JP2020094277A - Wc-based super hard alloy and coating cut tool using the same - Google Patents

Wc-based super hard alloy and coating cut tool using the same Download PDF

Info

Publication number
JP2020094277A
JP2020094277A JP2019212919A JP2019212919A JP2020094277A JP 2020094277 A JP2020094277 A JP 2020094277A JP 2019212919 A JP2019212919 A JP 2019212919A JP 2019212919 A JP2019212919 A JP 2019212919A JP 2020094277 A JP2020094277 A JP 2020094277A
Authority
JP
Japan
Prior art keywords
particle size
particles
less
cemented carbide
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019212919A
Other languages
Japanese (ja)
Inventor
孝侑 鈴木
Takayuki Suzuki
孝侑 鈴木
真之 今井
Masayuki Imai
真之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Moldino Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moldino Tool Engineering Ltd filed Critical Moldino Tool Engineering Ltd
Publication of JP2020094277A publication Critical patent/JP2020094277A/en
Pending legal-status Critical Current

Links

Abstract

To provide a super hard alloy excellent in durability in high speed processing of a soft steel, and a coating cut tool.SOLUTION: There is provided a WC-based super hard alloy containing, by mass%, Co of 8.5% to 9.5%, Cr of 0.3% to 1.0%, Ta of 1.0% to 3.0% as metal elements, and the balance non-metal elements existing by dissolving or compounding with the metal elements, and inevitable impurities, and having an average particle diameter of WC particles with equivalent circular particle diameter of 0.4 μm or more of 1.0 μm to 2.0 μm, a ratio of a particle diameter D90 at an integrated value of area ratio of 90% in a particle size distribution of the average particle diameter and a particle diameter D10 at integrated value of 10%, D90/D10 of less than 3.2, in which a phase mainly containing Ta is dispersed in a structure, and an average equivalent circular particle diameter of the phase mainly containing Ta is 1.0 μm to 3.0 μm, and a coating cut tool having a hard coated film on a surface of the WC-based super hard alloy.SELECTED DRAWING: Figure 1

Description

本発明は、WC基超硬合金およびこれを用いた被覆切削工具に関する。 The present invention relates to a WC-based cemented carbide and a coated cutting tool using the same.

従来、金属材料等の切削加工では、高剛性、高硬度の特性を有するWC基超硬合金を基材とし、耐摩耗性、耐酸化性に優れたセラミック硬質皮膜を被覆した切削工具が広く使用されている。被削材の高硬度化、高能率加工化に伴い、切削工具への負荷が増大する状況にあっては、硬質皮膜だけではなく基材である超硬合金についても、耐熱性や耐チッピング性の改善を図ることが求められている。例えば、特許文献1、2では、クロム(Cr)とタンタル(Ta)を複合添加したWC−Co系超硬合金について、組織を均粒化することにより、耐チッピング性の改善を図ることが提案されている。 Conventionally, in cutting of metallic materials, cutting tools coated with a ceramic hard coating with excellent wear resistance and oxidation resistance are widely used, with WC-based cemented carbide having high rigidity and high hardness as the base material. Has been done. In the situation where the load on cutting tools increases as the hardness and work efficiency of work materials increase, heat resistance and chipping resistance not only for hard coatings but also for cemented carbide as the base material Is required to improve. For example, in Patent Documents 1 and 2, it is proposed to improve the chipping resistance of the WC-Co-based cemented carbide to which chromium (Cr) and tantalum (Ta) are added in combination, by making the structure uniform. Has been done.

特開2017−88999号公報JP, 2017-88999, A 特開2013−244588号公報JP, 2013-244588, A

近年、金型加工の分野においては一層の低コスト化や納期の短縮化が求められており、切削加工においても切削速度の高速化や高送り条件を用いた高能率化が進められている。
しかしながら、発明者等の検討により、従来提案の超硬合金を基材とする被覆切削工具を用いたとしても、鋼等の高速切削加工、特に、軟鋼の高速加工においては、依然として、チッピングや塑性変形が発生するため、工具寿命が十分でないとの問題点を有することが確認された。
そこで、本発明者らは、鋼等の高速切削加工、特に、軟鋼の高速加工を行った際にも、基材としてチッピングや塑性変形を生じないWC基超硬合金および前記WC基超硬合金を用いた被覆切削工具を提供することを解決すべき課題とした。
In recent years, further cost reduction and shortening of delivery time have been required in the field of die processing, and also in cutting, high cutting speed and high efficiency using high feed conditions are being promoted.
However, according to the study by the inventors, even when using a conventionally proposed coated cutting tool based on cemented carbide, high-speed cutting of steel or the like, particularly in high-speed processing of mild steel, still chipping or plasticity It was confirmed that there was a problem that the tool life was not sufficient because of deformation.
Therefore, the present inventors have proposed a WC-based cemented carbide and a WC-based cemented carbide that do not cause chipping or plastic deformation as a base material even when high-speed cutting of steel or the like, particularly, high-speed processing of mild steel is performed. It was an issue to be solved to provide a coated cutting tool using.

そして、本発明者らは、前記被覆切削工具の基材となるWC超硬合金において、結合相を構成するCoの含有量、前記結合相に固溶するCrの含有量、および、前記結合相に固溶、または、組織中に分散して主成分相を構成するTaの含有量を所定の範囲に調整し、さらに、残部であるWC粒子のうち、特定の円相当粒径を有する粒子について、その平均粒径の範囲、および、円相当粒径の粒度分布における面積比の積算値が90%となる粒径(D90)に対して面積比の積算値が10%となる粒径(D10)との比(D90/D10)の範囲を規定するとともに、組織中にTaの主成分相が分散することを規定することにより、鋼等の高速切削加工、特に、軟鋼の高速加工を行った際に基材に発生するチッピングや塑性変形の問題を解決できることを見出した。
また、本発明者らは、さらに、前記基材の表面に少なくとも柱状組織からなり表面側において所定の平均幅を有し、最大膜厚として含むTiCN皮膜を有する硬質皮膜を備えること、また、加えて、前記TiCN皮膜の上層にAl皮膜を備えることにより、軟鋼の高速加工を行った際に、さらに、すぐれた耐チッピング性および耐塑性変形性を有する被覆切削工具が得られることを見出したものである。
Then, the present inventors, in the WC cemented carbide as the base material of the coated cutting tool, the content of Co constituting the binder phase, the content of Cr dissolved in the binder phase, and the binder phase. The content of Ta which forms a solid solution or is dispersed in the structure and constitutes the main component phase in a predetermined range is adjusted to a predetermined range. , The average particle size range, and the particle size (D10) for which the integrated value of the area ratio is 10% with respect to the particle size (D90) for which the integrated value of the area ratio in the particle size distribution of the equivalent circle diameter is 90%. The ratio of (D90/D10) to () and the main component phase of Ta are dispersed in the structure, thereby performing high-speed cutting of steel or the like, particularly high-speed processing of mild steel. It was found that the problems of chipping and plastic deformation that occur in the base material at that time can be solved.
Further, the inventors of the present invention further include a hard coating having a TiCN coating including a columnar structure on the surface of the base material and having a predetermined average width on the surface side and including it as a maximum thickness. By providing an Al 2 O 3 coating on the TiCN coating, a coated cutting tool having excellent chipping resistance and plastic deformation resistance can be obtained when performing high-speed machining of mild steel. I found it.

本発明は、前記知見に基づいてなされたものであって、
「(1)質量%で、金属元素としてCoを8.5%以上9.5%以下、Crを0.3%以上1.0%以下、Taを1.0%以上3.0%以下にて含有し、残部はWCと前記金属元素に固溶もしくは化合して存在する非金属元素と不可避的不純物とからなるWC基超硬合金であって、
円相当の粒径が0.4μm以上であるWC粒子の平均粒径は、1.0μm以上2.0μm以下であり、
前記平均粒径の粒度分布において面積比の積算値が90%となる粒径D90と面積比の積算値が10%となる粒径D10との比である、D90/D10が3.2未満であり、
組織中にTaを主成分とする相が分散していることを特徴とするWC基超硬合金。
(2) (1)に記載のWC基超硬合金を基材として表面に硬質皮膜層を有する被覆切削工具。
(3) 前記硬質皮膜層は、少なくともTiCN皮膜層を含み、前記TiCN皮膜層は柱状粒子を有する柱状組織からなり、前記柱状粒子の表面側における平均幅が1.0μm以下であり、前記硬質皮膜中にて最も厚い膜厚を有する皮膜層であることを特徴とする(2)に記載の被覆切削工具。
(4) 前記硬質皮膜層は、前記TiCN皮膜層の上層にAl皮膜層を有することを特徴とする(3)に記載の被覆切削工具。」である。
The present invention is based on the above findings,
“(1) In mass %, Co as a metal element is 8.5% or more and 9.5% or less, Cr is 0.3% or more and 1.0% or less, and Ta is 1.0% or more and 3.0% or less. And the balance is a WC-based cemented carbide composed of WC and a non-metallic element existing as a solid solution or a combination with the metal element and unavoidable impurities,
The average particle size of WC particles having a circle-equivalent particle size of 0.4 μm or more is 1.0 μm or more and 2.0 μm or less,
When D90/D10, which is the ratio of the particle size D90 at which the integrated value of the area ratio is 90% and the particle size D10 at which the integrated value of the area ratio is 10% in the particle size distribution of the average particle size, is less than 3.2. Yes,
A WC-based cemented carbide, wherein a phase containing Ta as a main component is dispersed in the structure.
(2) A coated cutting tool having a hard coating layer on the surface of the WC-based cemented carbide according to (1) as a base material.
(3) The hard coating layer includes at least a TiCN coating layer, the TiCN coating layer has a columnar structure having columnar particles, and the average width on the surface side of the columnar particles is 1.0 μm or less. The coated cutting tool according to (2), which is a coating layer having the thickest film thickness among them.
(4) The coated cutting tool according to (3), wherein the hard coating layer has an Al 2 O 3 coating layer on the TiCN coating layer. It is.

本発明によれば、軟鋼の高速加工において、耐久性に優れたWC超硬合金基材およびこれを用いた被覆切削工具を提供することができる。 According to the present invention, it is possible to provide a WC cemented carbide base material having excellent durability and a coated cutting tool using the same in high-speed machining of mild steel.

実施例1のWC超硬合金基材の研磨断面における電子顕微鏡による組織写真(2,000倍)である。1 is an electron micrograph (2,000 times) of a polished cross section of a WC cemented carbide base material of Example 1. 比較例3のWC超硬合金基材の研磨断面における電子顕微鏡による組織写真(2,000倍)である。4 is an electron micrograph (2,000 times) of a polished cross section of a WC cemented carbide base material of Comparative Example 3.

本発明者等は、鋼等の高速加工、例えば、軟鋼の高速加工において工具寿命を大幅に改善できるWC基超硬合金の組成と組織形態、さらには、硬質皮膜の組成および組織を具体的に見出したことで本発明に到達した。以下、詳細を説明する。 The present inventors have specifically specified the composition and structure morphology of WC-based cemented carbide that can significantly improve the tool life in high-speed processing of steel, for example, high-speed processing of mild steel, and further the composition and structure of hard coatings. The present invention has been reached by the finding. The details will be described below.

[1]WC基超硬合金の組成
<Co含有量>
Coは、硬質相であるWC粒子を繋ぎとめる結合相であり、WC基超硬合金に高い靭性を付与する元素である。
本発明においては、軟鋼の高速加工において、優れた耐久性を再現するために、Coの含有量を狭い範囲で制御する必要があり、金属元素として、8.5質量%以上9.5質量%以下(以下、「質量%」を単に「%」と表記する)にて、添加する。
Coの含有量が8.5%未満では、超硬合金の靭性が低下する。また、組織が不均一になり易く、軟鋼の高速加工においてチッピングが発生し易くなる。一方、Coの含有量が9.5%を超えると、後述するWC粒子の粒度分布を均一にしても、硬度と耐塑性変形性が低下するため、軟鋼の高速加工において、工具の耐久性が著しく低下する。
よって、Coの含有量は、8.5%以上9.5%以下と規定した。
[1] Composition of WC-based cemented carbide <Co content>
Co is a binder phase that holds the WC particles that are hard phases together, and is an element that imparts high toughness to the WC-based cemented carbide.
In the present invention, in high-speed processing of mild steel, in order to reproduce excellent durability, it is necessary to control the Co content within a narrow range, and the metal element content is 8.5 mass% or more and 9.5 mass% or more. Below (hereinafter, "mass %" is simply referred to as "%"), it is added.
If the Co content is less than 8.5%, the toughness of the cemented carbide is reduced. Further, the structure is likely to be non-uniform, and chipping is likely to occur during high-speed processing of mild steel. On the other hand, if the Co content exceeds 9.5%, the hardness and plastic deformation resistance are reduced even if the particle size distribution of WC particles described later is made uniform, so that the durability of the tool during high-speed machining of mild steel is reduced. Markedly reduced.
Therefore, the Co content is specified to be 8.5% or more and 9.5% or less.

<Crの含有量>
Crは、Co中に固溶し、焼結過程でのWC粒子の粒成長を抑制して組織を均一にする元素であり、金属元素として、0.3%以上1.0%以下にて添加する。
Crの含有量が0.3%未満では、WC粒子の粒成長が抑制されずに、WC粒子の粒度分布が不均一となり、チッピングが発生し易くなる。また、WC粒子の粒度分布が不均一になることでCoの分布も不均一になり、チッピングが発生し易くなる。
一方、Crの含有量が1.0%を超えると、Crを主体とする粗大な炭化物が析出して超硬合金の靭性を低下させる。
よって、Crの含有量は、0.3%以上1.0%以下とする。好ましくは、0.5%以上であり、また、好ましくは、0.8%以下である。
<Cr content>
Cr is an element that forms a solid solution in Co and suppresses the grain growth of WC particles in the sintering process to make the structure uniform, and is added as a metal element at 0.3% or more and 1.0% or less. To do.
When the content of Cr is less than 0.3%, grain growth of WC particles is not suppressed, the particle size distribution of WC particles becomes non-uniform, and chipping easily occurs. In addition, since the WC particles have a non-uniform particle size distribution, the Co distribution also becomes non-uniform, and chipping easily occurs.
On the other hand, when the content of Cr exceeds 1.0%, coarse carbides mainly containing Cr are precipitated to reduce the toughness of the cemented carbide.
Therefore, the content of Cr is set to 0.3% or more and 1.0% or less. It is preferably 0.5% or more, and preferably 0.8% or less.

<Taの含有量>
Taは、Coに固溶してWC粒子の粒成長を抑制して組織を均一化する。また、組織中にTaを主成分とする相が分散することで耐熱性を高めることができるため、金属元素として、1.0%以上3.0%以下にて添加する。
Taの含有量が1.0%未満では、WC粒子の粒度分布が不均一になるとともに、組織中に分散するTaを主成分とする相が少なく耐熱性が低下する。一方、Taの含有量が3.0%を超えると、Taを主成分とする相が多くなりすぎて超硬合金の靭性を低下させる。
よって、Taの含有量は、1.0%以上3.0%以下とする。好ましくは、2.5%以下であり、更には、2.0%以下とすることが好ましい。
<Content of Ta>
Ta forms a solid solution in Co and suppresses the grain growth of WC particles to homogenize the structure. Further, since the phase having Ta as a main component is dispersed in the structure, the heat resistance can be improved, so that it is added as a metal element at 1.0% or more and 3.0% or less.
When the content of Ta is less than 1.0%, the particle size distribution of the WC particles becomes non-uniform, and the phase containing Ta as a main component dispersed in the structure is small and the heat resistance is lowered. On the other hand, when the content of Ta exceeds 3.0%, the amount of phases containing Ta as the main component becomes too large and the toughness of the cemented carbide is reduced.
Therefore, the content of Ta is set to 1.0% or more and 3.0% or less. It is preferably 2.5% or less, and more preferably 2.0% or less.

<金属元素に固溶もしくは化合して存在する非金属元素と不可避的不純物>
WC基超硬合金の残部は、主成分であるWC、および、金属元素(Co、Cr、Ta)に固溶もしくは化合して存在する非金属元素と不可避的不純物である。
金属元素の固溶もしくは化合して存在する非金属元素とは、C、N等であり、光学顕微鏡観察にては遊離成分として確認されない量で存在する。
また、原料粉末や混合、焼結過程の不可避的不純物としてFe、Ni、Nb、Al等を微量含有する場合がある。
<Non-metal element and unavoidable impurities existing in solid solution or in combination with metal element>
The balance of the WC-based cemented carbide is WC which is the main component, non-metal elements which are present as a solid solution or combined with metal elements (Co, Cr, Ta) and unavoidable impurities.
The non-metal element which exists as a solid solution or a combination of metal elements is C, N, etc., and is present in an amount which is not confirmed as a free component by optical microscope observation.
In addition, Fe, Ni, Nb, Al and the like may be contained in trace amounts as raw material powders and inevitable impurities in the mixing and sintering processes.

[2]WC基超硬合金の組織
<WC粒子の平均粒径>
WC基超硬合金の硬度と靭性はトレードオフの関係にあり、硬度が増加すると靭性が低下する傾向にあり、他方、硬度が低下すると靭性が増加する傾向にある。
そして、WC基超硬合金のCoの含有量が同等であれば、硬度と靭性はほぼWC粒子の平均粒径によって決定される。
ここでいうWC粒子の平均粒径は、円相当の粒径(「円相当径」ともいう。)の平均粒径をいう。
なお、特に、WC粒子については、円相当の粒径が0.4μm未満の微細な粒子を含めた場合には、例えば、後述するD90/D10において、組織の均一性を正確に評価できなくなるため、円相当の粒径が0.4μm以上である粒子の平均粒径について規定する。
軟鋼の高速加工において、WC粒子の平均粒径が微粒になりすぎると靭性が低下してチッピングが発生する。他方、WC粒子の平均粒径が粗大になりすぎると硬度が低下して耐摩耗性が低下する。
そこで、本発明においては、円相当の粒径が0.4μm以上のWC粒子の平均粒径を1.0μm以上2.0μm以下と規定した。好ましくは、1.2μm以上であり、また、好ましくは、1.8μm以下である。
そして、具体的には、試料を鏡面加工して、縦60μm×横30μm(1800μm)の範囲にある、円相当の粒径が0.4μm以上のWC粒子の円相当の平均粒径を求めることで、WC粒子の平均粒径を精度高く評価することができる。
WC粒子の平均粒径は、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)法を用いて測定することができる。
0.4μm未満のWC粒子の測定についてはノイズを含むため、前述のとおり、測定対象となるWC粒子の粒径を0.4μm以上のWC粒子の円相当径の平均粒径として規定することにより評価した。なお、相当径が0.4μm未満の粒子が全体に占める面積率は5%以下である。
[2] Microstructure of WC-based cemented carbide <Average particle size of WC particles>
The hardness and toughness of the WC-based cemented carbide have a trade-off relationship, and the toughness tends to decrease as the hardness increases, while the toughness tends to increase as the hardness decreases.
Then, if the Co content of the WC-based cemented carbide is the same, the hardness and toughness are almost determined by the average particle diameter of the WC particles.
The average particle diameter of the WC particles as used herein refers to the average particle diameter of the particle diameter corresponding to a circle (also referred to as “circular equivalent diameter”).
In addition, particularly for WC particles, when fine particles having a particle diameter corresponding to a circle of less than 0.4 μm are included, for example, in D90/D10 described later, it becomes impossible to accurately evaluate the uniformity of the structure. , And the average particle size of particles having a particle diameter corresponding to a circle of 0.4 μm or more.
In high-speed processing of mild steel, if the average particle size of WC particles becomes too fine, the toughness decreases and chipping occurs. On the other hand, if the average particle size of the WC particles becomes too coarse, the hardness decreases and the wear resistance decreases.
Therefore, in the present invention, the average particle size of WC particles having a circle-corresponding particle size of 0.4 μm or more is defined as 1.0 μm or more and 2.0 μm or less. It is preferably 1.2 μm or more, and more preferably 1.8 μm or less.
Then, specifically, the sample is mirror-polished to obtain an average circle-equivalent particle size of WC particles having a circle-equivalent particle size of 0.4 μm or more in a range of 60 μm in length×30 μm in width (1800 μm 2 ). Therefore, the average particle size of the WC particles can be evaluated with high accuracy.
The average particle size of the WC particles can be measured using an EBSD (Electron Back Scatter Diffraction) method.
Since noise is included in the measurement of WC particles of less than 0.4 μm, as described above, by defining the particle size of the WC particles to be measured as the average particle diameter of the equivalent circle diameters of WC particles of 0.4 μm or more. evaluated. The area ratio of particles having an equivalent diameter of less than 0.4 μm to the whole is 5% or less.

<WC粒子のD90/D10>
ここで、D90/D10とは、WC平均粒径の粒度分布において面積比の積算値が90%となる粒径D90に対する、面積比の積算値が10%となる粒径D10の比をいう。
本発明では、上述した組成範囲の制御に加えて、ミクロレベルの組織の均一化が重要である。上述したように、本発明のWC基超硬合金は、軟鋼の高速切削において、硬度と靭性を高いレベルで確保するため、特定の平均粒径になるよう設定している。但し、同程度の平均粒径であっても、その粒度分布が広い場合には、ミクロレベルの組織が不均一となり、チッピングが発生し易くなる。
そこで、本発明では、ミクロレベルのWC粒子の均一性を評価する指標として、さらに、平均粒径の粒度分布において面積比の積算値が90%となる粒径D90に対して、面積比の積算値が10%となる粒径D10の比、すなわち、D90/D10を用いた。この値は、仮に全ての粒子が同じ粒径であれば、D90とD10が同じ粒径となり、D90/D10の値は最小値の1となる。粒度分布が広い組織では、粒径が大きいD90の値が大きくなる一方、粒径が小さいD10の値は小さくなるので、D90/D10の値は1を超えて大きくなる。これに対して、D90/D10の値が小さいことは、粒度分布がよりシャープで均一な組織であることを示す。
但し、前述したとおり、極めて微粒なWC粒子を考慮すると、微粒なWC粒子は数が多いため、狙いとする1.0μm以上2.0μm以下のWC粒子を正確に評価できず、D90/D10により組織の均一性が正確に評価できないため、組織中に均一分散している円相当の粒径が0.4μm未満の極めて微粒なWC粒子は考慮せず、円相当径が0.4μm以上のWC粒子について、前記D90に対する前記D10の比を評価することで、組織の均一性を正確に評価できることを確認した。そして、円相当の粒径が0.4μm以上のWC粒子の平均粒径を1.0μm以上2.0μm以下とした上で、平均粒径の粒度分布において面積比の積算値が90%における粒径D90と面積比の積算値が10%における粒径D10との比であるD90/D10を3.2未満と規定することで、軟鋼の高速切削において、チッピングの発生を抑制する効果を十分に発揮できることを見出した。
好ましくは、D90/D10を3.0以下とすること、さらには、D90/D10を2.8以下とすることが好ましい。
<WC particles D90/D10>
Here, D90/D10 refers to the ratio of the particle size D10 having an integrated area ratio of 10% to the particle size D90 having an integrated area ratio of 90% in the particle size distribution of the WC average particle size.
In the present invention, in addition to the control of the composition range described above, homogenization of the micro-level structure is important. As described above, the WC-based cemented carbide of the present invention is set to have a specific average grain size in order to secure a high level of hardness and toughness in high-speed cutting of mild steel. However, even if the average particle size is about the same, if the particle size distribution is wide, the micro-level structure becomes non-uniform and chipping easily occurs.
Therefore, in the present invention, as an index for evaluating the uniformity of WC particles on a micro level, the area ratio is integrated with respect to the particle size D90 at which the integrated value of the area ratio is 90% in the particle size distribution of the average particle size. The ratio of particle size D10 at which the value was 10%, that is, D90/D10 was used. If all particles have the same particle size, D90 and D10 have the same particle size, and the value of D90/D10 becomes the minimum value of 1. In a structure with a wide grain size distribution, the value of D90 with a large grain size increases, while the value of D10 with a small grain size decreases, so the value of D90/D10 exceeds 1 and increases. On the other hand, a small value of D90/D10 indicates that the grain size distribution is sharp and uniform.
However, as described above, considering extremely fine WC particles, since the number of fine WC particles is large, it is not possible to accurately evaluate the target WC particles of 1.0 μm or more and 2.0 μm or less, and according to D90/D10, Since the uniformity of the structure cannot be accurately evaluated, WC particles with a circle equivalent diameter of 0.4 μm or more are not taken into consideration without considering extremely fine WC particles with a circle equivalent particle size of less than 0.4 μm uniformly dispersed in the tissue. It was confirmed that the uniformity of the tissue can be accurately evaluated by evaluating the ratio of D10 to D90 of the particles. Then, the average particle size of the WC particles having a circle-equivalent particle size of 0.4 μm or more is set to 1.0 μm or more and 2.0 μm or less, and the particles in which the integrated value of the area ratio in the particle size distribution of the average particle size is 90% By defining D90/D10, which is the ratio of the diameter D90 and the particle size D10 when the integrated value of the area ratio is 10%, to be less than 3.2, the effect of suppressing the occurrence of chipping in the high-speed cutting of mild steel is sufficiently achieved. I found that I can demonstrate it.
Preferably, D90/D10 is set to 3.0 or less, and further, D90/D10 is set to 2.8 or less.

<WC粗大粒子、凝集体(マクロ欠陥)>
上記では、円相当径が10μmを超えるWC粒子やWC凝集体が生成しない場合について説明を行ったが、組織の一部に円相当径が10μmを超えるWC粒子またはWC凝集体、さらには、円相当径が30μmを超えるWC粒子またはWC凝集体(マクロ欠陥)を生じる場合もあるので、以下では、これらの粗大WC粒子やWC凝集体が生じた場合における平均粒径の測定法について説明する。
特にマクロ欠陥が多くなるとチッピングが発生し易くなるため、円相当径が30μmを超えるWC粒子またはWC凝集体については、光学顕微鏡による組織観察において、350000μm(500μm×700μm)の範囲で8個以下と規定することが好ましく、さらには、5個以下、円相当径が10μmを超えるWC粒子またはWC凝集体では、8個以下とすることが好ましい。
かかる条件を満たした上で、マクロ欠陥、および、円相当径が10μmを超えるWC粒子およびWC凝集体のない平均的な組織を有する場所を選択して平均粒径を測定する。
具体的には、試料を鏡面加工して、マクロ欠陥、および、円相当径が10μmを超えるWC粒子およびWC凝集体のない1800μm(縦60μm×横30μm)の範囲にある、円相当の粒径が0.4μm以上のWC粒子の円相当の平均粒径を求めることで、WC粒子の平均粒径を精度高く評価することができる。
<WC coarse particles, aggregates (macro defects)>
In the above description, the case where WC particles or WC aggregates having a circle equivalent diameter of more than 10 μm are not generated has been described. However, WC particles or WC aggregates having a circle equivalent diameter of more than 10 μm are formed in a part of the tissue, and further, circles. In some cases, WC particles or WC aggregates (macro defects) having an equivalent diameter of more than 30 μm may be produced. Therefore, a method for measuring the average particle diameter when these coarse WC particles or WC aggregates are produced will be described below.
In particular, since chipping easily occurs when the number of macro defects increases, for WC particles or WC aggregates having a circle equivalent diameter of more than 30 μm, 8 or less in the range of 350,000 μm 2 (500 μm×700 μm) in the structure observation with an optical microscope. It is preferable that the number be 5 or less, and in the case of WC particles or WC aggregates having an equivalent circle diameter of more than 10 μm, 8 or less.
After satisfying such conditions, a place having an average structure free from macro-defects and WC particles having an equivalent circle diameter of more than 10 μm and WC aggregates is selected and the average particle size is measured.
Specifically, the sample is mirror-polished to obtain circle-equivalent grains in the range of 1800 μm 2 (60 μm in length×30 μm in width) free of macro defects and WC particles and WC aggregates having an equivalent circle diameter of more than 10 μm. The average particle size of the circles of WC particles having a diameter of 0.4 μm or more can be obtained, so that the average particle size of the WC particles can be evaluated with high accuracy.

<Ta相の組織(d90/d10)>
本発明において、組織中に分散するTaを主成分とする相は、光学顕微鏡観察により確認することができる。Taを主成分とする相はTaに次いでWを多く含有しており、主に炭化物や炭窒化物として存在する。組織中に分散するTaを主成分とする相の平均粒径が小さすぎると超硬合金の耐熱性が低下し、他方、大きすぎると靭性が低下する。
そのため、組織中に分散するTaを主成分とする相は、円相当の平均粒径を1.0μm以上3.0μmとすることが好ましい。
Taを主成分とする相は、金属元素としてTaを60質量%以上で含有し、Wは1〜30質量%で含有する。また、Taを主成分とする相の粒度分布において、面積比の積算値が90%における粒径をd90、面積比の積算値が10%における粒径をd10とした場合、d90/d10は6.0未満であることが好ましい。更には、d90/d10は5.0以下であることが好ましい。
<Ta phase structure (d90/d10)>
In the present invention, the phase containing Ta as a main component dispersed in the tissue can be confirmed by observation with an optical microscope. The phase containing Ta as a main component contains a large amount of W next to Ta, and is mainly present as carbides or carbonitrides. If the average particle size of the phase containing Ta as the main component dispersed in the structure is too small, the heat resistance of the cemented carbide decreases, while if it is too large, the toughness decreases.
Therefore, it is preferable that the phase mainly composed of Ta dispersed in the structure has an average particle diameter corresponding to a circle of 1.0 μm or more and 3.0 μm or more.
The phase containing Ta as a main component contains Ta as a metal element in an amount of 60 mass% or more and W in an amount of 1 to 30 mass %. In the particle size distribution of the phase containing Ta as the main component, d90/d10 is 6 when the particle size at an integrated value of area ratio of 90% is d90 and the particle size at an integrated value of area ratio of 10% is d10. It is preferably less than 0.0. Furthermore, d90/d10 is preferably 5.0 or less.

[3]WC基超硬合金を基材とする被覆切削工具
<硬質皮膜層の形成>
上述したWC基超硬合金を基材とする切削工具に、物理蒸着法や化学蒸着法を用いて硬質皮膜を被覆することにより、さらに耐久性にすぐれた被覆切削工具を得ることができる。
軟鋼の高速加工に適用する被覆切削工具において、硬質皮膜としてTiCN皮膜を少なくとも含み、TiCN皮膜を柱状組織からなり柱状粒子の表面側における平均幅を1μm以下、TiCN皮膜の膜厚を最大厚とすることが好ましい。特に、微粒組織からなるTiCN皮膜を最大厚とすることにより、皮膜破壊が抑制され易くなる。
また、TiCN皮膜の効果を発揮するためには、膜厚は5.0μm以上であることが好ましく、他方、膜厚が厚くなり過ぎると皮膜剥離が発生し易くなるので、8.0μm以下であることが好ましい。
また、TiCN皮膜の上層には耐熱性と耐摩耗性に優れるAl皮膜を設けることが好ましく、その膜厚は1.0μm以上4.0μm以下であることが好ましい。
かかる皮膜構造を適用した本発明の被覆切削工具をHRC40以下の軟鋼のミーリング加工に適用することで、特に優れた耐久性を発揮できるため好ましく、更には、切削速度200m/minで使用することが好ましい。
[3] Coated cutting tool based on WC-based cemented carbide <Formation of hard coating layer>
By coating a hard coating on the above-mentioned cutting tool using WC-based cemented carbide as a base material by a physical vapor deposition method or a chemical vapor deposition method, a coated cutting tool having further excellent durability can be obtained.
In a coated cutting tool applied to high-speed machining of mild steel, at least a TiCN coating is used as a hard coating, and the TiCN coating has a columnar structure, and the average width on the surface side of the columnar particles is 1 μm or less, and the thickness of the TiCN coating is the maximum thickness. Preferably. In particular, by making the TiCN coating having a fine grain structure the maximum thickness, the coating breakage is easily suppressed.
Further, in order to exert the effect of the TiCN film, it is preferable that the film thickness is 5.0 μm or more. On the other hand, if the film thickness becomes too thick, film peeling easily occurs, so it is 8.0 μm or less. Preferably.
Further, it is preferable to provide an Al 2 O 3 film having excellent heat resistance and wear resistance on the upper layer of the TiCN film, and the film thickness thereof is preferably 1.0 μm or more and 4.0 μm or less.
By applying the coated cutting tool of the present invention to which such a coating structure is applied to milling of mild steel having an HRC of 40 or less, particularly excellent durability can be exhibited, which is preferable. Further, it is preferable to use at a cutting speed of 200 m/min. preferable.

[4]WC基超硬合金の製造方法
以下に、本発明に係るミクロ組織を有するWC基超硬合金の製造方法の一例を示すが、本発明の製造方法は以下の製造方法に限定されるものはない。
<原料粉の混合工程>
WC原料粉末の過粉砕を抑制することが有効であるため、原料粉の混合工程では、まず、WC原料粉末以外の原料粉末をまとめて混合した後、WC原料粉末を入れて混合することが好ましい。
混合条件の一例として、アトライターを用いた場合、WC原料粉末の混合は、0.5〜5時間であることが好ましい。WC原料粉末以外の原料粉末の混合は、WC原料粉末の混合時間の2〜5倍であることが好ましい。また、組織を均一にするとともに過粉砕を抑制するために、アトライターの回転数は80〜200rpmが好ましい。
また、使用するWC原料粉末の製造時の炭化温度が低く、微粒粉末が凝集して形成されたものを使用すると、混合工程においてWC粒子が過粉砕されて組織が不均一になるため、使用するWC原料粉末は、1900℃〜2200℃で炭化処理された高温炭化原料が好ましい。
他方、原料粉末の製造時の炭化温度が高く、微粒粉末の凝集が少ないWC原料粉末であっても、平均粒径が5μm以上になると、粉砕によって粒度分布が広がり組織が不均一になるため、その場合は、WC原料粉末はフィッシャー法で測定した平均粒径が2.0μm以上4.0μm以下で、微粒粉末の凝集が少ない粉末を用いることが好ましい。
<焼結体の製造工程>
焼結工程では、焼結温度を1350℃以上1450℃以下の範囲で1時間程度保持することにより、すぐれた特性を有する、WC基超硬合金を得ることができる。
[4] Method for Producing WC-Based Cemented Carbide An example of the method for producing a WC-based cemented carbide having a microstructure according to the present invention will be shown below, but the production method of the present invention is limited to the following method. There is nothing.
<Mixing process of raw material powder>
Since it is effective to suppress over-pulverization of the WC raw material powder, in the raw material powder mixing step, it is preferable that the raw material powders other than the WC raw material powder are first mixed and then the WC raw material powder is added and mixed. ..
As an example of the mixing conditions, when an attritor is used, the mixing of the WC raw material powder is preferably 0.5 to 5 hours. The mixing of the raw material powders other than the WC raw material powder is preferably 2 to 5 times the mixing time of the WC raw material powder. In addition, the rotation speed of the attritor is preferably 80 to 200 rpm in order to make the structure uniform and suppress over-milling.
Also, if the WC raw material powder used has a low carbonization temperature and is formed by agglomeration of fine powder, the WC particles are over-crushed in the mixing step and the structure becomes non-uniform. The WC raw material powder is preferably a high temperature carbonized raw material carbonized at 1900°C to 2200°C.
On the other hand, even in the case of a WC raw material powder having a high carbonization temperature during the production of the raw material powder and little agglomeration of the fine powder, when the average particle diameter is 5 μm or more, the particle size distribution is widened by pulverization and the structure becomes non-uniform, In that case, it is preferable to use a powder of WC raw material having an average particle size of 2.0 μm or more and 4.0 μm or less as measured by the Fischer method and having less aggregation of fine powder.
<Sintered body manufacturing process>
In the sintering step, a WC-based cemented carbide having excellent characteristics can be obtained by maintaining the sintering temperature in the range of 1350° C. or higher and 1450° C. or lower for about 1 hour.

以下では、本発明を実施例により詳細に説明するが、本発明は下記の実施例により限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples.

実施例1では、WC基超硬合金基材の具体的な製造方法を示すとともに、得られたWC基超硬合金基材について、成分組成と組織および物性値の関係を示す。
各試料毎に、使用するWC原料粉末の平均粒径、混合方法および各原料粉末の混合比率を変更し、本発明例および比較例となるWC基超硬合金基材を作製した。(表1、表2を参照。)
まず、本発明例1、2、4、5では、WC原料粉末としては、2000℃程度の高温にて炭化処理された、微粒粉末の凝集が少ないWC原料粉末を原則として用い、また、本発明例3では、炭化温度が2000℃未満であるが、凝集が少なく平均粒径が大きいWC原料粉末を使用した。
次に、本発明例1〜5では、WC粉末(平均粒径2.5〜8.6μm)、Co粉末(平均粒径1.2μm)、Cr粉末(平均粒径が1.0μm)、TaC粉末(平均粒径が1.5μm)およびカーボン粉末を準備し、これら全原料粉末の総質量に対し2質量%のパラフィンワックスおよびエチルアルコール(水分含有量10%未満)と、WC粉末を除く、他の原料粉末をすべて小型アトライターに装入し、回転数を192rpmとして、4時間混合した後、前記WC粉末を装入し、さらに1時間混合し、WC混合スラリーを作製した。
なお、粉末の平均粒径はフィッシャー法で測定した代表値である。
その後、前記WC混合スラリーを静置乾燥機にて乾燥しパン造粒器にて造粒粉末を得た。得られた造粒粉末により、ミーリング加工用インサート(WDNT140520−B、ブレーカを配した形状)の基材用の成形体を成形した。そして、焼結温度1400℃にて60分間加熱保持後、焼結温度から窒素ガスにより強制冷却して、中炭素組成のWC基超硬合金からなる焼結体を作製した。
これに対し、比較例1は、WC原料粉末としては、2000℃程度の高温にて炭化処理された、微粒粉末の凝集が少ないWC原料粉末を用いるものの、Ta含有粉を含むものではなく、また、比較例2〜3は、WC原料粉末を高温にて炭化処理を行うものの、粒径の大きいものを用い、本発明例と同様の製造方法を用いて、WC基超硬合金からなる焼結体を作製した。
また、比較例4については、WC原料粉末を高温にて炭化処理を行うものの、粒径の大きいものを用い、WC粉末を含めて全原料粉末を同時に装入し、3時間混合したWC混合スラリーを用いて、WC基超硬合金からなる焼結体を作製した。
また、比較例5は、WC原料粉末としては、発明例2などと同じく、平均粒径2.5μmのWC原料粉末を用いるものの、本発明例1〜5のように、WC原料粉末以外の原料を長時間混合後、WC原料粉末を投入し、さらに混合を行うものではなく、比較例4と同じく、WC粉末を含めて全原料粉末を同時に投入し、数時間の混合後、WC基超硬合金からなる焼結体を作製するものとした。
表1に、各試料の製造に用いたWC原料粉末とその混合方法を示す。
Example 1 shows a specific method for producing a WC-based cemented carbide base material, and shows the relationship between the component composition and the structure and physical property values of the obtained WC-based cemented carbide base material.
The average particle size of the WC raw material powder to be used, the mixing method, and the mixing ratio of the respective raw material powders were changed for each sample to prepare WC-based cemented carbide base materials as examples of the present invention and comparative examples. (See Table 1 and Table 2.)
First, in Inventive Examples 1, 2, 4, and 5, as the WC raw material powder, WC raw material powder carbonized at a high temperature of about 2000° C. in which aggregation of fine-grained powder is small is used in principle. In Example 3, a carbonization temperature of less than 2000° C. was used, but WC raw material powder with less aggregation and large average particle size was used.
Next, in Inventive Examples 1 to 5, WC powder (average particle size 2.5 to 8.6 μm), Co powder (average particle size 1.2 μm), Cr 3 C 2 powder (average particle size 1.0 μm). ), TaC powder (average particle size 1.5 μm) and carbon powder are prepared, and 2% by mass of paraffin wax and ethyl alcohol (water content less than 10%) relative to the total mass of all the raw material powders, and WC powder Other than the above, all other raw material powders were charged into a small-sized attritor, the rotation speed was set to 192 rpm and mixed for 4 hours, then the WC powder was charged and further mixed for 1 hour to prepare a WC mixed slurry.
The average particle size of the powder is a representative value measured by the Fisher method.
Then, the WC mixed slurry was dried by a stationary dryer to obtain granulated powder by a pan granulator. With the obtained granulated powder, a molded body for a base material of a milling insert (WDNT140520-B, a shape in which a breaker was arranged) was molded. After heating and holding at a sintering temperature of 1400° C. for 60 minutes, the mixture was forcibly cooled from the sintering temperature with nitrogen gas to prepare a sintered body made of a WC-based cemented carbide having a medium carbon composition.
On the other hand, Comparative Example 1 uses, as the WC raw material powder, a WC raw material powder carbonized at a high temperature of about 2000° C., in which agglomeration of fine powder is less, but does not include Ta-containing powder, and In Comparative Examples 2 to 3, although the WC raw material powder is carbonized at a high temperature, a WC-based cemented carbide is sintered by using a WC raw material powder having a large grain size and using the same manufacturing method as the example of the present invention. The body was made.
Further, in Comparative Example 4, although the WC raw material powder was carbonized at a high temperature, one having a large particle size was used, and all the raw material powders including the WC powder were charged at the same time and mixed for 3 hours. Using, a sintered body made of WC-based cemented carbide was prepared.
Further, in Comparative Example 5, as the WC raw material powder, the WC raw material powder having an average particle diameter of 2.5 μm is used as in the case of the inventive example 2, but the raw materials other than the WC raw material powder are the same as in the inventive examples 1 to 5. After mixing for a long time, the WC raw material powder is added and further mixing is not performed. Like Comparative Example 4, all the raw material powders including the WC powder are added at the same time, and after mixing for several hours, the WC-based cemented carbide is added. A sintered body made of an alloy was prepared.
Table 1 shows the WC raw material powder used for the production of each sample and the mixing method thereof.

次に、作製された焼結体に鏡面加工を施すことにより得られた試料について、EPMA(JEOL製 JXA−8530F)を用いて組織観察を行った。そして、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)法を用いて、30μm×60μmの範囲にある個々のWC粒子の断面積を測定し、その値から円相当の粒径を求めた。これを3か所において測定を行い、円相当の粒径が0.4μm以上であるWC粒子について、その平均粒径と、その平均粒径の粒度分布において面積比の積算値が90%となる粒径D90と、前記面積比の積算値が10%となる粒径D10と、前記粒径D90に対する前記粒径D10の比であるD90/D10とを求め、表2として示す。
なお、ノイズを含むため計算には含めなかった円相当径が0.4μm未満の粒子が全体に占める面積率は1〜2%程度であった。
次いで、表3には、作製したWC超硬合金の物性値(保磁力(Hc)、飽和磁化(4πσ)、硬度(HRA))を示す。
なお、従来例1、2は軟鋼のミーリング加工に適用されている同形状の市販されているインサートである。
Next, the structure of the sample obtained by subjecting the produced sintered body to mirror finishing was observed with EPMA (JXA-8530F manufactured by JEOL). Then, an EBSD (Electron Back Scatter Diffraction) method was used to measure the cross-sectional area of each WC particle in the range of 30 μm×60 μm, and the particle diameter corresponding to a circle was determined from the value. This is measured at three locations, and for WC particles having a circle-equivalent particle size of 0.4 μm or more, the average particle size and the integrated value of the area ratio in the particle size distribution of the average particle size are 90%. The particle diameter D90, the particle diameter D10 at which the integrated value of the area ratio is 10%, and the ratio of the particle diameter D10 to the particle diameter D90, D90/D10, were obtained and shown in Table 2.
The area ratio of particles having a circle-equivalent diameter of less than 0.4 μm, which was not included in the calculation due to the presence of noise, was about 1 to 2%.
Next, Table 3 shows the physical property values (coercive force (Hc), saturation magnetization (4πσ), hardness (HRA)) of the produced WC cemented carbide.
Conventional examples 1 and 2 are commercially available inserts of the same shape which are applied to milling mild steel.






表2に明らかなように、所定の成分組成を有し、表1に記載された製造条件により製造された本発明例1〜5は、WC相の組織において、所望の平均粒径およびシャープで均一な粒度分布(D90/D10値)を有していた。表3に示すように、本発明例1〜5は、硬度は90.0〜91.0HRA、保磁力は180〜220(Oe)、飽和磁化は11〜12の範囲にあった。
本発明例1〜5では、組織中に円相当の平均粒径が1.0μm以上3.0μm以下であるTaを主成分とする相が分散し、前記Taを主成分とする相の組成は、Taが60〜80質量%、Wが10〜30質量%の炭化物であった。また、本発明例1において、Taを主成分とする相の粒度分布において、面積比の積算値が90%となる粒径をd90、面積比の積算値が10%となる粒径をd10とした場合、d90は6.0〜8.0μm、d10は1.5〜2.0μm、d90/d10は4.6〜5.2であった。
本発明例1、2、4、5は、高温炭化処理された平均粒径が2〜3μm程度のWC原料粉末を用いて過粉砕しないよう混合したことにより、均一な組織が得られたと推定される。また、本発明例3は高温炭化処理されたWC原料粉末を使用していないが、平均粒径が大きい原料粉末を使用して過粉砕しないよう混合したことにより、他の本発明例と同様に均一な組織が得られたと推定される。
これに対し、高温炭化処理された平均粒径が5.0〜6.0μm程度のWC原料粉末を用いた比較例2、3では、WC相の組織において、D90/D10値が高く、粒度分布が広い組織となっていたため、やや硬度値が低かった。また比較例4、5では、WC原料粉末の過粉砕が進んだため、平均粒径が小さくなる一方、平均粒径が10.0μmを超える粗大な欠陥も多く発生したため、硬度および磁気特性において、安定した特性が得られなかった。
図1および図2として、本発明例1および比較例3の電子顕微鏡による組織観察写真を示す。図1より、本発明例1の組織が均一な粒径を有するWC粒子からなる均粒組織であることが確認できる。他方、図2より、比較例3の組織は多くの微粒なWC粒子中に粗大粒子が存在する混粒組織であることが確認できる。
As is clear from Table 2, Examples 1 to 5 of the present invention having predetermined component compositions and manufactured under the manufacturing conditions described in Table 1 have the desired average particle size and sharpness in the WC phase structure. It had a uniform particle size distribution (D90/D10 value). As shown in Table 3, Examples 1 to 5 of the present invention had a hardness of 90.0 to 91.0 HRA, a coercive force of 180 to 220 (Oe), and a saturation magnetization of 11 to 12.
In Examples 1 to 5 of the present invention, the phase containing Ta as the main component having an average particle diameter corresponding to a circle of 1.0 μm or more and 3.0 μm or less is dispersed in the structure, and the composition of the phase containing Ta as the main component is , Ta was 60 to 80% by mass, and W was 10 to 30% by mass. In addition, in Example 1 of the present invention, in the particle size distribution of the phase containing Ta as a main component, the particle size at which the integrated value of the area ratio is 90% is d90, and the particle size at which the integrated value of the area ratio is 10% is d10. In that case, d90 was 6.0 to 8.0 μm, d10 was 1.5 to 2.0 μm, and d90/d10 was 4.6 to 5.2.
Inventive Examples 1, 2, 4, and 5 are presumed to have obtained a uniform structure by mixing using a WC raw material powder having an average particle size of about 2-3 μm that has been subjected to high temperature carbonization so as not to be over-ground. It Inventive Example 3 does not use the WC raw material powder that has been subjected to the high temperature carbonization treatment, but by using the raw material powder having a large average particle diameter and mixing so as not to over-pulverize, the same as other inventive examples. It is estimated that a uniform structure was obtained.
On the other hand, in Comparative Examples 2 and 3 using the WC raw material powder having an average particle size subjected to high temperature carbonization of about 5.0 to 6.0 μm, in the WC phase structure, the D90/D10 value was high and the particle size distribution was large. The hardness value was rather low because of the wide structure. Further, in Comparative Examples 4 and 5, the over-pulverization of the WC raw material powder progressed, so that the average particle size became small, while many coarse defects having an average particle size of more than 10.0 μm also occurred. Stable characteristics could not be obtained.
As FIGS. 1 and 2, photographs of microstructure observations of Example 1 of the present invention and Comparative Example 3 by an electron microscope are shown. From FIG. 1, it can be confirmed that the structure of Inventive Example 1 is a uniform structure composed of WC particles having a uniform particle size. On the other hand, from FIG. 2, it can be confirmed that the structure of Comparative Example 3 is a mixed-grain structure in which coarse particles are present in many fine WC particles.

実施例2では本発明例1〜3に硬質皮膜を形成した本発明例工具1〜3、および、比較例2〜4、および、従来例1、2に本発明例工具1〜3と同じ硬質皮膜を形成した比較例工具2〜4、および、従来例工具1、2について、軟鋼の高速加工における切削評価試験を実施した。
切削試験用のインサートには化学蒸着法により硬質皮膜を被覆した。
まず、柱状組織からなる柱状粒子の表面側に、平均幅が0.5μm〜0.7μmのTiCNを6.0μm被覆し、その上に3.0μmのAlを被覆した。硬質皮膜の被覆後は、ウエットブラスト処理を行った。
なお、比較例工具2〜4、および、従来例工具1、2は、作製した本発明例工具1〜3と同様の皮膜構造であり、残留圧縮応力も同程度であることを確認した。
下記に切削条件を示し、切削試験の結果を表4に示す。なお、切削試験用インサートの工具寿命は逃げ面の最大摩耗幅が0.3mmを超えたとき、もしくは、チッピング(欠損)が発生し、その幅が0.3mmを超えたときまでの加工時間(min)とした。
(条件)乾式加工
・工具:高速高送り用工具
・カッター型番:ASRT5063R−4
・インサート型番:WDNT140520−B
・刃数:1
・被削材:SCM440(32HRC)
・切削方法:乾式のミーリング加工
・切り込み:軸方向、1.0mm、径方向、43mm
・切削速度:250m/min
・一刃送り量:1.5mm/刃
・突出し量:100mm
In Example 2, the invention samples 1 to 3 having hard coatings formed on the invention samples 1 to 3 and the comparative examples 2 to 4 and the conventional examples 1 and 2 have the same hardness as the invention sample tools 1 to 3. A cutting evaluation test in high-speed machining of mild steel was carried out on the comparative example tools 2 to 4 having the film formed thereon and the conventional example tools 1 and 2.
The insert for cutting test was coated with a hard coating by chemical vapor deposition.
First, the surface side of columnar particles having a columnar structure was coated with 6.0 μm of TiCN having an average width of 0.5 μm to 0.7 μm, and 3.0 μm of Al 2 O 3 was coated thereon. After coating the hard coating, a wet blast treatment was performed.
In addition, it was confirmed that the comparative tools 2 to 4 and the conventional tools 1 and 2 have the same coating structure as the produced tools 1 to 3 of the present invention, and the residual compressive stress is about the same.
The cutting conditions are shown below, and the results of the cutting test are shown in Table 4. The tool life of the cutting test insert is the machining time until the maximum wear width of the flank exceeds 0.3 mm, or when chipping occurs and the width exceeds 0.3 mm ( min).
(Conditions) Dry processing/Tool: Tool for high speed/high feed/Cutter Model number: ASRT5063R-4
・Insert model number: WDNT140520-B
・Number of blades: 1
・Work Material: SCM440 (32HRC)
・Cutting method: Dry milling ・Incision: axial direction, 1.0 mm, radial direction, 43 mm
・Cutting speed: 250m/min
・One blade feed: 1.5 mm/blade ・Projection: 100 mm

本発明例工具1〜3は、安定した摩耗形態を示し工具寿命が最も長くなった。
比較例工具2、3は、D90/D10が大きいため、チッピングが発生して早期に工具寿命に達した。
比較例工具4は、平均粒径が小さく、チッピングが発生して早期に工具寿命に達した。
従来例工具1は、Coの含有量が多く、かつ、Taを含有していないため、組織中にTaを主成分とする相が分散しておらず、本発明例に比べて耐熱性が低く工具寿命が短くなった。
従来例工具2は、Coの含有量が多く、塑性変形を起こして早期に工具寿命に達した。
Inventive Example Tools 1 to 3 exhibited stable wear forms and had the longest tool life.
Since the comparative tools 2 and 3 had a large D90/D10, chipping occurred and the tool life was reached early.
The comparative tool 4 had a small average grain size and chipping occurred to reach the tool life early.
Since the conventional tool 1 has a high Co content and does not contain Ta, the phase containing Ta as the main component is not dispersed in the structure, and the heat resistance is lower than that of the inventive examples. Tool life has shortened.
The conventional tool 2 has a large amount of Co and is plastically deformed to reach the tool life early.

実施例3では本発明例2、4、5に硬質皮膜を形成した本発明例工具2、4、5、および、比較例1および従来例1に本発明例工具2、4、5と同じ硬質皮膜を形成した比較例工具1および従来例工具1について、実施例2より、突き出しの長い条件での軟鋼の高速加工における切削評価試験を実施した。
切削試験用のインサートは化学蒸着法により実施例2と同じ硬質皮膜を被覆した。まず、柱状組織からなり柱状粒子の表面側における平均幅が0.5μm〜0.7μmのTiCNを6.0μm被覆し、その上に3.0μmのAlを被覆した。硬質皮膜の被覆後は、ウエットブラスト処理を行った。
下記に切削条件を示し、切削試験の結果を表5に示す。なお、切削試験用インサートの工具寿命は逃げ面の最大摩耗幅が0.3mmを超えたとき、もしくは、チッピング(欠損)が発生し、その幅が0.3mmを超えたときまでの加工時間(min)とした。
(条件)乾式加工
・工具:高速高送り用工具
・カッター型番:ASRT5063R−4
・インサート型番:WDNT140520−B
・刃数:1
・被削材:SCM440(32HRC)
・切削方法:乾式のミーリング加工
・切り込み:軸方向、1.0mm、径方向、43mm
・切削速度:250m/min
・一刃送り量:1.5mm/刃
・突出し量:200mm
In Example 3, the present invention example tools 2, 4, 5 having hard coatings formed on the present invention examples 2, 4, 5 and the same hard as the present invention example tools 2, 4, 5 in Comparative Example 1 and Conventional Example 1 With respect to the comparative example tool 1 and the conventional example tool 1 on which the film was formed, a cutting evaluation test was performed on the mild steel at high speed machining under the condition of long protrusion from Example 2.
The cutting test insert was coated with the same hard coating as in Example 2 by the chemical vapor deposition method. First, TiCN having a columnar structure and having an average width on the surface side of the columnar particles of 0.5 μm to 0.7 μm was coated to 6.0 μm, and 3.0 μm of Al 2 O 3 was coated thereon. After coating the hard coating, a wet blast treatment was performed.
The cutting conditions are shown below, and the results of the cutting test are shown in Table 5. The tool life of the cutting test insert is the machining time until the maximum wear width of the flank exceeds 0.3 mm, or when chipping occurs and the width exceeds 0.3 mm ( min).
(Conditions) Dry processing/Tool: Tool for high speed/high feed/Cutter Model number: ASRT5063R-4
・Insert model number: WDNT140520-B
・Number of blades: 1
・Work Material: SCM440 (32HRC)
・Cutting method: Dry milling ・Incision: axial direction, 1.0 mm, radial direction, 43 mm
・Cutting speed: 250m/min
・Single blade feed: 1.5 mm/blade ・Projection: 200 mm



本発明例工具2、4、5は、いずれもすぐれた工具寿命を示した。特に、Taの含有量が少ない本発明例工具5は工具損傷が安定する傾向にあった。
比較例1工具は、Taを含有していないため、本発明例工具2、4、5に比べると工具寿命が低下した。
従来例1工具は、Coの含有量が多く、早期に工具寿命に到達した。
Inventive Example Tools 2, 4, and 5 all showed excellent tool life. In particular, the tool sample 5 of the present invention having a low Ta content tends to have stable tool damage.
Since the tool of Comparative Example 1 did not contain Ta, the tool life was shorter than that of the inventive tools 2, 4, and 5.
The conventional example 1 tool has a large amount of Co and reaches the tool life early.

本発明に係るWC基超硬合金およびこれを基材として用いた被覆切削工具は、鋼等の切削加工、特に、軟鋼の高速加工を行った際に、耐チッピング性および耐塑性変形性にすぐれるため、きわめて有用である。
The WC-based cemented carbide according to the present invention and the coated cutting tool using the same as the base material are easily resistant to chipping and plastic deformation when subjected to cutting of steel or the like, especially when high-speed processing of mild steel is performed. Therefore, it is extremely useful.

Claims (4)

質量%で、金属元素としてCoを8.5%以上9.5%以下、Crを0.3%以上1.0%以下、Taを1.0%以上3.0%以下にて含有し、残部はWCと前記金属元素に固溶もしくは化合して存在する非金属元素と不可避的不純物とからなるWC基超硬合金であって、
円相当の粒径が0.4μm以上であるWC粒子の平均粒径は、1.0μm以上2.0μm以下であり、
前記平均粒径の粒度分布において面積比の積算値が90%となる粒径D90と面積比の積算値が10%となる粒径D10との比である、D90/D10が3.2未満であり、
組織中にTaを主成分とする相が分散していることを特徴とするWC基超硬合金。
% By mass, containing Co as a metal element in an amount of 8.5% to 9.5%, Cr in an amount of 0.3% to 1.0%, and Ta in an amount of 1.0% to 3.0%, The balance is a WC-based cemented carbide composed of WC and a non-metallic element existing in solid solution or in combination with the metal element and unavoidable impurities,
The average particle size of WC particles having a circle-equivalent particle size of 0.4 μm or more is 1.0 μm or more and 2.0 μm or less,
When D90/D10, which is the ratio of the particle size D90 at which the integrated value of the area ratio is 90% and the particle size D10 at which the integrated value of the area ratio is 10% in the particle size distribution of the average particle size, is less than 3.2. Yes,
A WC-based cemented carbide, wherein a phase containing Ta as a main component is dispersed in the structure.
請求項1に記載のWC基超硬合金を基材として表面に硬質皮膜層を有する被覆切削工具。 A coated cutting tool comprising the WC-based cemented carbide according to claim 1 as a base material and having a hard coating layer on its surface. 前記硬質皮膜層は、少なくともTiCN皮膜層を含み、前記TiCN皮膜層は柱状粒子を有する柱状組織からなり、前記柱状粒子の表面側における平均幅が1.0μm以下であり、前記硬質皮膜中にて最も厚い膜厚を有する皮膜層であることを特徴とする請求項2に記載の被覆切削工具。 The hard coating layer includes at least a TiCN coating layer, the TiCN coating layer has a columnar structure having columnar particles, and the average width on the surface side of the columnar particles is 1.0 μm or less. The coated cutting tool according to claim 2, which is a coating layer having the thickest film thickness. 前記硬質皮膜層は、前記TiCN皮膜層の上層にAl皮膜層を有することを特徴とする請求項3に記載の被覆切削工具。
The coated cutting tool according to claim 3, wherein the hard coating layer has an Al 2 O 3 coating layer on the TiCN coating layer.
JP2019212919A 2018-11-28 2019-11-26 Wc-based super hard alloy and coating cut tool using the same Pending JP2020094277A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018222835 2018-11-28
JP2018222835 2018-11-28

Publications (1)

Publication Number Publication Date
JP2020094277A true JP2020094277A (en) 2020-06-18

Family

ID=71085451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019212919A Pending JP2020094277A (en) 2018-11-28 2019-11-26 Wc-based super hard alloy and coating cut tool using the same

Country Status (1)

Country Link
JP (1) JP2020094277A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188012A1 (en) * 2022-03-29 2023-10-05 住友電工ハードメタル株式会社 Cemented carbide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242181A (en) * 2008-03-31 2009-10-22 Allied Material Corp Tungsten carbide powder and method for producing the same
JP2012193406A (en) * 2011-03-16 2012-10-11 Sumitomo Electric Hardmetal Corp Exchangeable cutting tip, cutting method using the same, and method for producing exchangeable cutting tip
JP2013244588A (en) * 2012-05-29 2013-12-09 Sumitomo Electric Ind Ltd Cemented carbide, and surface-coated cutting tool using the same
JP2014223722A (en) * 2013-02-27 2014-12-04 京セラ株式会社 Cutting tool
JP2017080883A (en) * 2015-10-30 2017-05-18 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2017088999A (en) * 2015-11-11 2017-05-25 三菱日立ツール株式会社 Hard metal alloy, tool for cutting work using the same and insert for milling work
JP2018164960A (en) * 2017-03-28 2018-10-25 三菱マテリアル株式会社 Coated cemented carbide tool with superior chipping resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242181A (en) * 2008-03-31 2009-10-22 Allied Material Corp Tungsten carbide powder and method for producing the same
JP2012193406A (en) * 2011-03-16 2012-10-11 Sumitomo Electric Hardmetal Corp Exchangeable cutting tip, cutting method using the same, and method for producing exchangeable cutting tip
JP2013244588A (en) * 2012-05-29 2013-12-09 Sumitomo Electric Ind Ltd Cemented carbide, and surface-coated cutting tool using the same
JP2014223722A (en) * 2013-02-27 2014-12-04 京セラ株式会社 Cutting tool
JP2017080883A (en) * 2015-10-30 2017-05-18 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2017088999A (en) * 2015-11-11 2017-05-25 三菱日立ツール株式会社 Hard metal alloy, tool for cutting work using the same and insert for milling work
JP2018164960A (en) * 2017-03-28 2018-10-25 三菱マテリアル株式会社 Coated cemented carbide tool with superior chipping resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188012A1 (en) * 2022-03-29 2023-10-05 住友電工ハードメタル株式会社 Cemented carbide

Similar Documents

Publication Publication Date Title
JP4690475B2 (en) Cermet and coated cermet tools
CN105154744B (en) Cemented carbide and cutting tool using the same
JP6330387B2 (en) Sintered body and manufacturing method thereof
JPWO2011002008A1 (en) Cermet and coated cermet
JP6439975B2 (en) Cermet manufacturing method
WO2011136197A1 (en) Cermet and coated cermet
JPWO2017073712A1 (en) Sintered body and manufacturing method thereof
EP3130686B1 (en) Cermet and cutting tool
JPWO2017191744A1 (en) Cemented carbide and cutting tools
JP2017088917A (en) Hard metal alloy and cutting tool
JP2020094277A (en) Wc-based super hard alloy and coating cut tool using the same
US11680022B2 (en) Composite sintered material
JP2017024165A (en) Wc-based hard metal cutting tool and manufacturing method thereof
JP2019157182A (en) Super hard alloy, cutting tool containing the same, manufacturing method of super hard alloy, and manufacturing method of cutting tool
JP2018154917A (en) Cemented carbide and method for producing the same, and cutting tool prepared therewith
RU2643752C1 (en) Cermet tool
JP6443207B2 (en) Cemented carbide and cutting tools
JP2012041595A (en) Cermet
JP7394300B2 (en) coated cutting tools
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
JP5233124B2 (en) Cemented carbide and coated cemented carbide
JP6380016B2 (en) Cermet tools and coated cermet tools
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JP7161677B2 (en) WC-Based Cemented Carbide Cutting Tool and Surface-Coated WC-Based Cemented Carbide Cutting Tool with Excellent Fracture Resistance
JP2023028335A (en) WC-based cemented carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240405