calculation of transmission ratio and parameter determination method
Lam et al. A graph representation of planetary gear trains with any number of degrees of freedoms
TWM627780U (en) Speed-reduced mechanism of small tooth difference
RU2630864C2 (en) Device for changing the speed of a stressed wave gear with a large gear ratio
JP2001304351A (en) Reduction gear
KR19990002009A (en) Reduction device using phase shift difference
CN110735887A (en) Planetary gear mechanism without reverse clearance and planetary reducer
Kuehnle Conveying High Torque via an Efficient, High Reduction Ratio, Coaxial, Lightweight A-XYZ Transmission™

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230315

R150 Certificate of patent or registration of utility model

Ref document number: 7262087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150