JP3867469B2 - Gear device - Google Patents

Gear device Download PDF

Info

Publication number
JP3867469B2
JP3867469B2 JP2000073088A JP2000073088A JP3867469B2 JP 3867469 B2 JP3867469 B2 JP 3867469B2 JP 2000073088 A JP2000073088 A JP 2000073088A JP 2000073088 A JP2000073088 A JP 2000073088A JP 3867469 B2 JP3867469 B2 JP 3867469B2
Authority
JP
Japan
Prior art keywords
gear
teeth
planetary
internal gear
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000073088A
Other languages
Japanese (ja)
Other versions
JP2001263436A (en
Inventor
健一 牛越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000073088A priority Critical patent/JP3867469B2/en
Priority to PCT/JP2001/000282 priority patent/WO2004079224A1/en
Priority to US09/936,982 priority patent/US6632154B2/en
Publication of JP2001263436A publication Critical patent/JP2001263436A/en
Application granted granted Critical
Publication of JP3867469B2 publication Critical patent/JP3867469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H2001/2881Toothed gearings for conveying rotary motion with gears having orbital motion comprising two axially spaced central gears, i.e. ring or sun gear, engaged by at least one common orbital gear wherein one of the central gears is forming the output

Description

【0001】
【発明の属する技術分野】
本発明は歯車装置に係り、特に、小型の減速機として構成する場合に好適な遊星歯車機構を有する歯車装置の構造に関する。
【0002】
【従来の技術】
一般に、遊星歯車機構を用いた減速装置は、小型で大きな減速比を得ることができることから、各種機械装置における駆動機構の一部として多く用いられている。このような減速装置の一例としては、特開平2−31047号公報に記載された小型減速機がある。この小型減速機は、太陽歯車と、この太陽歯車に噛合する遊星歯車と、この遊星歯車の第1歯車部に噛合する固定内歯車と、固定内歯車と同軸に取付けられ、遊星歯車の第2歯車部に噛合する可動内歯車とから構成されたものである。この場合、固定内歯車に噛合する第1歯車部と可動歯車部に噛合する第2歯車部とは同軸且つ軸線方向に隣接して設けられ、この公報においては相互に同じ歯数になるように形成されている。ただし、遊星歯車の第1歯車部と第2歯車部とは一般には異なる歯数に形成される。
【0003】
このような遊星歯車機構を用いた歯車装置においては、機構の大型化を招くことなく減速比を大きくとることができる。例えば、上記の機構において、太陽歯車の歯数をe、遊星歯車の第1歯車部の歯数をz1、第2歯車部の歯数をz2、固定内歯車の歯数をI1、可動内歯車の歯数をI2とした場合、太陽歯車を入力部として構成し、可動内歯車を出力部として構成したときの減速比は、
r={1+(I1/e)}/{1−(z2/z1)・(I1/I2)}・・・(1)
で表される。
【0004】
ここで、上記の特開平2−31047号公報に記載されているように、z1=z2とし、太陽歯車の歯数e=6、固定内歯車の歯数I1=60、可動歯車の歯数I2=61とすると、固定内歯車と可動内歯車との歯数差は1であり、減速比は671となる。また、他の歯数を同一とし、可動内歯車の歯数I2=62とすると、上記歯数差は2であり、減速比は341となり、さらに、他の歯数を同一とし、可動内歯車の歯数I2=63とすると、上記歯数差は3であり、減速比は231、そして、可動内歯車の歯数I2=64とすると、上記歯数差は4であり、減速比は176となる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記のような遊星歯車の第1歯車部の歯数z1と第2歯車部z2とが等しい遊星歯車機構を用いた歯車装置においては、固定内歯車の歯数と可動内歯車の歯数との差が1である場合には、太陽歯車と、固定内歯車及び可動内歯車との間に組み込み可能な遊星歯車の数はn=1となるため、太陽歯車と遊星歯車とが常時1箇所(一つの歯同士)でのみ噛み合うこととなるから、歯に加わるトルクが過大となり、歯車への負担が大きくなるので、耐久性に支障が出たり、歯の強度を高める必要があるために歯車の小型化が困難になったりするという問題点があり、特に小型化した場合は実用化が困難である。また、固定内歯車と可動内歯車との歯数差が2〜4の場合には、それぞれ組み込み可能な遊星歯車の数nも2〜4となるが、上記歯数差が増加するに従って減速比は低下してしまう。具体的には、遊星車を3個使用して、固定内歯車と可動内歯車の歯数差を3とし、得られる減速比231(前頁に示した値)くらいが計算上の限界である。更に実際実用化するときにはモジュールが小さくなることによる歯形形状ばらつきを考慮して、安全性をとり、その約半分の100前後の減速比である場合が多い。よって、遊星歯車機構を用いた歯車装置の減速比は通常100前後である場合が多く、歯型を小さなモジュールで構成して無理をしても200未満の減速比しか得られない。
【0006】
一方、遊星歯車のz1=z2という条件を解除すれば、遊星歯車の数nは固定内歯車と可動内歯車との歯数差には必ずしも依存しなくなるので、上記式(1)によれば無限に大きな減速比が得られるかのように思える。しかし、実際に小型の歯車機構を構成するには、サイズに応じて要求される歯型のモジュールが実際に形成可能であること、動作時における当該モジュールの歯型に必要な強度(剛性)が確保できること、歯車機構が小さくなることによってバックラッシュが少なくなるために歯車機構を組み立てる際の歯車間の位相合わせが可能であることの3つの条件が揃わなければならない。
【0007】
そこで本発明は上記問題点を解決するものであり、その課題は、歯車機構の小型化を図るために各歯車の歯型を小さなモジュールに設定しても、動作や組立に支障を来たすことのない遊星歯車機構の構成を実現し、これによって従来よりも小型化可能であり、しかも、十分な減速比を備えた歯車装置を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために本発明の歯車装置は、歯数eを有する太陽歯車と、該太陽歯車に噛合する歯数z1を有する第1歯車部及び歯数z2を有する第2歯車部を備えたn(nは2以上の自然数)個の遊星歯車と、該遊星歯車の前記第1歯車部に噛合する歯数I1を有する固定内歯車と、前記遊星歯車の前記第2歯車部に噛合する歯数I2を有する可動内歯車とを有し、前記歯数e、z1、z2、I1、I2は全てnの倍数であり、ここで遊星歯車の歯数z1とz2が異なるが、単に異なるだけでは、後に述べる組み立てができなくなる恐れがあり、2個所の遊星歯車の位相を規定することにより高減速機構を得ることを特徴とする。
【0009】
この発明によれば、太陽歯車、遊星歯車の第1歯車部及び第2歯車部、固定内歯車、可動内歯車の歯数e、z1、z2、I1、I2が全て遊星歯車の数n(nは2以上の自然数)の倍数となっていることにより、各歯車において常に円周方向にn等分した等分点位置における歯型の位相が相互に一致することとなるので、装置が小型化しても(歯型のモジュールが小さくなっても)、太陽歯車と固定内歯車との間にn個の遊星歯車の第1歯車部を軸線周りに等間隔に同じ噛合状態で組み込むことができ、n個の遊星歯車の第2歯車部が可動内歯車に対して同一状態に噛合した組立状態を確実に実現することが可能になるとともに、遊星歯車機構における高いバランス状態を実現できるので、小型化しても耐久性が高く、しかも、確実且つ容易に組立作業を行うことができる歯車装置を構成できる。また、各歯車の歯数をnの倍数にするという制約があるだけであり、遊星歯車の第1歯車部の歯数と第2歯車部の歯数とを一致させる必要がないので、歯数の組み合わせをより自由に設定することができ、容易に高い減速比を得ることができる。さらに、遊星歯車は2以上であるので、単一の遊星歯車を用いる場合に比べて歯車への負担が低減される。
【0010】
本発明において、nは2又は3であることが好ましい。遊星歯車の個数が2又は3であることにより、遊星歯車を軸支するキャリア(或いはホルダ)における、太陽歯車の軸線方向に伸びる支柱部の断面積を確保することができるので、歯車装置を小型化した場合でも、キャリアの剛性低下を抑制することができ、遊星歯車の回転軸の支持を確実に行うことが可能になる。
【0011】
本発明において、前記太陽歯車を入力とし、前記可動内歯車を出力とした場合の減速比が200以上の場合にも問題が生じない。この発明によれば、従来の前述に示すように減速比を300以上とするか、通常、遊星歯車の数が少なくして、或いは、歯車を組立可能に構成することが困難になることが多いが、本発明の構造を有する歯車装置では、このような場合でも遊星歯車の数を減らさずに、しかも、確実に歯車機構を組立可能に構成できる。特に、本発明の構造では、上記のような高い減速比を得るとともに、装置の小型化のために時計サイズの小さなモジュール(例えば少なくとも一つの歯車のモジュールが0.1mm以下)の歯型を有する歯車を用いる場合でも、充分実用的な耐久性及びバランスを備えた歯車装置を構成できる。特に、上記減速比は400以上であっても実用に耐えうるものが提供できる。
【0012】
本発明において、前記太陽歯車、前記遊星歯車、前記固定内歯車及び前記可動内歯車の歯型のうち少なくとも一つの歯車の組み合わせのモジュールが0.1mm以下の時でも実現し易くするものである。通常、モジュールが0.1mm以下であると、歯車の噛合状態に余裕が少なくなるので、複数の遊星歯車と、太陽歯車、固定内歯車或いは可動内歯車との噛合状態の位相が合致していないと、歯車の組み込みが不可能になる場合があるが、本発明によれば、常に複数の遊星歯車について噛合状態が同一位相となるので、少なくとも一つの歯型のモジュールが0.1mm以下の場合であっても、確実且つ容易に歯車の組立作業を行うことができる。
【0013】
本発明において、前記固定内歯車は装置のハウジングの内面に一体に形成されていることが好ましい。固定内歯車をハウジングの内面に一体に形成することにより、部品点数を削減することができるとともに、歯車装置全体の更なる小型化を図ることができる。
【0014】
本発明において、前記遊星歯車は前記第1歯車部の基準ピッチ円直径よりも第2歯車部の基準ピッチ円直径が小さいことが好ましい。この発明によれば、第2歯車部の基準ピッチ円直径が第1歯車部よりも小さいことにより、第2歯車部に噛合する可動内歯車の基準ピッチ円直径をより小さく形成することができるので、可動内歯車がハウジングの内側に配置されている場合には特に、また、ハウジングの内面に固定内歯車が一体に形成されている場合にはなおさら、歯車装置をより小型化することが可能になる。
【0015】
なお、上記各発明の歯車装置は、モータ等の電動機その他の駆動源と一体化されて、駆動装置として構成されていることが好ましい。本発明のように小型化可能で高い減速比を実現可能な歯車機構は、携帯用(電子)機器に組み込まれる小型の駆動装置としてきわめて有効である。例えば、携帯用薬液供給装置や携帯電話のバイブレータ等として用いられることが望ましい。
【0016】
【発明の実施の形態】
次に、添付図面を参照して本発明に係る歯車装置の実施形態について詳細に説明する。図1は本実施形態の内部構造を示す縦断面図である。射出成形等によって成形された筒状のハウジング10の一端(図示右端)の開口部には小型モータ11が嵌入され、この小型モータ11の胴部は接着剤溜め10aに接着剤を流し込むことによってハウジング10に対して接着固定される。小型モータ10の出力軸11aは入力部材12の中心穴12aに嵌合している。入力部材12もまた射出成形等の樹脂成形体等で構成されている。入力部材12の端部には太陽歯車12bが一体に形成されている。
【0017】
太陽歯車12bは遊星歯車13に噛合している。遊星歯車13は、太陽歯車12bに噛合する第1歯車部13aと、この第1歯車部13aに同軸に形成された第2歯車部13bと、第1歯車部13a側の端部に設けられた被軸支部13cと、第2歯車部13b側の端部に設けられた被軸支部13dとを有する。第1歯車部13aは、上記ハウジング10の内周面に形成された固定内歯車10bに噛合している。また、第2歯車部13bは、固定内歯車10bに隣接し、同軸に配置された出力部材14の可動内歯車14aに噛合している。ここで詳細になるが、歯車部13aと歯車部13bは同一歯数の場合は組み立てが比較的簡単であるが、異なった歯数の場合は、固定内歯車10bの位相と可動内歯車14a双方の位相と、異なる歯数を持つ遊星車の位相を合わせて組み立てができるようにしないと組み立てができなくなるので、後で述べるような諸条件が必要になってくる。
【0018】
一方、被軸支部13cはホルダ15のリング状に形成された環状部15aに軸支されている。具体的には環状部15aに形成された嵌合孔に凸状の被軸支部13cが回転自在に嵌合している。ホルダ15は樹脂成形材等からなり、環状の環状部15aと、この環状部15aから太陽歯車12bの軸線方向に伸びる支柱部15b(遊星歯車13の回転をさまたげないよう配置される。)と、支柱部15bの先端に形成された被嵌合部15cとを備えている。また、被軸支部13dはホルダ15の被嵌合部15cが嵌合されたホルダ押え16に軸支されている。具体的には、凸状の被軸支部13dがホルダ押え16に形成された嵌合孔に回転自在に嵌合している。
【0019】
ホルダ15とホルダ押え16とは、被嵌合部15cとホルダ押え16との間の嵌合によって一体化されており、ホルダ15の環状部15aの外周面はハウジング10の内周面に摺接し、ホルダ押え16に形成された軸支部(図示の場合には丸孔)16aが出力部材14の支軸部14bに軸支されている。
【0020】
出力部材14は、可動内歯車14aの設けられた部分がハウジング10内に収容され、ハウジング10の内周面によって回転自在に案内されているとともに、ハウジング10に嵌合された端ケース17の中心孔によって回転自在に軸支されている。また、出力部材14の出力歯車14cは、端ケース17から軸線方向へ外側に突き出るように配置されている。
【0021】
この実施形態を軸線方向に見た場合の各歯車の噛み合い状態を重ねて示すものが図2である。本実施形態では、太陽歯車12bの歯数をe=9、3つの遊星歯車の第1歯車部13aの歯数をそれぞれz1=15、第2歯車部13bの歯数をz2=18、固定内歯車の歯数をI1=42、可動内歯車の歯数をI2=51としている。このとき、上記式(1)に従って得られる減速比は481である。本実施形態の場合、上記のすべての歯車の歯数e、z1、z2、I1、I2が全て3の倍数であり、z1とz2の差、I1とI2の差もまた3の倍数である。この場合、z1=z2、或いは、I1=I2であっても構わない。本実施形態における歯数の他の例を示すと、e=6、z1=12、z2=15、I1=39、I2=48(減速比480)となる。
【0022】
ここで第3図において、遊星歯車について詳述する。第3図(a)は、従来のz1=z2の場合の歯形がつき合わさる断面を示している。第3図(b)(c)は、本発明になる歯形の突き合わせ部分の断面と、遊星歯車の側面図を示す。従来例の歯形では、例えば一つの歯形13eと他方の歯形13fは、同位相であるので、二つの歯形を持つ歯車を構成する加工方法は選択肢が多く比較的容易である。例えば、一つの歯形を持つ部材と他の歯形を持つ部材を片方に穴片方に軸を構成し、打ち込んで遊星歯車として完成する。或いは射出型を作り、型の分割は両者の突き合わさる面で行う。歯形全周にわたり相対位相関係は同一であり、型製作の突き合わせ部の精度も特には高い必要はない。ここで本発明によるものは歯形の歯数が異なるために、2個の歯形の相対関係の条件ががなく、もし13aと13bの歯数が15枚14枚などで構成されると、第3図(b)において、一枚の歯形を一致させることは出来るが、その他の部分での一致がない。もしその一致がないと、実際上2段からなる遊星歯車を複数個用いる遊星歯車機構においては、最初の段を組んだ後に、2段目を組もうとしても複数の遊星歯車と後から組み込む、内歯歯車の位相が合わなくなり、組み立てが出来ない。
【0023】
本発明では両歯数が3或いは2や4などで割り切れる歯数を設定することに特徴がある。ここでは、第3図(b)に示すように事例ととして、3で割り切れる数の歯数としてz1=12、z2=15の事例で示した。図から明らかなように、両者の歯数で合致する歯形は、3個所ある。このため遊星歯車を3個使用しても、一段目の組み立て後、2段目の内歯歯車を組み込むことが可能となる。また先ほどの例で述べた15枚と14枚などの歯数で構成してしまうと、遊星歯車の加工については位相が合わないこともあり、両歯型を別々に加工して組み合わせるか、また射出によって作り上げるかの選択に対して、いずれも精密加工の度合いや、一体化する時に位相合わせに困難を来すのであるが、本発明の歯数設定で行うと、全周上のどこかに2者の歯型の一致する個所が2個所以上必ず出てくるため、部品加工や位置合わせなど加工面での困難度が下がり、実現しやすいものとなる。実際に時計用に匹敵する歯形で射出成形により、15枚12枚を作成し突き合わせることにより、超小型の遊星歯車を成形し、簡単に組み込むことが出来た。従来はこのような超小型レベルで射出成形による、歯数を変えた遊星歯車の製品や部品がなかったが、この構成ではじめて実現することが出来た。特にこのような超小型の遊星歯車を射出成形で製作可能にしたことは、量産品を安価に作る上での効果が著しい。
【0024】
上記のように各歯車がたとえば3の倍数の歯数を有しているのには以下の理由がある。まず、太陽歯車12bと固定内歯車10bとの間に3つの遊星歯車13の第1歯車部13aを周回方向に均等に(すなわち120度間隔で)組み込む場合、太陽歯車の歯形状及び固定内歯車の歯形状を共に3回対象(120度ごとに同じ歯型の位相が現れる回転対象性)とし、さらに遊星歯車の歯形状もまた3回対象とすることによって、3つの遊星歯車を同期した噛み合い状態で確実に組み込むことができる。すなわち、図2に示す線分L1,L2,L3にそれぞれ交差する太陽歯車と遊星歯車、及び、遊星歯車と固定内歯車との噛合部位は、3つの遊星歯車について相互に同一位相(噛合状態が同じ状態、つまり、例えば、一つの遊星歯車の歯先と固定内歯車の歯底とが噛合している状態では、他の2つの遊星歯車と固定内歯車との噛合部位においても遊星歯車の歯先と固定内歯車の歯底とが噛合し、同様に、1つの遊星歯車の歯底と太陽歯車の歯先とが噛合している状態では、他の2つの遊星歯車と太陽歯車との噛合部位においても遊星歯車の歯底と太陽歯車の歯先とが噛合していること)となっていれば、確実に太陽歯車、遊星歯車の第1歯車部、及び、固定内歯車の組み込みが可能になる。このためには、3つの遊星歯車に噛合する太陽歯車及び固定内歯車の歯型は回転方向に3回対象(すなわち歯数が3の倍数)である必要があり、また、遊星歯車の第1歯車部についても、図示のL1,L6,L9と、L5,L2,L8と、L4,L7,L3と交差する歯型部分がそれぞれ同一位相の歯型形状となっていなければならないことから、遊星歯車の第1歯車部についても歯型が回転方向に3回対象(すなわち歯数が3の倍数)になっている必要がある。
【0025】
さらに、上記のようにして太陽歯車12b、第1歯車部13a及び固定内歯車10bを相互に組み込んだ状態で、可動内歯車14aを3つの遊星歯車13の第2歯車部13bの全てに組み込むには、第1歯車部と同軸に形成された第2歯車部及びこの第2歯車部に噛合する可動内歯車の歯型を共に3回対象(すなわち歯数が3の倍数)に形成する必要がある。このようにすれば、3つの遊星歯車のいずれもが噛合部に対して同じ位置関係にて組み込むことができるので、如何なる場合でも確実に歯車の組み込み作業が可能となる。なお、この場合に、第1歯車部と第2歯車部との歯形状が同数、同位相に形成されている必要はない。
【0026】
本実施形態では上記のように減速比は約480となり、従来のものよりも大きな減速比を実現できる。特に、上述の従来例において3つの遊星歯車を備えた前記具体例に記載した減速比に対して比較すると、倍以上の減速比を得ることができる。また、固定内歯車の歯数(42枚)と可動内歯車の歯数(51枚)のいずれもが、従来の固定内歯車の歯数(60枚)及び可動内歯車の歯数(61〜64枚)よりも歯数が少なくなっている。したがって、同じモジュールの歯車を用いたとすると、より全体の外径が小さい歯車を提供することができる。
【0027】
本実施形態の遊星歯車13はいずれも第1歯車部13aよりも第2歯車部13bの方が基準ピッチ円の直径が小さくなるように形成され、この結果、可動内歯車14aの基準ピッチ円径も小さくなるので、出力部材14の剛性を低下させることなく外径を小さく形成することが可能になり、出力部材14を収容するハウジング10の外径も小さくすることができるから、歯車装置全体をより小型化することができる。
【0028】
次に、上記実施形態と基本的に同一の構造を有する他の実施形態について説明する。この実施形態では、2つの遊星歯車を2つとして太陽歯車の周囲に180度間隔で配置する。この場合、太陽歯車の歯数e、遊星歯車の歯数z1,z2、固定内歯車の歯数I1、可動内歯車の歯数I2の全てを2の倍数とする。例えば、e=12、z1=14、z2=12、I1=40、I2=34とすると、上記式(1)に従って求めた減速比は515.7となる。この実施形態では、2つの遊星歯車の第1歯車部及び第2歯車部は、先の実施形態と同様に、太陽歯車若しくは固定内歯車又は可動内歯車に対して相互に同一位相にて噛合し、同じ理由によって如何なる状態でも確実に歯車の組み込みが可能となる。
【0029】
上記のいずれの実施形態においても、太陽歯車、遊星歯車の第1歯車部及び第2歯車部、固定内歯車、可動内歯車のいずれも遊星歯車の数の倍数に設定している。このようにすれば、基本的には上述の各実施形態と同様の効果を得ることができる。例えば、遊星歯車を4つ配置した場合には全ての歯車の歯数を4の倍数に設定すればよい。ただし、歯車装置を小型化していくと、遊星歯車の間に十分なスペースが得られなくなり、上記のホルダ及びホルダ押えからなるキャリア体における軸線方向に伸びる支柱部の断面積が小さくなるので、キャリア体の剛性が確保しにくくなり、また、キャリアの剛性を高めるために高剛性の高価な素材によってキャリア体を構成する必要が生ずる。したがって、遊星歯車の数としては2個或いは3個であることが好ましい。
【0030】
上記の各実施形態では、各歯車の歯数が遊星歯車の数の倍数である点の制約はあるものの、上記の特開平2−31047号公報に記載されているように遊星歯車の歯数をz1=z2とする必要がないので、各歯車の歯数の組み合わせの自由度が増大し、より広い範囲で歯車の設計を行うことができ、減速比も自由に設定することができる。特に、高い減速比が要求される場合でも、機構の大型化を招くことなく対応することができる。
【0031】
上記の各実施形態において説明した歯車装置は、図1に示すように電動機と一体の駆動源として構成することができる。また、固定内歯車をハウジングと一体に構成することが部品点数を低減するために好ましい。
【0032】
上記各実施形態の歯車装置は、上記のモータ等の電動機その他の駆動源と一体化されて、駆動装置として構成されていることが好ましい。通常、駆動源が小さくなると駆動トルクは駆動源の小型化の度合い以上に低下する。このため、小型の駆動源を用いる場合には、駆動源の出力を高速化するとともにこの出力を高い減速比で減速して所要のトルクを確保する必要がある。この場合、歯車装置には、小型で且つ高い減速比を得ることのできるものが要求される。上記実施形態のように小型化可能で高い減速比を実現可能な歯車機構は、携帯用(電子)機器に組み込まれる小型の駆動装置としてきわめて有効である。例えば、携帯用薬液供給装置におけるロータリー型等の薬液吐出ポンプの駆動装置として用いられることが望ましい。
【0033】
尚、本発明の歯車装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0034】
【発明の効果】
以上、説明したように本発明によれば、組立状態を確実に実現することが可能になるとともに、遊星歯車機構における高いバランス状態を実現できるので、小型化しても耐久性が高く、しかも、確実且つ容易に組立作業を行うことができる歯車装置を構成できる。また、各歯車の歯数をnの倍数にするという制約があるだけであり、遊星歯車の第1歯車部の歯数と第2歯車部の歯数とを一致させる必要がないので、歯数の組み合わせをより自由に設定することができ、容易に高い減速比を得ることができる。さらに、遊星歯車は2以上であるので、単一の遊星歯車を用いる場合に比べて歯車への負担が低減される。またこのような遊星歯車を射出成形でも加工作成できる可能性が出たことは、多数個使うことや安価で大量に超小型製品を実現できる遊星機構としての効果が大きい。
【図面の簡単な説明】
【図1】本発明に係る歯車装置の実施形態の構造を示す縦断面図である。
【図2】同実施形態における各歯車の形状を重ねて示す透視図である。
【図3】遊星歯車の構造図(a)従来の2つの歯形が同数或いは同位相の歯形の合わせ面(b)本発明の歯形の合わせ面(c)本発明の側面図。
【符号の説明】
10 ハウジング
10b 固定内歯車
11 モータ
12 入力部材
12b 太陽歯車
13 遊星歯車
13a 第1歯車部
13b 第2歯車部
13c,13d 被軸支部
14 出力部材
14a 可動内歯車
15 ホルダ
16 ホルダ押え
17 端ケース
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gear device, and more particularly to the structure of a gear device having a planetary gear mechanism suitable for a small reduction gear.
[0002]
[Prior art]
Generally, a reduction gear using a planetary gear mechanism is often used as a part of a drive mechanism in various mechanical devices because it is small and can obtain a large reduction gear ratio. As an example of such a reduction gear, there is a small reduction gear described in JP-A-2-31047. This small reduction gear is attached to the sun gear, the planetary gear meshing with the sun gear, the fixed internal gear meshing with the first gear portion of the planetary gear, the coaxial gear with the fixed internal gear, and the second planetary gear. The movable internal gear meshes with the gear portion. In this case, the first gear portion that meshes with the fixed internal gear and the second gear portion that meshes with the movable gear portion are provided coaxially and adjacent to each other in the axial direction. Is formed. However, the first gear portion and the second gear portion of the planetary gear are generally formed with different numbers of teeth.
[0003]
In a gear device using such a planetary gear mechanism, the reduction ratio can be increased without causing an increase in the size of the mechanism. For example, in the above mechanism, the number of teeth of the sun gear is e, the number of teeth of the first gear portion of the planetary gear is z 1 , the number of teeth of the second gear portion is z 2 , the number of teeth of the fixed internal gear is I 1 , When the number of teeth of the movable internal gear is I 2 , the reduction ratio when the sun gear is configured as the input unit and the movable internal gear is configured as the output unit is:
r = {1+ (I 1 / e)} / {1− (z 2 / z 1 ) · (I 1 / I 2 )} (1)
It is represented by
[0004]
Here, as described in JP-A-2-31047 described above, z 1 = z 2 , the number of teeth of the sun gear e = 6, the number of teeth of the fixed internal gear I 1 = 60, When the number of teeth I 2 = 61, the difference in the number of teeth between the fixed internal gear and the movable internal gear is 1, and the reduction ratio is 671. If the number of other teeth is the same and the number of teeth of the movable internal gear I 2 = 62, the difference in the number of teeth is 2, the reduction ratio is 341, and the number of other teeth is the same. If the number of teeth of the gear I 2 = 63, the difference in the number of teeth is 3, the reduction ratio is 231, and if the number of teeth of the movable internal gear I 2 = 64, the difference in the number of teeth is 4, The ratio is 176.
[0005]
[Problems to be solved by the invention]
However, in the gear device using the planetary gear mechanism in which the number of teeth z 1 of the first gear portion and the second gear portion z 2 of the planetary gear as described above are equal, the number of teeth of the fixed internal gear and the number of teeth of the movable internal gear When the difference from the number of teeth is 1, the number of planetary gears that can be incorporated between the sun gear and the fixed internal gear and the movable internal gear is n = 1. Since it always meshes with only one place (one tooth), the torque applied to the tooth becomes excessive and the load on the gear increases, so it is necessary to impair durability and increase the strength of the tooth. For this reason, there is a problem that it is difficult to reduce the size of the gear, and in particular, when the size is reduced, it is difficult to put it into practical use. Further, when the difference in the number of teeth between the fixed internal gear and the movable internal gear is 2 to 4, the number n of planetary gears that can be incorporated is also 2 to 4, respectively, but as the number of teeth difference increases, the reduction ratio Will fall. Specifically, using three planetary wheels, the difference in the number of teeth between the fixed internal gear and the movable internal gear is 3, and the obtained reduction ratio 231 (value shown on the previous page) is the limit in calculation. . Furthermore, when practically used, the reduction ratio of about 100, which is about half of that, is often taken into consideration, taking into account the variation of the tooth profile due to the smaller modules. Therefore, the reduction gear ratio of the gear unit using the planetary gear mechanism is usually around 100 in many cases, and even if the tooth shape is constituted by a small module and it is impossible, only a reduction gear ratio of less than 200 is obtained.
[0006]
On the other hand, if the condition that z 1 = z 2 of the planetary gear is canceled, the number n of the planetary gears does not necessarily depend on the difference in the number of teeth between the fixed internal gear and the movable internal gear. It seems that an infinitely large reduction ratio can be obtained. However, in order to actually configure a small gear mechanism, it is possible to actually form a tooth-shaped module required according to the size, and the required strength (rigidity) of the module tooth shape during operation. Three conditions must be met, that can be ensured and that phase reduction between the gears when assembling the gear mechanism is possible because the backlash is reduced by reducing the gear mechanism.
[0007]
Therefore, the present invention solves the above-mentioned problems, and the problem is that even if the gear type of each gear is set to a small module in order to reduce the size of the gear mechanism, the operation and assembly are hindered. It is an object of the present invention to provide a gear device that realizes a configuration of a planetary gear mechanism that is not required and that can be made smaller than before and that has a sufficient reduction ratio.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, a gear device of the present invention includes a sun gear having the number of teeth e, a first gear portion having the number of teeth z 1 meshing with the sun gear, and a second gear portion having the number of teeth z 2. N (n is a natural number greater than or equal to 2) planetary gears, a fixed internal gear having the number of teeth I 1 meshing with the first gear portion of the planetary gear, and the second gear portion of the planetary gear and a movable internal gear having a number of teeth I 2 that meshes with the teeth e, z 1, z 2, I 1, I 2 is a multiple of all n, where the number of teeth z1 of the planetary gear Although z2 is different, there is a risk that the assembly described later may not be possible if only z2 is different, and a high speed reduction mechanism is obtained by defining the phases of the two planetary gears.
[0009]
According to this invention, the number of teeth e, z 1 , z 2 , I 1 , and I 2 of the sun gear, the first gear portion and the second gear portion of the planetary gear, the fixed internal gear, and the movable internal gear are all planetary gears. Since it is a multiple of the number n (n is a natural number of 2 or more), the phase of the tooth pattern at the equally divided point position that is always equally divided in the circumferential direction in each gear is mutually matched. Even if the device is miniaturized (even if the tooth-shaped module is small), the first gear part of n planetary gears is incorporated at equal intervals around the axis between the sun gear and the fixed internal gear. It is possible to reliably realize an assembled state in which the second gear portions of the n planetary gears mesh with the movable internal gear in the same state, and to realize a high balance state in the planetary gear mechanism. Therefore, it is highly durable even if it is downsized, and it is reliable and easy Can be configured gearing can perform assembly work. Moreover, there is only a restriction that the number of teeth of each gear is a multiple of n, and it is not necessary to match the number of teeth of the first gear portion of the planetary gear with the number of teeth of the second gear portion. Can be set more freely, and a high reduction ratio can be easily obtained. Furthermore, since the number of planetary gears is two or more, the burden on the gears is reduced as compared with the case where a single planetary gear is used.
[0010]
In the present invention, n is preferably 2 or 3. Since the number of planetary gears is 2 or 3, it is possible to secure the cross-sectional area of the support column that extends in the axial direction of the sun gear in the carrier (or holder) that supports the planetary gear. Even in this case, the decrease in the rigidity of the carrier can be suppressed, and the rotation shaft of the planetary gear can be reliably supported.
[0011]
In the present invention, no problem occurs even when the reduction gear ratio is 200 or more when the sun gear is an input and the movable internal gear is an output. According to the present invention, it is often difficult to set the reduction ratio to 300 or more as described above, or to reduce the number of planetary gears, or to make it possible to assemble the gears. However, in the gear device having the structure of the present invention, it is possible to reliably assemble the gear mechanism without reducing the number of planetary gears even in such a case. In particular, in the structure of the present invention, a high speed reduction ratio as described above is obtained, and a small clock-size module (for example, at least one gear module is 0.1 mm or less) is used to reduce the size of the device. Even when gears are used, it is possible to construct a gear device having sufficiently practical durability and balance. In particular, even if the reduction ratio is 400 or more, it is possible to provide one that can withstand practical use.
[0012]
In the present invention, the combination of at least one gear of the sun gear, the planetary gear, the fixed internal gear, and the movable internal gear can be easily realized even when the module is 0.1 mm or less. Normally, if the module is 0.1 mm or less, there is less margin in the meshing state of the gears, so the phase of the meshing state of the plurality of planetary gears and the sun gear, fixed internal gear or movable internal gear does not match. However, according to the present invention, since the meshing state is always the same phase for a plurality of planetary gears, when at least one tooth-shaped module is 0.1 mm or less Even so, the assembling operation of the gear can be performed reliably and easily.
[0013]
In the present invention, the fixed internal gear is preferably formed integrally with the inner surface of the housing of the apparatus. By integrally forming the fixed internal gear on the inner surface of the housing, it is possible to reduce the number of parts and further reduce the size of the entire gear device.
[0014]
In the present invention, it is preferable that the planetary gear has a reference pitch circle diameter of the second gear portion smaller than a reference pitch circle diameter of the first gear portion. According to this invention, since the reference pitch circle diameter of the second gear portion is smaller than that of the first gear portion, the reference pitch circle diameter of the movable internal gear meshing with the second gear portion can be made smaller. In particular, when the movable internal gear is arranged inside the housing, and particularly when the fixed internal gear is integrally formed on the inner surface of the housing, the gear device can be made smaller. Become.
[0015]
In addition, it is preferable that the gear apparatus of each said invention is integrated with electric motors, such as a motor, and other drive sources, and is comprised as a drive device. A gear mechanism that can be miniaturized and can realize a high reduction ratio as in the present invention is extremely effective as a small-sized drive device incorporated in a portable (electronic) device. For example, it is desirable to be used as a portable chemical solution supply device, a vibrator for a mobile phone, or the like.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of a gear device according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a longitudinal sectional view showing the internal structure of the present embodiment. A small motor 11 is fitted into an opening at one end (right end in the figure) of a cylindrical housing 10 formed by injection molding or the like, and the body portion of the small motor 11 flows into the adhesive reservoir 10a by pouring the adhesive into the housing. 10 is adhered and fixed. The output shaft 11 a of the small motor 10 is fitted in the center hole 12 a of the input member 12. The input member 12 is also composed of a resin molded body such as injection molding. A sun gear 12 b is integrally formed at the end of the input member 12.
[0017]
The sun gear 12 b is meshed with the planetary gear 13. The planetary gear 13 is provided at a first gear portion 13a meshing with the sun gear 12b, a second gear portion 13b formed coaxially with the first gear portion 13a, and an end portion on the first gear portion 13a side. It has a supported shaft portion 13c and a supported shaft portion 13d provided at the end of the second gear portion 13b. The first gear portion 13 a meshes with a fixed internal gear 10 b formed on the inner peripheral surface of the housing 10. The second gear portion 13b is adjacent to the fixed internal gear 10b and meshes with the movable internal gear 14a of the output member 14 arranged coaxially. As will be described in detail, the gear portion 13a and the gear portion 13b are relatively easy to assemble when the number of teeth is the same. However, when the number of teeth is different, both the phase of the fixed internal gear 10b and the movable internal gear 14a are both. If the phase of the planetary gear having a different number of teeth and the phase of the planetary vehicle cannot be assembled, the assembly cannot be performed. Therefore, various conditions as described later are required.
[0018]
On the other hand, the pivoted support portion 13 c is pivotally supported by an annular portion 15 a formed in a ring shape of the holder 15. Specifically, a convex supported portion 13c is rotatably fitted in a fitting hole formed in the annular portion 15a. The holder 15 is made of a resin molding material or the like, and has an annular portion 15a and a support portion 15b extending from the annular portion 15a in the axial direction of the sun gear 12b (arranged so as not to obstruct the rotation of the planetary gear 13). And a fitted portion 15c formed at the tip of the column portion 15b. Further, the pivoted portion 13d is pivotally supported by a holder presser 16 in which the fitted portion 15c of the holder 15 is fitted. Specifically, the convex supported shaft portion 13 d is rotatably fitted in a fitting hole formed in the holder presser 16.
[0019]
The holder 15 and the holder presser 16 are integrated by fitting between the fitted portion 15 c and the holder presser 16, and the outer peripheral surface of the annular portion 15 a of the holder 15 is in sliding contact with the inner peripheral surface of the housing 10. A shaft support portion (a round hole in the case of illustration) 16 a formed on the holder presser 16 is supported by the support shaft portion 14 b of the output member 14.
[0020]
The output member 14 is housed in the housing 10 at a portion where the movable internal gear 14 a is provided, and is rotatably guided by the inner peripheral surface of the housing 10, and the center of the end case 17 fitted in the housing 10. It is rotatably supported by a hole. Further, the output gear 14 c of the output member 14 is disposed so as to protrude outward from the end case 17 in the axial direction.
[0021]
FIG. 2 shows the meshing state of each gear when the embodiment is viewed in the axial direction. In this embodiment, the number of teeth of the sun gear 12b is e = 9, the number of teeth of the first gear portion 13a of the three planetary gears is z 1 = 15, the number of teeth of the second gear portion 13b is z 2 = 18, The number of teeth of the fixed internal gear is I 1 = 42, and the number of teeth of the movable internal gear is I 2 = 51. At this time, the reduction ratio obtained according to the above equation (1) is 481. In this embodiment, the number of teeth e, z 1 , z 2 , I 1 , and I 2 of all the gears are all multiples of 3, and the difference between z 1 and z 2 and the difference between I 1 and I 2 Is also a multiple of three. In this case, z 1 = z 2 or I 1 = I 2 may be satisfied. In another example of the number of teeth in the present embodiment, e = 6, z 1 = 12, z 2 = 15, I 1 = 39, I 2 = 48 (reduction ratio 480).
[0022]
Here, in FIG. 3, the planetary gear will be described in detail. FIG. 3 (a) shows a cross section in which the tooth forms in the conventional case of z1 = z2 are brought together. 3 (b) and 3 (c) show a cross-section of the tooth-shaped butting portion according to the present invention and a side view of the planetary gear. In the tooth profile of the conventional example, for example, one tooth profile 13e and the other tooth profile 13f are in phase, so that there are many options and relatively easy processing methods for forming a gear having two tooth profiles. For example, a member having one tooth profile and a member having another tooth profile are formed on one side of the shaft and driven into a hole, thereby completing a planetary gear. Alternatively, an injection mold is made, and the mold is divided on the surface where both face each other. The relative phase relationship is the same over the entire circumference of the tooth profile, and the accuracy of the butt portion in the mold manufacturing need not be particularly high. Here, according to the present invention, since the number of teeth of the tooth profile is different, there is no condition of the relative relationship between the two tooth profiles, and if the number of teeth of 13a and 13b is composed of 15 14 sheets, the third In FIG. (B), one tooth profile can be matched, but there is no match in other parts. If there is no coincidence, in the planetary gear mechanism using a plurality of planetary gears that are actually composed of two stages, after the first stage is assembled, even if the second stage is to be assembled, a plurality of planetary gears are incorporated later. The internal gears are out of phase and cannot be assembled.
[0023]
The present invention is characterized in that the number of teeth that can be divided by 3 or 2 or 4 is set. Here, as shown in FIG. 3 (b), as an example, the number of teeth divisible by 3 is shown as an example of z1 = 12, z2 = 15. As is apparent from the figure, there are three tooth profiles that match the number of teeth of both. For this reason, even if three planetary gears are used, the second-stage internal gear can be incorporated after the first-stage assembly. Also, if the number of teeth such as 15 and 14 described in the previous example is configured, the phase of the planetary gear may not match, so both tooth types can be processed and combined separately, In either case, it is difficult to adjust the phase of precision processing or phase adjustment when selecting the one to be created by injection. However, if the number of teeth is set according to the present invention, it is somewhere on the entire circumference. Since there are always two or more locations where the tooth shapes of the two parties match, the difficulty in processing such as parts processing and alignment is reduced, and this is easy to realize. In fact, we created 12 ultra-fine planetary gears by injection molding with a tooth profile comparable to that of a watch, and formed an ultra-small planetary gear that could be easily assembled. Previously, there were no planetary gear products or parts with different number of teeth by injection molding at such an ultra-compact level, but this configuration could be realized for the first time. In particular, the fact that such an ultra-small planetary gear can be manufactured by injection molding has a remarkable effect in making mass-produced products inexpensively.
[0024]
As described above, each gear has, for example, a multiple of 3 for the following reasons. First, when the first gear portion 13a of the three planetary gears 13 is incorporated evenly (that is, at intervals of 120 degrees) between the sun gear 12b and the fixed internal gear 10b, the tooth shape of the sun gear and the fixed internal gear The three tooth gears are synchronized with each other by making the tooth shape of the object three times (the rotation object property where the phase of the same tooth shape appears every 120 degrees), and the tooth shape of the planetary gear is also made the object three times. It can be integrated reliably in the state. That is, the meshing portions of the sun gear and the planetary gear and the planetary gear and the fixed internal gear that intersect the line segments L1, L2, and L3 shown in FIG. In the same state, that is, for example, in a state where the tip of one planetary gear and the tooth bottom of the fixed internal gear mesh with each other, the tooth of the planetary gear also at the meshing site between the other two planetary gears and the fixed internal gear. In the state where the tip and the bottom of the fixed internal gear mesh with each other, and the bottom of one planetary gear and the top of the sun gear mesh with each other, the other two planetary gears and the sun gear mesh with each other. If the base of the planetary gear and the tip of the sun gear are meshed with each other in the region), the sun gear, the first gear portion of the planetary gear, and the fixed internal gear can be reliably incorporated. become. For this purpose, the tooth types of the sun gear and the fixed internal gear meshing with the three planetary gears need to be the target three times in the rotation direction (that is, the number of teeth is a multiple of 3). As for the gear portion, the tooth shape portions intersecting with L1, L6, L9, L5, L2, L8, and L4, L7, L3 shown in the figure must have tooth shapes of the same phase. For the first gear portion of the gear, it is necessary that the tooth type is the target three times in the rotation direction (that is, the number of teeth is a multiple of 3).
[0025]
Further, the movable internal gear 14a is incorporated in all the second gear portions 13b of the three planetary gears 13 in a state where the sun gear 12b, the first gear portion 13a, and the fixed internal gear 10b are mutually incorporated as described above. Needs to form both the second gear part formed coaxially with the first gear part and the tooth shape of the movable internal gear meshing with the second gear part in three times (that is, the number of teeth is a multiple of 3). is there. In this way, since all of the three planetary gears can be incorporated in the same positional relationship with respect to the meshing portion, the assembling operation of the gear can be reliably performed in any case. In this case, the tooth shapes of the first gear portion and the second gear portion need not be formed in the same number and in the same phase.
[0026]
In the present embodiment, the reduction ratio is about 480 as described above, and a reduction ratio larger than that of the conventional one can be realized. In particular, when compared with the speed reduction ratio described in the specific example including three planetary gears in the above-described conventional example, a speed reduction ratio more than double can be obtained. Further, the number of teeth of the fixed internal gear (42) and the number of teeth of the movable internal gear (51) are the same as the number of teeth of the conventional fixed internal gear (60) and the number of teeth of the movable internal gear (61 to 61). The number of teeth is less than 64). Therefore, if gears of the same module are used, a gear having a smaller overall outer diameter can be provided.
[0027]
Each of the planetary gears 13 of the present embodiment is formed so that the diameter of the reference pitch circle is smaller in the second gear part 13b than in the first gear part 13a, and as a result, the reference pitch circle diameter of the movable internal gear 14a. Therefore, the outer diameter of the output member 14 can be reduced without reducing the rigidity of the output member 14, and the outer diameter of the housing 10 that accommodates the output member 14 can also be reduced. It can be made smaller.
[0028]
Next, another embodiment having basically the same structure as the above embodiment will be described. In this embodiment, two planetary gears are arranged at 180 ° intervals around the sun gear. In this case, the number of teeth e of the sun gear, the number of teeth z 1 and z 2 of the planetary gear, the number of teeth I 1 of the fixed internal gear, and the number of teeth I 2 of the movable internal gear are all multiples of 2. For example, if e = 12, z 1 = 14, z 2 = 12, I 1 = 40, and I 2 = 34, the reduction ratio obtained according to the above equation (1) is 515.7. In this embodiment, the first gear portion and the second gear portion of the two planetary gears mesh with the sun gear, the fixed internal gear, or the movable internal gear in the same phase as in the previous embodiment. For the same reason, it is possible to reliably incorporate the gear in any state.
[0029]
In any of the above embodiments, the sun gear, the first gear portion and the second gear portion of the planetary gear, the fixed internal gear, and the movable internal gear are all set to a multiple of the number of planetary gears. In this way, basically the same effects as those of the above-described embodiments can be obtained. For example, when four planetary gears are arranged, the number of teeth of all gears may be set to a multiple of four. However, as the gear device is reduced in size, a sufficient space cannot be obtained between the planetary gears, and the cross-sectional area of the supporting column portion extending in the axial direction in the carrier body composed of the holder and the holder press is reduced. It becomes difficult to ensure the rigidity of the body, and it is necessary to form the carrier body with an expensive material having high rigidity in order to increase the rigidity of the carrier. Therefore, the number of planetary gears is preferably two or three.
[0030]
In each of the embodiments described above, the number of teeth of the planetary gear is set as described in JP-A-2-31047, although there is a restriction that the number of teeth of each gear is a multiple of the number of planetary gears. Since it is not necessary to set z 1 = z 2 , the degree of freedom of the combination of the number of teeth of each gear increases, the gear can be designed in a wider range, and the reduction ratio can also be set freely. In particular, even when a high reduction ratio is required, it is possible to cope without causing an increase in the size of the mechanism.
[0031]
The gear device described in each of the above embodiments can be configured as a drive source integrated with an electric motor as shown in FIG. Further, it is preferable to form the fixed internal gear integrally with the housing in order to reduce the number of parts.
[0032]
The gear device of each of the above embodiments is preferably configured as a drive device by being integrated with an electric motor such as the motor described above or another drive source. Usually, when the drive source is small, the drive torque is reduced more than the degree of miniaturization of the drive source. For this reason, when a small drive source is used, it is necessary to increase the output of the drive source and reduce the output with a high reduction ratio to ensure a required torque. In this case, the gear device is required to be small and capable of obtaining a high reduction ratio. The gear mechanism that can be miniaturized and can realize a high reduction ratio as in the above-described embodiment is extremely effective as a small-sized drive device incorporated in a portable (electronic) device. For example, it is desirable to be used as a driving device for a chemical discharge pump such as a rotary type in a portable chemical supply apparatus.
[0033]
In addition, the gear apparatus of this invention is not limited only to the above-mentioned illustration example, Of course, a various change can be added in the range which does not deviate from the summary of this invention.
[0034]
【The invention's effect】
As described above, according to the present invention, the assembled state can be reliably realized, and a high balance state in the planetary gear mechanism can be realized. And the gear apparatus which can perform an assembly operation easily can be comprised. Moreover, there is only a restriction that the number of teeth of each gear is a multiple of n, and it is not necessary to match the number of teeth of the first gear portion of the planetary gear with the number of teeth of the second gear portion. Can be set more freely, and a high reduction ratio can be easily obtained. Furthermore, since the number of planetary gears is two or more, the burden on the gears is reduced as compared with the case where a single planetary gear is used. In addition, the possibility that such planetary gears can be processed and produced by injection molding has a great effect as a planetary mechanism that can be used in large numbers and can be manufactured in a large quantity at a low cost.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a structure of an embodiment of a gear device according to the present invention.
FIG. 2 is a perspective view showing the shapes of gears in the same embodiment.
FIG. 3 is a structural view of a planetary gear (a) a conventional tooth profile matching surface having the same number or phase of two tooth profiles (b) a tooth profile matching surface of the present invention (c) a side view of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Housing 10b Fixed internal gear 11 Motor 12 Input member 12b Sun gear 13 Planetary gear 13a 1st gear part 13b 2nd gear part 13c, 13d Supported shaft part 14 Output member 14a Movable internal gear 15 Holder 16 Holder presser 17 End case

Claims (2)

歯数eを有する太陽歯車と、該太陽歯車に噛合する歯数z1を有する第1歯車部及び歯数z2を有する第2歯車部を備えたn(nは2以上の自然数)個の遊星歯車と、該遊星歯車の前記第1歯車部に噛合する歯数I1を有する固定内歯車と、前記遊星歯車の前記第2歯車部に噛合する歯数I2を有する可動内歯車とを有し、前記z1、z2を有する遊星歯車がz1とz2は異なりかつz1とz2の歯形位相が少なくも2個所以上合致する遊星歯車を有することを特徴とする歯車装置。N (n is a natural number of 2 or more) provided with a sun gear having the number of teeth e, a first gear portion having the number of teeth z 1 meshing with the sun gear, and a second gear portion having the number of teeth z 2 A planetary gear, a fixed internal gear having a number of teeth I 1 meshing with the first gear portion of the planetary gear, and a movable internal gear having a number of teeth I 2 meshing with the second gear portion of the planetary gear. And a planetary gear having z 1 and z 2 having a planetary gear in which z1 and z2 are different and the tooth profile phases of z1 and z2 match at least two locations. 前記第1歯車部と第2歯車部を有し、両者が異なる歯数をもつ遊星歯車において、遊星歯車が、両歯車の合わせ面を突き合わせ面とした射出成形品で構成されたことを特徴とする請求項1に記載の歯車装置。  In the planetary gear having the first gear portion and the second gear portion, both of which have different numbers of teeth, the planetary gear is formed of an injection molded product having a mating surface of both gears as a butting surface. The gear device according to claim 1.
JP2000073088A 2000-01-21 2000-03-15 Gear device Expired - Fee Related JP3867469B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000073088A JP3867469B2 (en) 2000-03-15 2000-03-15 Gear device
PCT/JP2001/000282 WO2004079224A1 (en) 2000-01-21 2001-01-17 Gear device
US09/936,982 US6632154B2 (en) 2000-01-21 2001-01-17 Gear apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000073088A JP3867469B2 (en) 2000-03-15 2000-03-15 Gear device

Publications (2)

Publication Number Publication Date
JP2001263436A JP2001263436A (en) 2001-09-26
JP3867469B2 true JP3867469B2 (en) 2007-01-10

Family

ID=18591394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000073088A Expired - Fee Related JP3867469B2 (en) 2000-01-21 2000-03-15 Gear device

Country Status (1)

Country Link
JP (1) JP3867469B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441641B2 (en) * 2019-01-11 2022-09-13 Can Luo Balanced speed reducer of variable line speed planetary row having double sun gears

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011061759A1 (en) * 2009-11-17 2011-05-26 Sheetal Goel High reduction ratio and easily adaptable planetary gear train with orbiting gears
DE102011103217A1 (en) * 2011-06-01 2012-12-06 Daimler Ag Transmission device, in particular for an adjusting device for adjusting at least one variable compression ratio of an internal combustion engine and adjusting device with such a transmission device
CN104006089A (en) * 2014-05-14 2014-08-27 合肥荣事达三洋电器股份有限公司 Planet gear clutch
DE102014008142B4 (en) * 2014-06-07 2023-12-21 Günther Zimmer Epicyclic gearbox with two sun gears

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441641B2 (en) * 2019-01-11 2022-09-13 Can Luo Balanced speed reducer of variable line speed planetary row having double sun gears

Also Published As

Publication number Publication date
JP2001263436A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
WO2004079224A1 (en) Gear device
JP3071966B2 (en) Gear reducer for reciprocating rotation
EP2450596A1 (en) Planetary gear mechanism
US7235030B2 (en) Step down gear train for an adjusting device of an automotive vehicle seat
KR101449392B1 (en) Reducer
US10495206B2 (en) Internal ring gear, driving assembly and application device
JP6220757B2 (en) Inscribed planetary gear unit
JP2003278849A (en) Reduction gear and series thereof
JP3009799B2 (en) Geared motor adopting internal meshing planetary gear structure and its series
JP3867469B2 (en) Gear device
EP0559626A1 (en) Planetary reduction unit
JP4897496B2 (en) Swing intermeshing planetary gear unit
JP2888691B2 (en) Inner mesh planetary gear structure
JP2001271893A (en) Gear box
US6250179B1 (en) Silk hat flexible engagement gear device
JP3573294B2 (en) Small planetary gear reducer
JP2016161128A (en) Double-step speed reducer
JP4598460B2 (en) Planetary gear transmission
KR20050015659A (en) Reduction gear with high reduction ratio
JP7211753B2 (en) Gear unit and its assembly method
JP4746769B2 (en) Speed reducer series
JP3919350B2 (en) Internal gear swing type intermeshing planetary gear unit
JP3068940B2 (en) Backlashless planetary gear
JPH0592557U (en) Resin harmonic drive speed reducer
JP2003194158A (en) Reduction gear adopting marvelous gear mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees