JP7177680B2 - planetary gear - Google Patents

planetary gear Download PDF

Info

Publication number
JP7177680B2
JP7177680B2 JP2018232561A JP2018232561A JP7177680B2 JP 7177680 B2 JP7177680 B2 JP 7177680B2 JP 2018232561 A JP2018232561 A JP 2018232561A JP 2018232561 A JP2018232561 A JP 2018232561A JP 7177680 B2 JP7177680 B2 JP 7177680B2
Authority
JP
Japan
Prior art keywords
planetary gear
planetary
gear
tooth
planetary gears
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018232561A
Other languages
Japanese (ja)
Other versions
JP2020094630A (en
Inventor
美穂 荒木
安弘 岩本
早貴 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Nico Transmission Co Ltd
Original Assignee
Hitachi Nico Transmission Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Nico Transmission Co Ltd filed Critical Hitachi Nico Transmission Co Ltd
Priority to JP2018232561A priority Critical patent/JP7177680B2/en
Publication of JP2020094630A publication Critical patent/JP2020094630A/en
Application granted granted Critical
Publication of JP7177680B2 publication Critical patent/JP7177680B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)

Description

本発明は、遊星歯車装置に関する。 The present invention relates to a planetary gear system.

まず、図1を用いて、従来の遊星歯車装置を説明する。ここに例示する遊星歯車装置は、主に、太陽歯車21、複数の遊星歯車22(22a、22b、22c)、遊星キャリア23(23a、23b)、内歯車24から構成される、いわゆるスター型と定義される構造の遊星歯車装置20である。なお、遊星歯車22は、その回転中心を所定量偏心させて製造されたものであり、この偏心によって後述する累積ピッチ誤差(偏心誤差)が生じる。 First, a conventional planetary gear device will be described with reference to FIG. The planetary gear device exemplified here is mainly composed of a sun gear 21, a plurality of planetary gears 22 (22a, 22b, 22c), planetary carriers 23 (23a, 23b), and an internal gear 24. A planetary gear set 20 of defined structure. The planetary gear 22 is manufactured with its center of rotation eccentric by a predetermined amount, and this eccentricity causes an accumulated pitch error (eccentric error), which will be described later.

この遊星歯車装置20は、以下のように回転駆動力を伝達する。すなわち、例えば、ガスタービン用の遊星歯車装置の場合、動力源であるガスタービンと連結された入力軸25が回転駆動すると、これと一体となっている太陽歯車21も同時に回転し、これとかみ合う遊星歯車22が回転駆動される。さらに遊星歯車22とかみ合う内歯車24が回転駆動され、これと篏合している出力軸が発電機などの被動機に回転を伝達する。 This planetary gear device 20 transmits rotational driving force as follows. That is, for example, in the case of a planetary gear device for a gas turbine, when the input shaft 25 connected to the gas turbine, which is the power source, is driven to rotate, the sun gear 21 integrated therewith also rotates at the same time and meshes with it. The planetary gear 22 is rotationally driven. Furthermore, the internal gear 24 meshing with the planetary gear 22 is rotationally driven, and the output shaft meshing with it transmits the rotation to a driven machine such as a generator.

このようなガスタービン用の遊星歯車装置はピッチ円周速が大きいため、一般産業用の歯車装置と比較して、歯車のかみ合いに起因したねじり振動が大きい特徴がある。このねじり振動は、歯面に動荷重を発生させるため、低減が求められる。 Since such planetary gear systems for gas turbines have a high pitch circumferential velocity, they are characterized by large torsional vibrations caused by the meshing of the gears compared to general industrial gear systems. Since this torsional vibration generates a dynamic load on the tooth surface, it is required to be reduced.

ねじり振動の原因となる起振力は、被動歯車の駆動歯車に対する進み遅れ、すなわち伝達誤差によって発生する。伝達誤差はかみ合いの進行に伴う歯の剛性変動と、歯車の製造誤差によって発生する。 The vibratory force that causes torsional vibration is generated by the lead/lag of the driven gear with respect to the drive gear, that is, the transmission error. The transmission error is caused by tooth rigidity variation as meshing progresses and gear manufacturing error.

この伝達誤差を低減する遊星歯車装置としては、特許文献1に記載のものが知られており、特許文献1では、遊星歯車の偏心誤差方向が、装置軸直角断面で見た場合に、すべて所定の方向となるように組み立てることで伝達誤差を低減している。 As a planetary gear device that reduces this transmission error, the one described in Patent Document 1 is known. Transmission error is reduced by assembling in the direction of

特開平11-280853号公報JP-A-11-280853

しかしながら、特許文献1の構成では、期待通りに伝達誤差を低減するには、各遊星歯車の1周分の累積ピッチ誤差(偏心誤差)を結ぶことで形成される波形を、同じくする必要があり、高精度・高額な製造技術が必要とされる。このため、コスト低減などの事情により、加工精度が悪く各遊星歯車によって累積ピッチ誤差の波形が異なり、更に各歯間にピッチ誤差のばらつきがある遊星歯車を使用せざるを得ない場合等には、期待通りに伝達誤差を低減できず、大きなねじり振動に起因する大きな動荷重が各遊星歯車に発生したり、各遊星歯車が負担する静荷重が著しく偏ったりするという問題が生じる場合がある。 However, in the configuration of Patent Document 1, in order to reduce the transmission error as expected, it is necessary to make the same waveform formed by connecting the accumulated pitch error (eccentric error) for one revolution of each planetary gear. , high-precision and expensive manufacturing technology is required. For this reason, due to circumstances such as cost reduction, there is no choice but to use planetary gears that have poor machining accuracy, have different waveforms of accumulated pitch errors depending on each planetary gear, and have variations in pitch error between teeth. In some cases, the transmission error cannot be reduced as expected, and a large dynamic load due to large torsional vibration is generated in each planetary gear, or the static load borne by each planetary gear is significantly unbalanced.

そこで、本発明では、仮に各遊星歯車によって累積ピッチ誤差の波形が異なり、更に各歯間にピッチ誤差のばらつきがある遊星歯車を使用する場合であっても、各遊星歯車に掛かる動荷重を抑制したり、静荷重を均等化したりすることができる遊星歯車装置を提供することを目的とする。 Therefore, in the present invention, the dynamic load applied to each planetary gear is suppressed even if the waveform of the accumulated pitch error is different for each planetary gear and even if planetary gears with variations in pitch error between teeth are used. It is an object of the present invention to provide a planetary gear device capable of equalizing static loads.

課題を解決するために、例えば特許請求の範囲に記載の構造を採用する。 In order to solve the problem, for example, the structure described in the claims is adopted.

その一例を挙るならば、太陽歯車と、該太陽歯車と同一位相で同時にかみ合うように配置された複数の遊星歯車と、該複数の遊星歯車とかみ合うように配置された内歯車と、を備える遊星歯車装置であって、各遊星歯車の累積ピッチ誤差が最大となる歯が、遊星歯車の歯数Zを遊星歯車の個数pで除した歯数ずつずれてかみ合いが始まるように組み立てる。 For example, it comprises a sun gear, a plurality of planetary gears arranged to simultaneously mesh with the sun gear in the same phase, and an internal gear arranged to mesh with the plurality of planetary gears. The planetary gear device is assembled so that the tooth of each planetary gear having the maximum accumulated pitch error shifts by the number of teeth Z of the planetary gear divided by the number p of the planetary gears and meshing starts.

本発明の遊星歯車装置によれば、仮に偏心誤差が大きい遊星歯車を使用する場合であっても、各遊星歯車に掛かる動荷重を抑制したり、静荷重を均等化したりすることができる。 According to the planetary gear device of the present invention, even if planetary gears with a large eccentricity error are used, the dynamic load applied to each planetary gear can be suppressed and the static load can be equalized.

従来の遊星歯車装置の構造を説明する構造図である。It is a structural drawing explaining the structure of the conventional planetary gear apparatus. 実施例1の遊星歯車装置の要部を説明する平面図である。FIG. 2 is a plan view illustrating the essential parts of the planetary gear device of Example 1; 実施例1の各遊星歯車の累積ピッチ誤差を説明する図である。4 is a diagram illustrating cumulative pitch errors of planetary gears of Example 1. FIG. 実施例2を説明する図である。FIG. 11 is a diagram for explaining Example 2; 実施例3を説明する図である。FIG. 11 is a diagram for explaining Example 3; 実施例4を説明する図である。FIG. 11 is a diagram for explaining Example 4;

以下、図面を用いて、本発明の遊星歯車装置を説明する。なお、各実施例において、同一構成部品には同符号を使用する。 The planetary gear device of the present invention will be described below with reference to the drawings. In addition, in each embodiment, the same symbols are used for the same components.

本発明の実施例1に係る遊星歯車装置20を、図2、図3を用いて説明する。なお、図1との共通点は重複説明を省略する。 A planetary gear device 20 according to Embodiment 1 of the present invention will be described with reference to FIGS. 2 and 3. FIG. Duplicate descriptions of the points in common with FIG. 1 will be omitted.

図2は、図1に例示した構成のうち、本実施例の遊星歯車22の特徴を説明するために必要な構成を抜粋した平面図である。ここに示す遊星歯車22の各々は、Z個の歯を持つ歯車であり、各々の歯には、回転方向と逆方向に向かって、#1から#Zの歯番号を付けている。なお、本実施例では、太陽歯車21と遊星歯車22のすべてのかみ合い部において、同一位相で同時にかみ合うように、太陽歯車21、遊星歯車22、内歯車24等を設計しており、例えば、太陽歯車21の歯数を18、遊星歯車22の歯数を36、内歯車24の歯数を90、遊星歯車22の数を3、とするような組み合わせとする。 FIG. 2 is a plan view of a configuration necessary for explaining the features of the planetary gear 22 of this embodiment extracted from the configuration illustrated in FIG. Each of the planetary gears 22 shown here is a gear having Z teeth, and each tooth is numbered from #1 to #Z in the opposite direction of rotation. In this embodiment, the sun gear 21, the planetary gear 22, the internal gear 24, etc. are designed so that all meshing portions of the sun gear 21 and the planetary gears 22 mesh simultaneously in the same phase. The gear 21 has 18 teeth, the planetary gear 22 has 36 teeth, the internal gear 24 has 90 teeth, and the planetary gear 22 has 3 teeth.

ここで、遊星歯車22aの任意の歯#n(1≦n≦Z)が太陽歯車21の歯とピッチ点でかみ合っている状態を考える。上述したように本実施例の遊星歯車装置20では、すべてのかみ合い部において、同一位相で同時にかみ合うため、遊星歯車22aの歯#nが太陽歯車21とかみ合っている場合、遊星歯車22b、22cも太陽歯車21とかみ合っているため、以下ではそれらの遊星歯車の歯にも#nという歯番号を付ける。 Here, consider a state in which an arbitrary tooth #n (1≤n≤Z) of the planetary gear 22a meshes with the tooth of the sun gear 21 at the pitch point. As described above, in the planetary gear device 20 of this embodiment, all of the meshing portions are meshed in the same phase at the same time. Since they mesh with the sun gear 21, the teeth of those planetary gears are also numbered #n below.

次に、遊星歯車22aの歯#1の決定方法を説明する。 Next, a method for determining tooth #1 of planetary gear 22a will be described.

図3に示す3a、3b、3cは、遊星歯車22a、22b、22cの累積ピッチ誤差であり、本実施例では、最終的に図3に示す特性が得られるように遊星歯車装置20を組み立てる。横軸の下方に示す、歯#A、歯#B、歯#Cは、それぞれ、累積ピッチ誤差3aが最大値となる歯、累積ピッチ誤差3bが最大値となる歯、累積ピッチ誤差3cが最大値となる歯であり、累積ピッチ誤差3aが最大値となる歯#Aを、以降では歯#1と定義する。 3a, 3b, and 3c shown in FIG. 3 are cumulative pitch errors of the planetary gears 22a, 22b, and 22c. In this embodiment, the planetary gear device 20 is assembled so as to finally obtain the characteristics shown in FIG. Tooth #A, tooth #B, and tooth #C shown below the horizontal axis are the teeth with the maximum cumulative pitch error 3a, the maximum cumulative pitch error 3b, and the maximum cumulative pitch error 3c. The tooth #A, which is the tooth with the maximum cumulative pitch error 3a, is hereinafter defined as the tooth #1.

このように遊星歯車22aの歯#1を定義した場合、遊星歯車22bの歯#Bと遊星歯車22cの歯#Cは、次の式1、式2により決定することができる。 When the tooth #1 of the planetary gear 22a is defined in this way, the tooth #B of the planetary gear 22b and the tooth #C of the planetary gear 22c can be determined by the following equations 1 and 2.

Figure 0007177680000001
Figure 0007177680000001

Figure 0007177680000002
Figure 0007177680000002

ただし、Zは遊星歯車の歯数、pは遊星の個数(図2の例では「3」)である。Zがpの倍数でない場合は繰り上げまたは繰り下げによって整数に修正した値を#Bおよび#Cとする。 However, Z is the number of teeth of the planetary gear, and p is the number of planetary gears ("3" in the example of FIG. 2). If Z is not a multiple of p, the values corrected to integers by rounding up or down are #B and #C.

このようにして遊星歯車22の歯#1、歯#B、歯#Cを決めた遊星歯車装置20は、以下のように製造されることが望ましい。 The planetary gear train 20 having teeth #1, #B, and #C of the planetary gears 22 determined in this way is preferably manufactured as follows.

まず、例えば、機械構造用炭素鋼や、機械構造用合金鋼などの柱管を焼準し、ギヤブランクを製作する。次に、例えばホブ切りなどの歯切り加工によって歯を形成する。これにより、遊星歯車22は凡そ完成するが、その後、熱処理を行っても良いし、最後に、研削などの仕上げ加工を施しても良い。 First, for example, a column tube made of carbon steel for machine structural use or alloy steel for machine structural use is normalized to produce a gear blank. The teeth are then formed, for example by a gear cutting process such as hobbing. As a result, the planetary gear 22 is almost completed. After that, heat treatment may be performed, and finally, finishing such as grinding may be performed.

遊星歯車装置20に組み込む遊星歯車22が全て完成すると、遊星歯車22の歯面のピッチ誤差をそれぞれ測定する。そして、測定したピッチ誤差に基づいて累積ピッチ誤差を算出し、累積ピッチ誤差が最大となる歯のそれぞれに何らかのマークを設ける。 When all the planetary gears 22 incorporated in the planetary gear device 20 are completed, the pitch errors of the tooth flanks of the planetary gears 22 are measured. A cumulative pitch error is then calculated based on the measured pitch errors, and a mark is provided on each tooth having the maximum cumulative pitch error.

そして、遊星歯車22aとして選択した遊星歯車22は、マークのある歯が太陽歯車1とかみ合うように組み立てる。また、遊星歯車22bとして選択した遊星歯車22は、マークのある歯から回転逆方向に#B離れた歯が太陽歯車1とかみ合うように組み立て、遊星歯車22cとして選択した遊星歯車22は、マークのある歯から回転逆方向に#C離れた歯が太陽歯車1とかみ合うよう組み立てる。 Then, the planetary gear 22 selected as the planetary gear 22a is assembled so that the marked tooth meshes with the sun gear 1. As shown in FIG. The planetary gear 22 selected as the planetary gear 22b is assembled so that the tooth #B apart from the tooth with the mark in the opposite direction of rotation meshes with the sun gear 1, and the planetary gear 22 selected as the planetary gear 22c is assembled with the tooth with the mark. It is assembled so that the tooth #C away from a certain tooth in the opposite direction of rotation meshes with the sun gear 1.

このようにして遊星歯車装置20を組み立てることで、遊星歯車22の累積ピッチ誤差が、遊星歯車22aにおいては歯#1で最大となり、遊星歯車22bにおいては歯#Bで最大となり、遊星歯車22cにおいては歯#Cで最大となるため、図3に示すような特性を得ることができる。 By assembling the planetary gear unit 20 in this manner, the cumulative pitch error of the planetary gears 22 is maximized at tooth #1 for planetary gear 22a, at tooth #B for planetary gear 22b, and at planetary gear 22c. is maximum at tooth #C, the characteristics shown in FIG. 3 can be obtained.

この結果、本実施例の遊星歯車装置においては、累積ピッチ誤差起因で発生する伝達誤差が各遊星歯車間で異なるため、遊星歯車装置全体での伝達誤差が低減できる。ひいては起振力が低減でき、ねじり振動を低減することができる。 As a result, in the planetary gear device of this embodiment, the transmission error caused by the cumulative pitch error differs among the planetary gears, so that the transmission error in the entire planetary gear device can be reduced. As a result, the vibrating force can be reduced, and the torsional vibration can be reduced.

次に、本発明の実施例2に係る遊星歯車装置を、図4を用いて説明する。なお、実施例1との共通点は重複説明を省略する。 Next, a planetary gear device according to Embodiment 2 of the present invention will be described with reference to FIG. Duplicate descriptions of common points with the first embodiment will be omitted.

実施例1では、遊星歯車22の各歯間のピッチ誤差のばらつきを無視しており、故に、図3では、累積ピッチ誤差3a~3bを滑らかな正弦波状のものとして示した。しかしながら、実際には、遊星歯車22の各歯間のピッチ誤差にばらつきが存在するため、このばらつきを考慮する必要がある。 In Example 1, variations in the pitch error between the teeth of the planetary gear 22 are ignored, so in FIG. 3 the cumulative pitch errors 3a-3b are shown as smooth sinusoidal waveforms. However, in reality, there is variation in the pitch error between the teeth of the planetary gear 22, so it is necessary to consider this variation.

そこで、本実施例では、各々の遊星歯車22に各歯間のピッチ誤差のばらつきが存在する場合であっても、実施例1と同様の効果を得ることを目的とする。 Therefore, in the present embodiment, it is an object to obtain the same effect as in the first embodiment even when the planetary gears 22 have variations in the pitch error between the teeth.

図4に、各歯間のピッチ誤差がばらつく場合の、遊星歯車22a、22b、22cの累積ピッチ誤差4a、4b、4cを示す。なお、#1、#B、#Cの意味は実施例1と同様である。 FIG. 4 shows the accumulated pitch errors 4a, 4b, 4c of the planetary gears 22a, 22b, 22c when the pitch errors between the teeth vary. The meanings of #1, #B, and #C are the same as in the first embodiment.

実施例2においては、歯#Bおよび歯#Cは以下のように決める。 In Example 2, tooth #B and tooth #C are determined as follows.

まず、遊星歯車22a、22b、22cの任意の歯#nにおける累積ピッチ誤差を、それぞれ、Fpa(n)、Fpb(n)、Fpc(n)とし、これらの偏差平方和をS(n)とすると、S(n)は以下の式3で求められる。 First, let Fpa(n), Fpb(n), and Fpc(n) be the cumulative pitch errors at any tooth #n of the planetary gears 22a, 22b, and 22c, respectively, and let S(n) be the sum of squares of these deviations. Then, S(n) is obtained by Equation 3 below.

Figure 0007177680000003
Figure 0007177680000003

なお、 note that,

Figure 0007177680000004
Figure 0007177680000004

はFpa(n)、Fpb(n)、Fpc(n)の平均値である。ここで以下の式4のように偏差平方和の平均値Saveを定義する。 is the average value of Fpa(n), Fpb(n) and Fpc(n). Here, the average value Save of the sum of squares of deviations is defined as in Equation 4 below.

Figure 0007177680000005
Figure 0007177680000005

そして、式4により求められる偏差平方和の平均値Saveが最大となる、#1、#B、#Cの組み合わせを採用し、実施例1と同様の手順で遊星歯車装置20を組み立てる。 Then, the combination of #1, #B, and #C that maximizes the average value Save of the sum of squared deviations obtained by Equation 4 is adopted, and the planetary gear device 20 is assembled in the same procedure as in the first embodiment.

このように累積ピッチ誤差の偏差平方和を最大にする組み立て方を採用することで、実施例1では考慮していなかった各歯間のピッチ誤差のばらつきが存在する場合であっても、実施例1と同様にねじり振動の抑制を実現することができる。 By adopting the assembly method that maximizes the sum of squared deviations of the accumulated pitch errors in this way, even if there is variation in the pitch error between the teeth, which was not taken into consideration in the first embodiment, the present embodiment can Similar to 1, suppression of torsional vibration can be realized.

次に、本発明の実施例3に係る遊星歯車装置を、図5を用いて説明する。なお、上述する実施例との共通点は重複説明を省略する。 Next, a planetary gear device according to Embodiment 3 of the present invention will be described with reference to FIG. Duplicate descriptions of the points in common with the above-described embodiment will be omitted.

実施例1、2では、各々の遊星歯車22における歯#1、歯#B、歯#Cが略等間隔で設定されるように遊星歯車装置20を組み立てることでねじり振動、すなわち、遊星歯車22に掛かる動荷重を抑制したが、本実施例では、各々の遊星歯車22に掛かる静荷重を均等化することを目的とする。 In Embodiments 1 and 2, the planetary gear device 20 is assembled so that the teeth #1, teeth #B, and teeth #C in each planetary gear 22 are set at approximately equal intervals, thereby torsional vibration, that is, the planetary gears 22 Although the dynamic load applied to the planetary gears 22 is suppressed, the purpose of this embodiment is to equalize the static load applied to each planetary gear 22 .

図5に、遊星歯車22a、22b、22cの累積ピッチ誤差5a、5b、5cを示す。なお、本実施例においても、#1、#B、#Cの意味は実施例1と同様である。 FIG. 5 shows the cumulative pitch errors 5a, 5b, 5c of the planetary gears 22a, 22b, 22c. Also in this embodiment, the meanings of #1, #B, and #C are the same as in the first embodiment.

実施例3においては、歯#Bおよび歯#Cは以下のように決める。 In Example 3, tooth #B and tooth #C are determined as follows.

すなわち、上述した式3、式4から計算される偏差平方和の平均値Saveが最小となる、#1、#B、#Cの組み合わせを採用し、実施例1と同様の手順で遊星歯車装置20を組み立てる。 That is, the combination of #1, #B, and #C, which minimizes the average value Save of the sum of squared deviations calculated from the above-described equations 3 and 4, is adopted, and the same procedure as in the first embodiment is used for the planetary gear device. Assemble 20.

このように、累積ピッチ誤差の偏差平方和を最小にする組み立て方を採用すると、図5に示すように、#B、#Cが#1に近接する。この場合、累積ピッチ誤差起因で発生する伝達誤差が各遊星歯車間で近似するため、遊星歯車装置全体での伝達誤差を低減できず、ねじり振動を低減することはできないが、遊星歯車間の荷重を等配させることができる。 In this way, when the assembling method that minimizes the sum of squared deviations of the accumulated pitch errors is adopted, #B and #C are close to #1 as shown in FIG. In this case, since the transmission error caused by the cumulative pitch error is approximated between the planetary gears, the transmission error in the entire planetary gear system cannot be reduced, and the torsional vibration cannot be reduced. can be equally distributed.

次に、本発明の実施例4に係る遊星歯車装置を、図6を用いて説明する。なお、上述する実施例との共通点は重複説明を省略する。 Next, a planetary gear device according to Embodiment 4 of the present invention will be described with reference to FIG. Duplicate descriptions of the points in common with the above-described embodiment will be omitted.

実施例1~3の遊星歯車装置は、太陽歯車21と遊星歯車22のすべてのかみ合い部が同一位相で同時にかみ合うように設計されたものであったが、実施例4の遊星歯車装置は、各かみ合い部が同一位相で同時にはかみ合わず、次々とかみ合う遊星歯車装置である。例えば、太陽歯車21の歯数を19、遊星歯車22の歯数を37、内歯車の歯数を92、遊星歯車の数を3、とするような組み合わせとする。 The planetary gear devices of Examples 1 to 3 were designed so that all the meshing portions of the sun gear 21 and the planetary gears 22 meshed in the same phase at the same time. It is a planetary gear device in which the meshing portions do not mesh simultaneously in the same phase, but mesh one after another. For example, the sun gear 21 has 19 teeth, the planetary gear 22 has 37 teeth, the internal gear has 92 teeth, and the planetary gear has 3 teeth.

図6に、各かみ合い部が次々とかみ合う場合の、遊星歯車22a、22b、22cの累積ピッチ誤差6a、6b、6cを示す。なお、#1、#B、#Cの意味は実施例1と同様である。 FIG. 6 shows the cumulative pitch error 6a, 6b, 6c of the planetary gears 22a, 22b, 22c when each meshing portion meshes one after the other. The meanings of #1, #B, and #C are the same as in the first embodiment.

実施例4においては、#Bおよび#Cは以下のように決める。 In Example 4, #B and #C are determined as follows.

すなわち、上述した式3、式4から計算される偏差平方和の平均値Saveが最小となる、#1、#B、#Cの組み合わせを採用し、実施例1と同様の手順で遊星歯車装置20を組み立てる。 That is, the combination of #1, #B, and #C, which minimizes the average value Save of the sum of squared deviations calculated from the above-described equations 3 and 4, is adopted, and the same procedure as in the first embodiment is used for the planetary gear device. Assemble 20.

このように、累積ピッチ誤差の偏差平方和を最小にする組み立て方を採用すると、かみ合い部が同一位相で同時にかみ合わない遊星歯車装置においても、遊星歯車間の荷重を等配させることができる。 Thus, by adopting an assembly method that minimizes the sum of squared deviations of accumulated pitch errors, it is possible to evenly distribute the load between the planetary gears even in a planetary gear device in which the meshing portions do not mesh simultaneously in the same phase.

3a~3c、4a~4c、5a~5c、6a~6c…累積ピッチ誤差
20…遊星歯車装置、
21…太陽歯車、
22、22a、22b、22c…遊星歯車、
23、23a、23b…遊星キャリア、
24…内歯車、
25…入力軸、
3a to 3c, 4a to 4c, 5a to 5c, 6a to 6c... Cumulative pitch error 20... Planetary gear device,
21 ... sun gear,
22, 22a, 22b, 22c... planetary gears,
23, 23a, 23b...planet carrier,
24... internal gear,
25 ... input shaft,

Claims (3)

太陽歯車と、該太陽歯車と同一位相で同時にかみ合うように配置された複数の遊星歯車と、該複数の遊星歯車とかみ合うように配置された内歯車と、を備える遊星歯車装置であって、
各遊星歯車の累積ピッチ誤差の偏差平方和の平均値が最大となるように組み立てたことを特徴とする遊星歯車装置。
A planetary gear device comprising a sun gear, a plurality of planetary gears arranged to simultaneously mesh with the sun gear in the same phase, and an internal gear arranged to mesh with the plurality of planetary gears,
A planetary gear device characterized by being assembled so that the average value of the sum of squared deviations of accumulated pitch errors of each planetary gear is maximized.
太陽歯車と、該太陽歯車と同一位相で同時にかみ合うように配置された複数の遊星歯車と、該複数の遊星歯車とかみ合うように配置された内歯車と、を備える遊星歯車装置であって、
各遊星歯車の累積ピッチ誤差の偏差平方和の平均値が最小となるように組み立てたことを特徴とする遊星歯車装置。
A planetary gear device comprising a sun gear, a plurality of planetary gears arranged to simultaneously mesh with the sun gear in the same phase, and an internal gear arranged to mesh with the plurality of planetary gears,
A planetary gear device characterized by being assembled so as to minimize the average value of the sum of squared deviations of cumulative pitch errors of each planetary gear.
太陽歯車と、該太陽歯車と次々にかみ合うように配置された複数の遊星歯車と、該複数の遊星歯車とかみ合うように配置された内歯車と、を備え
各かみ合い部が同一位相で同時にはかみ合わず、次々とかみ合う遊星歯車装置であって、
各遊星歯車の累積ピッチ誤差の偏差平方和の平均値が最小となるように組み立てたことを特徴とする遊星歯車装置。
a sun gear, a plurality of planetary gears arranged to sequentially mesh with the sun gear, and an internal gear arranged to mesh with the plurality of planetary gears ;
A planetary gear system in which each meshing portion meshes in sequence and does not mesh at the same time in the same phase ,
A planetary gear device characterized by being assembled so as to minimize the average value of the sum of squared deviations of cumulative pitch errors of each planetary gear.
JP2018232561A 2018-12-12 2018-12-12 planetary gear Active JP7177680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018232561A JP7177680B2 (en) 2018-12-12 2018-12-12 planetary gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018232561A JP7177680B2 (en) 2018-12-12 2018-12-12 planetary gear

Publications (2)

Publication Number Publication Date
JP2020094630A JP2020094630A (en) 2020-06-18
JP7177680B2 true JP7177680B2 (en) 2022-11-24

Family

ID=71085532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018232561A Active JP7177680B2 (en) 2018-12-12 2018-12-12 planetary gear

Country Status (1)

Country Link
JP (1) JP7177680B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296760A (en) * 1992-04-16 1993-11-09 Toyota Motor Corp Eccentric measuring device for gear tooth
JPH11280853A (en) * 1998-03-26 1999-10-15 Harmonic Drive Syst Ind Co Ltd Method of assemblying planetary gear unit

Also Published As

Publication number Publication date
JP2020094630A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
Inalpolat et al. Influence of indexing errors on dynamic response of spur gear pairs
Stadtfeld et al. The ultimate motion graph
US10323715B2 (en) Torsional vibration damper
Chen et al. Dynamic characteristics of a planetary gear system based on contact status of the tooth surface
JPWO2012127532A1 (en) Driving method of joint device
JP7177680B2 (en) planetary gear
CN113761675B (en) Planet gear tooth crack fault feature determination method based on side frequency distribution rule
JP2006242211A (en) Transmission gear and its manufacturing method
Parker et al. Mesh phasing relationships in planetary and epicyclic gears
JP3733908B2 (en) Hypoid gear design method
Yang et al. An improved rigid multibody model for the dynamic analysis of the planetary gearbox in a wind turbine
JP2008256199A (en) Precessional motion reduction gear
Huo et al. Torsional vibration modelling of a two-stage closed differential planetary gear train
US20220056987A1 (en) Balanced speed reducer of dual-ring gear variable-line-speed planetary row
CN206958187U (en) A kind of eccentric wheel rotating mechanism
Ren et al. Investigation of the effect of manufacturing errors on dynamic characteristics of herringbone planetary gear trains
Ruibo et al. Dynamic characteristics of a planetary gear system based on contact status of the tooth surface
JP5211300B2 (en) 3-axis gear unit
JPH028537A (en) Low-noise gear device
US11592098B2 (en) Non-axisymmetiric gear
Yoshioka et al. Vibration suppressing control method of angular transmission error of cycloid gear for industrial robots
JPH09133187A (en) Triaxial gearing and gearing
Parker et al. Nonlinear dynamics of planetary gears using analytical and finite element models
Fakhfakh et al. Simulation of the dynamic behavior of a multi-stage geared systems with tooth shape deviations and external excitations
Zhu et al. Modeling and bifurcation characteristics of double stage planetary gear train with multiple clearances

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221111

R150 Certificate of patent or registration of utility model

Ref document number: 7177680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150