JP2020093976A - Grout material for sewer pipe renovation method and sewer pipe renovation method using same - Google Patents
Grout material for sewer pipe renovation method and sewer pipe renovation method using same Download PDFInfo
- Publication number
- JP2020093976A JP2020093976A JP2020038317A JP2020038317A JP2020093976A JP 2020093976 A JP2020093976 A JP 2020093976A JP 2020038317 A JP2020038317 A JP 2020038317A JP 2020038317 A JP2020038317 A JP 2020038317A JP 2020093976 A JP2020093976 A JP 2020093976A
- Authority
- JP
- Japan
- Prior art keywords
- mortar
- mass
- water
- unit volume
- grout material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 154
- 239000011440 grout Substances 0.000 title claims abstract description 146
- 238000000034 method Methods 0.000 title claims abstract description 74
- 238000009418 renovation Methods 0.000 title abstract 5
- 239000004570 mortar (masonry) Substances 0.000 claims abstract description 247
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 174
- 239000000203 mixture Substances 0.000 claims abstract description 121
- 238000012360 testing method Methods 0.000 claims abstract description 80
- 238000002347 injection Methods 0.000 claims abstract description 55
- 239000007924 injection Substances 0.000 claims abstract description 55
- 239000004568 cement Substances 0.000 claims abstract description 48
- 238000010998 test method Methods 0.000 claims abstract description 40
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 33
- 239000011707 mineral Substances 0.000 claims abstract description 33
- 238000011049 filling Methods 0.000 claims abstract description 21
- 238000002156 mixing Methods 0.000 claims abstract description 20
- 239000000126 substance Substances 0.000 claims abstract description 11
- 239000010865 sewage Substances 0.000 claims description 163
- 239000002734 clay mineral Substances 0.000 claims description 49
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 34
- 230000008961 swelling Effects 0.000 claims description 34
- 239000000440 bentonite Substances 0.000 claims description 33
- 229910000278 bentonite Inorganic materials 0.000 claims description 33
- 238000005070 sampling Methods 0.000 claims description 28
- 239000003517 fume Substances 0.000 claims description 27
- 229910021647 smectite Inorganic materials 0.000 claims description 24
- 238000010276 construction Methods 0.000 claims description 23
- 238000000926 separation method Methods 0.000 claims description 20
- 239000000843 powder Substances 0.000 claims description 16
- 239000008187 granular material Substances 0.000 claims description 8
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 238000007655 standard test method Methods 0.000 claims description 3
- 239000004567 concrete Substances 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 238000000605 extraction Methods 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- 239000002131 composite material Substances 0.000 abstract description 26
- 239000000654 additive Substances 0.000 abstract description 2
- 238000007906 compression Methods 0.000 abstract description 2
- 230000006835 compression Effects 0.000 abstract description 2
- 230000000996 additive effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 abstract 1
- 239000000047 product Substances 0.000 description 53
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 45
- 230000000694 effects Effects 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 16
- 239000004113 Sepiolite Substances 0.000 description 14
- 229910052624 sepiolite Inorganic materials 0.000 description 14
- 235000019355 sepiolite Nutrition 0.000 description 14
- 238000005259 measurement Methods 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 10
- 239000000945 filler Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000011398 Portland cement Substances 0.000 description 8
- 230000001771 impaired effect Effects 0.000 description 8
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 238000005339 levitation Methods 0.000 description 4
- 208000012978 nondisjunction Diseases 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 230000009974 thixotropic effect Effects 0.000 description 4
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000010881 fly ash Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 238000001612 separation test Methods 0.000 description 3
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 229920001732 Lignosulfonate Polymers 0.000 description 2
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 2
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 2
- 239000004794 expanded polystyrene Substances 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000004088 foaming agent Substances 0.000 description 2
- 229910052901 montmorillonite Inorganic materials 0.000 description 2
- 229910052625 palygorskite Inorganic materials 0.000 description 2
- 239000011236 particulate material Substances 0.000 description 2
- 239000010451 perlite Substances 0.000 description 2
- 235000019362 perlite Nutrition 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 229910052902 vermiculite Inorganic materials 0.000 description 2
- 239000010455 vermiculite Substances 0.000 description 2
- 235000019354 vermiculite Nutrition 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- OAOABCKPVCUNKO-UHFFFAOYSA-N 8-methyl Nonanoic acid Chemical compound CC(C)CCCCCCC(O)=O OAOABCKPVCUNKO-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241000871495 Heeria argentea Species 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 239000004368 Modified starch Substances 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- JAWMENYCRQKKJY-UHFFFAOYSA-N [3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-ylmethyl)-1-oxa-2,8-diazaspiro[4.5]dec-2-en-8-yl]-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]methanone Chemical compound N1N=NC=2CN(CCC=21)CC1=NOC2(C1)CCN(CC2)C(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F JAWMENYCRQKKJY-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- NVVZQXQBYZPMLJ-UHFFFAOYSA-N formaldehyde;naphthalene-1-sulfonic acid Chemical compound O=C.C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 NVVZQXQBYZPMLJ-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 229910000273 nontronite Inorganic materials 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- -1 shirasu balloon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical class NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
Images
Landscapes
- Sewage (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、老朽化した下水管更生工法用グラウト材(以下、単にグラウト材と称す場合がある)およびそれを用いた下水管更生工法に関するものであり、更に詳しくは、グラウト材として必要な成分が粉粒体として全て配合されており、あとは所定量の水を添加して撹拌すれば各成分が短時間で均一に分散した流動性に優れたモルタルを作成できる一材型のグラウト材であり、前記モルタルを老朽化した下水管内部に下水が存在する状態で、別途の管を設置し、両者の間に生じる隙間に下水が残留した状態で前記モルタルを前記間隙に充填する際に、前記モルタルの一部が下水の方へ溶けだしたり、前記モルタルの成分が変化したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記モルタルが前記下水を排出した後、硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られるという下水管更生工法用グラウト材およびそれを用いた下水管更生工法に関するものである。 The present invention relates to an aged grout material for a sewer pipe rehabilitation method (hereinafter, may be simply referred to as a grout material) and a sewer pipe rehabilitation method using the grout material, and more specifically, a component necessary as a grout material. Is a single-part grout material that can create a mortar with excellent fluidity in which each component is uniformly dispersed in a short time by adding a predetermined amount of water and stirring. Yes, in the presence of sewage inside the aging mortar pipe, a separate pipe is installed, when filling the mortar in the gap with the sewage remaining in the gap between the two, Part of the mortar melts into the sewage or the components of the mortar do not change, and the sewage can be stably and uniformly filled into the gap while being discharged to the outside. The present invention relates to a grouting material for a sewer rehabilitation method and a sewer rehabilitation method using the same, in which a cured product can be obtained after being discharged and then a uniform cured product can be obtained, and a composite pipe having a strength comparable to that of a new pipe can be obtained. ..
農業用水管や下水道管、上水道管などは丈夫なものではあるが、地下に埋設されて極めて長期に渡って使用されるものであるため、老朽化は避けられない。そこでひび割れや腐食などによる老朽既設管を更生するために、既設管内をライニングすることがある。既設管をライニングする方法の一つとして、既設管内に別途の新たな管(以下、ライニング管とかプロファイルと称す場合がある)を配する方策が知られている。 Agricultural water pipes, sewer pipes, and water pipes are durable, but they are buried underground and used for an extremely long period of time, so deterioration is inevitable. Therefore, the inside of the existing pipe may be lined in order to rehabilitate the old pipe that has deteriorated due to cracking or corrosion. As one of the methods for lining an existing pipe, a method of arranging a new new pipe (hereinafter sometimes referred to as a lining pipe or profile) inside the existing pipe is known.
すなわち、従来技術の管内のライニング施工法は、製管機と称される装置を既設管内に運び込み、帯状の部材を製管機に供給し、既設管内において帯状の部材を巻いて新たなライニング管を成形していく。製管機によって新規に成形されたライニング管は、既設管の内径に比べて小さい。そのため既設管とライニング管との間には隙間があり、ライニング管の位置が不安定となるばかりでなく、ライニング管を流れる水などの圧力を既設管に負担させることができず、ライニング管の強度を確保することができない。 That is, the pipe lining construction method of the prior art is that a device called a pipe making machine is carried into the existing pipe, a strip-shaped member is supplied to the pipe making machine, and a strip-shaped member is wound inside the existing pipe to make a new lining pipe. To mold. The lining pipe newly formed by the pipe making machine is smaller than the inner diameter of the existing pipe. Therefore, there is a gap between the existing pipe and the lining pipe, not only the position of the lining pipe becomes unstable, but also the pressure of water flowing through the lining pipe cannot be applied to the existing pipe, and the lining pipe is The strength cannot be secured.
そこで内部に配置したライニング管の強度を確保するため、既設配管内面と内部に新設したライニング管の外面との間に、裏込め材注入装置を用いて必要な成分を配合したセメント系充填材からなる裏込め材(グラウト材とも称す)を注入している(特許文献1−6参照)。
本工法(SPR工法:Swadge Pipe Renewal)によると、既設管、充填材及びライニング管からなる三層複合管が形成され、老朽化した既設管の強度を新設管に匹敵する強度に復活させることができる。
Therefore, in order to secure the strength of the lining pipe placed inside, from the cement-based filler that mixes the necessary components using the backfill material injection device between the inner surface of the existing pipe and the outer surface of the lining pipe newly installed inside. A backfill material (also referred to as grout material) is injected (see Patent Documents 1-6).
According to this method (SPR method: Swadge Pipe Renewal), a three-layer composite pipe consisting of an existing pipe, a filler and a lining pipe is formed, and the strength of an aged existing pipe can be restored to a strength comparable to that of a new pipe. it can.
前記工法では、現場で、必要な成分を計量し、混合し、水を添加して撹拌してセメント系充填材スラリーを作成していたので、手間がかかりコストアップになる問題や、計量ミスが発生して、流動性が損なわれる問題や、硬化物の強度が損なわれるなどの事故が発生するという問題が想定される。
ライニング管の浮き防止のため、セメント系充填材は、単位容積質量の低いものが好まれる上、既設管と内部に配置したライニング管との間の長細い空隙へ充填材を注入する必要があるため、流動性が高いという特性も要求され、また硬化物の強度を大きくできれば空隙の大きな施工現場などでも使用が可能となるため、そのような特性を兼ね備えたセメント系充填材の開発が望まれていた。
In the construction method, on the site, necessary components are weighed, mixed, water is added, and the mixture is stirred to create a cement-based filler slurry. It is assumed that problems such as occurrence of such a phenomenon impair fluidity and an accident such as deterioration of strength of a cured product occur.
In order to prevent the lining pipe from floating, it is preferable that the cement-based filler has a low unit volume mass, and it is necessary to inject the filler into a long and narrow space between the existing pipe and the lining pipe placed inside. Therefore, the property of high fluidity is also required, and if the strength of the cured product can be increased, it can be used even in construction sites with large voids, so the development of a cement-based filler having such properties is desired. Was there.
ところで、下水道管渠である鉄筋コンクリート管も、前記のように、地下に埋設されて極めて長期に渡って使用されるものであるため、老朽化は避けられず、腐食劣化作用を受けることにより、下水道管渠としての機能を低下させるだけでなく、道路陥没などの二次的被害も懸念されることから、下水道管渠の更生は、社会生活を維持するために欠かせない課題となっている。
具体的には、SPR工法は、例えば、腐食劣化した既設管渠内に硬質塩化ビニール製のプロファイルを嵌合設置した後、既設管とプロファイルとの空隙部にモルタル(グラウト材)を注入することにより、複合管として一体化する更生工法であり、具体的には、例えば、既設管内径250mmから5000mm、非円形管渠短辺900mm以上、長辺6000mmまでのあらゆる断面形状があるので、これらに対応できるとともに、下水の共用下においても、施工できることが求められており、管渠内に人が入って作業できない内径の小さな管渠の更生も対象となる。
施工においては、既設管渠内にプロファイルを取り付け、その空隙部にモルタルを充填する工法であることから、プロファイルに浮力が生じるため浮上防止対策が必要である。人が管渠内に入って作業できる大口径管渠の場合は、浮上防止対策が容易であるが、人の入ることが出来ない内径の小さな管渠においては、浮力低減が可能な単位容積質量が小さいタイプのモルタルが必要となる(特許文献7参照)。
ベントナイトなどを添加したグラウト材も提案されている(特許文献8-10参照)。
By the way, as mentioned above, reinforced concrete pipes, which are sewer pipes, are also buried underground and used for an extremely long period of time. Rehabilitation of sewer pipes has become an indispensable issue for maintaining a social life because not only the function of the drainage pipe is deteriorated but also secondary damage such as road collapse is feared.
Specifically, in the SPR method, for example, a hard vinyl chloride profile is fitted and installed in a corrosion-deteriorated existing pipe ditch, and then mortar (grout material) is injected into the gap between the existing pipe and the profile. Therefore, it is a rehabilitation method to be integrated as a composite pipe. Specifically, for example, since there are all cross-sectional shapes of existing pipe inner diameter 250 mm to 5000 mm, non-circular pipe culvert short side 900 mm or more, long side 6000 mm, In addition to being able to deal with it, it is required to be able to perform construction even under the common use of sewage, and the target is the rehabilitation of a pipe with a small inner diameter where people cannot enter the pipe to work.
In the construction, since the profile is installed in the existing pipe and the voids are filled with mortar, buoyancy is generated in the profile and it is necessary to take measures to prevent levitation. In the case of a large-diameter pipe that allows people to work inside the pipe, it is easy to prevent levitation, but in a pipe with a small internal diameter that people cannot enter, buoyancy can be reduced. A mortar of a small type is required (see Patent Document 7).
A grout material to which bentonite or the like is added has also been proposed (see Patent Documents 8-10).
また、下水道管渠のSPR工法においては、通常、既設管内に下水を流しながら(下水の共用下)、既設管渠内にプロファイルを取り付け、両端部の空隙部のみをシールして空隙部にモルタルを充填するので、充填されるモルタルは、前記間隙に残留した下水に接触し、この下水を排出しながら充填することになるので、下水との接触中にモルタル自身やその成分が下水に溶け出し成分変化が生じ、例えば、前記モルタルの流れ方向および重力方向における上部と下部にモルタル濃度や成分の変化が生じ、充填したモルタルの後述する単位容積質量に差がでてしまい、従って均一で安定した充填ができず、充填したモルタルを硬化させると、均一な硬化物が得られず、圧縮強度などがバラツクという問題があった。 In addition, in the SPR method for sewer pipes, usually, while flowing sewage into the existing pipe (under common use of sewage), attach a profile in the existing pipe, seal only the voids at both ends, and mortar the voids. Since the mortar to be filled comes into contact with the sewage remaining in the gap and is discharged while discharging, the mortar itself and its components are dissolved into the sewage during the contact with the sewage. Component changes occur, for example, mortar concentration and component changes occur in the upper and lower parts of the mortar in the flow direction and gravity direction, and there is a difference in the unit volume mass of the filled mortar described later, and thus it is uniform and stable. When the mortar filled was not able to be filled and hardened, a uniform hardened product could not be obtained, and there was a problem that the compressive strength and the like varied.
本発明の第1の目的は、前記モルタルを老朽化した下水管内部に別途の管を設置し、両者の間に生じる隙間に充填する際に、下水管内部に下水が存在し、そして前記間隙に残留した下水があっても、前記モルタルがその下水に接触し、前記モルタルの一部が下水の方へ溶けだすなどにより、分離したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記隙間に充填したモルタルを硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られるという下水管更生工法用グラウト材を提供することにある。
本発明の第2の目的は、本発明の下水管更生工法用グラウト材を用いて内部に下水が存在する既設管内部に別途の管を設置し、両者の間に生じる隙間に残留した下水があっても、前記間隙にモルタルを下水と接触させながら、モルタルが下水の方へ溶けだすことなく充填して、前記下水を容易に排出でき、その後、硬化させることによって、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られるという下水管更生工法を提供することである。
A first object of the present invention is to install a separate pipe inside the deteriorated sewage pipe and fill the gap between the two with sewage inside the sewage pipe. Even if there is residual sewage in the mortar, the mortar comes into contact with the sewage, and part of the mortar begins to dissolve into the sewage, so that it does not separate, and the sewage is stably discharged to the outside. Since it is possible to fill the gap uniformly, by curing the mortar filled in the gap, a uniform cured product is obtained, and a grout material for the sewer rehabilitation method that a composite pipe with a strength comparable to a new pipe can be obtained. To provide.
A second object of the present invention is to install a separate pipe inside an existing pipe in which sewage is present using the grouting material for sewage pipe rehabilitation method of the present invention, so that the sewage remaining in the gap between the two is Even if there is mortar in contact with the sewage in the gap, the mortar can be filled into the sewage without melting, the sewage can be easily discharged, and then cured to obtain a uniform cured product. Another object of the present invention is to provide a sewer pipe rehabilitation method in which a composite pipe having a strength comparable to that of a new pipe can be obtained.
発明者等は前記課題を解決するために鋭意研究した結果、セメント、軽量骨材、水中不分離性付与鉱物および混和材を必須成分とする粉粒体からなるグラウト材組成物に所定量の水を添加・混合したモルタルが、単位容積質量、流下時間、引抜きフロー値、水中不分離性、4m注入試験で得られる上部単位容積質量と下部単位容積質量の単位容積質量差や圧縮強度などが特定の値を有するグラウト材組成物を用いることによって、前記課題を解決できることを見出し、本発明を成すに至った。 As a result of intensive studies conducted by the inventors to solve the above problems, cement, a lightweight aggregate, a water-inseparability-imparting mineral and a grout material composition consisting of granules containing admixtures as essential components have a predetermined amount of water. The mortar with added and mixed is specified in terms of unit volume mass, falling time, drawing flow value, inseparability in water, unit volume mass difference between upper unit volume mass and lower unit volume mass obtained in 4m injection test, compression strength, etc. It was found that the above problems can be solved by using a grout material composition having a value of, and the present invention has been accomplished.
前記課題を解消するための本発明の請求項1記載の発明は、セメント、軽量骨材、水中不分離性付与鉱物および混和材を必須成分とする粉粒体からなるグラウト材組成物から構成される下水管更生工法用グラウト材であって、
前記グラウト材組成物に所定量の水を添加・混合したモルタルが下記の試験法で測定した下記の性状1.〜6.を備えていることを特徴とする下水管更生工法用グラウト材である。
The invention according to
Mortar obtained by adding and mixing a predetermined amount of water to the grout material composition has the following properties measured by the following test method. ~6. It is a grout material for a sewer pipe rehabilitation method characterized by being equipped with.
(モルタル性状)
1.単位容積質量が1.30〜1.40Kg/L、
2.流下時間が5〜7秒、
3.引抜きフロー値が210〜290mm、
4.水中不分離性:懸濁物質量が0.80g以下、
5.4m注入試験で得られる上部単位容積質量と下部単位容積質量の単位容積質量差が0.05Kg/L以下、
6.圧縮強度が21〜60N/mm2。
(Mortar property)
1. Unit volume mass is 1.30 to 1.40 Kg/L,
2. Flow time is 5 to 7 seconds,
3. Withdrawal flow value of 210-290 mm,
4. Inseparability in water: Suspended substance amount 0.80g or less,
The unit volume mass difference between the upper unit volume mass and the lower unit volume mass obtained in the 5.4 m injection test is 0.05 Kg/L or less,
6. Compressive strength is 21 to 60 N/mm 2 .
(試験法)
1.単位容積質量:JIS A 1116「フレッシュコンクリートの単位容積質量試験方法及び空気量の質量による試験方法(質量方法)」に準じて、混練した試料(モルタル)を1Lの容器に入れ測定する。
(Test method)
1. Unit volume mass: According to JIS A 1116 "Unit volume mass test method for fresh concrete and test method by mass of air amount (mass method)", kneaded sample (mortar) is put in a 1 L container and measured.
2.流下時間:土木学会基準 JSCE-F541「充填モルタルの流動性試験方法(案)」に規定されているJ14ロートの流出口を指で押え、モルタルを充填し、流出口から指を離してモルタルを流出させ、流出口からのモルタル流が初めて途切れるまでの流下時間(単位:秒)を測定する。 2. Flow-down time: Hold the mortar with your finger to hold the outlet of the J14 funnel specified by JCCE-F541 “JETCE-F541 “Determination of fluidity of filled mortar (draft)”, fill the mortar, and remove your finger from the outlet to remove the mortar. The flow-out time (unit: second) until the mortar flow from the outlet is interrupted for the first time is measured.
3.引抜きフロー値: JIS R5201-1999「セメントの物理試験方法」に規定されているフローコーンにモルタルを充填し、フローコーンを垂直に引き上げたときの広がりを測定する。 3. Extraction flow value: The flow cone specified in JIS R5201-1999 "Cement physical test method" is filled with mortar, and the spread when the flow cone is pulled up vertically is measured.
4.水中不分離性:10度の傾斜をつけて設置した図4に示す水中不分離性試験装置を用い、直径80mm、長さ200mmの円柱容器Aに300mLの水を入れ、内径20mm、高さ500mmの塩ビ管Bに充填したモルタル1000mLをバルブCを開き円柱容器Aに流し込み、押し出された懸濁水を採取場所Dで濾紙上に採取して、濾紙上に採取された懸濁物を100℃1時間乾燥した懸濁物質量(g)を求める。 4. Underwater inseparability: Using the underwater inseparability test apparatus shown in FIG. 4 installed with an inclination of 10 degrees, 300 mL of water was put into a cylindrical container A having a diameter of 80 mm and a length of 200 mm, an inner diameter of 20 mm, and a height of 500 mm. 1000 mL of mortar filled in the vinyl chloride pipe B was poured into the cylindrical container A by opening the valve C, and the extruded suspended water was collected on the filter paper at the collection place D, and the suspension collected on the filter paper was cooled to 100° C. 1 The amount of suspended matter (g) dried for time is determined.
5.4m注入試験:図5に示す4m注入試験装置(内径350mm、長さ2000mmのヒューム管を2本連結させ、注入口および上部試料採取場所と下部試料採取場所を設けた管内に、外径330mm、長さ4500mmのプロファイルを設置し、前記ヒューム管と前記プロファイルの両端部の隙間をシーリングしてある。前記間隙に水10Lを入れる。)を用い、モルタルをスクイズポンプを用いて前記注入口より15L/分の流量で注入し、上部試料採取場所および下部試料採取場所から流出したモルタルをそれぞれ上部試料および下部試料として採取し、上部単位容積質量と下部単位容積質量を測定し、上部単位容積質量と下部単位容積質量の単位容積質量差を求める。 5.4m injection test: A 4m injection test device shown in FIG. 5 (two fume tubes with an inner diameter of 350 mm and a length of 2000 mm are connected to each other, and an outer diameter is set in an injection port and an upper sampling place and a lower sampling place. A profile having a length of 330 mm and a length of 4500 mm is installed, and a gap between the fume tube and both ends of the profile is sealed. 10 L of water is put into the gap.), and the mortar is squeezed into the injection port. Mortar was injected at a flow rate of 15 L/min, and the mortar flowing out from the upper sampling site and the lower sampling site was collected as the upper sample and the lower sample, respectively, and the upper unit volume mass and the lower unit volume mass were measured. Calculate the unit volume mass difference between the mass and the lower unit volume mass.
6.前記上部試料と下部試料の圧縮強度を下記試験法で測定し求める
(圧縮強度):
土木学会基準 JSCE-G521に準拠し、φ50×100mmの型枠にモルタルを充填・成形し、材齢2日で脱型し、試験材齢までビニール袋に入れて、温度20℃±2℃の室内で養生し、材齢28日とし、耐圧試験機(前川試験機製作所1000kN)を用いて測定する。
6. The compressive strengths of the upper sample and the lower sample are measured by the following test method (compressive strength):
In accordance with JSCE-G521 of the Japan Society of Civil Engineers, mortar is filled and molded in a mold of φ50×100 mm, demolded at the age of 2 days, put in a plastic bag until the age of the test material, and the temperature is 20°C±2°C. It is aged in a room, the material age is 28 days, and the pressure is measured using a pressure resistance tester (Maekawa Tester Co., Ltd., 1000 kN).
本発明の請求項2記載の発明は、請求項1記載の下水管更生工法用グラウト材において、前記水中不分離性付与鉱物がスメクタイト系粘土鉱物であり、添加量がセメント、軽量骨材、混和材を必須成分とする組成物100質量部に対して5質量部以下、下記試験法で測定した膨潤力が10ml/2g以上、前記添加量と膨潤力の積である膨潤量が15〜60であることを特徴とする。
The invention according to
(試験法)
1.日本ベントナイト工業会標準試験方法JBAS-104-77「ベントナイト(粉状)の膨潤試験方法」に準じて、測定する。
(Test method)
1. It is measured according to the Japan Bentonite Industry Association standard test method JBAS-104-77 "Bentonite (powdered) swelling test method".
本発明の請求項3記載の発明は、請求項1あるいは請求項2記載の下水管更生工法用グラウト材において、前記水中不分離性付与鉱物がホルマイト系粘土鉱物であり、添加量がセメント、軽量骨材、混和材を必須成分とする組成物100質量部に対して1〜3質量部であることを特徴とする。
The invention according to
本発明の請求項4記載の発明は、請求項1から請求項3のいずれか1項に記載の下水管更生工法用グラウト材において、前記水中不分離性付与鉱物がスメクタイト系粘土鉱物とホルマイト系粘土鉱物との混合物であることを特徴とする。
The invention according to claim 4 of the present invention is the grout material for a sewer pipe rehabilitation method according to any one of
本発明の請求項5記載の発明は、施工現場で請求項1〜請求項4のいずれか1項に記載のグラウト材組成物に所定量の水を配合して撹拌して前記の試験法で測定した下記の性状1.〜6.を備えているモルタルを作成し、既設下水管内部に下水が存在する状態で、別途の管を設置し、両者の間に生じる隙間に下水が残留した状態で前記モルタルを前記間隙に充填し、前記モルタルが前記下水を排出して充填終了後、硬化することを特徴とする下水管更生工法である。
(モルタル性状)
1.単位容積質量が1.30〜1.40Kg/L、
2.流下時間が5〜7秒、
3.引抜きフロー値が210〜290mm、
4.水中不分離性:懸濁物質量が0.80g以下、
5.4m注入試験で得られる上部単位容積質量と下部単位容積質量の単位容積質量差が0.05Kg/L以下、
6.圧縮強度が21〜60N/mm2。
The invention according to claim 5 of the present invention is a construction site, wherein the grout material composition according to any one of
(Mortar property)
1. Unit volume mass is 1.30 to 1.40 Kg/L,
2. Flow time is 5 to 7 seconds,
3. Withdrawal flow value of 210-290 mm,
4. Inseparability in water: Suspended substance amount 0.80g or less,
The unit volume mass difference between the upper unit volume mass and the lower unit volume mass obtained in the 5.4 m injection test is 0.05 Kg/L or less,
6. Compressive strength is 21 to 60 N/mm 2 .
本発明の請求項1記載の発明は、セメント、軽量骨材、水中不分離性付与鉱物および混和材を必須成分とする粉粒体からなるグラウト材組成物から構成される下水管更生工法用グラウト材であって、
前記グラウト材組成物に所定量の水を添加・混合したモルタルが前記の試験法で測定した前記の性状1.〜6.を備えていることを特徴とする下水管更生工法用グラウト材であり、
老朽化した下水管内部に別途の管を設置し、両者の間に生じる隙間に充填する際に、下水管内部に下水が存在し、そして前記間隙に残留した下水があっても、前記モルタルがその下水に接触し、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記隙間に充填したモルタルを硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られるという顕著な効果を奏する。
なお、前記所定量の水とは、前記モルタルが前記の試験法で測定した前記の性状1.〜6.を備えるのに要する水量という意味である。
本発明は、グラウト材として必要な成分が粉粒体として全て配合されている一材型のグラウト材であり、現場で所定量の水を添加して撹拌すれば各成分が短時間で均一に分散した流動性および各成分の分離抵抗性に優れたモルタルを作成できるので、手間がかからず、コストダウンになるとともに、計量ミスにより流動性が損なわれる問題や、硬化物の強度が損なわれるなどの問題がないという顕著な効果を奏する。
The invention according to
Mortar obtained by adding and mixing a predetermined amount of water to the grout material composition has the above-described
When a separate pipe is installed inside the aged sewer pipe, and when filling the gap between the two, there is sewage inside the sewer pipe, and even if there is sewage remaining in the gap, the mortar remains By contacting the sewage and causing part of the mortar to dissolve into the water, it does not separate, and the sewage can be stably and uniformly filled into the gap while being discharged to the outside. When the filled mortar is cured, a uniform cured product is obtained, and a remarkable effect is obtained that a composite pipe having a strength comparable to that of a new pipe is obtained.
In addition, the said predetermined amount of water is the said 1st property which the said mortar measured by the said test method. ~6. It means the amount of water required to prepare.
The present invention is a one-piece grout material in which all the necessary components as a grout material are blended as powder and granules, and if each component is added and stirred at the site with a predetermined amount of water, each component becomes uniform in a short time. Since it is possible to create a mortar that has excellent fluidity and resistance to separation of each component, it does not take time and costs, and the problem that fluidity is impaired due to mismeasurement and the strength of the cured product are impaired. There is a remarkable effect that there is no problem such as.
本発明のグラウト材は所定量の水を添加して撹拌すれば各成分が短時間で均一に分散した流動性および各成分の分離抵抗性に優れたモルタルを得ることができる。 In the grout material of the present invention, if a predetermined amount of water is added and stirred, it is possible to obtain a mortar in which each component is uniformly dispersed in a short time and which is excellent in separation resistance of each component.
本発明のグラウト材を用いることによって、軽量性、高強度、流動性、各成分の材料分離抵抗性、ポンプ圧送性、接着性、耐久性、耐薬品性、耐温度変化性に優れ、下水管分野で必要な強度を持った優れた硬化物を得ることができる。 By using the grout material of the present invention, lightweight, high strength, fluidity, material separation resistance of each component, pumpability, adhesiveness, durability, chemical resistance, resistance to temperature change, sewer pipe An excellent cured product having strength required in the field can be obtained.
本発明の請求項2記載の発明は、請求項1記載の下水管更生工法用グラウト材において、前記水中不分離性付与鉱物がスメクタイト系粘土鉱物であり、添加量がセメント、軽量骨材、混和材を必須成分とする組成物100質量部に対して5質量部以下、前記試験法で測定した膨潤力が10ml/2g以上、前記添加量と膨潤力の積である膨潤量が15〜60であることを特徴とするものであり、
前記間隙に充填時する際に、モルタルが下水に接触しても、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず(高い水中不分離性)、良好な流動性を持って充填できるというさらなる顕著な効果を奏する。
The invention according to
Even when mortar comes into contact with sewage when filling the gap, it does not separate (high water inseparability) due to the fact that part of the mortar begins to dissolve in the water and has good fluidity. It has an even more remarkable effect that it can be filled while holding.
本発明の請求項3記載の発明は、請求項1あるいは請求項2記載の下水管更生工法用グラウト材において、前記水中不分離性付与鉱物がホルマイト系粘土鉱物であり、添加量がセメント、軽量骨材、混和材を必須成分とする組成物100質量部に対して1〜3質量部であることを特徴とするものであり、
前記間隙に充填時する際に、モルタルが下水に接触しても、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず(高い水中不分離性)、良好な流動性を持って充填できるというさらなる顕著な効果を奏する。
The invention according to
Even when mortar comes into contact with sewage when filling the gap, it does not separate (high water inseparability) due to the fact that part of the mortar begins to dissolve in the water and has good fluidity. It has an even more remarkable effect that it can be filled while holding.
本発明の請求項4記載の発明は、請求項1から請求項3のいずれか1項に記載の下水管更生工法用グラウト材において、前記水中不分離性付与鉱物がスメクタイト系粘土鉱物とホルマイト系粘土鉱物との混合物であることを特徴とするものであり、
スメクタイト系粘土鉱物とホルマイト系粘土鉱物との混合物を用いたので、前記間隙に充填時する際に、モルタルが下水に接触しても、前記モルタルの一部が水の方へ溶けだすなどがより少なくなり、分離したりしない(より高い水中不分離性)上、より良好な流動性を持って充填できるので、水中不分離性付与鉱物の配合量を減少でき、経済的である、というさらなる顕著な効果を奏する。
The invention according to claim 4 of the present invention is the grout material for a sewer pipe rehabilitation method according to any one of
Since a mixture of smectite-based clay minerals and holmite-based clay minerals was used, even when the mortar came into contact with sewage when filling the gap, it was more likely that some of the mortar would dissolve into the water. It is less and does not separate (higher inseparability in water), and because it can be filled with better fluidity, it is possible to reduce the amount of minerals imparted with inseparability in water, which is economical. Has a great effect.
本発明の請求項5記載の発明は、施工現場で請求項1〜請求項4のいずれか1項に記載のグラウト材組成物に所定量の水を配合して撹拌して前記の試験法で測定した前記の性状1.〜6.を備えているモルタルを作成し、既設下水管内部に下水が存在する状態で、別途の管を設置し、両者の間に生じる隙間に下水が残留した状態で前記モルタルを前記間隙に充填し、前記モルタルが前記下水を排出して充填終了後、硬化することを特徴とする下水管更生工法であり、
内部に下水が存在する既設管内部に別途の管を設置し、両者の間に生じる隙間に残留した下水があっても、前記間隙にモルタルを下水と接触させながら、モルタルが下水の方へ溶けだすことなく充填して、前記下水を容易に排出でき、その後、硬化させることによって、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られるという顕著な効果を奏する。
The invention according to claim 5 of the present invention is a construction site, wherein the grout material composition according to any one of
If a separate pipe is installed inside the existing pipe where sewage exists inside, even if there is sewage remaining in the gap between the two, the mortar melts into the sewage while contacting the mortar with the sewage. There is a remarkable effect that the sewage can be easily discharged without being filled, and then cured to obtain a uniform cured product and a composite pipe having a strength comparable to that of a new pipe.
次に本発明の実施の形態について詳細に説明する。
図1(イ)〜(ニ)は、本発明の下水管更生工法の1例を説明する説明図である。図2は、図1(ロ)の1部分を拡大した説明図である。図3は、図1(ハ)の1部分を拡大した説明図である。
図1(イ)に示すように、地中に既設管1が設置されている。2はマンホールである。既設管1内には下水3が流れている。
図1(ロ)に示すように、劣化した既設管1を更生するに当たって、既設管1の内部に、外巻きプロファイルドラム4と、動力ユニット5を備えた製管機6により両側縁端部に接合部を有するプロファイル7を連続的に送り込んで螺旋状に巻回し、相接する接合部間を嵌合により接合させてプロファイルの管状体8を形成する。プロファイルの管状体8内には下水3が流れている。既設管1とプロファイルの管状体8の間には隙間9が形成されている。
図1(ハ)に示すように、下水3がプロファイルの管状体8内を流れた状態が維持されたままで、プロファイルの管状体8の両端部の隙間9にシール10を設置してシールし、下流の一端部にエアー・下水抜き11を設置した後、裏込めモルタル注入機12を作動して、本発明のグラウト材に現場で所定量の水を配合して撹拌してモルタルを作成し、作成したモルタル13を、既設管1とプロファイルの管状体8の間に生じる隙間9に充填する。
図1(ニ)に示すように、既設管1とプロファイルの管状体8の間の隙間9にモルタル13が完全に充填された後、硬化させて、硬化物(更生管14)を得ることができる。
Next, embodiments of the present invention will be described in detail.
1(A) to 1(D) are explanatory views illustrating an example of the sewer pipe rehabilitation method of the present invention. FIG. 2 is an explanatory diagram in which a part of FIG. 1B is enlarged. FIG. 3 is an explanatory diagram in which a part of FIG. 1C is enlarged.
As shown in FIG. 1(a), an existing
As shown in FIG. 1(b), when rehabilitating the deteriorated existing
As shown in FIG. 1C, while maintaining the state in which the
As shown in FIG. 1D, after the
図2および図3において、図1と同じ符号にものは、図1の前記説明に記載のものと同じものを示す。図2および図3に記載の15はモルタル13の注入口である。図2および図3において、上方の隙間9が下方の隙間9より広く記載されているが、この施工例においては、下水管更生後、下水3が流れる際に、段差がなるべく小さくなり、低抵抗になるようにするために行ったものである。上方の隙間9と下方の隙間9を同じ広さにしても差し支えない場合もある。
2 and 3, the same symbols as those in FIG. 1 indicate the same components as those described in FIG.
既設管1の内部に新たなライニング管を配置する手法には、既設管1内に図示しない新たな管を挿入する方法等があるが、いずれの手法を用いてもよい。
As a method of arranging a new lining pipe inside the existing
本工法によると、既設管1、前記硬化物14およびプロファイルの管状体8からなる三層複合管が形成され、老朽化した既設管1の強度を新設管に匹敵する強度に復活させることができる。
According to this construction method, a three-layer composite pipe composed of the existing
図4は、水中不分離性試験装置を説明する説明図である。
図4に示したように、水中不分離性試験装置16は、水平面に対して、10度の傾斜をつけて直径80mm、長さ200mmの円柱容器Aが設置してあり、円柱容器Aの一端部にバルブCを介して、上端にロート17が設置された、内径20mm、高さ500mmの塩ビ管Bが垂直に連結されており、円柱容器Aの他端部には試料を採取するための採取場所Dが設けられている。
FIG. 4 is an explanatory diagram illustrating the underwater non-separation test apparatus.
As shown in FIG. 4, the underwater
円柱容器Aに300mLの水を入れ、塩ビ管Bに充填したモルタル1000mLをバルブCを開き円柱容器Aに流し込み、押し出された懸濁水を採取場所Dでビーカー20の上部に設置したロート18内にセットした濾紙19上に採取し、濾紙19上に採取された残留物を図示しない乾燥機内で100℃1時間乾燥し、乾燥後、濾紙19を含めた乾燥質量(g)を求める。懸濁物質量(g)を下記式で計算する。
懸濁物質量(g)=乾燥質量(g)−濾紙質量(g)。
300 mL of water was put into the cylindrical container A, 1000 mL of mortar filled in the PVC pipe B was poured into the cylindrical container A by opening the valve C, and the extruded suspended water was placed in the
Suspended substance amount (g)=dry mass (g)-filter paper mass (g).
図5は、4m注入試験装置を説明する説明図である。
図5に示すように、4m注入試験装置21には、内径350mm、長さ2000mmのヒューム管22を2本連結させ、そしてモルタル13の注入口15を設けたヒューム管22内に、上部試料採取場所23と下部試料採取場所24を備える、外径330mm、長さ4500mmのプロファイルの管状体8を設置してある。前記ヒューム管22と前記プロファイルの管状体8の両端部の隙間9にはシーリングされて、シール10が設置されており、前記間隙9に水10Lが入れられている。前記隙間9に水10Lを入れるとヒューム管22の底部から上方に図中の点線位まで約100mm、水が入ることになる。
4m注入試験装置21は、水、粉体を入れ、混練を行いモルタル13を作成するためのグラウトミキサ(岡三機工株式会社OKZ-150W)26、作成したモルタル13を収容する容器(90L)27、そのモルタル13を4m注入試験装置21の注入口15を経て前記隙間9に注入するためのスクイズポンプ(岡三機工株式会社OKP-15MS)28、モルタル13を注入するための、モルタル13の通路となる圧力計29を備えた耐圧ホース30を備えている。
FIG. 5 is an explanatory diagram illustrating a 4 m injection test device.
As shown in FIG. 5, the 4 m
The 4 m
グラウトミキサ26に水、粉体を入れ、混練を行い、得られたモルタル13を容器(90L)27に収容し、スクイズポンプ28を作動させてそのモルタル13を注入口15より15L/分の流量で間隙9内に注入を行い、上部試料採取場所23と下部試料採取場所24から前記水および空気を排出した後に流出したモルタル13をそれぞれ採取して、採取したモルタル13の上部単位容積質量と下部単位容積質量を測定し、上部単位容積質量と下部単位容積質量の単位容積質量差を求め、また上部試料の圧縮強度と下部試料の圧縮強度を求める。
Water and powder are put into the
本発明のグラウト材は、特にセメントモルタル材として現代の土木建築分野で使用できるものであればいずれの方法でも使用可能であるが、特にポンプを使用する分野でグラウト材を長距離圧送し、打設する施工方法において有用である。
下水管の既設管渠内周面ライニング工法は、ポンプを使用するので、ポンプ圧送性と共に各成分の材料分離抵抗性、流動性に優れることが重要である。
The grout material of the present invention can be used by any method as long as it can be used as a cement mortar material in the field of modern civil engineering and construction, and particularly in the field where a pump is used, the grout material is pressure-fed over a long distance, It is useful in the construction method to be installed.
Since a pump is used in the existing inner pipe inner surface lining method for sewage pipes, it is important to have excellent pumpability and material separation resistance and fluidity of each component.
本発明で使用するセメントは、硬化発現材としての必須成分であり、代表的なものの例を挙げれば普通ポルトランドセメント、早強ポルトランドセメント、白色セメント、中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、低熱ポルトランドセメント、超早強ポルトランドセメント(ジェットセメント、スーパーセメント、SQセメント)などのポルトランドセメント、シリカセメント、高炉セメント、フライアッシュセメント等各種混合セメント、あるいはアルミナセメント、膨張セメント等特殊セメントがある。
これらは1つあるいは2つ以上を混ぜて使用することができる。
セメントは、本発明のグラウト材粉粒体組成物中に好ましくは30〜80質量%、より好ましくは50〜80質量%用いられる。
The cement used in the present invention is an essential component as a curing agent, and typical examples thereof include ordinary Portland cement, early-strength Portland cement, white cement, moderate heat Portland cement, sulfate resistant Portland cement, low heat resistance. There are Portland cements such as Portland cement and super early strength Portland cement (jet cement, super cement, SQ cement), silica cement, blast furnace cement, various mixed cements such as fly ash cement, and special cements such as alumina cement and expanded cement.
These can be used alone or as a mixture of two or more.
Cement is preferably used in the grout material powder composition of the present invention in an amount of 30 to 80% by mass, more preferably 50 to 80% by mass.
本発明で使用する軽量骨材は、セメント100質量部に対して6〜165質量部配合することが好ましい。6質量部未満であると軽量性が損なわれる恐れがあり、165質量部を超えると圧縮強度および付着強度が損なわれる恐れがある。 The lightweight aggregate used in the present invention is preferably blended in an amount of 6 to 165 parts by mass with respect to 100 parts by mass of cement. If it is less than 6 parts by mass, the lightness may be impaired, and if it exceeds 165 parts by mass, the compressive strength and the adhesive strength may be impaired.
本発明で使用する軽量骨材は、下記の特性1.〜2.を有する骨材および下記の特性1.〜3.を有する人工軽量骨材を好ましく使用できる。前者はセメント100質量部に対して5〜150質量部配合すること、後者はセメント100質量部に対して1〜15質量部配合することが均一分散性、各成分の材料分離抵抗性、ポンプ圧送性、耐久性などの特性を付与するために好ましい。
(骨材の特性)
1.嵩比重:0.1〜0.7g/cm3
2.粒度(JIS A 1102 骨材のふるい分け試験方法):篩サイズが0.3mm未満の粒子を50〜100質量%含有する。
(人工軽量骨材の特性)
1.嵩比重:0.3〜1.2g/cm3
2.粒度(JIS A 1102 骨材のふるい分け試験方法):篩サイズが0.5〜2mmの範囲の粒子を85〜100質量%含有する。
3.硬度(木屋式硬度計):0.5〜10kg
このような特性を有している軽量骨材を使用しないと、現場で所定量の水を添加して撹拌して短時間で均一に分散した流動性に優れたスラリーが得られない恐れがある。
前記軽量骨材を使用すれば、現場で所定量の水を添加して撹拌すると、各成分が短時間で均一に分散した流動性および分離抵抗性に優れたスラリーを作成できるので、手間がかからず、コストダウンになるとともに、強度に優れた硬化物を得ることができる。
The lightweight aggregate used in the present invention has the following
(Characteristics of aggregate)
1. Bulk specific gravity: 0.1 to 0.7 g/cm 3
2. Particle size (JIS A 1102 aggregate sieving test method): 50 to 100% by mass of particles having a sieve size of less than 0.3 mm are contained.
(Characteristics of artificial lightweight aggregate)
1. Bulk specific gravity: 0.3 to 1.2 g/cm 3
2. Particle size (JIS A 1102 Aggregate sieving test method): 85 to 100% by mass of particles having a sieve size of 0.5 to 2 mm are contained.
3. Hardness (Kiya type hardness tester): 0.5-10kg
If a lightweight aggregate having such characteristics is not used, there is a possibility that a slurry with excellent fluidity that is uniformly dispersed in a short time by adding a predetermined amount of water and stirring in the field may not be obtained. ..
If the above lightweight aggregate is used, a predetermined amount of water is added and stirred at the site, so that each component can be uniformly dispersed in a short time to form a slurry having excellent fluidity and separation resistance, which is troublesome. Therefore, the cost can be reduced and a cured product having excellent strength can be obtained.
本発明で使用する軽量骨材の代表的なものの例を挙げれば、発泡ポリスチレン、発泡ポリスチレン減容物等の粒状プラスチック、パーライト、バーミキュライト、シラスバルーン、フライアッシュバルーン、発泡ガラス等がある。
これらは1つあるいは2つ以上を混ぜて使用することができる。
Typical examples of the lightweight aggregate used in the present invention include granular plastics such as expanded polystyrene and expanded polystyrene volume reduction products, perlite, vermiculite, shirasu balloon, fly ash balloon, and expanded glass.
These can be used alone or as a mixture of two or more.
本発明で使用する混和材としては、既設構造物その他接触基材に対する接着性、流動性、分離抑制などの1つあるいは2つ以上をさらに改善するためのものであり、セメント100質量部に対し好ましくは1〜30固形分質量部配合することが好ましい。
混和材の種類によっても異なるが、1質量部未満では作用効果を確実に発揮できない恐れがあり、30質量部を超えるとセメントの硬化に悪影響を及ぼすため、使用出来ない恐れがある。
The admixture used in the present invention is for further improving one or two or more of the adhesiveness, fluidity, separation suppression, etc. to an existing structure or other contact base material, and to 100 parts by mass of cement. It is preferable to mix 1 to 30 solids by mass.
Depending on the type of admixture, if it is less than 1 part by mass, the action and effect may not be surely exhibited, and if it exceeds 30 parts by mass, the hardening of cement may be adversely affected, so that it may not be used.
本発明で使用する混和材には、既設管1や帯状部材を連続的に送り込んで螺旋状に巻回し、相接する接合部間を嵌合により接合させたプロファイルの管状体8とモルタルの接着強度をさらに向上する成分であり、再乳化合成樹脂エマルジョン粉末を使用される。再乳化合成樹脂エマルジョン粉末の例としては、例えば、アクリル系、アクリル−スチレン系、SBR系、酢酸ビニル系、および酢酸ビニルの耐鹸化性をエチレン、(メタ)アクリル酸エステル、バーサチック酸ビニルエステル等を共重合して改善した変性酢酸ビニル系等の各種エマルジョンが挙げられ、これらの1種もしくは2種以上を併用して用いることが出来る。
For the admixture used in the present invention, the existing
本発明で使用する混和材には、モルタルの流動性を改善するため、高分子減水剤を使用される。高分子減水剤の例としては、例えば、メラミンスルホン酸塩のホルムアルデヒド縮合物、ナフタレンスルホン酸塩のホルムアルデヒド縮合物、アルキルナフタレンスルホン酸塩のホルムアルデヒド縮合物、リグニンスルホン酸塩、変性リグニンスルホン酸塩系化合物、高縮合トリアジン系縮合物、ポリカルボン酸塩、ポリカルボン酸塩系誘導体、オキシカルボン酸塩、オキシカルボン酸塩系誘導体、アミノスルホン酸塩系高分子化合物、イソプレン系化合物、ポリアルキル無水カルボン酸塩等が挙げられ、これらの1種もしくは2種以上を併用して用いることが出来る。 The admixture used in the present invention contains a polymeric water reducing agent in order to improve the fluidity of the mortar. Examples of the polymeric water reducing agent include, for example, melamine sulfonate formaldehyde condensate, naphthalene sulfonate formaldehyde condensate, alkylnaphthalene sulfonate formaldehyde condensate, lignin sulfonate, modified lignin sulfonate system. Compound, highly condensed triazine-based condensate, polycarboxylic acid salt, polycarboxylic acid salt derivative, oxycarboxylic acid salt, oxycarboxylic acid salt derivative, aminosulfonic acid salt-based polymer compound, isoprene-based compound, polyalkylanhydrocarboxylic acid Examples thereof include acid salts, and these can be used alone or in combination of two or more.
本発明で使用する混和材には、モルタルの粘度を上げてモルタル中における各成分の分離を抑制するため、増粘剤を使用される。増粘剤の例としては、例えば、セルロース系、化工澱粉系蛋白質系、ラテックス系、水溶性ポリマー系、粘土鉱物系等が挙げられ、これらの1種もしくは2種以上を併用して用いることが出来る。 A thickener is used in the admixture used in the present invention in order to increase the viscosity of the mortar and suppress the separation of each component in the mortar. Examples of the thickener include cellulose-based, modified starch-based protein-based, latex-based, water-soluble polymer-based, clay mineral-based, and the like, and it is possible to use one or more of these in combination. I can.
その他、ホルマイト鉱物の如きブリーディング防止剤、フライアッシュ、石膏の如き収縮低減剤、カルシウムサルホアルミネート等の膨張剤、アルミニウム粉末、過酸化水素水等の発泡剤、各種界面活性剤等の起泡剤、ポリビニルアルコール繊維や炭素繊維、スチール繊維の如き繊維、他のセメント添加剤(材)、例えば公知のAE剤(空気連行剤)、流動化剤、促進剤、早強剤、急結剤、遅延剤、消泡剤、保水剤、促進剤、セルフレベリング剤、防錆剤(例えば、リン酸塩類、アミン類、亜硝酸塩類)、着色剤、ひび割れ低減剤、水溶性高分子等本発明の長所を著しく阻害しない限り全て使用可能である。 In addition, anti-bleeding agents such as holmite minerals, shrinkage reducing agents such as fly ash and gypsum, expanding agents such as calcium sulfaluminate, foaming agents such as aluminum powder and hydrogen peroxide solution, and foaming agents such as various surfactants. , Fibers such as polyvinyl alcohol fiber, carbon fiber, steel fiber, and other cement additives (materials), for example, known AE agents (air entraining agents), superplasticizers, accelerators, early-strengthening agents, quick-setting agents, retarders Agents, defoamers, water retention agents, accelerators, self-leveling agents, rust inhibitors (eg, phosphates, amines, nitrites), colorants, crack reducing agents, water-soluble polymers, etc. All can be used unless it significantly inhibits
本発明で使用する水中不分離性付与鉱物は、本発明のグラウト材に、チキソトロピー性を発現させることができるスメクタイト系粘土鉱物、マイカ系粘土鉱物、バーミキュライト、パイロフィライト、ホルマイト系粘土鉱物が好ましく、さらに粒子の形が板状もしくは線状など異方性を持つスメクタイト系粘土鉱物もしくはホルマイト系粘土鉱物がチキソトロピー性付与能が高いのでさらに好ましい。
本発明のグラウト材に、チキソトロピー性を発現させることができるスメクタイト系粘土鉱物であって、粒子の形が板状であるものの代表例として、モンモリロナイト、ノントロナイト、サポナイトを挙げることができ、最も好ましくはベントナイトである。ベントナイトは、主成分が層状珪酸塩であるベントナイト(モンモリロナイトを主成分とする粘土の総称)を主成分とした、モルタルの粘度・流動性を改善するために使用されており、ベントナイトをそのまま主成分としたものや、有機変性したベントナイトを主成分としたものがある。市販品ではRockwood社製の「OPTIBENT987987」(商品名)、「OPTIBENT1284」(商品名)、「NANOTHIXB1490」(商品名)等を使用することができる。
The water inseparability-imparting mineral used in the present invention is preferably a grout material of the present invention, a smectite-based clay mineral capable of expressing thixotropic properties, a mica-based clay mineral, vermiculite, a pyrophyllite, and a holmite-based clay mineral. Further, a smectite-based clay mineral or a holmite-based clay mineral having anisotropy such that the particle shape is plate-like or linear-like is more preferable because it has a high thixotropic property imparting ability.
The grout material of the present invention, which is a smectite-based clay mineral capable of exhibiting thixotropic properties, is a typical example of particles having a plate-like shape, and can include montmorillonite, nontronite, and saponite. Bentonite is preferred. Bentonite is used to improve the viscosity and fluidity of mortar, which is composed mainly of layered silicate bentonite (a generic term for clay whose main component is montmorillonite). Bentonite is the main component as it is. And those containing organically modified bentonite as the main component. As commercially available products, "OPTIBENT987987" (trade name), "OPTIBENT1284" (trade name), "NANOTHIXB1490" (trade name) and the like manufactured by Rockwood can be used.
スメクタイト系粘土鉱物は、添加量がセメント、軽量骨材、混和材を必須成分とする組成物100質量部に対して5質量部以下であり、前記試験法で測定した膨潤力が10ml/2g以上、前記添加量と膨潤力の積である膨潤量が15〜60であることが好ましく、前記間隙に充填時する際に、モルタルが下水に接触しても、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず(高い水中不分離性)、良好な流動性を持って充填できる。
添加量が5質量部以上であると、圧縮強度が低下する恐れがある。
膨潤力が10ml/2g未満であると、水中不分離性が劣る恐れがある。
膨潤量が15未満であると、水中不分離性が劣る恐れがある。
膨潤量が60を超えると圧送性が低下し、水粉体比の調整すると、圧縮強度が低下する恐れがある。
The smectite clay mineral is added in an amount of 5 parts by mass or less with respect to 100 parts by mass of a composition containing cement, a lightweight aggregate, and an admixture as essential components, and has a swelling power measured by the test method of 10 ml/2 g or more. The swelling amount, which is the product of the addition amount and the swelling force, is preferably 15 to 60, and even when the mortar comes into contact with the sewage at the time of filling the gap, part of the mortar is water. It can be filled with good fluidity without being separated (highly inseparable in water) due to melting.
If the addition amount is 5 parts by mass or more, the compressive strength may decrease.
If the swelling power is less than 10 ml/2 g, the inseparability in water may be poor.
If the swelling amount is less than 15, the inseparability in water may be poor.
If the amount of swelling exceeds 60, the pumpability is lowered, and if the water powder ratio is adjusted, the compressive strength may be lowered.
本発明で使用する水中不分離性付与鉱物であって、本発明のグラウト材に、チキソトロピー性を発現させることができる粒子の形が線状・繊維状のホルマイト系粘土鉱物であるものの代表例としてセピオライト、アタパルジャイト、パリゴルスカイトを挙げることができ、最も好ましくはセピオライトである。
セピオライトは、天然に存在するセピオライトを適度に粉砕するか、加水混合・撹拌して解繊し、所望のセピオライトを得る。市販品としては、ミルコン(昭和KDE社製品)等が使用できる。
As a typical example of the water-separation-imparting mineral used in the present invention, the grout material of the present invention is a form of linear and fibrous formite-based clay mineral capable of expressing thixotropic properties. Examples include sepiolite, attapulgite, and palygorskite, with sepiolite being most preferred.
As for sepiolite, naturally occurring sepiolite is appropriately pulverized, or water is mixed and stirred to be defibrated to obtain a desired sepiolite. As a commercial product, Milcon (product of Showa KDE Co., Ltd.) and the like can be used.
ホルマイト系粘土鉱物は、添加量がセメント、軽量骨材、混和材を必須成分とする組成物100質量部に対して1〜3質量部であることが好ましく、前記間隙に充填時する際に、モルタルが下水に接触しても、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず(高い水中不分離性)、良好な流動性を持って充填できる。
ホルマイト系粘土鉱物の添加量が1質量部未満では、水中不分離性が劣る恐れがある。
ホルマイト系粘土鉱物の添加量が3質量部を超えると、圧送性が低下し、水粉体比を調整すると、圧縮強度が低下する恐れがある。
The holmite-based clay mineral is preferably added in an amount of 1 to 3 parts by mass with respect to 100 parts by mass of a composition containing cement, a lightweight aggregate, and an admixture as an essential component, and when filling the gap, Even when the mortar comes into contact with the sewage, the mortar does not separate due to a part of the mortar dissolving into the water (high inseparability in water) and can be filled with good fluidity.
If the amount of the holmite-based clay mineral added is less than 1 part by mass, the inseparability in water may be poor.
When the amount of the holmite-based clay mineral added exceeds 3 parts by mass, the pumpability is lowered, and when the water-powder ratio is adjusted, the compressive strength may be lowered.
スメクタイト系粘土鉱物とホルマイト系粘土鉱物との混合物を用いると、前記間隙に充填時する際に、モルタルが下水に接触しても、前記モルタルの一部が水の方へ溶けだすなどがより少なくなり、分離したりしない(より高い水中不分離性)上、より良好な流動性を持って充填できるので、水中不分離性付与鉱物の配合量を減少でき、経済的である。 When a mixture of smectite clay mineral and holmite clay mineral is used, even when the mortar comes into contact with the sewage at the time of filling the gap, a part of the mortar is less likely to dissolve into water. In addition, since it does not separate (higher inseparability in water) and can be filled with better fluidity, the compounding amount of the inseparability-imparting mineral in water can be reduced, which is economical.
本発明においては、本発明のグラウト材に所定量の水を配合して撹拌して前記の特性1.〜6.を有するモルタルを作成することが肝心である。
単位容積質量は1.30〜1.40Kg/Lであり、1.30Kg/L未満では、下水中において軽量骨材が浮上し、分離する恐れがあり、1.40Kg/Lを超えると、プロファイルが浮上する恐れがある。
流下時間は5〜7秒であり、5秒未満では、引抜きフロー値が大きくなり、水中において軽量骨材が浮上し、分離する恐れがあり、7秒を超えると圧送性が低下する恐れがある。
引抜きフロー値は210〜290mmであり、210mm未満では、圧送性が低下する恐れがあり、290mmを超えると水中において軽量骨材が浮上し、分離する恐れがある。
4m注入試験で得られる上部単位容積質量と下部単位容積質量の単位容積質量差は0.05Kg/L以下であり、0.05Kg/Lを超えると上下の圧縮強度差が大きくなり圧縮強度が21N/mm2未満になる恐れがある。
水中不分離性は懸濁物質量が0.80g以下であり、0.80gを超えると、上部単位容積質量と下部単位容積質量の単位容積質量差が0.05Kg/Lを超える恐れがある。
圧縮強度は21〜60N/mm2であり、21N/mm2未満では、既設管と内部に配置したライニング管との間の空隙の大きな施工現場など強度を求められる施工現場では使用が難くなる恐れがあり、60N/mm2を超えるとモルタルの単位容積質量が1.40Kg/Lを超える恐れがある。
In the present invention, the grout material of the present invention is mixed with a predetermined amount of water, and the mixture is stirred to obtain the above-mentioned
The unit volume mass is 1.30 to 1.40 Kg/L. If it is less than 1.30 Kg/L, the lightweight aggregate may float and separate in sewage, and if it exceeds 1.40 Kg/L, the profile May surface.
The flow-down time is 5 to 7 seconds, and if the time is less than 5 seconds, the drawing flow value becomes large, and the lightweight aggregate may float and separate in water. If the time exceeds 7 seconds, the pumpability may decrease. ..
The withdrawal flow value is 210 to 290 mm, and if it is less than 210 mm, the pumpability may be deteriorated, and if it exceeds 290 mm, the lightweight aggregate may float in water and be separated.
The unit volume mass difference between the upper unit volume mass and the lower unit volume mass obtained in the 4 m injection test is 0.05 Kg/L or less, and when it exceeds 0.05 Kg/L, the difference in upper and lower compressive strength increases and the compressive strength is 21 N. /Mm 2 may be less.
As for the inseparability in water, the amount of suspended matter is 0.80 g or less, and when it exceeds 0.80 g, the unit volume mass difference between the upper unit volume mass and the lower unit volume mass may exceed 0.05 Kg/L.
The compressive strength is 21 to 60 N/mm 2 , and if it is less than 21 N/mm 2 , it may be difficult to use at a construction site where strength is required such as a construction site with a large gap between the existing pipe and the lining pipe arranged inside. If it exceeds 60 N/mm 2 , the unit volume mass of the mortar may exceed 1.40 Kg/L.
本発明においては、所定量の水を配合して撹拌して前記の特性1.〜6.を有するグラウト材を用いることによって、内部に下水が存在する既設管内部に別途の管を設置し、両者の間に生じる隙間に残留した下水があって、充填中にモルタルと下水とが接触しても、モルタルやその成分が下水の方へ溶けだすことなく、前記下水を容易に排出して均一に充填することができ、その後、硬化させることによって、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られるのである。
In the present invention, the above-mentioned
なお、上記実施形態の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮するものではない。又、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。 The above description of the embodiments is for explaining the present invention, and does not limit the invention described in the claims or reduce the scope thereof. Further, the configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.
次に実施例および比較例により本発明を詳しく説明するが、本発明の主旨を逸脱しない限りこれらの実施例に限定されるものではない。 Next, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples without departing from the gist of the present invention.
(実施例1-1)
下記のセメント、軽量骨材、人工軽量骨材および混和材からなる組成物100質量部に対して、下記のベントナイト1.5質量部を混合して本発明のグラウト材組成物を調整した。
セメント:中庸熱ポルトランドセメント(太平洋セメント社製):72質量部
軽量骨材:パーライトB-04(昭和化学工業社製) :19.6質量部
人工軽量骨材:ポーラストンS-1(昭和KDE社製) :3質量部
混和材:セックエース(昭和KDE社製) :5.4質量部
ベントナイト:出雲ベントナイト(カサネン工業社製) :1.5質量部
この本発明のグラウト材組成物100質量部に対して、41質量部の水を配合し、グラウトミキサ(岡三機工株式会社OKZ-150W)を用いて90秒間混練し、モルタルを調製した。
前記モルタルについて、前記試験方法により、単位容積質量、引抜きフロー値、流下時間、水中不分離性、4m注入試験を行うとともに材齢28日の圧縮強度試験を行って、それぞれ測定した。また、前記モルタルについて、下記の試験法で粘性(粘度mPa・s)の測定を行った。
(粘性測定法):JIS Z8803「液体の粘度測定方法」に規定された音叉振動粘度計を用い、温度20±2℃のモルタル100mlを100mlの容器に入れ、粘度計の粘度検出部を水平面に対して垂直になるように設置し、粘度計を動作させ、1分後の粘度の指示値を測定した。
測定した結果を表1に示す。
(Example 1-1)
The following grout material composition of the present invention was prepared by mixing 1.5 parts by mass of the following bentonite with 100 parts by mass of the composition consisting of the following cement, lightweight aggregate, artificial lightweight aggregate and admixture.
Cement: Nakamitsu Heat Portland Cement (manufactured by Taiheiyo Cement Co.): 72 parts by weight lightweight aggregate: Perlite B-04 (manufactured by Showa Chemical Industry Co., Ltd.): 19.6 parts by weight Artificial lightweight aggregate: POLASTONE S-1 (Showa KDE) ): 3 parts by mass Admixture: Sec Ace (manufactured by Showa KDE): 5.4 parts by mass Bentonite: Izumo bentonite (manufactured by Kasanen Kogyo Co., Ltd.): 1.5 parts by mass 100 parts of the grout material composition of the present invention 41 parts by mass of water was mixed with each part and kneaded with a grout mixer (OKZ-150W, Okasan Kiko Co., Ltd.) for 90 seconds to prepare a mortar.
With respect to the mortar, a unit volume mass, a withdrawal flow value, a flow-down time, an inseparability in water, a 4 m pouring test and a compressive strength test of 28 days old were carried out by the above-mentioned test method, and each was measured. The viscosity (viscosity mPa·s) of the mortar was measured by the following test method.
(Viscosity measuring method): Using a tuning fork vibration viscometer specified in JIS Z8803 "Viscosity measuring method for liquids", put 100 ml of mortar with a temperature of 20 ± 2°C in a 100 ml container, and put the viscosity detecting part of the viscometer on a horizontal plane. The viscometer was operated so that it was installed vertically, and the viscosity indicated after 1 minute was measured.
The measured results are shown in Table 1.
(実施例1-2)
出雲ベントナイト(カサネン工業社製)を、実施例1-1で調製した組成物100質量部に対して、5質量部混合して本発明のグラウト材組成物を調整し、この本発明のグラウト材組成物100質量部に対して、42質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表1に示す。
(Example 1-2)
5 parts by mass of Izumo bentonite (manufactured by Kasanen Kogyo Co., Ltd.) was mixed with 100 parts by mass of the composition prepared in Example 1-1 to prepare the grout material composition of the present invention, and the grout material of the present invention was prepared. The test was performed and measured in the same manner as in Example 1-1, except that 42 parts by mass of water was added to 100 parts by mass of the composition to prepare a mortar.
The measured results are shown in Table 1.
(実施例1-3)
ベントナイトとして天竜印(関東ベントナイト鉱業社製)を使用し、実施例1-1で調製した組成物100質量部に対して、1質量部混合して本発明のグラウト材組成物を調整し、この本発明のグラウト材組成物100質量部に対して、42質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表1に示す。
(Example 1-3)
Tenryu seal (manufactured by Kanto Bentonite Mining Co., Ltd.) was used as bentonite, and 1 part by mass was mixed with 100 parts by mass of the composition prepared in Example 1-1 to prepare a grout material composition of the present invention. The test was performed and measured in the same manner as in Example 1-1, except that 42 parts by mass of water was added to 100 parts by mass of the grout material composition of the present invention to prepare a mortar.
The measured results are shown in Table 1.
(実施例1-4)
天竜印(関東ベントナイト鉱業社製)を使用し、実施例1-1で調製した組成物100質量部に対して、4質量部を混合して本発明のグラウト材組成物を調整し、この本発明のグラウト材組成物100質量部に対して、46質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表1に示す。
(Example 1-4)
Tenryu seal (manufactured by Kanto Bentonite Mining Co., Ltd.) was used, and 4 parts by mass was mixed with 100 parts by mass of the composition prepared in Example 1-1 to prepare the grout material composition of the present invention. The test was carried out and measured in the same manner as in Example 1-1, except that mortar was prepared by mixing 46 parts by mass of water with 100 parts by mass of the grout material composition of the present invention.
The measured results are shown in Table 1.
(実施例1-5)
ベントナイトとして、スーパークレイ(ホージュン社製)を使用し、実施例1-1で調製した組成物100質量部に対して、1質量部を混合して本発明のグラウト材組成物を調整し、この本発明のグラウト材組成物100質量部に対して、42質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表1に示す。
(Example 1-5)
As the bentonite, Super Clay (manufactured by Hojun) was used, and 1 part by mass was mixed with 100 parts by mass of the composition prepared in Example 1-1 to prepare the grout material composition of the present invention. The test was performed and measured in the same manner as in Example 1-1, except that 42 parts by mass of water was added to 100 parts by mass of the grout material composition of the present invention to prepare a mortar.
The measured results are shown in Table 1.
(実施例1-6)
スーパークレイ(ホージュン社製)を、実施例1-1で調製した組成物100質量部に対して、2質量部を混合して本発明のグラウト材組成物を調整し、この本発明のグラウト材組成物100質量部に対して、44質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表1に示す。
(Example 1-6)
The grout material composition of the present invention was prepared by mixing 2 parts by mass of Super Clay (manufactured by Hojun Co., Ltd.) with 100 parts by mass of the composition prepared in Example 1-1 to prepare the grout material of the present invention. The test was performed and measured in the same manner as in Example 1-1, except that 44 parts by mass of water was added to 100 parts by mass of the composition to prepare a mortar.
The measured results are shown in Table 1.
(実施例1-7)
ベントナイトとして、クニピアF(クニミネ工業社製)を使用し、実施例1-1で調製した組成物100質量部に対して、0.5質量部を混合して本発明のグラウト材組成物を調整し、この本発明のグラウト材組成物100質量部に対して、42質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表1に示す。
(Example 1-7)
As the bentonite, Kunipia F (manufactured by Kunimine Industry Co., Ltd.) was used, and 0.5 part by mass was mixed with 100 parts by mass of the composition prepared in Example 1-1 to prepare the grout material composition of the present invention. Then, the test was carried out and measured in the same manner as in Example 1-1, except that 42 parts by mass of water was added to 100 parts by mass of the grout material composition of the present invention to prepare a mortar.
The measured results are shown in Table 1.
(実施例1-8)
クニピアF(クニミネ工業社製)を、実施例1-1で調製した組成物100質量部に対して、1質量部を混合して本発明のグラウト材組成物を調整し、この本発明のグラウト材組成物100質量部に対して、46質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表1に示す。
(Example 1-8)
1 part by mass of Kunipia F (manufactured by Kunimine Industries Co., Ltd.) was mixed with 100 parts by mass of the composition prepared in Example 1-1 to prepare the grout material composition of the present invention. The test was performed and measured in the same manner as in Example 1-1, except that mortar was prepared by mixing 46 parts by mass of water with 100 parts by mass of the material composition.
The measured results are shown in Table 1.
(比較例1-1)
ベントナイトを混合せず、実施例1-1で調製した組成物100質量部に対して、40質量部の水を配合して、比較のためのモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表2に示す。
(Comparative Example 1-1)
As in Example 1-1, except that bentonite was not mixed and 100 parts by mass of the composition prepared in Example 1-1 was mixed with 40 parts by mass of water to prepare a mortar for comparison. Then, the test was conducted and measured.
The measured results are shown in Table 2.
(比較例1-2)
ベントナイトとして、笠岡ベントナイト(カサネン工業社製)を使用し、実施例1-1で調製した組成物100質量部に対して、3質量部を混合して比較のためのグラウト材組成物を調整し、このグラウト材組成物100質量部に対して、42質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表2に示す。
(Comparative Example 1-2)
As bentonite, Kasaoka bentonite (produced by Kasanen Kogyo Co., Ltd.) was used, and 3 parts by mass was mixed with 100 parts by mass of the composition prepared in Example 1-1 to prepare a grout material composition for comparison. A test was performed and measured in the same manner as in Example 1-1, except that 42 parts by mass of water was added to 100 parts by mass of the grout material composition to prepare a mortar.
The measured results are shown in Table 2.
(比較例1-3)
ベントナイトとして、出雲ベントナイト(カサネン工業社製)を使用し、実施例1-1で調製した組成物100質量部に対して、1質量部を混合して比較のためのグラウト材組成物を調整し、このグラウト材組成物100質量部に対して、41質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表2に示す。
(Comparative Example 1-3)
Izumo bentonite (manufactured by Kasanen Kogyo Co., Ltd.) was used as the bentonite, and 1 part by mass was mixed with 100 parts by mass of the composition prepared in Example 1-1 to prepare a grout material composition for comparison. A test was performed and measured in the same manner as in Example 1-1, except that 41 parts by mass of water was added to 100 parts by mass of the grout material composition to prepare a mortar.
The measured results are shown in Table 2.
(比較例1-4)
ベントナイトとして、天竜印(関東ベントナイト鉱業社製)を使用し、実施例1-1で調製した組成物100質量部に対して、6質量部を混合して比較のためのグラウト材組成物を調整し、このグラウト材組成物100質量部に対して、46質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表2に示す。
(Comparative Example 1-4)
As a bentonite, a Tenryu seal (manufactured by Kanto Bentonite Mining Co., Ltd.) was used, and 6 parts by mass was mixed with 100 parts by mass of the composition prepared in Example 1-1 to prepare a grout material composition for comparison. Then, a test was performed and measured in the same manner as in Example 1-1, except that 46 parts by mass of water was added to 100 parts by mass of the grout material composition to prepare a mortar.
The measured results are shown in Table 2.
(比較例1-5)
ベントナイトとして、スーパークレイ(ホージュン社製)を使用し、実施例1-1で調製した組成物100質量部に対して、4質量部を混合して比較のためのグラウト材組成物を調整し、このグラウト材組成物100質量部に対して、46質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表2に示す。
(Comparative Example 1-5)
As a bentonite, Super Clay (manufactured by Hojun Co.) was used, and 4 parts by mass was mixed with 100 parts by mass of the composition prepared in Example 1-1 to prepare a grout material composition for comparison, The test was carried out and measured in the same manner as in Example 1-1, except that mortar was prepared by mixing 46 parts by mass of water with 100 parts by mass of the grout material composition.
The measured results are shown in Table 2.
表1から、実施例1-1〜1-8においては、単位容積質量、引抜きフロー値、流下時間、水中不分離性、4m注入試験および材齢28日の圧縮強度試験において、いずれも本発明の規定範囲内にあることが判る。したがって、下水管内部に下水が存在し、そして前記間隙に残留した下水があっても、前記モルタルがその下水に接触し、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記隙間に充填したモルタルを硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られる効果が得られることが判る。
それに対して、表2から、比較例1-1〜1-3の場合は、水中不分離性および上部単位容積質量と下部単位容積質量の単位容積質量差がいずれも本発明の規定範囲外となり、比較例1-4〜1-5の場合は、圧縮強度が本発明の規定範囲外となり、安定して均一に前記隙間に充填できず、均一な硬化物が得られないことが判る。
From Table 1, in Examples 1-1 to 1-8, in the unit volume mass, drawing flow value, flow-down time, inseparability in water, 4 m injection test and 28-day-old compressive strength test, the present invention was used. It turns out that it is within the prescribed range of. Therefore, even if there is sewage inside the sewage pipe and there is sewage remaining in the gap, the mortar comes into contact with the sewage, and part of the mortar begins to dissolve into the water to separate it. Instead, the sewage can be stably and uniformly filled into the gap while being discharged to the outside, so that if the mortar filled in the gap is cured, a uniform cured product is obtained, and the strength is comparable to that of a new pipe. It is understood that the effect of obtaining the composite pipe can be obtained.
On the other hand, from Table 2, in the case of Comparative Examples 1-1 to 1-3, the inseparability in water and the unit volume mass difference between the upper unit volume mass and the lower unit volume mass are both outside the specified range of the present invention. In Comparative Examples 1-4 to 1-5, the compressive strength was out of the specified range of the present invention, and it was not possible to stably and uniformly fill the gap, and a uniform cured product could not be obtained.
(実施例2-1)
セピオライト(ミルコンSP2(昭和KDE社製))を使用し、実施例1-1で調製した組成物100質量部に対して、1質量部を混合して本発明のグラウト材組成物を調整し、この本発明のグラウト材組成物100質量部に対して、42質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表3に示す。
(Example 2-1)
Using sepiolite (Milcon SP2 (manufactured by Showa KDE)), 1 part by mass was mixed with 100 parts by mass of the composition prepared in Example 1-1 to prepare the grout material composition of the present invention. Tests were conducted and measured in the same manner as in Example 1-1, except that 42 parts by mass of water was added to 100 parts by mass of the grout material composition of the present invention to prepare a mortar.
Table 3 shows the measurement results.
(実施例2-2)
セピオライト(ミルコンSP2(昭和KDE社製))を、実施例1-1で調製した組成物100質量部に対して、2質量部を混合して本発明のグラウト材組成物を調整し、この本発明のグラウト材組成物100質量部に対して、42質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表3に示す。
(Example 2-2)
2 parts by mass of sepiolite (Milcon SP2 (manufactured by Showa KDE)) was mixed with 100 parts by mass of the composition prepared in Example 1-1 to prepare a grout material composition of the present invention. The test was conducted and measured in the same manner as in Example 1-1, except that 42 parts by mass of water was added to 100 parts by mass of the grout material composition of the invention to prepare a mortar.
Table 3 shows the measurement results.
(実施例2-3)
セピオライト(ミルコンSP2(昭和KDE社製))を、実施例1-1で調製した組成物100質量部に対して、3質量部を混合して本発明のグラウト材組成物を調整し、この本発明のグラウト材組成物100質量部に対して、46質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表3に示す。
(Example 2-3)
3 parts by mass of sepiolite (Milcon SP2 (manufactured by Showa KDE)) was mixed with 100 parts by mass of the composition prepared in Example 1-1 to prepare a grout material composition of the present invention. The test was carried out and measured in the same manner as in Example 1-1, except that mortar was prepared by mixing 46 parts by mass of water with 100 parts by mass of the grout material composition of the present invention.
Table 3 shows the measurement results.
(比較例2-1)
セピオライト(ミルコンSP2(昭和KDE社製))を、実施例1-1で調製した組成物100質量部に対して、0.5質量部を混合して比較のためのグラウト材組成物を調整し、このグラウト材組成物100質量部に対して、40質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表4に示す。
(Comparative Example 2-1)
0.5 parts by mass of sepiolite (Milcon SP2 (manufactured by Showa KDE)) was mixed with 100 parts by mass of the composition prepared in Example 1-1 to prepare a grout material composition for comparison. A test was performed and measured in the same manner as in Example 1-1, except that 40 parts by mass of water was added to 100 parts by mass of the grout material composition to prepare a mortar.
Table 4 shows the measured results.
(比較例2-2)
セピオライト(ミルコンSP2(昭和KDE社製))を、実施例1-1で調製した組成物100質量部に対して、4質量部を混合して比較のためのグラウト材組成物を調整し、このグラウト材組成物100質量部に対して、48質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表4に示す。
(Comparative Example 2-2)
4 parts by mass of sepiolite (Milcon SP2 (manufactured by Showa KDE)) was mixed with 100 parts by mass of the composition prepared in Example 1-1 to prepare a grout material composition for comparison. The test was performed and measured in the same manner as in Example 1-1 except that 48 parts by mass of water was added to 100 parts by mass of the grout material composition to prepare a mortar.
Table 4 shows the measured results.
表3から、実施例2-1〜2-3においては、単位容積質量、引抜きフロー値、流下時間、水中不分離性、4m注入試験および材齢28日の圧縮強度試験において、いずれも本発明の規定範囲内にあることが判る。したがって、下水管内部に下水が存在し、そして前記間隙に残留した下水があっても、前記モルタルがその下水に接触し、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記隙間に充填したモルタルを硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られる効果が得られることが判る。
それに対して、表4から、比較例2-1の場合は、水中不分離性および上部単位容積質量と下部単位容積質量の単位容積質量差がいずれも本発明の規定範囲外となり、比較例2-2の場合は、圧縮強度が本発明の規定範囲外となり、安定して均一に前記隙間に充填できず、均一な硬化物が得られないことが判る。
From Table 3, in Examples 2-1 to 2-3, in the unit volume mass, the withdrawal flow value, the flowing down time, the inseparability in water, the 4 m injection test and the compressive strength test of 28 days old, the present invention was used. It turns out that it is within the prescribed range of. Therefore, even if there is sewage inside the sewage pipe and there is sewage remaining in the gap, the mortar comes into contact with the sewage, and part of the mortar begins to dissolve into the water to separate it. Instead, the sewage can be stably and uniformly filled into the gap while being discharged to the outside, so that if the mortar filled in the gap is cured, a uniform cured product is obtained, and the strength is comparable to that of a new pipe. It is understood that the effect of obtaining the composite pipe can be obtained.
On the other hand, from Table 4, in the case of Comparative Example 2-1, the inseparability in water and the unit volume mass difference between the upper unit volume mass and the lower unit volume mass are both outside the specified range of the present invention, and Comparative Example 2 In the case of -2, the compressive strength is out of the specified range of the present invention, it is impossible to stably and uniformly fill the gap, and it is found that a uniform cured product cannot be obtained.
(実施例3-1)
実施例1-1で調製した組成物100質量部に対して、出雲ベントナイト(カサネン工業社製)を0.5質量部およびセピオライト(ミルコンSP2(昭和KDE社製))を0.5質量部、混合して本発明のグラウト材組成物を調整し、この本発明のグラウト材組成物100質量部に対して、41質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表5に示す。
(Example 3-1)
With respect to 100 parts by mass of the composition prepared in Example 1-1, 0.5 parts by mass of Izumo bentonite (manufactured by Kasanen Kogyo Co., Ltd.) and 0.5 parts by mass of sepiolite (Milcon SP2 (manufactured by Showa KDE Co.)), Example 1-1 except that a mortar was prepared by mixing to prepare a grout material composition of the present invention and mixing 100 parts by mass of the grout material composition of the present invention with 41 parts by mass of water. The test was conducted and measured in the same manner.
Table 5 shows the measurement results.
(実施例3-2)
実施例1-1で調製した組成物100質量部に対して、天竜印(関東ベントナイト鉱業社製)を1質量部およびセピオライト(ミルコンSP2(昭和KDE社製))を0.5質量部、混合して本発明のグラウト材組成物を調整し、この本発明のグラウト材組成物100質量部に対して、42質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表5に示す。
(Example 3-2)
To 100 parts by mass of the composition prepared in Example 1-1, 1 part by mass of Tenryu Mark (manufactured by Kanto Bentonite Mining Co., Ltd.) and 0.5 part by mass of sepiolite (Milcon SP2 (manufactured by Showa KDE)) were mixed. Then, the grout material composition of the present invention was prepared, and 42 parts by mass of water was added to 100 parts by mass of the grout material composition of the present invention to prepare a mortar. Then, the test was conducted and measured.
Table 5 shows the measurement results.
(実施例3-3)
実施例1-1で調製した組成物100質量部に対して、出雲ベントナイト(カサネン工業社製)を0.5質量部およびセピオライト(ミルコンSP2(昭和KDE社製))を1質量部、混合して本発明のグラウト材組成物を調整し、この本発明のグラウト材組成物100質量部に対して、41質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表5に示す。
(Example 3-3)
To 100 parts by mass of the composition prepared in Example 1-1, 0.5 parts by mass of Izumo bentonite (manufactured by Kasanen Kogyo Co., Ltd.) and 1 part by mass of sepiolite (Milcon SP2 (manufactured by Showa KDE)) were mixed. The grout material composition of the present invention was prepared by the same procedure as in Example 1-1, except that 41 parts by mass of water was added to 100 parts by mass of the grout material composition of the present invention to prepare a mortar. The test was conducted and measured.
Table 5 shows the measurement results.
(実施例3-4)
実施例1-1で調製した組成物100質量部に対して、天竜印(関東ベントナイト鉱業社製)を1質量部およびセピオライト(ミルコンSP2(昭和KDE社製))を1質量部、混合して本発明のグラウト材組成物を調整し、この本発明のグラウト材組成物100質量部に対して、44質量部の水を配合してモルタルを調製した以外は実施例1-1と同様にして試験を行って測定した。
測定した結果を表5に示す。
(Example 3-4)
To 100 parts by mass of the composition prepared in Example 1-1, 1 part by mass of Tenryu Ind. (manufactured by Kanto Bentonite Mining Co., Ltd.) and 1 part by mass of sepiolite (Milcon SP2 (manufactured by Showa KDE)) were mixed. A grout material composition of the present invention was prepared, and 44 parts by mass of water was added to 100 parts by mass of the grout material composition of the present invention to prepare a mortar, in the same manner as in Example 1-1. The test was conducted and measured.
Table 5 shows the measurement results.
表5から、実施例3-1〜3-4においては、単位容積質量、引抜きフロー値、流下時間、水中不分離性、4m注入試験および材齢28日の圧縮強度試験において、いずれも本発明の規定範囲内にあることが判る。したがって、下水管内部に下水が存在し、そして前記間隙に残留した下水があっても、前記モルタルがその下水に接触し、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記隙間に充填したモルタルを硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られる効果が得られることが判る。
スメクタイト系粘土鉱物とホルマイト系粘土鉱物との混合物を用いたので、前記間隙に充填時する際に、モルタルが下水に接触しても、前記モルタルの一部が水の方へ溶けだすなどがより少なくなり、分離したりしない(より高い水中不分離性がある)上、より良好な流動性を持って充填できるので、水中不分離性付与鉱物の配合量を減少できる可能性がある。
From Table 5, in Examples 3-1 to 3-4, in the unit volume mass, the withdrawal flow value, the flowing time, the inseparability in water, the 4 m injection test and the compressive strength test of 28 days old, the present invention was used. It turns out that it is within the prescribed range of. Therefore, even if there is sewage inside the sewage pipe and there is sewage remaining in the gap, the mortar comes into contact with the sewage, and part of the mortar begins to dissolve into the water to separate it. Instead, the sewage can be stably and uniformly filled into the gap while being discharged to the outside, so that if the mortar filled in the gap is cured, a uniform cured product is obtained, and the strength is comparable to that of a new pipe. It is understood that the effect of obtaining the composite pipe can be obtained.
Since a mixture of smectite-based clay minerals and holmite-based clay minerals was used, even when the mortar came into contact with sewage when filling the gap, it was more likely that some of the mortar would dissolve into the water. Since the amount of the mineral becomes less and does not separate (has higher inseparability in water) and can be filled with better fluidity, there is a possibility that the blending amount of the inseparability imparting mineral in water can be reduced.
(実施例4-1)
実施例1-3で調製した本発明のグラウト材組成物100質量部に対して、42質量部の水を配合してモルタルを調製し、実施例1-3において既に行って結果が出ているヒューム管を2本連結させて行う前記4m注入試験は行わず、ヒューム管を15本連結させて行う下記の30m注入試験に替えた以外は実施例1-1と同様にして試験を行って測定した。
30m注入試験:
図5に示す4m注入試験装置において用いた内径350mm、長さ2000mmのヒューム管を15本連結させ、注入口および上部試料採取場所と下部試料採取場所を設けた管内に、外径330mm、長さ30500mmのプロファイルを設置し、前記ヒューム管と前記プロファイルの両端部の隙間をシーリングしてある30m注入試験装置を用い、前記間隙に水75Lを入れ前記ヒューム管とプロファイル底から約10cmの高さにした。
前記モルタルをスクイズポンプを用いて前記注入口より25L/分の流量で注入し、上部試料採取場所および下部試料採取場所から流出したモルタルをそれぞれ上部試料および下部試料として採取し、上部単位容積質量と下部単位容積質量を測定し、上部単位容積質量と下部単位容積質量の単位容積質量差を求め、前記上部試料と下部試料の圧縮強度を測定した。
測定した結果を表6に示す。
(Example 4-1)
42 parts by weight of water was added to 100 parts by weight of the grout material composition of the present invention prepared in Example 1-3 to prepare a mortar, and the results were already obtained in Example 1-3. The 4m injection test conducted by connecting two fume tubes was not conducted, and the test was conducted in the same manner as in Example 1-1, except that the following 30m injection test conducted by connecting 15 fume tubes was replaced. did.
30m injection test:
Five fume tubes with an inner diameter of 350 mm and a length of 2000 mm used in the 4 m injection test device shown in FIG. 5 were connected, and an outer diameter of 330 mm and a length were set in the tube provided with an injection port and an upper sampling site and a lower sampling site. Using a 30 m injection tester in which a profile of 30500 mm is installed and a gap between the fume tube and both ends of the profile is sealed, 75 L of water is put in the gap to a height of about 10 cm from the fume tube and the profile bottom. did.
The mortar was injected at a flow rate of 25 L/min from the inlet using a squeeze pump, and the mortar flowing out from the upper sampling site and the lower sampling site was sampled as an upper sample and a lower sample, respectively, and the upper unit volume mass and The lower unit volume mass was measured, the unit volume mass difference between the upper unit volume mass and the lower unit volume mass was determined, and the compressive strength of the upper sample and the lower sample was measured.
Table 6 shows the measurement results.
表6から、実施例4-1においては、ヒューム管を多数連結させて行った30m注入試験においても、単位容積質量、引抜きフロー値、流下時間、水中不分離性、4m注入試験および材齢28日の圧縮強度試験において、いずれも本発明の規定範囲内にあることが判る。したがって、下水管内部に下水が存在し、そして前記間隙に残留した下水があっても、前記モルタルがその下水に接触し、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記隙間に充填したモルタルを硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られる効果が得られることが明らかになった。
From Table 6, in Example 4-1, even in the 30 m injection test performed by connecting a large number of fume tubes, the unit volume mass, the withdrawal flow value, the flow down time, the water inseparability, the 4 m injection test and the
本発明は、セメント、軽量骨材、水中不分離性付与鉱物および混和材を必須成分とする粉粒体からなるグラウト材組成物から構成される下水管更生工法用グラウト材であって、前記グラウト材組成物に所定量の水を添加・混合したモルタルが前記の試験法で測定した前記の性状1.〜6.を備えていることを特徴とする下水管更生工法用グラウト材であり、
老朽化した下水管内部に別途の管を設置し、両者の間に生じる隙間に充填する際に、下水管内部に下水が存在し、そして前記間隙に残留した下水があっても、前記モルタルがその下水に接触し、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記隙間に充填したモルタルを硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られるという顕著な効果を奏し、
本発明の下水管更生工法用グラウト材は、グラウト材として必要な成分が粉粒体として全て配合されている一材型のグラウト材であり、現場で所定量の水を添加して撹拌すれば各成分が短時間で均一に分散した流動性および各成分の分離抵抗性に優れたモルタルを作成できるので、手間がかからず、コストダウンになるとともに、計量ミスにより流動性が損なわれる問題や、硬化物の強度が損なわれるなどの問題がないという顕著な効果を奏し、
本発明のグラウト材を用いることによって、軽量性、高強度、流動性、各成分の材料分離抵抗性、ポンプ圧送性、接着性、耐久性、耐薬品性、耐温度変化性に優れ、下水管分野で必要な強度を持った優れた硬化物を得ることができるという顕著な効果を奏するので、産業上の利用価値が高い。
The present invention is a grout material for a sewer rehabilitation method, which is composed of a grout material composition consisting of cement, lightweight aggregate, underwater non-separation-imparting minerals and admixtures as essential components, wherein the grout The mortar obtained by adding and mixing a predetermined amount of water to the wood composition has the above-mentioned
When a separate pipe is installed inside the aged sewer pipe, and when filling the gap between the two, there is sewage inside the sewer pipe, and even if there is sewage remaining in the gap, the mortar remains By contacting the sewage and causing part of the mortar to dissolve into the water, it does not separate, and the sewage can be stably and uniformly filled into the gap while being discharged to the outside. When the filled mortar is cured, a uniform cured product can be obtained, and a remarkable effect that a composite pipe having a strength comparable to that of a new pipe can be obtained,
The sewage pipe rehabilitation method grout material of the present invention is a one-piece grout material in which all the necessary components as a grout material are blended as powder and granules, and if a predetermined amount of water is added and stirred on site Since it is possible to create a mortar in which each component is uniformly dispersed in a short time and has excellent separation resistance of each component, there is no need for labor, cost is reduced, and fluidity is impaired due to measurement error. Has a remarkable effect that there is no problem such as deterioration of the strength of the cured product,
By using the grout material of the present invention, lightweight, high strength, fluidity, material separation resistance of each component, pumpability, adhesiveness, durability, chemical resistance, resistance to temperature change, sewer pipe Since it has the remarkable effect of being able to obtain an excellent cured product having the strength required in the field, it has a high industrial utility value.
1 既設管
2 マンホール
3 下水
4 外巻きプロファイルドラム
5 動力ユニット
6 製管機
7 プロファイル
8 プロファイルの管状体
9 隙間
10 シール
11 エアー・下水抜き
12 モルタル注入装置
13 モルタル
14 硬化物(更生管)
15 注入口
16 水中不分離性試験装置
17、18 ロート
19 濾紙
20 ビーカー
21 4m注入試験装置
22 ヒューム管
23 上部試料採取場所
24 下部試料採取場所
26 グラウトミキサ
27 容器
28 スクイズポンプ
29 圧力計
30 耐圧ホース
1 Existing
15
本発明は、老朽化した下水管更生工法用グラウト材(以下、単にグラウト材と称す場合がある)およびそれを用いた下水管更生工法に関するものであり、更に詳しくは、グラウト材として必要な成分が粉粒体として全て配合されており、あとは所定量の水を添加して撹拌すれば各成分が短時間で均一に分散した流動性に優れたモルタルを作成できる一材型のグラウト材であり、前記モルタルを老朽化した下水管内部に下水が存在する状態で、別途の管を設置し、両者の間に生じる隙間に下水が残留した状態で前記モルタルを前記隙間に充填する際に、前記モルタルの一部が下水の方へ溶けだしたり、前記モルタルの成分が変化したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記モルタルが前記下水を排出した後、硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られるという下水管更生工法用グラウト材およびそれを用いた下水管更生工法に関するものである。 The present invention relates to an aged grout material for a sewer pipe rehabilitation method (hereinafter, may be simply referred to as a grout material) and a sewer pipe rehabilitation method using the grout material, and more specifically, a component necessary as a grout material. Is a single-part grout material that can create a mortar with excellent fluidity in which each component is uniformly dispersed in a short time by adding a predetermined amount of water and stirring. There, in a state where sewage sewer internal dilapidated the mortar is present, at the time of filling the mortar into the gap by installing a separate pipe, sewage gap formed between them remained state, Part of the mortar melts into the sewage or the components of the mortar do not change, and the sewage can be stably and uniformly filled into the gap while being discharged to the outside. The present invention relates to a grouting material for a sewer rehabilitation method and a sewer rehabilitation method using the same, in which a cured product can be obtained after being discharged and then a uniform cured product can be obtained, and a composite pipe having a strength comparable to that of a new pipe can be obtained. ..
前記工法では、現場で、必要な成分を計量し、混合し、水を添加して撹拌してセメント系充填材スラリーを作成していたので、手間がかかりコストアップになる問題や、計量ミスが発生して、流動性が損なわれる問題や、硬化物の強度が損なわれるなどの事故が発生するという問題が想定される。
ライニング管の浮き防止のため、セメント系充填材は、単位容積質量の低いものが好まれる上、既設管と内部に配置したライニング管との間の長細い隙間へ充填材を注入する必要があるため、流動性が高いという特性も要求され、また硬化物の強度を大きくできれば隙間の大きな施工現場などでも使用が可能となるため、そのような特性を兼ね備えたセメント系充填材の開発が望まれていた。
In the construction method, on the site, necessary components are weighed, mixed, water is added, and the mixture is stirred to create a cement-based filler slurry. It is assumed that problems such as occurrence of such a phenomenon impair fluidity and an accident such as deterioration of strength of a cured product occur.
In order to prevent floating of the lining pipe, it is preferable that the cement-based filler has a low unit volume mass, and it is necessary to inject the filler into the long and narrow gap between the existing pipe and the lining pipe arranged inside. Therefore, the property of high fluidity is also required, and if the strength of the cured product can be increased, it can be used even in construction sites with large gaps , so it is desirable to develop a cement-based filler having such properties. Was there.
ところで、下水道管渠である鉄筋コンクリート管も、前記のように、地下に埋設されて極めて長期に渡って使用されるものであるため、老朽化は避けられず、腐食劣化作用を受けることにより、下水道管渠としての機能を低下させるだけでなく、道路陥没などの二次的被害も懸念されることから、下水道管渠の更生は、社会生活を維持するために欠かせない課題となっている。
具体的には、SPR工法は、例えば、腐食劣化した既設管渠内に硬質塩化ビニール製のプロファイルを嵌合設置した後、既設管とプロファイルとの隙間部にモルタル(グラウト材)を注入することにより、複合管として一体化する更生工法であり、具体的には、例えば、既設管内径250mmから5000mm、非円形管渠短辺900mm以上、長辺6000mmまでのあらゆる断面形状があるので、これらに対応できるとともに、下水の共用下においても、施工できることが求められており、管渠内に人が入って作業できない内径の小さな管渠の更生も対象となる。
施工においては、既設管渠内にプロファイルを取り付け、その隙間部にモルタルを充填する工法であることから、プロファイルに浮力が生じるため浮上防止対策が必要である。人が管渠内に入って作業できる大口径管渠の場合は、浮上防止対策が容易であるが、人の入ることが出来ない内径の小さな管渠においては、浮力低減が可能な単位容積質量が小さいタイプのモルタルが必要となる(特許文献7参照)。
ベントナイトなどを添加したグラウト材も提案されている(特許文献8-10参照)。
By the way, as mentioned above, reinforced concrete pipes, which are sewer pipes, are also buried underground and used for an extremely long period of time. Rehabilitation of sewer pipes has become an indispensable issue for maintaining a social life because not only the function of the drainage pipe is deteriorated but also secondary damage such as road collapse is feared.
Specifically, in the SPR method, for example, after a hard vinyl chloride profile is fitted and installed in an existing corrosion-deteriorated pipe conduit, mortar (grout material) is injected into the gap between the existing pipe and the profile. Therefore, it is a rehabilitation method to be integrated as a composite pipe. Specifically, for example, since there are all cross-sectional shapes of existing pipe inner diameter 250 mm to 5000 mm, non-circular pipe culvert short side 900 mm or more, long side 6000 mm, In addition to being able to deal with it, it is required to be able to perform construction even under the common use of sewage, and the target is the rehabilitation of a pipe with a small inner diameter where people cannot enter the pipe to work.
In the construction, since the profile is installed in the existing pipe and the gap is filled with mortar, buoyancy is generated in the profile, so it is necessary to take measures to prevent levitation. In the case of a large-diameter pipe that allows people to work inside the pipe, it is easy to prevent levitation, but in a pipe with a small internal diameter that people cannot enter, buoyancy can be reduced. A mortar of a small type is required (see Patent Document 7).
A grout material to which bentonite or the like is added has also been proposed (see Patent Documents 8-10).
また、下水道管渠のSPR工法においては、通常、既設管内に下水を流しながら(下水の共用下)、既設管渠内にプロファイルを取り付け、両端部の隙間部のみをシールして隙間部にモルタルを充填するので、充填されるモルタルは、前記隙間に残留した下水に接触し、この下水を排出しながら充填することになるので、下水との接触中にモルタル自身やその成分が下水に溶け出し成分変化が生じ、例えば、前記モルタルの流れ方向および重力方向における上部と下部にモルタル濃度や成分の変化が生じ、充填したモルタルの後述する単位容積質量に差がでてしまい、従って均一で安定した充填ができず、充填したモルタルを硬化させると、均一な硬化物が得られず、圧縮強度などがバラツクという問題があった。 In addition, in the SPR method for sewer pipes, normally, while flowing sewage into the existing pipe (under common use of sewage), a profile is installed in the existing pipe and only the gaps at both ends are sealed and the mortar is placed in the gaps. Since the mortar to be filled comes into contact with the sewage remaining in the gap and is discharged while discharging, the mortar itself and its components are dissolved in the sewage during the contact with the sewage. Component changes occur, for example, mortar concentration and component changes occur in the upper and lower parts of the mortar in the flow direction and gravity direction, and there is a difference in the unit volume mass of the filled mortar described later, and thus it is uniform and stable. When the mortar filled was not able to be filled and hardened, a uniform hardened product could not be obtained, and there was a problem that the compressive strength and the like varied.
本発明の第1の目的は、前記モルタルを老朽化した下水管内部に別途の管を設置し、両者の間に生じる隙間に充填する際に、下水管内部に下水が存在し、そして前記隙間に残留した下水があっても、前記モルタルがその下水に接触し、前記モルタルの一部が下水の方へ溶けだすなどにより、分離したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記隙間に充填したモルタルを硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られるという下水管更生工法用グラウト材を提供することにある。
本発明の第2の目的は、本発明の下水管更生工法用グラウト材を用いて内部に下水が存在する既設管内部に別途の管を設置し、両者の間に生じる隙間に残留した下水があっても、前記隙間にモルタルを下水と接触させながら、モルタルが下水の方へ溶けだすことなく充填して、前記下水を容易に排出でき、その後、硬化させることによって、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られるという下水管更生工法を提供することである。
A first object of the present invention, the mortar was placed a separate tube within the sewer dilapidated, when filling a gap formed therebetween, sewage present inside the sewer, and the gap Even if there is residual sewage in the mortar, the mortar comes into contact with the sewage, and part of the mortar begins to dissolve into the sewage, so that it does not separate, and the sewage is stably discharged to the outside. Since it is possible to fill the gap uniformly, by curing the mortar filled in the gap, a uniform cured product is obtained, and a grout material for the sewer rehabilitation method that a composite pipe with a strength comparable to a new pipe can be obtained. To provide.
A second object of the present invention is to install a separate pipe inside an existing pipe in which sewage is present using the grouting material for sewage pipe rehabilitation method of the present invention, so that the sewage remaining in the gap between the two is Even if there is mortar in contact with the sewage in the gap , the mortar can be filled into the sewage without melting, and the sewage can be easily discharged, and then cured to obtain a uniform cured product. Another object of the present invention is to provide a sewer pipe rehabilitation method in which a composite pipe having a strength comparable to that of a new pipe can be obtained.
前記課題を解消するための請求項1記載の発明は、セメント、軽量骨材、水中不分離性付与鉱物としてのスメクタイト系粘土鉱物および混和材を必須成分とする粉粒体からなるグラウト材組成物から構成される下水管更生工法用グラウト材であって、
前記グラウト材組成物に所定量の水を添加・混合したモルタルが下記の試験法で測定した下記の性状1.〜6.を備え、
前記スメクタイト系粘土鉱物の添加量が、前記グラウト材組成物100質量部に対して5質量部以下(ただし、0を含まない。)、下記試験法7で測定した膨潤力が10ml/2g以上20ml/2g以下、前記添加量と膨潤力の積である膨潤量が15〜60であることを特徴とする下水管更生工法用グラウト材である。
Invention 請
Mortar obtained by adding and mixing a predetermined amount of water to the grout material composition has the following properties measured by the following test method. ~6. Equipped with
The added amount of the smectite clay mineral is 5 parts by mass or less (however, 0 is not included) with respect to 100 parts by mass of the grout material composition, and the swelling power measured by the following test method 7 is 10 ml/2 g or more and 20 ml. /2 g or less, and the swelling amount which is the product of the addition amount and the swelling power is 15 to 60, which is a grout material for a sewer rehabilitation method.
5.4m注入試験:図5に示す4m注入試験装置(内径350mm、長さ2000mmのヒューム管を2本連結させ、注入口および上部試料採取場所と下部試料採取場所を設けた管内に、外径330mm、長さ4500mmのプロファイルを設置し、前記ヒューム管と前記プロファイルの両端部の隙間をシーリングしてある。前記隙間に水10Lを入れる。)を用い、モルタルをスクイズポンプを用いて前記注入口より15L/分の流量で注入し、上部試料採取場所および下部試料採取場所から流出したモルタルをそれぞれ上部試料および下部試料として採取し、上部単位容積質量と下部単位容積質量を測定し、上部単位容積質量と下部単位容積質量の単位容積質量差を求める。 5.4m injection test: A 4m injection test device shown in FIG. 5 (two fume tubes with an inner diameter of 350 mm and a length of 2000 mm are connected to each other, and an outer diameter is set in an injection port and an upper sampling place and a lower sampling place. A profile having a length of 330 mm and a length of 4500 mm is installed, and a gap between the fume tube and both ends of the profile is sealed. 10 L of water is put in the gap .), and a squeeze pump is used for the mortar. Mortar was injected at a flow rate of 15 L/min, and the mortar flowing out from the upper sampling site and the lower sampling site was collected as the upper sample and the lower sample, respectively, and the upper unit volume mass and the lower unit volume mass were measured. Calculate the unit volume mass difference between the mass and the lower unit volume mass.
請求項2記載の発明は、請求項1記載の下水管更生工法用グラウト材において、前記スメクタイト系粘土鉱物の添加量が、前記グラウト材組成物100質量部に対して5質量部以下(ただし、0を含まない。)、下記試験法7で測定した膨潤力が10ml/2g以上15ml/2g以下、前記添加量と膨潤力の積である膨潤量が15〜60であることを特徴とする。
Invention 請
(試験法)
7.日本ベントナイト工業会標準試験方法JBAS-104-77「ベントナイト(粉状)の膨潤試験方法」に準じて、測定する。
(Test method)
7 . It is measured according to the Japan Bentonite Industry Association standard test method JBAS-104-77 "Bentonite (powdered) swelling test method".
請求項3記載の発明は、請求項1あるいは請求項2に記載の下水管更生工法用グラウト材において、前記水中不分離性付与鉱物がスメクタイト系粘土鉱物とホルマイト系粘土鉱物との混合物であることを特徴とする。
Invention 請
請求項4記載の発明は、施工現場で請求項1〜請求項3に記載のグラウト材組成物に所定量の水を配合して撹拌して前記の試験法で測定した下記の性状1.〜6.を備えているモルタルを作成し、既設下水管内部に下水が存在する状態で、別途の管を設置し、両者の間に生じる隙間に下水が残留した状態で前記モルタルを前記隙間に充填し、前記モルタルが前記下水を排出して充填終了後、硬化することを特徴とする下水管更生工法である。
(モルタル性状)
1.単位容積質量が1.30〜1.40Kg/L、
2.流下時間が5〜7秒、
3.引抜きフロー値が210〜290mm、
4.水中不分離性:懸濁物質量が0.80g以下、
5.4m注入試験で得られる上部単位容積質量と下部単位容積質量の単位容積質量差が0.05Kg/L以下、
6.圧縮強度が21〜60N/mm2。
請 Motomeko 4 the described invention, the properties described below were measured by the test method of the stirred by blending a predetermined amount of water to the grout composition of
(Mortar property)
1. Unit volume mass is 1.30 to 1.40 Kg/L,
2. Flow time is 5 to 7 seconds,
3. Withdrawal flow value of 210-290 mm,
4. Inseparability in water: Suspended substance amount 0.80g or less,
The unit volume mass difference between the upper unit volume mass and the lower unit volume mass obtained in the 5.4 m injection test is 0.05 Kg/L or less,
6. Compressive strength is 21 to 60 N/mm 2 .
請求項1(及び請求項2)記載の発明は、セメント、軽量骨材、水中不分離性付与鉱物としてのスメクタイト系粘土鉱物および混和材を必須成分とする粉粒体からなるグラウト材組成物から構成される下水管更生工法用グラウト材であって、
前記グラウト材組成物に所定量の水を添加・混合したモルタルが下記の試験法で測定した下記の性状1.〜6.を備え、
前記スメクタイト系粘土鉱物の添加量が、前記グラウト材組成物100質量部に対して5質量部以下(ただし、0を含まない。)、下記試験法7で測定した膨潤力が10ml/2g以上20ml/2g以下(請求項2記載の発明においては、膨潤力が10ml/2g以上15ml/2g以下)、前記添加量と膨潤力の積である膨潤量が15〜60であることを特徴とする下水管更生工法用グラウト材であり、
老朽化した下水管内部に別途の管を設置し、両者の間に生じる隙間に充填する際に、下水管内部に下水が存在し、そして前記隙間に残留した下水があっても、前記モルタルがその下水に接触し、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記隙間に充填したモルタルを硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られるという顕著な効果を奏する。
なお、前記所定量の水とは、前記モルタルが前記の試験法で測定した前記の性状1.〜6.を備えるのに要する水量という意味である。
本発明は、グラウト材として必要な成分が粉粒体として全て配合されている一材型のグラウト材であり、現場で所定量の水を添加して撹拌すれば各成分が短時間で均一に分散した流動性および各成分の分離抵抗性に優れたモルタルを作成できるので、手間がかからず、コストダウンになるとともに、計量ミスにより流動性が損なわれる問題や、硬化物の強度が損なわれるなどの問題がないという顕著な効果を奏する。
請 Motomeko 1 (and claim 2) the described invention, cement, lightweight aggregate, grout composition comprising particulate material to smectite clay minerals and admixtures essential component as a water nondisjunction imparting mineral A grout material for sewage pipe rehabilitation method consisting of
Mortar obtained by adding and mixing a predetermined amount of water to the grout material composition has the following properties measured by the following test method. ~6. Equipped with
The added amount of the smectite clay mineral is 5 parts by mass or less (however, 0 is not included) with respect to 100 parts by mass of the grout material composition, and the swelling power measured by the following test method 7 is 10 ml/2 g or more and 20 ml. /2 g or less (in the invention of
When a separate pipe is installed inside the aged sewer pipe, and when filling the gap created between the two, there is sewage inside the sewer pipe, and even if there is sewage remaining in the gap , the mortar remains By contacting the sewage and causing part of the mortar to dissolve into the water, it does not separate, and the sewage can be stably and uniformly filled into the gap while being discharged to the outside. When the filled mortar is cured, a uniform cured product is obtained, and a remarkable effect is obtained that a composite pipe having a strength comparable to that of a new pipe is obtained.
In addition, the said predetermined amount of water is the said 1st property which the said mortar measured by the said test method. ~6. It means the amount of water required to prepare.
The present invention is a one-piece grout material in which all the necessary components as a grout material are blended as powder and granules, and if each component is added and stirred at the site with a predetermined amount of water, each component becomes uniform in a short time. Since it is possible to create a mortar that has excellent fluidity and resistance to separation of each component, it does not take time and costs, and the problem that fluidity is impaired due to mismeasurement and the strength of the cured product are impaired. There is a remarkable effect that there is no problem such as.
更に、請求項1(及び請求項2)記載の発明は、前記隙間に充填する際に、モルタルが下水に接触しても、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず(高い水中不分離性)、良好な流動性を持って充填できるというさらなる顕著な効果を奏する。 Further, the invention of claim 1 (and claim 2), wherein, when before Symbol you Hama charged into the gap, even if the contact mortar sewage, due part of the mortar Tokedasu towards the water Further, it has a further remarkable effect that it can be filled with good fluidity without separation (high inseparability in water).
請求項3記載の発明は、請求項1あるいは請求項2に記載の下水管更生工法用グラウト材において、前記水中不分離性付与鉱物がスメクタイト系粘土鉱物とホルマイト系粘土鉱物との混合物であることを特徴とするものであり、
スメクタイト系粘土鉱物とホルマイト系粘土鉱物との混合物を用いたので、前記隙間に充填する際に、モルタルが下水に接触しても、前記モルタルの一部が水の方へ溶けだすなどがより少なくなり、分離したりしない(より高い水中不分離性)上、より良好な流動性を持って充填できるので、水中不分離性付与鉱物の配合量を減少でき、経済的である、というさらなる顕著な効果を奏する。
Invention 請
Since using a mixture of smectite clay minerals and hormite clay minerals, when you Hama charged in the gap, even if it contacts mortar sewage, and some of the mortar Tokedasu towards the water It is less and does not separate (higher inseparability in water), and because it can be packed with better fluidity, it is economical because the amount of minerals imparting inseparability in water can be reduced. Has a remarkable effect.
請求項4記載の発明は、施工現場で請求項1〜請求項3に記載のグラウト材組成物に所定量の水を配合して撹拌して前記の試験法で測定した前記の性状1.〜6.を備えているモルタルを作成し、既設下水管内部に下水が存在する状態で、別途の管を設置し、両者の間に生じる隙間に下水が残留した状態で前記モルタルを前記隙間に充填し、前記モルタルが前記下水を排出して充填終了後、硬化することを特徴とする下水管更生工法であり、
内部に下水が存在する既設管内部に別途の管を設置し、両者の間に生じる隙間に残留した下水があっても、前記隙間にモルタルを下水と接触させながら、モルタルが下水の方へ溶けだすことなく充填して、前記下水を容易に排出でき、その後、硬化させることによって、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られるという顕著な効果を奏する。
請 Motomeko 4 the described invention, the above properties were measured by the test method of the stirred by blending a predetermined amount of water to the grout composition of
If a separate pipe is installed inside the existing pipe with sewage inside, and even if there is sewage remaining in the gap between the two, the mortar will melt into the sewage while contacting the mortar with the sewage in the gap. There is a remarkable effect that the sewage can be easily discharged without being filled, and then cured to obtain a uniform cured product and a composite pipe having a strength comparable to that of a new pipe.
図5は、4m注入試験装置を説明する説明図である。
図5に示すように、4m注入試験装置21には、内径350mm、長さ2000mmのヒューム管22を2本連結させ、そしてモルタル13の注入口15を設けたヒューム管22内に、上部試料採取場所23と下部試料採取場所24を備える、外径330mm、長さ4500mmのプロファイルの管状体8を設置してある。前記ヒューム管22と前記プロファイルの管状体8の両端部の隙間9にはシーリングされて、シール10が設置されており、前記隙間9に水10Lが入れられている。前記隙間9に水10Lを入れるとヒューム管22の底部から上方に図中の点線位まで約100mm、水が入ることになる。
4m注入試験装置21は、水、粉体を入れ、混練を行いモルタル13を作成するためのグラウトミキサ(岡三機工株式会社OKZ-150W)26、作成したモルタル13を収容する容器(90L)27、そのモルタル13を4m注入試験装置21の注入口15を経て前記隙間9に注入するためのスクイズポンプ(岡三機工株式会社OKP-15MS)28、モルタル13を注入するための、モルタル13の通路となる圧力計29を備えた耐圧ホース30を備えている。
FIG. 5 is an explanatory diagram illustrating a 4 m injection test device.
As shown in FIG. 5, the 4 m
The 4 m
グラウトミキサ26に水、粉体を入れ、混練を行い、得られたモルタル13を容器(90L)27に収容し、スクイズポンプ28を作動させてそのモルタル13を注入口15より15L/分の流量で隙間9内に注入を行い、上部試料採取場所23と下部試料採取場所24から前記水および空気を排出した後に流出したモルタル13をそれぞれ採取して、採取したモルタル13の上部単位容積質量と下部単位容積質量を測定し、上部単位容積質量と下部単位容積質量の単位容積質量差を求め、また上部試料の圧縮強度と下部試料の圧縮強度を求める。
Water and powder are put into the
スメクタイト系粘土鉱物は、添加量がセメント、軽量骨材、混和材を必須成分とする組成物100質量部に対して5質量部以下であり、前記試験法で測定した膨潤力が10ml/2g以上、前記添加量と膨潤力の積である膨潤量が15〜60であることが好ましく、前記隙間に充填する際に、モルタルが下水に接触しても、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず(高い水中不分離性)、良好な流動性を持って充填できる。
添加量が5質量部以上であると、圧縮強度が低下する恐れがある。
膨潤力が10ml/2g未満であると、水中不分離性が劣る恐れがある。
膨潤量が15未満であると、水中不分離性が劣る恐れがある。
膨潤量が60を超えると圧送性が低下し、水粉体比を調整すると、圧縮強度が低下する恐れがある。
The smectite clay mineral is added in an amount of 5 parts by mass or less with respect to 100 parts by mass of a composition containing cement, a lightweight aggregate, and an admixture as essential components, and has a swelling power measured by the test method of 10 ml/2 g or more. , preferably the amount of swelling is the product of the amount and swelling power is 15 to 60, when you Hama charged in the gap, even if it contacts mortar sewage, a portion of the mortar is water It can be filled with good fluidity without separation (high inseparability in water) due to melt-out toward one side.
If the addition amount is 5 parts by mass or more, the compressive strength may decrease.
If the swelling power is less than 10 ml/2 g, the inseparability in water may be poor.
If the swelling amount is less than 15, the inseparability in water may be poor.
If the swelling amount exceeds 60, the pumping property is deteriorated, and if the water powder ratio is adjusted, the compressive strength may be decreased.
ホルマイト系粘土鉱物は、添加量がセメント、軽量骨材、混和材を必須成分とする組成物100質量部に対して1〜3質量部であることが好ましく、前記隙間に充填する際に、モルタルが下水に接触しても、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず(高い水中不分離性)、良好な流動性を持って充填できる。
ホルマイト系粘土鉱物の添加量が1質量部未満では、水中不分離性が劣る恐れがある。
ホルマイト系粘土鉱物の添加量が3質量部を超えると、圧送性が低下し、水粉体比を調整すると、圧縮強度が低下する恐れがある。
Hormite clay minerals, addition amount cement, lightweight aggregate, preferably 1 to 3 parts by weight with respect to 100 parts by mass of the composition to the admixture as essential components, when you Hama charge in the gap Even when the mortar comes into contact with sewage, the mortar does not separate due to a part of the mortar dissolving into the water (high inseparability in water) and can be filled with good fluidity.
If the amount of the holmite-based clay mineral added is less than 1 part by mass, the inseparability in water may be poor.
When the amount of the holmite-based clay mineral added exceeds 3 parts by mass, the pumpability is lowered, and when the water-powder ratio is adjusted, the compressive strength may be lowered.
スメクタイト系粘土鉱物とホルマイト系粘土鉱物との混合物を用いると、前記隙間に充填する際に、モルタルが下水に接触しても、前記モルタルの一部が水の方へ溶けだすなどがより少なくなり、分離したりしない(より高い水中不分離性)上、より良好な流動性を持って充填できるので、水中不分離性付与鉱物の配合量を減少でき、経済的である。 With a mixture of smectite clay minerals and hormite clay minerals, when you Hama charged in the gap, even if it contacts mortar sewage, Tokedasu more like a part of the mortar towards water In addition, the amount of the minerals does not separate and does not separate (higher inseparability in water), and since it can be packed with better fluidity, the compounding amount of the inseparability imparting minerals in water can be reduced, which is economical.
本発明においては、本発明のグラウト材に所定量の水を配合して撹拌して前記の特性1.〜6.を有するモルタルを作成することが肝心である。
単位容積質量は1.30〜1.40Kg/Lであり、1.30Kg/L未満では、下水中において軽量骨材が浮上し、分離する恐れがあり、1.40Kg/Lを超えると、プロファイルが浮上する恐れがある。
流下時間は5〜7秒であり、5秒未満では、引抜きフロー値が大きくなり、水中において軽量骨材が浮上し、分離する恐れがあり、7秒を超えると圧送性が低下する恐れがある。
引抜きフロー値は210〜290mmであり、210mm未満では、圧送性が低下する恐れがあり、290mmを超えると水中において軽量骨材が浮上し、分離する恐れがある。
4m注入試験で得られる上部単位容積質量と下部単位容積質量の単位容積質量差は0.05Kg/L以下であり、0.05Kg/Lを超えると上下の圧縮強度差が大きくなり圧縮強度が21N/mm2未満になる恐れがある。
水中不分離性は懸濁物質量が0.80g以下であり、0.80gを超えると、上部単位容積質量と下部単位容積質量の単位容積質量差が0.05Kg/Lを超える恐れがある。
圧縮強度は21〜60N/mm2であり、21N/mm2未満では、既設管と内部に配置したライニング管との間の隙間の大きな施工現場など強度を求められる施工現場では使用が難くなる恐れがあり、60N/mm2を超えるとモルタルの単位容積質量が1.40Kg/Lを超える恐れがある。
In the present invention, the grout material of the present invention is mixed with a predetermined amount of water, and the mixture is stirred to obtain the above-mentioned
The unit volume mass is 1.30 to 1.40 Kg/L. If it is less than 1.30 Kg/L, the lightweight aggregate may float and separate in sewage, and if it exceeds 1.40 Kg/L, the profile May surface.
The flow-down time is 5 to 7 seconds, and if the time is less than 5 seconds, the drawing flow value becomes large, and the lightweight aggregate may float and separate in water. If the time exceeds 7 seconds, the pumpability may decrease. ..
The withdrawal flow value is 210 to 290 mm, and if it is less than 210 mm, the pumpability may be deteriorated, and if it exceeds 290 mm, the lightweight aggregate may float in water and be separated.
The unit volume mass difference between the upper unit volume mass and the lower unit volume mass obtained in the 4 m injection test is 0.05 Kg/L or less, and when it exceeds 0.05 Kg/L, the difference in upper and lower compressive strength increases and the compressive strength is 21 N. /Mm 2 may be less.
As for the inseparability in water, the amount of suspended matter is 0.80 g or less, and when it exceeds 0.80 g, the unit volume mass difference between the upper unit volume mass and the lower unit volume mass may exceed 0.05 Kg/L.
The compressive strength is 21 to 60 N/mm 2 , and if it is less than 21 N/mm 2 , it may be difficult to use at a construction site where strength is required such as a construction site with a large gap between the existing pipe and the lining pipe arranged inside. If it exceeds 60 N/mm 2 , the unit volume mass of the mortar may exceed 1.40 Kg/L.
表1から、実施例1-1〜1-8においては、単位容積質量、引抜きフロー値、流下時間、水中不分離性、4m注入試験および材齢28日の圧縮強度試験において、いずれも本発明の規定範囲内にあることが判る。したがって、下水管内部に下水が存在し、そして前記隙間に残留した下水があっても、前記モルタルがその下水に接触し、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記隙間に充填したモルタルを硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られる効果が得られることが判る。
それに対して、表2から、比較例1-1〜1-3の場合は、水中不分離性および上部単位容積質量と下部単位容積質量の単位容積質量差がいずれも本発明の規定範囲外となり、比較例1-4〜1-5の場合は、圧縮強度が本発明の規定範囲外となり、安定して均一に前記隙間に充填できず、均一な硬化物が得られないことが判る。
From Table 1, in Examples 1-1 to 1-8, in the unit volume mass, drawing flow value, flow-down time, inseparability in water, 4 m injection test and 28-day-old compressive strength test, the present invention was used. It turns out that it is within the prescribed range of. Therefore, even if sewage exists inside the sewer pipe, and even if there is sewage remaining in the gap , the mortar comes into contact with the sewage, and part of the mortar begins to melt toward the water, thus separating it. Instead, the sewage can be stably and uniformly filled into the gap while being discharged to the outside, so that if the mortar filled in the gap is cured, a uniform cured product is obtained, and the strength is comparable to that of a new pipe. It is understood that the effect of obtaining the composite pipe can be obtained.
On the other hand, from Table 2, in the case of Comparative Examples 1-1 to 1-3, the inseparability in water and the unit volume mass difference between the upper unit volume mass and the lower unit volume mass are both outside the specified range of the present invention. In Comparative Examples 1-4 to 1-5, the compressive strength was out of the specified range of the present invention, and it was not possible to stably and uniformly fill the gap, and a uniform cured product could not be obtained.
表3から、実施例2-1〜2-3においては、単位容積質量、引抜きフロー値、流下時間、水中不分離性、4m注入試験および材齢28日の圧縮強度試験において、いずれも本発明の規定範囲内にあることが判る。したがって、下水管内部に下水が存在し、そして前記隙間に残留した下水があっても、前記モルタルがその下水に接触し、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記隙間に充填したモルタルを硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られる効果が得られることが判る。
それに対して、表4から、比較例2-1の場合は、水中不分離性および上部単位容積質量と下部単位容積質量の単位容積質量差がいずれも本発明の規定範囲外となり、比較例2-2の場合は、圧縮強度が本発明の規定範囲外となり、安定して均一に前記隙間に充填できず、均一な硬化物が得られないことが判る。
From Table 3, in Examples 2-1 to 2-3, in the unit volume mass, the withdrawal flow value, the flowing down time, the inseparability in water, the 4 m injection test and the compressive strength test of 28 days old, the present invention was used. It turns out that it is within the prescribed range of. Therefore, even if sewage exists inside the sewer pipe, and even if there is sewage remaining in the gap , the mortar comes into contact with the sewage, and part of the mortar begins to melt toward the water, thus separating it. Instead, the sewage can be stably and uniformly filled into the gap while being discharged to the outside, so that if the mortar filled in the gap is cured, a uniform cured product is obtained, and the strength is comparable to that of a new pipe. It is understood that the effect of obtaining the composite pipe can be obtained.
On the other hand, from Table 4, in the case of Comparative Example 2-1, the inseparability in water and the unit volume mass difference between the upper unit volume mass and the lower unit volume mass are both outside the specified range of the present invention, and Comparative Example 2 In the case of -2, the compressive strength is out of the specified range of the present invention, it is impossible to stably and uniformly fill the gap, and it is found that a uniform cured product cannot be obtained.
表5から、実施例3-1〜3-4においては、単位容積質量、引抜きフロー値、流下時間、水中不分離性、4m注入試験および材齢28日の圧縮強度試験において、いずれも本発明の規定範囲内にあることが判る。したがって、下水管内部に下水が存在し、そして前記隙間に残留した下水があっても、前記モルタルがその下水に接触し、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記隙間に充填したモルタルを硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られる効果が得られることが判る。
スメクタイト系粘土鉱物とホルマイト系粘土鉱物との混合物を用いたので、前記隙間に充填する際に、モルタルが下水に接触しても、前記モルタルの一部が水の方へ溶けだすなどがより少なくなり、分離したりしない(より高い水中不分離性がある)上、より良好な流動性を持って充填できるので、水中不分離性付与鉱物の配合量を減少できる可能性がある。
From Table 5, in Examples 3-1 to 3-4, in the unit volume mass, the withdrawal flow value, the flowing time, the inseparability in water, the 4 m injection test and the compressive strength test of 28 days old, the present invention was used. It turns out that it is within the prescribed range of. Therefore, even if sewage exists inside the sewer pipe, and even if there is sewage remaining in the gap , the mortar comes into contact with the sewage, and part of the mortar begins to melt toward the water, thus separating it. Instead, the sewage can be stably and uniformly filled into the gap while being discharged to the outside, so that if the mortar filled in the gap is cured, a uniform cured product is obtained, and the strength is comparable to that of a new pipe. It is understood that the effect of obtaining the composite pipe can be obtained.
Since using a mixture of smectite clay minerals and hormite clay minerals, when you Hama charged in the gap, even if it contacts mortar sewage, and some of the mortar Tokedasu towards the water The amount is less, does not separate (has higher water inseparability), and can be packed with better fluidity, so that the compounding amount of the water inseparability imparting mineral may be reduced.
(実施例4-1)
実施例1-3で調製した本発明のグラウト材組成物100質量部に対して、42質量部の水を配合してモルタルを調製し、実施例1-3において既に行って結果が出ているヒューム管を2本連結させて行う前記4m注入試験は行わず、ヒューム管を15本連結させて行う下記の30m注入試験に替えた以外は実施例1-1と同様にして試験を行って測定した。
30m注入試験:
図5に示す4m注入試験装置において用いた内径350mm、長さ2000mmのヒューム管を15本連結させ、注入口および上部試料採取場所と下部試料採取場所を設けた管内に、外径330mm、長さ30500mmのプロファイルを設置し、前記ヒューム管と前記プロファイルの両端部の隙間をシーリングしてある30m注入試験装置を用い、前記隙間に水75Lを入れ前記ヒューム管とプロファイル底から約10cmの高さにした。
前記モルタルをスクイズポンプを用いて前記注入口より25L/分の流量で注入し、上部試料採取場所および下部試料採取場所から流出したモルタルをそれぞれ上部試料および下部試料として採取し、上部単位容積質量と下部単位容積質量を測定し、上部単位容積質量と下部単位容積質量の単位容積質量差を求め、前記上部試料と下部試料の圧縮強度を測定した。
測定した結果を表6に示す。
(Example 4-1)
42 parts by weight of water was added to 100 parts by weight of the grout material composition of the present invention prepared in Example 1-3 to prepare a mortar, and the results were already obtained in Example 1-3. The 4m injection test conducted by connecting two fume tubes was not conducted, and the test was conducted in the same manner as in Example 1-1, except that the following 30m injection test conducted by connecting 15 fume tubes was replaced. did.
30m injection test:
Five fume tubes with an inner diameter of 350 mm and a length of 2000 mm used in the 4 m injection test device shown in FIG. 5 were connected, and an outer diameter of 330 mm and a length were set in the tube provided with an injection port and an upper sampling site and a lower sampling site. Using a 30 m injection tester in which a profile of 30500 mm is installed and a gap between the fume tube and both ends of the profile is sealed, 75 L of water is put in the gap to a height of about 10 cm from the fume tube and the profile bottom. did.
The mortar was injected at a flow rate of 25 L/min from the inlet using a squeeze pump, and the mortar flowing out from the upper sampling site and the lower sampling site was sampled as an upper sample and a lower sample, respectively, and the upper unit volume mass and The lower unit volume mass was measured, the unit volume mass difference between the upper unit volume mass and the lower unit volume mass was determined, and the compressive strength of the upper sample and the lower sample was measured.
Table 6 shows the measurement results.
表6から、実施例4-1においては、ヒューム管を多数連結させて行った30m注入試験においても、単位容積質量、引抜きフロー値、流下時間、水中不分離性、4m注入試験および材齢28日の圧縮強度試験において、いずれも本発明の規定範囲内にあることが判る。したがって、下水管内部に下水が存在し、そして前記隙間に残留した下水があっても、前記モルタルがその下水に接触し、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記隙間に充填したモルタルを硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られる効果が得られることが明らかになった。
From Table 6, in Example 4-1, even in the 30 m injection test performed by connecting a large number of fume tubes, the unit volume mass, the withdrawal flow value, the flow down time, the water inseparability, the 4 m injection test and the
本発明は、セメント、軽量骨材、水中不分離性付与鉱物および混和材を必須成分とする粉粒体からなるグラウト材組成物から構成される下水管更生工法用グラウト材であって、前記グラウト材組成物に所定量の水を添加・混合したモルタルが前記の試験法で測定した前記の性状1.〜6.を備えていることを特徴とする下水管更生工法用グラウト材であり、
老朽化した下水管内部に別途の管を設置し、両者の間に生じる隙間に充填する際に、下水管内部に下水が存在し、そして前記隙間に残留した下水があっても、前記モルタルがその下水に接触し、前記モルタルの一部が水の方へ溶けだすなどにより、分離したりせず、前記下水を外部へ排出しながら安定して均一に前記隙間に充填できるので、前記隙間に充填したモルタルを硬化させれば、均一な硬化物が得られ、新設管に匹敵する強度の複合管が得られるという顕著な効果を奏し、
本発明の下水管更生工法用グラウト材は、グラウト材として必要な成分が粉粒体として全て配合されている一材型のグラウト材であり、現場で所定量の水を添加して撹拌すれば各成分が短時間で均一に分散した流動性および各成分の分離抵抗性に優れたモルタルを作成できるので、手間がかからず、コストダウンになるとともに、計量ミスにより流動性が損なわれる問題や、硬化物の強度が損なわれるなどの問題がないという顕著な効果を奏し、
本発明のグラウト材を用いることによって、軽量性、高強度、流動性、各成分の材料分離抵抗性、ポンプ圧送性、接着性、耐久性、耐薬品性、耐温度変化性に優れ、下水管分野で必要な強度を持った優れた硬化物を得ることができるという顕著な効果を奏するので、産業上の利用価値が高い。
The present invention is a grout material for a sewer rehabilitation method, which is composed of a grout material composition consisting of cement, lightweight aggregate, underwater non-separation-imparting minerals and admixtures as essential components, wherein the grout The mortar obtained by adding and mixing a predetermined amount of water to the wood composition has the above-mentioned
When a separate pipe is installed inside the aged sewer pipe, and when filling the gap created between the two, there is sewage inside the sewer pipe, and even if there is sewage remaining in the gap , the mortar remains By contacting the sewage and causing part of the mortar to dissolve into the water, it does not separate, and the sewage can be stably and uniformly filled into the gap while being discharged to the outside. When the filled mortar is cured, a uniform cured product can be obtained, and a remarkable effect that a composite pipe having a strength comparable to that of a new pipe can be obtained,
The sewage pipe rehabilitation method grout material of the present invention is a one-piece grout material in which all the necessary components as a grout material are blended as powder and granules, and if a predetermined amount of water is added and stirred on site Since it is possible to create a mortar in which each component is uniformly dispersed in a short time and has excellent separation resistance of each component, there is no need for labor, cost is reduced, and fluidity is impaired due to measurement error. Has a remarkable effect that there is no problem such as deterioration of the strength of the cured product,
By using the grout material of the present invention, lightweight, high strength, fluidity, material separation resistance of each component, pumpability, adhesiveness, durability, chemical resistance, resistance to temperature change, sewer pipe Since it has the remarkable effect of being able to obtain an excellent cured product having the strength required in the field, it has a high industrial utility value.
Claims (5)
前記グラウト材組成物に所定量の水を添加・混合したモルタルが下記の試験法で測定した下記の性状1.〜6.を備えていることを特徴とする下水管更生工法用グラウト材。
(モルタル性状)
1.単位容積質量が1.30〜1.40Kg/L、
2.流下時間が5〜7秒、
3.引抜きフロー値が210〜290mm、
4.水中不分離性:懸濁物質量が0.80g以下、
5.4m注入試験で得られる上部単位容積質量と下部単位容積質量の単位容積質量差が0.05Kg/L以下、
6.圧縮強度が21〜60N/mm2。
(試験法)
1.単位容積質量:JIS A 1116「フレッシュコンクリートの単位容積質量試験方法及び空気量の質量による試験方法(質量方法)」に準じて、混練した試料(モルタル)を1Lの容器に入れ測定する。
2.流下時間:土木学会基準JSCE-F541「充填モルタルの流動性試験方法(案)」に規定されているJ14ロートの流出口を指で押え、モルタルを充填し、流出口から指を離してモルタルを流出させ、流出口からのモルタル流が初めて途切れるまでの流下時間(単位:秒)を測定する。
3.引抜きフロー値: JIS R5201-1999「セメントの物理試験方法」に規定されているフローコーンにモルタルを充填し、フローコーンを垂直に引き上げたときの広がりを測定する。
4.水中不分離性:10度の傾斜をつけて設置した図4に示す水中不分離性試験装置を用い、直径80mm、長さ200mmの円柱容器Aに300mLの水を入れ、内径20mm、高さ500mmの塩ビ管Bに充填したモルタル1000mLをバルブCを開き円柱容器Aに流し込み、押し出された懸濁水を採取場所Dで濾紙上に採取して、濾紙上に採取された懸濁物を100℃1時間乾燥し、懸濁物質量(g)を求める。
5.4m注入試験:図5に示す4m注入試験装置(内径350mm、長さ2000mmのヒューム管を2本連結させ、注入口および上部試料採取場所と下部試料採取場所を設けた管内に、外径330mm、長さ4500mmのプロファイルを設置し、前記ヒューム管と前記プロファイルの両端部の隙間をシーリングしてある。前記間隙に水10Lを入れる。)を用い、モルタルをスクイズポンプを用いて前記注入口より15L/分の流量で注入し、上部試料採取場所および下部試料採取場所から流出したモルタルをそれぞれ上部試料および下部試料として採取し、上部単位容積質量と下部単位容積質量を測定し、上部単位容積質量と下部単位容積質量の単位容積質量差を求める。
6.前記上部試料と下部試料の圧縮強度を下記試験法で測定し求める。
(圧縮強度):
土木学会基準JSCE-G521に準拠し、φ50×100mmの型枠にモルタルを充填・成形し、材齢2日で脱型し、試験材齢までビニール袋に入れて、温度20℃±2℃の室内で養生し、材齢28日とし、耐圧試験機(前川試験機製作所1000kN)を用いて測定する。 Cement, a lightweight aggregate, an underwater non-separation imparting mineral and a grout material for a sewer rehabilitation method composed of a grout material composition consisting of a powder and granules having an admixture as an essential component,
Mortar obtained by adding and mixing a predetermined amount of water to the grout material composition has the following properties measured by the following test method. ~6. A grout material for sewage pipe rehabilitation method, characterized by being equipped with.
(Mortar property)
1. Unit volume mass is 1.30 to 1.40 Kg/L,
2. Flow time is 5 to 7 seconds,
3. Withdrawal flow value of 210-290 mm,
4. Inseparability in water: Suspended substance amount 0.80g or less,
The unit volume mass difference between the upper unit volume mass and the lower unit volume mass obtained in the 5.4 m injection test is 0.05 Kg/L or less,
6. Compressive strength is 21 to 60 N/mm 2 .
(Test method)
1. Unit volume mass: According to JIS A 1116 "Unit volume mass test method for fresh concrete and test method by mass of air amount (mass method)", kneaded sample (mortar) is put in a 1 L container and measured.
2. Flow-down time: Hold the mortar with your finger to hold the outlet of the J14 funnel specified by JSCE-F541 "Method for testing the fluidity of filled mortar (draft)", fill the mortar, and remove your finger from the outlet to remove the mortar. The flow-out time (unit: second) until the mortar flow from the outlet is interrupted for the first time is measured.
3. Extraction flow value: The flow cone specified in JIS R5201-1999 "Cement physical test method" is filled with mortar, and the spread when the flow cone is pulled up vertically is measured.
4. Underwater inseparability: Using the underwater inseparability test apparatus shown in FIG. 4 installed with an inclination of 10 degrees, 300 mL of water was put into a cylindrical container A having a diameter of 80 mm and a length of 200 mm, an inner diameter of 20 mm, and a height of 500 mm. 1000 mL of mortar filled in the vinyl chloride pipe B was poured into the cylindrical container A by opening the valve C, and the extruded suspended water was collected on the filter paper at the collection place D, and the suspension collected on the filter paper was cooled to 100° C. 1 After drying for an hour, the amount of suspended solids (g) is determined.
5.4m injection test: A 4m injection test device shown in FIG. 5 (two fume tubes with an inner diameter of 350 mm and a length of 2000 mm are connected to each other, and an outer diameter is set in an injection port and an upper sampling place and a lower sampling place. A profile having a length of 330 mm and a length of 4500 mm is installed, and a gap between the fume tube and both ends of the profile is sealed. 10 L of water is put into the gap.), and the mortar is squeezed into the injection port. Mortar was injected at a flow rate of 15 L/min, and the mortar flowing out from the upper sampling site and the lower sampling site was collected as the upper sample and the lower sample, respectively, and the upper unit volume mass and the lower unit volume mass were measured. Calculate the unit volume mass difference between the mass and the lower unit volume mass.
6. The compressive strengths of the upper and lower samples are measured and determined by the following test method.
(Compressive strength):
In accordance with JSCE-G521 of the Japan Society of Civil Engineers, mortar is filled and molded in a φ50×100 mm mold, and the mold is demolded at the age of 2 days and put into a plastic bag until the age of the test material, and the temperature is 20°C ± 2°C. It is aged in a room, the material age is 28 days, and the pressure is measured using a pressure resistance tester (Maekawa Tester Co., Ltd., 1000 kN).
(試験法)
1.日本ベントナイト工業会標準試験方法JBAS-104-77「ベントナイト(粉状)の膨潤試験方法」に準じて、測定する。 The water inseparability imparting mineral is a smectite clay mineral, and the addition amount is 5 parts by mass or less based on 100 parts by mass of a composition containing cement, a lightweight aggregate, and an admixture as essential components, and measured by the following test method. The grout material for a sewer pipe rehabilitation method according to claim 1, wherein the swelling power is 10 ml/2 g or more, and the swelling amount, which is the product of the added amount and the swelling force, is 15 to 60.
(Test method)
1. It is measured according to the Japan Bentonite Industry Association standard test method JBAS-104-77 "Bentonite (powdered) swelling test method".
(モルタル性状)
1.単位容積質量が1.30〜1.40Kg/L、
2.流下時間が5〜7秒、
3.引抜きフロー値が210〜290mm、
4.水中不分離性:懸濁物質量が0.80g以下、
5.4m注入試験で得られる上部単位容積質量と下部単位容積質量の単位容積質量差が0.05Kg/L以下、
6.圧縮強度が21〜60N/mm2。 The following properties measured at the construction site by the above-mentioned test method by mixing a predetermined amount of water with the grout material composition according to any one of claims 1 to 4 and stirring the mixture. ~6. Create a mortar that has, in a state where sewage is present inside the existing sewer pipe, install a separate pipe, fill the gap with the mortar in a state where sewage remains in the gap between the two, The sewage pipe rehabilitation method, wherein the mortar cures after the sewage is discharged and filling is completed.
(Mortar property)
1. Unit volume mass is 1.30 to 1.40 Kg/L,
2. Flow time is 5 to 7 seconds,
3. Withdrawal flow value of 210-290 mm,
4. Inseparability in water: Suspended substance amount 0.80g or less,
The unit volume mass difference between the upper unit volume mass and the lower unit volume mass obtained in the 5.4 m injection test is 0.05 Kg/L or less,
6. Compressive strength is 21 to 60 N/mm 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020038317A JP6910020B2 (en) | 2016-03-30 | 2020-03-06 | Grout material for sewage pipe rehabilitation method and sewage pipe rehabilitation method using it |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016068256A JP6837256B2 (en) | 2016-03-30 | 2016-03-30 | Grout material for sewage pipe rehabilitation method and sewage pipe rehabilitation method using it |
JP2020038317A JP6910020B2 (en) | 2016-03-30 | 2020-03-06 | Grout material for sewage pipe rehabilitation method and sewage pipe rehabilitation method using it |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016068256A Division JP6837256B2 (en) | 2016-03-30 | 2016-03-30 | Grout material for sewage pipe rehabilitation method and sewage pipe rehabilitation method using it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020093976A true JP2020093976A (en) | 2020-06-18 |
JP6910020B2 JP6910020B2 (en) | 2021-07-28 |
Family
ID=71083930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020038317A Active JP6910020B2 (en) | 2016-03-30 | 2020-03-06 | Grout material for sewage pipe rehabilitation method and sewage pipe rehabilitation method using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6910020B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006248887A (en) * | 2005-02-14 | 2006-09-21 | Dc Co Ltd | Cement composition |
JP2013256433A (en) * | 2012-06-14 | 2013-12-26 | Tokyo Metropolitan Sewerage Service Corp | Grout material powder composition, cured product of the same, and lining construction method of existing tube |
JP2014091665A (en) * | 2012-11-06 | 2014-05-19 | Sumitomo Osaka Cement Co Ltd | Cement composition, method of producing air bubble-containing cement composition, and construction method using air bubble-containing cement composition |
-
2020
- 2020-03-06 JP JP2020038317A patent/JP6910020B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006248887A (en) * | 2005-02-14 | 2006-09-21 | Dc Co Ltd | Cement composition |
JP2013256433A (en) * | 2012-06-14 | 2013-12-26 | Tokyo Metropolitan Sewerage Service Corp | Grout material powder composition, cured product of the same, and lining construction method of existing tube |
JP2014091665A (en) * | 2012-11-06 | 2014-05-19 | Sumitomo Osaka Cement Co Ltd | Cement composition, method of producing air bubble-containing cement composition, and construction method using air bubble-containing cement composition |
Also Published As
Publication number | Publication date |
---|---|
JP6910020B2 (en) | 2021-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6223820B2 (en) | Polymer cement grout mortar | |
CN105712738B (en) | A kind of high water filling material for discarded pipe filling | |
KR102125233B1 (en) | Flowable fills for a underground structural backfills and method of manufacturing the same | |
JP5833859B2 (en) | Bubble mortar kneaded material and filling method | |
JP2010235721A (en) | Grouting method | |
JP5959096B2 (en) | Grout material composition for existing pipe lining, cured product thereof, and lining construction method for existing pipe | |
JP6837256B2 (en) | Grout material for sewage pipe rehabilitation method and sewage pipe rehabilitation method using it | |
JP2014129209A (en) | Grout composition and grout material | |
JP2009107894A (en) | Cement based anchoring material | |
CN104973838B (en) | A kind of concrete blocked for constructional engineering drain reserved holes of pipes | |
WO2020008794A1 (en) | Cement composition for bolt anchoring and bolt anchoring method | |
KR100964397B1 (en) | Grouting method for pressing pipe | |
KR100941646B1 (en) | Concrete structure repair components | |
JP3986709B2 (en) | Grout material composition, cured product and construction method thereof | |
JP6910020B2 (en) | Grout material for sewage pipe rehabilitation method and sewage pipe rehabilitation method using it | |
JP2014178032A (en) | Method of weighting plastic pipe | |
JP6636380B2 (en) | Backfill material for lining | |
JP2011042530A (en) | Flexible heavyweight concrete and flexible concrete structure | |
JP6654932B2 (en) | High strength grout composition and high strength grout material | |
KR101991203B1 (en) | extensive grout material | |
JP4977818B1 (en) | Filler, method for producing the same, and filling method using the filler | |
JP5664395B2 (en) | Construction method for housing foundation structure and housing foundation structure constructed using the same | |
JP4096150B2 (en) | Waterway repair method | |
JP6300520B2 (en) | Spray concrete | |
JP4812451B2 (en) | Waterway repair method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200306 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200306 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200427 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210601 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210622 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6910020 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |