JP2023028335A - WC-based cemented carbide - Google Patents

WC-based cemented carbide Download PDF

Info

Publication number
JP2023028335A
JP2023028335A JP2021133973A JP2021133973A JP2023028335A JP 2023028335 A JP2023028335 A JP 2023028335A JP 2021133973 A JP2021133973 A JP 2021133973A JP 2021133973 A JP2021133973 A JP 2021133973A JP 2023028335 A JP2023028335 A JP 2023028335A
Authority
JP
Japan
Prior art keywords
mass
cemented carbide
based cemented
less
circularity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021133973A
Other languages
Japanese (ja)
Inventor
啓 田村
Hiroshi Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Moldino Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moldino Tool Engineering Ltd filed Critical Moldino Tool Engineering Ltd
Priority to JP2021133973A priority Critical patent/JP2023028335A/en
Publication of JP2023028335A publication Critical patent/JP2023028335A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

To provide a WC-based cemented carbide suitable for a cutting tool in which the wear of a flank is suppressed in a milling process of steel and the like.SOLUTION: A WC-based cemented carbide contains Co of 5 mass% or more and 12 mass% or less, at least one of Ta and Nb of 1 mass% or more and 15 mass% or less in total, and Ti of 1 mass% or more and 10 mass% or less, with the balance being WC and inevitable impurities. The WC particles have an average particle size of 0.7 μm or more and 2.5 μm or less, and the WC particles have an integrated circularity of 0.480 or more and 0.520 or less.SELECTED DRAWING: Figure 1

Description

本発明は、WC基超硬合金に関する。 The present invention relates to a WC-based cemented carbide.

WC-Ti-(Ta,Nb)-Co系等のWC基超硬合金は、耐熱性と耐溶着性に優れる合金であるため、鋼等の切削加工に用いる工具材料として利用されている。そして、このWC基超硬合金を用いた切削工具の切削性能を向上させるべく、例えば、特許文献1に記載されているような提案がなされている。 WC-based cemented carbides such as WC--Ti--(Ta, Nb)--Co are used as tool materials for cutting steel because they are excellent in heat resistance and adhesion resistance. In order to improve the cutting performance of cutting tools using this WC-based cemented carbide, proposals have been made, for example, as described in Patent Document 1.

特開2004-330314号公報Japanese Patent Application Laid-Open No. 2004-330314

本発明は、前記事情を鑑みてなされたもので、鋼等のミーリング加工において逃げ面の摩耗がより抑制される切削工具に適したWC基超硬合金を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a WC-based cemented carbide which is suitable for cutting tools in which flank wear is further suppressed in milling of steel or the like.

本発明の実施形態に係るWC基超硬合金は、
Coを5質量%以上12質量%以下、TaおよびNbの少なくとも1種を合計で1質量%以上、15質量%以下、Tiを1質量%以上、10質量%以下で含有し、残部がWCおよび不可避的不純物からなり、前記WCの粒子の平均粒径が0.7μm以上、2.5μm以下であり、前記WCの粒子の積算円形度が0.480以上、0.520以下である。
A WC-based cemented carbide according to an embodiment of the present invention is
5% by mass to 12% by mass of Co, 1% by mass to 15% by mass of at least one of Ta and Nb in total, 1% by mass to 10% by mass of Ti, and the balance being WC and The WC particles have an average particle size of 0.7 μm or more and 2.5 μm or less, and the cumulative circularity of the WC particles is 0.480 or more and 0.520 or less.

また、本発明の実施形態に係るWC基超硬合金は、さらに、
HRAが89.5以上91.5以下であってもよい。
Further, the WC-based cemented carbide according to the embodiment of the present invention further includes
HRA may be 89.5 or more and 91.5 or less.

前記によれば、鋼等のミーリング加工において逃げ面の摩耗がより抑制される切削工具に適したWC基超硬合金を提供することができる。 According to the above, it is possible to provide a WC-based cemented carbide suitable for a cutting tool in which wear of the flank is further suppressed in milling of steel or the like.

実施例の組織観察写真である。It is a structure|tissue observation photograph of an Example. 比較例の組織観察写真である。It is a structure|tissue observation photograph of a comparative example. 実施例、比較例それぞれのWC粒度(粒径)分布を示す図である。It is a figure which shows WC particle size (particle diameter) distribution of an Example and each of a comparative example. 実施例、比較例それぞれのWC積算円形度を示す図である。It is a figure which shows the WC integrated circularity of an Example and each of a comparative example.

本発明者はWC-Ti-(Ta,Nb)-Co系のWC基超硬合金について、WCの積算円形度が所定の範囲にあると、超硬合金組織内の靭性のバラツキが少なく、鋼等のミーリング加工において逃げ面摩耗が抑制され易いことを知見した。 The present inventors have found that when the WC-based cemented carbide of WC-Ti-(Ta, Nb)-Co system has a WC cumulative circularity within a predetermined range, the variation in toughness in the cemented carbide structure is small, and the steel It was found that flank wear is easily suppressed in milling such as.

以下に、本発明の実施形態について詳細に説明する。
本明細書では、WC基超硬合金を構成するWCについて、「WC」または「WC粒子」という表記を行っているが、両表記はWCとWC粒子を明確に区別することを意図したものではない。
Embodiments of the present invention are described in detail below.
In this specification, the WC constituting the WC-based cemented carbide is expressed as "WC" or "WC particles", but both expressions are not intended to clearly distinguish between WC and WC particles. do not have.

1.組成
WC基超硬合金の組成について説明する。
1. Composition The composition of the WC-based cemented carbide will be described.

(1)Co
Coは、硬質相であるWC粒子、Ta、Nb、Tiの添加によって生じる炭化物相、複合炭化物相を繋ぎとめる結合相を構成し、WC基超硬合金に高い靭性を付与する元素である。Coの含有量が小さくなり過ぎると、WC基超硬合金の靭性と強度が低下し、また、WC基超硬合金の焼結性が悪化するため、空隙やCoプールが発生し易くなり、靭性と強度を維持することが困難になる。さらに、Coの含有量が小さくなれば脱炭相や遊離炭素が析出しない健全組織の範囲が狭くなるため、量産でのカーボンコントロールが難しくなる。一方、Coの含有量が大きくなり過ぎると硬度が低下する。
(1) Co
Co is an element that forms a binder phase that binds WC particles, which are hard phases, carbide phases and complex carbide phases generated by addition of Ta, Nb, and Ti, and imparts high toughness to WC-based cemented carbide. If the Co content is too small, the toughness and strength of the WC-based cemented carbide are reduced, and the sinterability of the WC-based cemented carbide is deteriorated. and it becomes difficult to maintain strength. Furthermore, if the Co content is small, the range of sound structures in which no decarburized phase or free carbon precipitates becomes narrower, making it difficult to control carbon in mass production. On the other hand, if the Co content becomes too large, the hardness decreases.

以上を踏まえて、Coの含有量は、5質量%以上、12質量%以下が好ましく、8質量%以上、10質量%以下がより好ましい。 Based on the above, the Co content is preferably 5% by mass or more and 12% by mass or less, more preferably 8% by mass or more and 10% by mass or less.

(2)TaおよびNb
TaおよびNbは、いずれか一方、または両方を含有することが好ましい。これらの元素は炭化物として添加され、WC基超硬合金の耐熱性を向上させる。TaおよびNbの含有量(炭化物としてではなく、金属としての含有量)は、合計で1質量%以上、15質量%以下が好ましい。その理由は、1質量%以上でなければ前述の耐熱性の向上が認められず、一方、15質量%を超えるとWC基超硬合金の靭性や焼結性が低下するためである。
なお、TaおよびNbの含有量は、合計で5質量%以上、10質量%以下が好ましい。
(2) Ta and Nb
Ta and Nb preferably contain either one or both. These elements are added as carbides to improve the heat resistance of the WC-based cemented carbide. The total content of Ta and Nb (content as metal, not as carbide) is preferably 1% by mass or more and 15% by mass or less. The reason for this is that if the content is 1% by mass or more, the aforementioned improvement in heat resistance is not observed, while if the content exceeds 15% by mass, the toughness and sinterability of the WC-based cemented carbide are lowered.
The total content of Ta and Nb is preferably 5% by mass or more and 10% by mass or less.

(3)Ti
Tiは、炭化物として添加され、WC基超硬合金の耐熱性を高める。一方、Tiの含有量が大きくなり過ぎると靭性や焼結性が低下する。そこで、Tiの含有量(炭化物としてではなく、金属としての含有量)は1質量%以上、10質量%以下が好ましく、2質量%以上、8質量%以下がより好ましい。
(3) Ti
Ti is added as a carbide to improve the heat resistance of the WC-based cemented carbide. On the other hand, if the Ti content becomes too large, the toughness and sinterability are lowered. Therefore, the content of Ti (content as a metal, not as a carbide) is preferably 1% by mass or more and 10% by mass or less, more preferably 2% by mass or more and 8% by mass or less.

2.WCの粒子形状
WCの粒子形状について説明する。
2. Particle Shape of WC The particle shape of WC will be described.

(1)平均粒径
WCの平均粒径は0.7μm以上、2.5μm以下が好ましい。WC平均粒径がこの範囲にあることで鋼等の加工において耐摩耗性と靭性のバランスに優れる切削工具を得ることができる。
ここで、粒径はWC基超硬合金を断面観察し、WCの2000個以上に対して、WCの粒子面積と等しい面積を与える円の直径であって、横軸に粒度分布、縦軸にこの円の直径をプロットしたグラフにおいて、粒度分布の累積頻度が50%となったときの直径を平均粒径とする。
この平均粒径は0.8μm以上、2.0μm以下であることがより好ましい。
(1) Average Particle Size The average particle size of WC is preferably 0.7 μm or more and 2.5 μm or less. When the WC average grain size is within this range, it is possible to obtain a cutting tool having an excellent balance between wear resistance and toughness in machining steel and the like.
Here, the grain size is the diameter of a circle that gives an area equal to the grain area of WC for 2000 or more WCs obtained by observing the cross section of the WC-based cemented carbide. In the graph plotting the diameters of the circles, the diameter when the cumulative frequency of the particle size distribution reaches 50% is taken as the average particle size.
More preferably, the average particle diameter is 0.8 μm or more and 2.0 μm or less.

(2)積算円形度
WC粒子の円形度とは、WCの2000個以上に対して、個々のWC粒子の面積をS、周囲長をLとしたとき4πS/Lにより与えられる。WCの円形度は、1に近いとその形状が真円に近くなる。
積算円形度は円形度と粒度分布から算出する。粒度分布は個数基準とし、粒径の細かいWC粒子から順に数え上げていき、全体の数量に対する占有率N%のときの粒径を累積頻度N%とする。そして、累積頻度N%まで全粒子の平均円形度をN%の積算円形度とする。
WCの粒度分布の累積頻度10%以上、90%以下の範囲の積算円形度が、0.480以上、0.520以下であることが好ましく、0.490以上、0.510以下であることがより好ましい。
その理由は、積算円形度がこの範囲にあると、三角形や四角形の角張のある形状のWCが減少することになり、その結果、WC基超硬合金の内部で靭性の均一性が向上し、鋼等のミーリング加工において逃げ面摩耗が抑制され易いためである。
(2) Accumulated Circularity The circularity of WC particles is given by 4πS/L 2 where S is the area of each WC particle and L is the perimeter of 2000 or more WC particles. When the circularity of WC is close to 1, the shape becomes close to a perfect circle.
The cumulative circularity is calculated from the circularity and the particle size distribution. The particle size distribution is based on the number, and the WC particles are counted in order from the smallest particle size, and the particle size when the occupancy rate of the total number is N % is defined as the cumulative frequency N %. Then, the average circularity of all particles up to the cumulative frequency of N% is taken as the cumulative circularity of N%.
The cumulative circularity of the WC particle size distribution in the range of cumulative frequency of 10% or more and 90% or less is preferably 0.480 or more and 0.520 or less, and is preferably 0.490 or more and 0.510 or less. more preferred.
The reason for this is that when the cumulative circularity is within this range, the amount of WC having angular shapes such as triangles and squares is reduced. This is because flank wear is easily suppressed in milling of steel or the like.

円形度と粒度分布の測定には電子プローブマイクロアナライザ(例えば、日本電子(株)JXA-8350F、以下EPMA)に備えた後方散乱電子回折検出器(例えば、(株)TSLソリューションズ OIM。以下EBSDという。)を用いる。EBSDによって逆極点図を得て、ミスオリエンテーションの値が5°より大きい領域を別の粒子とみなして個々の粒界を判定する。測定領域内すべてのWC粒子に関して同様の処理を行い、円形度と粒度分布を求める。 For measurement of circularity and particle size distribution, an electron probe microanalyzer (for example, JEOL Ltd. JXA-8350F, hereinafter EPMA) equipped with a backscattered electron diffraction detector (for example, TSL Solutions OIM Co., Ltd., hereinafter referred to as EBSD) ) is used. Inverse pole figures are obtained by EBSD and individual grain boundaries are determined by considering regions with values of misorientation greater than 5° as separate grains. All the WC particles in the measurement area are processed in the same way to obtain the circularity and the particle size distribution.

焼結過程で粒成長が進んだ粗大なWC粒子は三角形や四角形となるため円形度としては小さくなり易くなる。このことを考慮すると、WC粒度分布の累積頻度と積算円形度は、
累積頻度が20%では、積算円形度が0.500以上、0.510以下、
累積頻度が50%では、積算円形度が0.495以上、0.505以下、
累積頻度が80%では、積算円形度が0.485以上、0.495以下
を満足することがより一層好ましい。
Coarse WC grains that have grown grains during the sintering process become triangular or quadrangular, so the degree of circularity tends to be small. Considering this, the cumulative frequency and cumulative circularity of the WC particle size distribution are
When the cumulative frequency is 20%, the cumulative circularity is 0.500 or more and 0.510 or less,
When the cumulative frequency is 50%, the cumulative circularity is 0.495 or more and 0.505 or less,
When the cumulative frequency is 80%, it is more preferable that the cumulative circularity be 0.485 or more and 0.495 or less.

また、後述の製造方法で説明するように、前記積算円形度とするためには、原料粉末の混合の際に粗粒のWC原料粉末を後添加することが好ましい。 Further, as will be described later in the manufacturing method, in order to achieve the cumulative circularity, it is preferable to add coarse-grained WC raw material powder after mixing the raw material powders.

3.その他
WC基超硬合金は、HRAが89.5以上91.5以下であることがより好ましい。このHRAの範囲とすることにより、鋼等のミーリング加工において、二律背反の関係にある硬度と靭性を均衡させることができる。
3. Others It is more preferable that the WC-based cemented carbide has an HRA of 89.5 or more and 91.5 or less. By setting the HRA within this range, hardness and toughness, which are in a trade-off relationship, can be balanced in the milling of steel or the like.

4.製造方法
製造方法の一例として、次のものを示すことができる。
すなわち、平均粒径が4.0~6.0μmのWC原料粉末、特に、粒度分布幅が狭く単結晶化が進み、粒度分布(平均粒径)が異なる2種類(細粒と粗粒)のWC原料粉末を用いることが好ましい。そして、原料粉末の混合の際に、細粒のWC原料粉末と他の原料粉末を所定時間混合し、その後、粗粒のWC原料粉末を添加し(後添加し)混合をすることが好ましい。
4. Manufacturing method The following can be shown as an example of the manufacturing method.
That is, the WC raw material powder having an average particle size of 4.0 to 6.0 μm, in particular, two types (fine particles and coarse particles) with different particle size distributions (average particle sizes) with a narrow particle size distribution width and single crystallization It is preferable to use WC raw material powder. When mixing the raw material powders, it is preferable that the fine-grained WC raw material powder and other raw material powders are mixed for a predetermined time, and then the coarse-grained WC raw material powder is added (post-added) and mixed.

粗粒WC原料粉末を後添加することにより、粗粒WC原料粉末が過粉砕されずに混合焼結後もWC原料粉末の形状を維持しやすく超硬合金の積算円形度を高めることができる。
混合はアトライターやボールミル等を利用することができる。焼結は1400~1480°の加圧焼結で数時間保持することが好ましい。
By adding the coarse-grained WC raw material powder later, the coarse-grained WC raw material powder is not excessively pulverized, and the shape of the WC raw material powder can be easily maintained even after mixed sintering, and the accumulated circularity of the cemented carbide can be increased.
An attritor, a ball mill, or the like can be used for mixing. Sintering is preferably carried out under pressure at 1400 to 1480° for several hours.

WC原料粉末は平均粒径が4.5μmの粉末(30質量%)と4.0μmの粉末(70質量%)の2種類を用いた。Co原料粉末は平均粒径が1.5μmの粉末を用いた。TaC原料粉末およびTiC原料粉末はそれぞれ平均粒径が1μmの粉末を用いた。
これらの原料粉末を表1に示す組成になるように配合した。原料粉末の合計質量は200kgとして量産用のアトライターで湿式混合した。混合の際には焼結過程で消費される炭素を補うためのC粉末と成型用バインダー粉末を微量添加した。
Two types of WC raw material powders were used, one having an average particle size of 4.5 μm (30% by mass) and the other having an average particle size of 4.0 μm (70% by mass). Co raw material powder used had an average particle size of 1.5 μm. As the TaC raw material powder and the TiC raw material powder, powders having an average particle size of 1 μm were used.
These raw material powders were blended so as to have the composition shown in Table 1. The total mass of raw material powders was set to 200 kg, and wet mixing was performed using an attritor for mass production. During mixing, a very small amount of C powder and binder powder for molding were added to compensate for the carbon consumed during the sintering process.

実施例では、まず、平均粒径が4.5μmのWC粉末以外の粉末を4.5時間混合し、その後平均粒径が4.5μmのWC粉末を後添加して更に2時間混合した。
比較例では、実施例と同じ原料粉末を用意し、全ての原料粉末を同時にアトライターに投入して6時間混合した。
混合後、実施例、比較例共に、スプレードライヤーで乾燥し各組成の造粒粉を作製して、プレス成型でインサートを形成した。その後、1400℃で1時間の焼結をして、脱炭相と遊離炭素が析出していない中炭素のWC基超硬合金を作製した。表1に作製した実施例と比較例に係るWC基超硬合金の組成等を示す。
In the examples, powders other than the WC powder having an average particle size of 4.5 μm were first mixed for 4.5 hours, and then the WC powder having an average particle size of 4.5 μm was post-added and mixed for another 2 hours.
In the comparative example, the same raw material powders as in the example were prepared, and all the raw material powders were put into an attritor at the same time and mixed for 6 hours.
After mixing, in both Examples and Comparative Examples, the mixture was dried with a spray dryer to prepare granulated powders of each composition, and press molding was performed to form inserts. Thereafter, sintering was performed at 1400° C. for 1 hour to produce a medium-carbon WC-based cemented carbide in which no decarburized phase and free carbon precipitated. Table 1 shows the compositions and the like of the WC-based cemented carbides according to Examples and Comparative Examples.

Figure 2023028335000002
Figure 2023028335000002

表1から明らかなように、実施例と比較例とは、HRAの値がほぼ等しいので同じ硬さを有し、また、保持力および飽和磁化もほぼ等しいことを確認した。 As is clear from Table 1, it was confirmed that the Example and the Comparative Example have almost the same HRA value and therefore have the same hardness, and also have almost the same coercive force and saturation magnetization.

作製したWC基超硬合金を鏡面加工して、EPMA(JEOL製 JXA-8530F)を用いて組織観察を行った。図1に本実施例の組織観察写真(倍率3000倍、スケール長は10μm)、図2に比較例の組織観察写真(倍率3000倍、スケール長は10μm)をそれぞれ示す。 The prepared WC-based cemented carbide was mirror-finished, and its structure was observed using EPMA (JXA-8530F manufactured by JEOL). FIG. 1 shows a structure observation photograph of this example (magnification: 3000 times, scale length: 10 μm), and FIG. 2 shows a structure observation photograph of a comparative example (magnification: 3000 times, scale length: 10 μm).

そして、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)および画像解析ソフトを用いて、WC粒子の2000個を測定し、WC粒子の円相当の粒度分布と積算円形度を求めた。図3にWC粒子の粒度分布、図4に積算円形度の測定結果を示す。 Using EBSD (Electron Back Scatter Diffraction) and image analysis software, 2000 WC particles were measured to determine the circle-equivalent particle size distribution and cumulative circularity of the WC particles. FIG. 3 shows the particle size distribution of WC particles, and FIG. 4 shows the measurement results of cumulative circularity.

図3から求めた平均粒径は、表1に示すように本実施例と比較例はほぼ同じであった。一方、積算円形度については図4に示すように本実施例は0.480から0.520までの範囲にあり、比較例は0.465から0.490までの範囲であり、本実施例の積算円形度は比較例のものよりも大きくなっていることを確認した。 As shown in Table 1, the average particle size obtained from FIG. 3 was almost the same between this example and the comparative example. On the other hand, as shown in FIG. 4, the integrated circularity of the present embodiment is in the range of 0.480 to 0.520, and the comparative example is in the range of 0.465 to 0.490. It was confirmed that the accumulated circularity was larger than that of the comparative example.

次に、WC基超硬合金における靭性のばらつきを評価するために、クラック長の測定を行った。すなわち、WC基超硬合金の鏡面研磨面に対して、次の条件でビッカース圧子を各圧痕の中心間隔が3~4mmとなるように直線状に10箇所に押込み、圧痕の4角部にそれぞれ生じたクラックの長さ(L1~L4)を測定した。
クラック長の測定結果は、実施例については表2に、比較例については表3に、それぞれ示す。
Next, the crack length was measured in order to evaluate the variation in toughness in the WC-based cemented carbide. That is, on the mirror-polished surface of the WC-based cemented carbide, under the following conditions, a Vickers indenter was linearly pressed into 10 places so that the center interval of each indentation was 3 to 4 mm, and each of the four corners of the indentation was pressed. The length of cracks (L1 to L4) was measured.
The crack length measurement results are shown in Table 2 for Examples and Table 3 for Comparative Examples.

(ビッカース圧子を押し込む条件)
使用試験機:明石製作所製AVK型
押込力:50kgf(約490N)
押込み保持時間:15秒
(Conditions for pressing the Vickers indenter)
Test machine used: AVK type manufactured by Akashi Seisakusho Pushing force: 50 kgf (approximately 490 N)
Push holding time: 15 seconds

各圧痕の4角部にそれぞれ生じたクラックの長さ(L1~L4)の全てにおける最大値、最小値、平均値、標準偏差、
各圧痕におけるクラックの長さ(L1~L4)の合計値における最大値と最小値の差、
ならびに、
各圧痕におけるクラックの長さ(L1~L4)の中の最大値と最小値の差、この差の平均値、および、この差の最大値と最小値の差
を表4に示す。
The maximum value, minimum value, average value, standard deviation, and
The difference between the maximum and minimum values of the total crack lengths (L1 to L4) in each indentation,
and
Table 4 shows the difference between the maximum and minimum crack lengths (L1 to L4) in each indentation, the average value of this difference, and the difference between the maximum and minimum values of this difference.

Figure 2023028335000003
Figure 2023028335000003

Figure 2023028335000004
Figure 2023028335000004

Figure 2023028335000005
Figure 2023028335000005

表4から明らかなように、前記標準偏差、前記クラックの長さ(L1~L4)の合計値における最大値と最小値の差、ならびに、前記クラックの長さ(L1~L4)の中の最大値と最小値の差、この差の平均値、および、この差の最大値と最小値の差のいずれにおいても、実施例の方が小さな値となっており、クラック長のばらつきが小さい、すなわち、靭性のばらつきが小さいといえる。 As is clear from Table 4, the standard deviation, the difference between the maximum value and the minimum value in the total value of the crack lengths (L1 to L4), and the maximum value among the crack lengths (L1 to L4) In all of the difference between the value and the minimum value, the average value of this difference, and the difference between the maximum value and the minimum value of this difference, the example has a smaller value, and the variation in crack length is small, that is, , it can be said that the variation in toughness is small.

続いて、実施例と比較例のWC基超硬合金について、PVD法により平均厚さが約4μmのAlTiNを被覆した被覆インサートを作製した(それぞれ、実施例工具、比較例工具という)。切削評価は以下の条件で行った。同条件で3回試験を行い切削加工後の最大逃げ面摩耗幅およびそのバラツキを評価した。切削評価の結果を表5に示す。 Subsequently, for the WC-based cemented carbides of Examples and Comparative Examples, AlTiN-coated inserts having an average thickness of about 4 μm were produced by the PVD method (referred to as an example tool and a comparative example tool, respectively). Cutting evaluation was performed under the following conditions. The test was performed three times under the same conditions, and the maximum flank wear width after cutting and its variation were evaluated. Table 5 shows the results of cutting evaluation.

(切削評価の条件)
・カッター型番:ASRT5063R-4
・インサート型番:WDNW140520
・刃数:1
・切削方法:平面加工
・被削材:S50C(220HB)
・切り込み:軸方向、1mm、径方向、42mm
・切削速度:180m/min
・一刃送り量:1.5mm/刃
・突き出し量:100mm
・切削長:37m
(Conditions for cutting evaluation)
・Cutter model number: ASRT5063R-4
・Insert model number: WDNW140520
・Number of blades: 1
・Cutting method: Plane processing ・Work material: S50C (220HB)
・Incision: axial direction, 1 mm, radial direction, 42 mm
・Cutting speed: 180m/min
・Feed amount per blade: 1.5mm/blade ・Protrusion amount: 100mm
・Cutting length: 37m

Figure 2023028335000006
Figure 2023028335000006

表5から明らかなように、本実施工具は比較例工具よりも最大逃げ面摩耗幅、および、その最大値と最小値の差が小さくなった。よって、実施例のWC基超硬合金は比較例のWC基超硬合金よりも靭性が安定しており、最大逃げ面摩耗幅とばらつきが改善されたといえる。 As is clear from Table 5, the tool of this embodiment has a smaller maximum flank wear width and a difference between the maximum and minimum values than the comparative example tool. Therefore, it can be said that the WC-based cemented carbides of Examples have more stable toughness than the WC-based cemented carbides of Comparative Examples, and the maximum flank wear width and variation are improved.

Claims (2)

Coを5質量%以上12質量%以下、TaおよびNbの少なくとも1種を合計で1質量%以上、15質量%以下、Tiを1質量%以上、10質量%以下で含有し、残部がWCおよび不可避的不純物からなり、前記WCの粒子の平均粒径が0.7μm以上、2.5μm以下であり、前記WCの粒子の積算円形度が0.480以上、0.520以下であることを特徴とするWC基超硬合金。 5% by mass to 12% by mass of Co, 1% by mass to 15% by mass of at least one of Ta and Nb in total, 1% by mass to 10% by mass of Ti, and the balance being WC and It consists of unavoidable impurities, the WC particles have an average particle diameter of 0.7 μm or more and 2.5 μm or less, and the WC particles have an accumulated circularity of 0.480 or more and 0.520 or less. WC-based cemented carbide. HRAが89.5以上91.5以下であることを特徴とする請求項1に記載のWC基超硬合金。 2. The WC-based cemented carbide according to claim 1, wherein HRA is 89.5 or more and 91.5 or less.
JP2021133973A 2021-08-19 2021-08-19 WC-based cemented carbide Pending JP2023028335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021133973A JP2023028335A (en) 2021-08-19 2021-08-19 WC-based cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021133973A JP2023028335A (en) 2021-08-19 2021-08-19 WC-based cemented carbide

Publications (1)

Publication Number Publication Date
JP2023028335A true JP2023028335A (en) 2023-03-03

Family

ID=85330815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021133973A Pending JP2023028335A (en) 2021-08-19 2021-08-19 WC-based cemented carbide

Country Status (1)

Country Link
JP (1) JP2023028335A (en)

Similar Documents

Publication Publication Date Title
JP5161496B2 (en) Cast iron milling inserts
JP6330387B2 (en) Sintered body and manufacturing method thereof
JP5454678B2 (en) Cermet and coated cermet
JP2000514722A (en) Cemented carbide inserts for turning, milling and drilling
JP5989930B1 (en) Cermet and cutting tools
WO2018194018A1 (en) Cemented carbide, cutting tool comprising same, and method for preparing cemented carbide
JP2010222650A (en) Cermet
WO2012053237A1 (en) Wc-based cemented carbide cutting tool having high defect resistance for heat-resistant alloy cutting, and surface-coated wc-based cemented carbide cutting tool
JP2000514874A (en) Cemented carbide body with improved wear resistance
JP2017088917A (en) Hard metal alloy and cutting tool
JP2017088999A (en) Hard metal alloy, tool for cutting work using the same and insert for milling work
CN103962590B (en) Surface-coated cutting tool and its manufacture method
JP2010234519A (en) Cermet and coated cermet
US20140037395A1 (en) Sintered Cemented Carbide Body, Use And Process For Producing The Cemented Carbide Body
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
EP1087026B1 (en) TiCN-based cermet
JP2023028335A (en) WC-based cemented carbide
JP2011207688A (en) Composite sintered compact
JP2018154917A (en) Cemented carbide and method for producing the same, and cutting tool prepared therewith
WO2020196590A1 (en) Wc-based cemented carbide cutting tool having excellent defect resistance and chipping resistance, and surface-coated wc-based cemented carbide cutting tool
JP2006111947A (en) Ultra-fine particle of cermet
JP2020094277A (en) Wc-based super hard alloy and coating cut tool using the same
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JP2801484B2 (en) Cemented carbide for cutting tools
JP2009006413A (en) Ti based cermet