JP2014129209A - Grout composition and grout material - Google Patents

Grout composition and grout material Download PDF

Info

Publication number
JP2014129209A
JP2014129209A JP2012289158A JP2012289158A JP2014129209A JP 2014129209 A JP2014129209 A JP 2014129209A JP 2012289158 A JP2012289158 A JP 2012289158A JP 2012289158 A JP2012289158 A JP 2012289158A JP 2014129209 A JP2014129209 A JP 2014129209A
Authority
JP
Japan
Prior art keywords
mass
grout
parts
powder
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012289158A
Other languages
Japanese (ja)
Other versions
JP6086585B2 (en
Inventor
Yoshihisa Hanei
誉久 羽根井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2012289158A priority Critical patent/JP6086585B2/en
Publication of JP2014129209A publication Critical patent/JP2014129209A/en
Application granted granted Critical
Publication of JP6086585B2 publication Critical patent/JP6086585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a grout composition, especially a grout composition for seismic strengthening, which is excellent in fluidity and hardly causes material separation regardless of high content of a fine aggregate, and to provide a grout material, especially a grout material for seismic strengthening, which is excellent in fluidity and hardly causes material separation regardless of high content of a fine aggregate.SOLUTION: Cement and a fine aggregate of a specific grain size are contained at a specific ratio. It is desirable that one or two or more selected from a powder thickener, a powder water reducing agent, an expanding material, a foaming agent, and an antifoaming agent are contained by specific amounts. It is desirable that a specific amount and ratio of water is kneaded.

Description

本発明は、耐震補強用グラウト組成物及びグラウト材に関する。詳しくは、細骨材の含有率が高いにも拘らず、流動性に優れ、材料分離が起こり難いグラウト組成物及びグラウト材に関し、特に耐震補強用グラウト組成物及び耐震補強用グラウト材に関する。   The present invention relates to a grout composition and a grout material for seismic reinforcement. More specifically, the present invention relates to a grout composition and a grout material that are excellent in fluidity and hardly cause material separation despite a high content of fine aggregate, and more particularly, to a grout composition for earthquake resistance reinforcement and a grout material for earthquake resistance reinforcement.

鉄筋コンクリート構造物を対象とした耐震補強工法としては、ブレース工法、増設壁工法、巻き立て工法など様々な耐震補強工法がある。これらの耐震補強工法に、グラウトモルタル(例えば、特許文献1〜3参照)が使用されている。グラウトモルタルを充填する部分には、既存の柱や梁等の鉄筋コンクリート製部材と、鉄骨製ブレースや鉄筋コンクリート製増設壁(耐力壁)とを一体化させるために、アンカー筋やスパイラル筋等の鉄筋が多数設置されているとともに、充填するグラウトモルタルの容積が比較的大きい。このため、耐震補強工法に用いるグラウトモルタルは、優れた流動性と低い発熱性が必要である。低い発熱性を得るためには、グラウトモルタル組成物中の細骨材の含有率(グラウトモルタル中の水を除いたものうちの含有率)を60質量%以上に高める、即ち結合材の含有率を40質量%以下にする必要がある。なお、本発明における結合材とは、水硬性セメントや高炉スラグ粉末等の水硬性物質、並びに活性シリカ等のポゾランをいう。   There are various seismic reinforcement methods for reinforced concrete structures such as brace method, additional wall method, and winding method. Grout mortar (see, for example, Patent Documents 1 to 3) is used for these seismic reinforcement methods. In the part filled with grout mortar, in order to integrate existing reinforced concrete members such as pillars and beams with steel braces and reinforced concrete extension walls (bearing walls), reinforcing bars such as anchor bars and spiral bars are used. Many are installed and the volume of grout mortar to be filled is relatively large. For this reason, the grout mortar used for the seismic reinforcement method needs to have excellent fluidity and low exothermicity. In order to obtain low exothermicity, the content of fine aggregate in the grout mortar composition (content of the grout mortar excluding water) is increased to 60% by mass or more, that is, the content of the binder. Must be 40% by mass or less. The binder in the present invention refers to hydraulic substances such as hydraulic cement and blast furnace slag powder, and pozzolans such as activated silica.

また、耐震補強工法において、グラウトモルタルをグラウトポンプで圧送した上で型枠内に充填することが多く行われている。細骨材の含有率が高いグラウトモルタルをグラウトポンプで圧送すると、グラウトモルタルの流動性がポンプ圧送の前後で大きく変化し、これにより材料分離が起こることや型枠脱枠時の表面状態が悪いことがあった。   In addition, in the seismic reinforcement method, the mold is often filled with grout mortar after being pumped by a grout pump. When grout mortar with a high content of fine aggregate is pumped with a grout pump, the fluidity of the grout mortar changes greatly before and after pumping, which causes material separation and poor surface condition when the formwork is removed. There was a thing.

特開2000−086320号公報JP 2000-086320 A 特開2000−044308号公報JP 2000-044308 A 特開2008−230890号公報JP 2008-230890 A

本発明は前記問題の解決、即ち、本発明は、細骨材の含有率が高いにも拘らず、流動性に優れ、材料分離が起こり難いグラウト組成物、特に耐震補強用グラウト組成物を提供することを目的とする。また、本発明は、細骨材の含有率が高いにも拘らず、流動性に優れ、材料分離が起こり難いグラウト材、特に耐震補強用グラウト材を提供することを目的とする。   The present invention provides a solution to the above-mentioned problem, that is, the present invention provides a grout composition that is excellent in fluidity and hardly separates in spite of a high content of fine aggregates, particularly a grout composition for seismic reinforcement. The purpose is to do. Another object of the present invention is to provide a grout material that is excellent in fluidity and hardly separates in spite of a high content of fine aggregates, particularly a seismic reinforcing grout material.

本発明者は、前記課題解決のため鋭意検討した結果、セメントと、特定粒度の細骨材を特定の割合で含有することにより、上記課題を解決できることを見出し、本発明を完成させた。即ち、本発明は、以下の(1)〜(3)で表すグラウト組成物、(4)で表す耐震補強用グラウト組成物、(5)で表すグラウト材及び(6)で表す耐震補強用グラウト材である。
(1)セメントを含有する粉末25〜45質量%と、75〜55質量%の骨材からなり、該骨材が2.5mmを超える粒子が1質量%以下、1.2mmを超え2.5mm以下の粒子が30〜40質量%、0.6mmを超え1.2mm以下の粒子が23〜40質量%、0.3mmを超え0.6mm以下の粒子が15〜20質量%、0.15mmを超え0.3mm以下の粒子が5〜15質量%であるグラウト組成物。
(2)上記粉末が、セメントを含有する無機質結合材100質量部に対し、0.001〜0.005質量部の粉末増粘剤、0.5〜1.5質量部の粉末減水剤、3〜12質量部の膨張材、0.0005〜0.01質量部の発泡剤、0.01〜0.05質量部の消泡剤から選ばれる1種又は2種以上を含有してなる上記(1)のグラウト組成物。
(3)グラウト組成物100質量部に対し12〜20質量部の水を混練して用いる上記(1)又は(2)のグラウト組成物。
(4)水結合材比32〜45%となる量の水を混練して用いる上記(1)〜(3)何れかのグラウト組成物からなる耐震補強用グラウト組成物。
(5)上記(1)〜(3)何れかのグラウト組成物と、グラウト組成物100質量部に対し12〜20質量部の水とを含有するグラウト材。
(6)上記(4)の耐震補強用グラウト組成物と、水結合材比32〜45%となる量の水とを含有する耐震補強用グラウト材。
As a result of intensive studies for solving the above problems, the present inventor has found that the above problems can be solved by containing cement and fine aggregates having a specific particle size in a specific ratio, and completed the present invention. That is, the present invention provides a grout composition represented by the following (1) to (3), a grout composition for earthquake-resistant reinforcement represented by (4), a grout material represented by (5), and a grout for earthquake-resistant reinforcement represented by (6) It is a material.
(1) 25 to 45% by mass of powder containing cement and 75 to 55% by mass of aggregate, and the aggregate is less than 1% by mass of particles exceeding 2.5 mm, exceeding 1.2 mm and 2.5 mm The following particles are 30 to 40% by mass, particles exceeding 0.6 mm to 1.2 mm are 23 to 40% by mass, particles exceeding 0.3 mm to 0.6 mm are 15 to 20% by mass, and 0.15 mm. A grout composition in which particles of more than 0.3 mm are 5 to 15% by mass.
(2) 0.001 to 0.005 parts by weight of powder thickener, 0.5 to 1.5 parts by weight of powder water reducing agent, with respect to 100 parts by weight of the inorganic binder containing cement. The above (1) or 2 or more types selected from -12 parts by mass of an expanding material, 0.0005 to 0.01 parts by mass of a foaming agent, and 0.01 to 0.05 parts by mass of an antifoaming agent ( The grout composition of 1).
(3) The grout composition according to the above (1) or (2), wherein 12 to 20 parts by mass of water is kneaded with 100 parts by mass of the grout composition.
(4) A grouting composition for seismic reinforcement comprising the grouting composition according to any one of the above (1) to (3), which is used by kneading an amount of water in an amount of 32 to 45%.
(5) A grout material containing the grout composition according to any one of (1) to (3) above and 12 to 20 parts by mass of water with respect to 100 parts by mass of the grout composition.
(6) A grouting material for seismic reinforcement comprising the grouting composition for seismic reinforcement of (4) above and an amount of water in an amount of 32 to 45% of the water binder ratio.

本発明によれば、細骨材の含有率が高いにも拘らず、流動性に優れ、材料分離が起こり難く且つ型枠の脱枠時の表面状態の優れるグラウト組成物、特に耐震補強用グラウト組成物が得られる。また、本発明によれば、細骨材の含有率が高いにも拘らず、流動性に優れ、材料分離が起こり難いグラウト材、特に耐震補強用グラウト材が得られる。   According to the present invention, despite the high content of fine aggregates, a grout composition that is excellent in fluidity, hardly separates in material, and has an excellent surface condition when the formwork is removed, particularly a seismic reinforcing grout. A composition is obtained. Further, according to the present invention, it is possible to obtain a grout material which is excellent in fluidity and hardly separates in spite of a high content of fine aggregates, particularly a seismic reinforcing grout material.

本発明のグラウト組成物に用いる粉末は無機質結合材を含有し、また、該無機質結合材はセメントを含有する。本発明におけるセメントは、水硬性セメントであればよく、例えば普通、早強、超早強、低熱及び中庸熱の各種ポルトランドセメント、エコセメント、並びにこれらのポルトランドセメント又はエコセメントに、フライアッシュ、高炉スラグ粉末、シリカフューム又は石灰石微粉末等を混合した各種混合セメント、太平洋セメント社製「スーパージェットセメント」(商品名)や住友大阪セメント社製「ジェットセメント」(商品名)等の超速硬セメント、アルミナセメント等が挙げられ、これらの一種又は二種以上を使用することができる。ワービリティを損ない難く可使時間が長く確保し易いことから、各種ポルトランドセメント、エコセメント及び各種混合セメントから選ばれる一種又は二種以上を使用することが好ましい。また、本発明において無機質結合材は、セメント以外には、フライアッシュやシリカフューム等のポゾラン、高炉スラグ粉末を代表とする潜在水硬性物質及び膨張材があるが、ポゾラン及び潜在水硬性物質は別に添加される場合であっても混合セメントの一部と考える。無機質結合材100質量部に対し、セメントを88〜97質量部含有させることが好ましい。   The powder used for the grout composition of the present invention contains an inorganic binder, and the inorganic binder contains cement. The cement in the present invention may be a hydraulic cement. For example, various ordinary Portland cements, eco-cements, low-temperature and moderate-heated portland cements, eco-cements, and fly ash, blast furnaces. Various mixed cements mixed with slag powder, silica fume, fine limestone powder, etc., super fast cement such as “Super Jet Cement” (trade name) manufactured by Taiheiyo Cement Co., Ltd. and “Jet Cement” (trade name) manufactured by Sumitomo Osaka Cement Co., Alumina A cement etc. are mentioned, These 1 type (s) or 2 or more types can be used. It is preferable to use one or two or more selected from various Portland cements, eco-cements, and various mixed cements because it is difficult to impair the workability and it is easy to ensure a long pot life. In addition, in the present invention, the inorganic binder includes, in addition to cement, pozzolanes such as fly ash and silica fume, latent hydraulic materials and expansion materials represented by blast furnace slag powder, but pozzolans and latent hydraulic materials are added separately. Even if it is, it is considered part of the mixed cement. It is preferable to contain 88 to 97 parts by mass of cement with respect to 100 parts by mass of the inorganic binder.

また、本発明に用いる粉末には、粉末状混和材料を用いることが好ましく、上記無機質結合材100質量部に対し、0.001〜0.005質量部の粉末増粘剤、0.5〜1.5質量部の粉末減水剤、3〜12質量部の膨張材、0.0005〜0.01質量部の発泡剤、0.01〜0.05質量部の消泡剤から選ばれる1種又は2種以上を含有することが更に好ましい。上記無機質結合材100質量部に対し、0.001〜0.005質量部の粉末増粘剤又は/及び0.5〜1.5質量部の粉末減水剤を含有させることで、グラウトモルタルとしたときに、モルタルポンプで圧送することができるとともに圧送後の材料分離を抑制することができる。更に好ましくは、上記無機質結合材100質量部に対し、0.001〜0.003質量部の粉末増粘剤又は/及び0.5〜1.5質量部の粉末減水剤含有させる。特に好ましくは、粉末増粘剤及び粉末減水剤を併用する。   Moreover, it is preferable to use a powdery admixture for the powder used for this invention, 0.001-0.005 mass part powder thickener with respect to 100 mass parts of said inorganic binders, 0.5-1 1 type selected from 5 parts by mass of powder water reducing agent, 3 to 12 parts by mass of expansion material, 0.0005 to 0.01 parts by mass of foaming agent, and 0.01 to 0.05 parts by mass of antifoaming agent It is more preferable to contain 2 or more types. Grout mortar was prepared by adding 0.001 to 0.005 parts by mass of a powder thickener or / and 0.5 to 1.5 parts by mass of a powder water reducing agent with respect to 100 parts by mass of the inorganic binder. Sometimes it can be pumped with a mortar pump and material separation after pumping can be suppressed. More preferably, 0.001 to 0.003 parts by mass of a powder thickener or / and 0.5 to 1.5 parts by mass of a powder water reducing agent are added to 100 parts by mass of the inorganic binder. Particularly preferably, a powder thickener and a powder water reducing agent are used in combination.

本発明に用いる粉末増粘剤としては、例えばヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース(HPC)等のヒドロキシアルキルセルロース、或いは、ヒドロキシエチルメチルセルロース(HEMC)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシエチルエチルセルロース(HEEC)等のヒドロキシアルキルアルキルセルロース等の水溶性セルロース;アルギン酸、β−1,3グルカン、プルラン、ウェランガム等の多糖類;アクリル樹脂やポリビニルアルコール等のポリビニル化合物;メチルスターチ,エチルスターチ,プロピルスターチ又はメチルプロピルスターチ等のアルキルスターチ、ヒドロキシエチルスターチ又はヒドロキシプロピルスターチ等のヒドロキシアルキルスターチ、或いは、ヒドロキシプロピルメチルスターチ等のヒドロキシアルキルアルキルスターチ等スターチエーテル等が挙げられ、これらの一種又は二種以上の使用が可能である。   Examples of the powder thickener used in the present invention include hydroxyalkylcelluloses such as hydroxyethylcellulose (HEC) and hydroxypropylcellulose (HPC), or hydroxyethylmethylcellulose (HEMC), hydroxypropylmethylcellulose (HPMC), hydroxyethylethylcellulose ( HEEC) and other water-soluble celluloses such as hydroxyalkylalkyl celluloses; polysaccharides such as alginic acid, β-1,3 glucan, pullulan and welan gum; polyvinyl compounds such as acrylic resins and polyvinyl alcohol; methyl starch, ethyl starch, propyl starch or Alkyl starch such as methylpropyl starch, hydroxyalkyl starch such as hydroxyethyl starch or hydroxypropyl starch, or hydride Hydroxyalkyl alkyl starch such as starch ethers such as hydroxypropyl starch and the like, it is possible to use alone or in combination.

また、本発明に用いる粉末減水剤としては、特に限定されず、例えば、ポリカルボン酸塩系粉末減水剤、ナフタレンスルホン酸塩系粉末減水剤、メラミンスルホン酸塩系粉末減水剤及びリグニンスルホン酸塩系粉末減水剤が挙げられ、これらの1種又は2種以上を用いることができる。用いる粉末減水剤としては、粉末状高性能減水剤又は粉末状高性能AE減水剤を用いると、グラウトモルタルの材齢28日における圧縮強度を45N/mm以上とし易いことから好ましい。 Further, the powder water reducing agent used in the present invention is not particularly limited, and examples thereof include polycarboxylate-based powder water reducing agents, naphthalene sulfonate-based powder water reducing agents, melamine sulfonate-based powder water reducing agents, and lignin sulfonates. System powder water reducing agent is mentioned, These 1 type (s) or 2 or more types can be used. As the powder water reducing agent to be used, it is preferable to use a powdery high performance water reducing agent or a powdery high performance AE water reducing agent because the compressive strength of the grout mortar at the age of 28 days is easily 45 N / mm 2 or more.

また、上記無機質結合材100質量部に対し、3〜12質量部の膨張材、0.0005〜0.01質量部の発泡剤又は/及び0.01〜0.05質量部の粉末消泡剤を含有させることで、耐震補強用のグラウトモルタルとしたときに、既設の壁や柱等の部材と新規に設置する部材がより一体化することができる。より好ましくは、上記無機質結合材100質量部に対し、5〜9質量部の膨張材、0.001〜0.004質量部の発泡剤又は/及び0.01〜0.03質量部の消泡剤を含有させる。   Moreover, 3 to 12 parts by mass of an expanding material, 0.0005 to 0.01 parts by mass of a foaming agent or / and 0.01 to 0.05 parts by mass of a powder antifoaming agent with respect to 100 parts by mass of the inorganic binder. By containing grouting mortar for seismic reinforcement, members such as existing walls and pillars and newly installed members can be more integrated. More preferably, with respect to 100 parts by mass of the inorganic binder, 5 to 9 parts by mass of an expanding material, 0.001 to 0.004 parts by mass of a foaming agent, and / or 0.01 to 0.03 parts by mass of defoaming are used. An agent is included.

本発明に用いる膨張材としては、水和により例えば水酸化カルシウムやエトリンガイト等の水和物の結晶が成長し、嵩体積が大きくなる物質を主要成分とするものであれば何れのものでも良く、具体的には、生石灰、カルシウムサルホアルミネート、無水石膏、マグネシア、石灰系膨張材、エトリンガイト系膨張材等が好適な例として挙げられ、これら又はこれらに類する物質の一種又は二種以上を使用することが可能である。用いる膨張材としては、JIS A 6202「コンクリート用膨張材 」に適合する膨張材が、混和量に対する膨張率が安定しているので特に好ましい。膨張材の混和量は、無機質結合材100質量部に対し、3〜12質量部とすることが好ましい。3質量部未満では膨張材の効果が得られ難く、12質量部を超えると拘束されていない部分の強度が不足する虞がある。より好ましい膨張材の混和量は、無機質結合材100質量部に対し、5〜9質量部とする。   As the expansion material used in the present invention, any material may be used as long as a hydrated crystal such as calcium hydroxide or ettringite grows by hydration and a substance having a large bulk volume is used as a main component. Specifically, quick lime, calcium sulfoaluminate, anhydrous gypsum, magnesia, lime-based expansive material, ettringite-based expansive material and the like are preferable examples, and one or two or more of these or similar substances are used. It is possible. As the expansion material to be used, an expansion material that conforms to JIS A 6202 “Expansion material for concrete” is particularly preferable because the expansion coefficient relative to the amount of mixing is stable. The mixing amount of the expansion material is preferably 3 to 12 parts by mass with respect to 100 parts by mass of the inorganic binder. If the amount is less than 3 parts by mass, it is difficult to obtain the effect of the expanding material. If the amount exceeds 12 parts by mass, the strength of the unconstrained portion may be insufficient. A more preferable mixing amount of the expansion material is 5 to 9 parts by mass with respect to 100 parts by mass of the inorganic binder.

本発明に用いる発泡剤としては、粉末発泡剤であれば特に限定されず、具体的には水と混練後に気体を発生する粉末であればよい。この発泡作用によりグラウトモルタルの沈下現象を防止し、既設の壁や柱等の部材並びに新規に設置する部材とより一体化することができる。との一体化を図る。その具体例として、例えば、アルミニウムや亜鉛等の両性金属の粉末や粉末状過酸化物質等が挙げられる。なかでも、効果的に発泡することができるので、アルミニウム粉末が好ましい。発泡剤の混和量は、無機質結合材100質量部に対し、0.0005〜0.01質量部とすることが好ましい。0.0005質量部未満では発泡剤の効果が得られ難く、0.01質量部を超えると強度が不足する虞がある。より好ましい発泡剤の混和量は、無機質結合材100質量部に対し、0.001〜0.004質量部とする。   The foaming agent used in the present invention is not particularly limited as long as it is a powder foaming agent. Specifically, it may be any powder that generates gas after being kneaded with water. This foaming action prevents the grouting mortar from sinking and can be integrated with existing members such as walls and pillars and newly installed members. Integrate with. Specific examples thereof include amphoteric metal powders such as aluminum and zinc, and powdered peroxides. Among these, aluminum powder is preferable because it can effectively foam. The blending amount of the foaming agent is preferably 0.0005 to 0.01 parts by mass with respect to 100 parts by mass of the inorganic binder. If it is less than 0.0005 part by mass, the effect of the foaming agent is difficult to obtain, and if it exceeds 0.01 part by mass, the strength may be insufficient. A more preferable blending amount of the blowing agent is 0.001 to 0.004 parts by mass with respect to 100 parts by mass of the inorganic binder.

本発明に用いる粉末消泡剤としては、市販のセメント用粉末消泡剤、市販のセメントモルタル用粉末消泡剤又は市販のコンクリート用粉末消泡剤の他、鉱物油系,エーテル系,シリコーン系等の液体消泡剤、トリブチルフォスフェート、ポリジメチルシロキサン又はポリオキシアルキレンアルキルエーテル系非イオン界面活性剤を無機質粉末に担持させ粉末状にしたもの、或いは他用途の粉末消泡剤でもよい。粉末消泡剤の混和量は、無機質結合材100質量部に対し、0.01〜0.05質量部とすることが好ましい。0.01質量部未満では粉末消泡剤の効果が得られ難く、0.05質量部を超えると強度が不足する虞がある。より好ましい粉末消泡剤の混和量は、無機質結合材100質量部に対し、0.01〜0.03質量部とする。   As the powder antifoaming agent used in the present invention, in addition to a commercially available powder antifoaming agent for cement, a commercially available powder antifoaming agent for cement mortar, or a commercially available powder antifoaming agent for concrete, mineral oil-based, ether-based, silicone-based A liquid antifoaming agent such as tributyl phosphate, polydimethylsiloxane or polyoxyalkylene alkyl ether nonionic surfactant supported on an inorganic powder, or a powder antifoaming agent for other uses may be used. The mixing amount of the powder antifoaming agent is preferably 0.01 to 0.05 parts by mass with respect to 100 parts by mass of the inorganic binder. If it is less than 0.01 part by mass, the effect of the powder antifoaming agent is difficult to obtain, and if it exceeds 0.05 part by mass, the strength may be insufficient. A more preferable mixing amount of the powder antifoaming agent is 0.01 to 0.03 parts by mass with respect to 100 parts by mass of the inorganic binder.

また、本発明に用いる骨材としては、2.5mmを超える粒子が1質量%以下、1.2mmを超え2.5mm以下の粒子が30〜40質量%、0.6mmを超え1.2mm以下の粒子が23〜40質量%、0.3mmを超え0.6mm以下の粒子が15〜20質量%、0.15mmを超え0.3mm以下の粒子が5〜15質量%である細骨材であればよい。本発明で用いる骨材の材質としては、特に限定されず、例えば、川砂、陸砂、海砂、砕砂、珪砂、人工骨材、スラグ骨材などを用いることができる。本発明において2.5mmを超える粒子とは、公称呼び寸法(以下、「目開き」と云う。)2.5mmの篩に留まる粒子を云う。また、1.2mmを超え2.5mm以下の粒子とは、目開き1.2mmの篩に留まり且つ目開き2.5mmの篩を通過する粒子を云う。同様に、0.6mmを超え1.2mm以下の粒子とは、目開き0.6mmの篩に留まり且つ目開き1.2mmの篩を通過する粒子を云い、0.3mmを超え0.6mm以下の粒子とは、目開き0.3mmの篩に留まり且つ目開き0.6mmの篩を通過する粒子を云い、0.15mmを超え0.3mm以下の粒子とは、目開き0.15mmの篩に留まり且つ目開き0.3mmの篩を通過する粒子を云い、0.15mm以下の粒子とは、目開き0.15mmの篩を通過する粒子を云う。骨材の粒度が上記範囲から外れると、材料分離が起こし易い、グラウトモルタルをグラウトポンプで圧送するとグラウトモルタルの流動性がポンプ圧送の前後で大きく変化する、又は型枠脱枠時の表面状態が悪いという問題が生じる。   Moreover, as an aggregate used for this invention, the particle | grains exceeding 2.5 mm are 1 mass% or less, the particle | grains exceeding 1.2 mm and 2.5 mm or less are 30-40 mass%, exceeding 0.6 mm and 1.2 mm or less. In the fine aggregate, the particle size is 23 to 40% by mass, the particle size exceeding 0.3 mm and 0.6 mm or less is 15 to 20% by mass, and the particle size exceeding 0.15 mm and 0.3 mm or less is 5 to 15% by mass. I just need it. The material of the aggregate used in the present invention is not particularly limited, and for example, river sand, land sand, sea sand, crushed sand, quartz sand, artificial aggregate, slag aggregate and the like can be used. In the present invention, particles exceeding 2.5 mm refer to particles that remain on a sieve having a nominal nominal size (hereinafter referred to as “mesh”) of 2.5 mm. Moreover, the particle | grains exceeding 1.2 mm and 2.5 mm or less mean the particle | grains which remain on the sieve with a mesh opening of 1.2 mm, and pass a sieve with a mesh opening of 2.5 mm. Similarly, particles exceeding 0.6 mm and not more than 1.2 mm mean particles that remain on the sieve having an aperture of 0.6 mm and pass through the sieve having an aperture of 1.2 mm, exceeding 0.3 mm and not more than 0.6 mm Means particles that remain on a sieve having an aperture of 0.3 mm and pass through a sieve having an aperture of 0.6 mm, and particles having a size exceeding 0.15 mm and not more than 0.3 mm are sieves having an aperture of 0.15 mm. And particles passing through a sieve having a mesh size of 0.3 mm, and particles having a size of 0.15 mm or less mean particles passing through a sieve having a mesh size of 0.15 mm. When the aggregate particle size is out of the above range, material separation is likely to occur.When grout mortar is pumped with a grout pump, the fluidity of the grout mortar changes greatly before and after pump pumping, or the surface condition when the mold is removed. The problem of bad arises.

本発明のグラウト組成物には、上記無機質結合材、粉末増粘剤、粉末減水剤、膨張材、発泡剤、粉末増粘剤、骨材及び粉末消泡剤以外に、他の混和材料から選ばれる一種又は二種以上を本発明の効果を実質損なわない範囲で併用することができる。この混和材料としては、例えばセメント用ポリマー、防水材、防錆剤、収縮低減剤、保水剤、顔料、繊維、撥水剤、白華防止剤、急結剤(材)、急硬剤(材)、凝結遅延剤、空気連行剤、表面硬化剤等が挙げられる。また、本発明で使用される混和材料は、粉末状でも水溶液状でも使用可能であるが、施工現場で複雑な計量操作等を必要とせずに、所定量の水を計量し混練するだけですぐに使用できるように、本発明のグラウト組成物の配合成分のすべてが予め混合され粉末状である所謂「プレミックス製品」であるほうが施工現場での作業性が良い為、使用する混和材料自体も全て粉末状又は顆粒状であることが好ましい。   In addition to the inorganic binder, powder thickener, powder water reducing agent, expansion agent, foaming agent, powder thickener, aggregate and powder antifoaming agent, the grout composition of the present invention is selected from other admixtures. One or two or more of them can be used in combination as long as the effects of the present invention are not substantially impaired. Examples of such admixtures include polymers for cement, waterproofing materials, rust preventives, shrinkage reducing agents, water retention agents, pigments, fibers, water repellents, whitening prevention agents, quick setting agents (materials), and hardeners (materials). ), A setting retarder, an air entraining agent, a surface curing agent, and the like. In addition, the admixture used in the present invention can be used in the form of powder or aqueous solution, but it does not require a complicated measuring operation etc. at the construction site, and it is just necessary to measure and knead a predetermined amount of water. The so-called “premix product” in which all the ingredients of the grout composition of the present invention are premixed and in powder form is more workable at the construction site. It is preferable that all are powdery or granular.

本発明のグラウト組成物において、セメントを含有する粉末の含有率は25〜45質量%且つ骨材の含有率は75〜55質量%とする。粉末の含有率が25質量%未満、骨材の含有率が75質量%を超えると材料分離を抑えながらグラウト材としての流動性を確保し難い。また、粉末の含有率が45質量%を超える、骨材の含有率が55質量%未満では、水和熱によるグラウトモルタル硬化体の温度上昇量が大きいため、耐震補強用グラウト材に用い難い。   In the grout composition of the present invention, the content of the powder containing cement is 25 to 45 mass% and the content of the aggregate is 75 to 55 mass%. When the powder content is less than 25% by mass and the aggregate content exceeds 75% by mass, it is difficult to ensure fluidity as a grout material while suppressing material separation. Moreover, when the content rate of powder exceeds 45 mass% and the content rate of aggregate is less than 55 mass%, since the amount of temperature rise of the grout mortar hardened | cured material by a heat | fever of hydration is large, it is difficult to use for a grout material for seismic reinforcement.

本発明のグラウト組成物は、V型混合機や可傾式コンクリートミキサ等の重力式ミキサ、ヘンシェル式ミキサ、リボンミキサ等のミキサにより、所定量の上記各材料を予め混合する方が、添加後のグラウト組成物において材料の偏在が抑えられることから好ましい。このとき用いるミキサは、連続式ミキサでもバッチ式ミキサでも良い。各材料のミキサ内への投入順序は特に限定されない。一種ずつ添加してもよく、一部又は全部を同時に添加してもよい。また、袋やポリエチレン製容器等の容器に各材料を計り取り投入する方法により、本発明のグラウト組成物を製造することもできる。   In the grout composition of the present invention, it is more preferable that a predetermined amount of each of the above materials is mixed in advance using a gravity mixer such as a V-type mixer or a tiltable concrete mixer, a Henschel mixer, a ribbon mixer or the like. In this grout composition, the uneven distribution of the material can be suppressed, which is preferable. The mixer used at this time may be a continuous mixer or a batch mixer. The order in which each material is charged into the mixer is not particularly limited. One by one may be added, or part or all may be added simultaneously. Moreover, the grout composition of this invention can also be manufactured by the method of measuring and throwing each material into containers, such as a bag and a polyethylene container.

本発明のグラウト組成物は、グラウト組成物100質量部に対し12〜20質量部の水と混練して用いる。このときの水量は、水性の液状混和材料(例えば液体減水剤やゴムラテックス。)を添加する場合は、グラウト組成物に添加する水性の液状混和材料に含まれる水の量も考慮する。12質量部未満では流動性が得られ難く、20質量部を超えると材料分離を起こす虞がある。より流動性が高く且つ材料分離し難いことから、13〜18質量部が好ましい。本発明のグラウト組成物を耐震補強用として用いるときは、水結合材比32〜45%となる量の水を混練して用いることが好ましい。   The grout composition of the present invention is used by kneading with 12 to 20 parts by mass of water with respect to 100 parts by mass of the grout composition. The amount of water at this time also takes into account the amount of water contained in the aqueous liquid admixture added to the grout composition when an aqueous liquid admixture (for example, a liquid water reducing agent or rubber latex) is added. If it is less than 12 parts by mass, it is difficult to obtain fluidity, and if it exceeds 20 parts by mass, material separation may occur. From the viewpoint of higher fluidity and difficulty in material separation, 13 to 18 parts by mass is preferable. When the grout composition of the present invention is used for seismic reinforcement, it is preferable to knead and use an amount of water that makes the water binder ratio 32 to 45%.

また、本発明のグラウト材は、上記のグラウト組成物と、グラウト組成物100質量部に対し12〜20質量部の水とを混練したものである。本発明のグラウト材に、本発明の効果を実質損なわない範囲で、上記の混和材料から選ばれる一種又は二種以上を混和し含有させることができる。このとき、水性の液状混和材料を混和するときは、この水性の液状混和材料に含まれる水量も考慮した上で、グラウト組成物100質量部に対し12〜20質量部となるようにする必要がある。本発明のグラウト材を耐震補強用として用いるときは、水結合材比32〜45%となる量の水を混練して用いることが好ましい。混練する方法は特に限定されず、例えば水に上記のグラウト組成物を全量加え混練する方法、水に上記のグラウト組成物を混練しながら加え更に混練する方法、上記のグラウト組成物に水を全量加え混練する方法、上記のグラウト組成物に水を混練しながら加え更に混練する方法、水及び上記のグラウト組成物のそれぞれ一部ずつを2以上に分けて混練したものを合わせて更に混練する方法、水と水性の混和材料を合わせたものに上記のグラウト組成物を全量加え混練する方法、水と水性の混和材料を合わせたものに上記のグラウト組成物を混練しながら加え更に混練する方法、上記のグラウト組成物に水と水性の混和材料を合わせたものを全量加え混練する方法、上記のグラウト組成物に水と水性の混和材料を合わせたものを混練しながら加え更に混練する方法、水と水性の混和材料を合わせたものに及び上記のグラウト組成物のそれぞれ一部ずつを2以上に分けて混練したものを合わせて更に混練する方法等がある。上記のグラウト組成物と水以外に混和材料を混和させる場合は、上記のグラウト組成物に添加しても、水に添加しても、両方に添加してもよく、上記のグラウト組成物と水を混練したものに添加してもよい。また、混練に用いる器具や混練装置も特に限定されないが、ミキサを用いることが量を多く混練できるので好ましい。用いることのできるミキサとしては連続式ミキサでもバッチ式ミキサでも良く、例えばパン型コンクリートミキサ、パグミル型コンクリートミキサ、重力式コンクリートミキサ、グラウトミキサ、ハンドミキサ、左官ミキサ等が挙げられる。   Moreover, the grout material of this invention kneads said grout composition and 12-20 mass parts water with respect to 100 mass parts of grout compositions. In the grout material of the present invention, one or two or more selected from the above-mentioned admixtures can be mixed and contained within a range that does not substantially impair the effects of the present invention. At this time, when the aqueous liquid admixture is mixed, the amount of water contained in the aqueous liquid admixture should be taken into account, and it should be 12 to 20 parts by mass with respect to 100 parts by mass of the grout composition. is there. When the grout material of the present invention is used for seismic reinforcement, it is preferable to knead and use an amount of water that makes the water binder ratio 32 to 45%. The method of kneading is not particularly limited, for example, a method of adding and kneading the whole amount of the above grout composition to water, a method of adding and kneading the above grout composition to water while further kneading, the whole amount of water to the above grout composition A method of adding and kneading, a method of adding and kneading water to the above grout composition while further kneading, a method of further kneading a mixture of water and part of each of the above grout compositions divided into two or more , A method of adding and kneading the entire amount of the above grout composition to a combination of water and an aqueous admixture, a method of adding and further kneading the above grout composition to a mixture of water and an aqueous admixture, A method of adding and kneading all the mixture of water and an aqueous admixture to the above grout composition, while kneading a mixture of water and an aqueous admixture to the above grout composition For example the method further kneaded, a method for each further kneaded together those kneaded separately in portions into two or more in to the combined admixture of water and an aqueous and the grout composition and the like. When mixing an admixture other than the above grout composition and water, it may be added to the above grout composition, to water, or to both, and to the above grout composition and water. May be added to the kneaded mixture. Moreover, although the apparatus and kneading apparatus used for kneading are not particularly limited, it is preferable to use a mixer because a large amount can be kneaded. The mixer that can be used may be a continuous mixer or a batch mixer, such as a pan concrete mixer, a pug mill concrete mixer, a gravity concrete mixer, a grout mixer, a hand mixer, and a plaster mixer.

[実施例1]
表1に示す配合割合の各材料をヘンシェルミキサ内に投入した後に、5分間混合することでグラウト組成物を作製した。このときの使用材料を以下に示す。作製したグラウト組成物と表1に示す水量の水を全量グラウトミキサ内に投入した後、90秒間混練することによりグラウト材を作製した。グラウト材の作製は、何れも20±3℃、湿度80%以上の恒温室内で行った。
<使用材料>
セメント:普通ポルトランドセメント(太平洋セメント社製)
発泡剤:アルミニウム粉末(東洋アルミニウウム社製)
細骨材:珪砂
粉末減水剤:ナフタレンスルホン酸塩系高性能減水剤(花王社製)
粉末減水剤2:リグニンスルホン酸塩系高性能減水剤(日本製紙ケミカル社製)
粉末増粘剤:水溶性セルロース系増粘剤(信越化学工業社製)
膨張材:JIS A 6202「コンクリート用膨張材 」に適合する石灰系膨張材(太平洋マテリアル株式会社製)
消泡剤:サンノプコ社製消泡剤(商品名「SNディフォーマー55P」、粉末状)

水:佐倉市上水
[Example 1]
A grout composition was prepared by putting each material of the blending ratio shown in Table 1 into a Henschel mixer and mixing for 5 minutes. The materials used at this time are shown below. The prepared grout composition and the amount of water shown in Table 1 were put into a grout mixer and then kneaded for 90 seconds to prepare a grout material. The production of the grout material was performed in a constant temperature room at 20 ± 3 ° C. and a humidity of 80% or more.
<Materials used>
Cement: Ordinary Portland cement (manufactured by Taiheiyo Cement)
Foaming agent: Aluminum powder (Toyo Aluminum Co., Ltd.)
Fine aggregate: Silica sand powder water reducing agent: Naphthalenesulfonate-based high-performance water reducing agent (manufactured by Kao Corporation)
Powder water reducing agent 2: Lignin sulfonate-based high-performance water reducing agent (manufactured by Nippon Paper Chemicals)
Powder thickener: Water-soluble cellulose thickener (manufactured by Shin-Etsu Chemical Co., Ltd.)
Expansion material: Lime-based expansion material (manufactured by Taiheiyo Materials Co., Ltd.) conforming to JIS A 6202 “Expansion material for concrete”
Antifoaming agent: Sannopco antifoaming agent (trade name “SN Deformer 55P”, powder)

Water: Sakura City water

Figure 2014129209
Figure 2014129209

作製したグラウト材を20分間静置した後、ホース長20mの注入ホース(内径2インチ)内をポンプ圧送し、ホース先端から排出されたグラウト材について、品質試験として以下に示す通り、流動性試験、ブリーディング試験、骨材の沈降有無確認試験、圧縮強度試験、並びに温度上昇量測定を行った。練り混ぜ直後の骨材沈降の有無、即ち材料分離の有無を手触りにより確認した。これらの結果を表2に示した。尚、圧縮強度試験以外の品質試験は、何れも20±3℃、湿度80%以上の恒温室内で行った。
<品質試験方法>
・流動性試験
土木学会基準 JSCE−F 541「充てんモルタルの流動性試験方法」に従って、J14漏斗による流下時間を測定した。流下時間が6秒〜10秒の範囲内を○(良好)、範囲外の値を×(不適)と評価した。
・ブリーディング試験
ブリーディングは、土木学会基準 JSCE−F 522「プレパックドコンクリートの注入モルタルのブリーディング率および膨張率試験方法」に従って測定した。ホース先端から排出されたグラウト材をポリエチレン製袋に入れ、2時間後にブリーディングを測定した。ブリーディングが見られなかったものを○(良好)、ブリーディングが見られたものを×(不良)と評価した。
・骨材沈降の有無確認試験(不分離性の確認)
ブリーディング試験と同様にグラウト材をポリエチレン製袋に入れ、20分後にポリ袋の底部分に細骨材が溜まっているか否かを手触りにより確認することで不分離性を判断した。ポリ袋の底部分に細骨材が沈降し溜まっているものを×(不良)、骨材が溜まっていないものを○(良好)と評価した。
・圧縮強度試験
土木学会基準JSCE−G 505「円柱供試体を用いたモルタルまたはセメントペーストの圧縮強度試験方法」に準じ、材齢28日の圧縮強度を測定した。このとき供試体は、材齢1日で脱型し、その後20℃の水中で試験直前まで養生した。材齢28日において圧縮強度が45N/mm以上のものを○(良好)、45N/mm未満のものを×(不良)と評価した。
・温度上昇量測定
グラウト材により1辺が30cmの立方体となる供試体を作製し、その供試体の中心温度を測定し、最高温度と、混練開始から最高温度到達までの時間を求めた。
After the produced grout material was allowed to stand for 20 minutes, the inside of an injection hose (inner diameter: 2 inches) having a length of 20 m was pumped and the grout material discharged from the tip of the hose was subjected to a fluidity test as shown below as a quality test. , Bleeding test, aggregate sedimentation confirmation test, compressive strength test, and temperature rise measurement. The presence or absence of aggregate sedimentation immediately after kneading, that is, the presence or absence of material separation was confirmed by touch. These results are shown in Table 2. In addition, all quality tests other than the compressive strength test were performed in a temperature-controlled room at 20 ± 3 ° C. and a humidity of 80% or more.
<Quality test method>
According & fluidity test Civil Engineering standard JSCE-F 541 "Test Method of Flowability for Filling Mortar" was measured flow time by J 14 funnel. The flow time was evaluated as ◯ (good) when the flow time was in the range of 6 seconds to 10 seconds, and x (unsuitable) when the value was outside the range.
-Bleeding test Bleeding was measured according to Japan Society of Civil Engineers standard JSCE-F 522 "Testing method for bleeding rate and expansion rate of mortar of prepacked concrete". The grout material discharged from the tip of the hose was put in a polyethylene bag, and bleeding was measured after 2 hours. The case where no bleeding was observed was evaluated as ◯ (good), and the case where bleeding was observed was evaluated as × (bad).
・ Aggregate sedimentation confirmation test (confirmation of inseparability)
In the same manner as the bleeding test, the grout material was put in a polyethylene bag, and after 20 minutes, it was judged by touching whether or not fine aggregates were accumulated on the bottom portion of the plastic bag. The case where fine aggregates settled and collected at the bottom of the plastic bag was evaluated as x (defect), and the case where aggregates did not accumulate was evaluated as good (good).
-Compressive strength test The compressive strength of 28 days of age was measured according to JSCE-G 505 "Method of testing compressive strength of mortar or cement paste using a cylindrical specimen". At this time, the specimen was demolded at the age of 1 day, and then cured in water at 20 ° C. until just before the test. A material having a compressive strength of 45 N / mm 2 or more at a material age of 28 days was evaluated as ◯ (good) and a material having a compressive strength of less than 45 N / mm 2 was evaluated as x (defective).
-Measurement of temperature rise A specimen with a side of 30 cm was made of a grout material, the center temperature of the specimen was measured, and the maximum temperature and the time from the start of kneading until the maximum temperature was reached were obtained.

Figure 2014129209
Figure 2014129209

本発明の実施例に当たるグラウト材(No.1〜4)は、何れも混練直後、ポンプ圧送後ともにJ14漏斗を用いた流下時間が8±2秒の範囲であり、流動性に優れポンプ圧送前後の流動性の変化が小さかった。それに比べて、比較例に当たる配合No.5のグラウト材は、混練直後8±2秒の範囲内であった流下時間が、8±2秒の範囲から外れていた。 Grout striking the embodiment of the present invention (No.1~4) are all just after kneading is in the range flow time of 8 ± 2 seconds using both J 14 funnel after pumping, pumping excellent fluidity The change in fluidity before and after was small. In comparison, the formulation no. In the grout material of No. 5, the flow-down time that was in the range of 8 ± 2 seconds immediately after the kneading was out of the range of 8 ± 2 seconds.

また、本発明の実施例に当たるグラウト材(No.1〜4)は、何れもブリーディングが見られず、細骨材の沈降も見られず材料分離が見られなかったが、比較例に当たるグラウト材(No.5〜6)はポンプ圧送後に少なくとも細骨材の沈降が見られ、材料分離を起こしていた。   In addition, the grout materials (Nos. 1 to 4) corresponding to the examples of the present invention did not show bleeding, the fine aggregates did not settle and the material separation was not observed, but the grout materials corresponding to the comparative examples. In (No. 5-6), at least fine aggregate sedimentation was observed after pumping, causing material separation.

また、本発明の実施例に当たるグラウト材(No.1〜4)は、何れも材齢28日の圧縮強度が45N/mm以上と、強度が高く優れていた。また、本発明の実施例に当たるグラウト材(No.1〜4)は、何れも最高温度が50℃以下、即ち温度上昇量が30℃以下と低発熱であった。これらのことより、本発明の実施例に当たるグラウト材(No.1〜4)は、何れも耐震補強用のグラウト材として充分な性能を有していた。 In addition, the grout materials (Nos. 1 to 4) corresponding to the examples of the present invention were both excellent in strength with a compressive strength of 45 N / mm 2 or more at the age of 28 days. In addition, the grout materials (Nos. 1 to 4) corresponding to the examples of the present invention all had a low exotherm with a maximum temperature of 50 ° C. or less, that is, a temperature increase amount of 30 ° C. or less. From these things, all the grout materials (No. 1-4) which correspond to the Example of this invention had sufficient performance as a grout material for earthquake-proof reinforcement.

本発明によれば、ポンプ圧送後においても流動性、圧縮強度、材料不分離性及び低発熱性が優れており、耐震補強用のグラウト材として用いることができる。また、耐震補強工事以外にも、低発熱性、高流動性及び高い強度が求められるグラウト材充填工事に用いることができる。   According to the present invention, fluidity, compressive strength, material non-separability and low heat build-up are excellent even after pumping, and it can be used as a grout material for seismic reinforcement. In addition to seismic reinforcement work, it can be used for grout filling work that requires low heat generation, high fluidity and high strength.

Claims (6)

セメントを含有する粉末25〜45質量%と、75〜55質量%の骨材からなり、該骨材が2.5mmを超える粒子が1質量%以下、1.2mmを超え2.5mm以下の粒子が30〜40質量%、0.6mmを超え1.2mm以下の粒子が23〜40質量%、0.3mmを超え0.6mm以下の粒子が15〜20質量%、0.15mmを超え0.3mm以下の粒子が5〜15質量%であるグラウト組成物。 Powder comprising 25 to 45% by mass of cement-containing powder and 75 to 55% by mass of aggregate, and particles having an aggregate exceeding 2.5 mm are 1% by mass or less, and particles exceeding 1.2 mm and not more than 2.5 mm Is 30 to 40% by mass, particles having a diameter of more than 0.6 mm and not more than 1.2 mm are 23 to 40% by mass, particles having a diameter of not less than 0.3 mm and not more than 0.6 mm are 15 to 20% by mass, exceeding 0.15 mm. A grout composition in which particles of 3 mm or less are 5 to 15% by mass. 上記粉末が、セメントを含有する無機質結合材100質量部に対し、0.001〜0.005質量部の粉末増粘剤、0.5〜1.5質量部の粉末減水剤、3〜12質量部の膨張材、0.0005〜0.01質量部の発泡剤、0.01〜0.05質量部の消泡剤から選ばれる1種又は2種以上を含有してなる請求項1に記載のグラウト組成物。 The powder is 0.001 to 0.005 parts by mass of powder thickener, 0.5 to 1.5 parts by mass of powder water reducing agent, 3 to 12 parts by mass with respect to 100 parts by mass of the inorganic binder containing cement. 2 or more types selected from the foaming agent of a part, 0.0005-0.01 mass part foaming agent, and 0.01-0.05 mass part antifoamer. Grout composition. グラウト組成物100質量部に対し12〜20質量部の水を混練して用いる請求項1又は請求項2に記載のグラウト組成物。 The grout composition according to claim 1 or 2, wherein 12 to 20 parts by mass of water is kneaded and used with respect to 100 parts by mass of the grout composition. 水結合材比32〜45%となる量の水を混練して用いる請求項1〜請求項3何れかに記載のグラウト組成物からなる耐震補強用グラウト組成物。 A grouting composition for seismic reinforcement comprising the grouting composition according to any one of claims 1 to 3, wherein water is mixed and used in an amount of 32 to 45%. 請求項1〜請求項3の何れかのグラウト組成物と、グラウト組成物100質量部に対し12〜20質量部の水とを含有するグラウト材。 A grout material containing the grout composition according to any one of claims 1 to 3 and 12 to 20 parts by mass of water with respect to 100 parts by mass of the grout composition. 請求項4に記載の耐震補強用グラウト組成物と、水結合材比32〜45%となる量の水とを含有する耐震補強用グラウト材。 A grouting material for seismic strengthening comprising the grouting composition for seismic strengthening according to claim 4 and water in an amount of 32 to 45% of the water binder ratio.
JP2012289158A 2012-12-28 2012-12-28 Grout composition and grout material Active JP6086585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012289158A JP6086585B2 (en) 2012-12-28 2012-12-28 Grout composition and grout material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012289158A JP6086585B2 (en) 2012-12-28 2012-12-28 Grout composition and grout material

Publications (2)

Publication Number Publication Date
JP2014129209A true JP2014129209A (en) 2014-07-10
JP6086585B2 JP6086585B2 (en) 2017-03-01

Family

ID=51407992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012289158A Active JP6086585B2 (en) 2012-12-28 2012-12-28 Grout composition and grout material

Country Status (1)

Country Link
JP (1) JP6086585B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149599A (en) * 2016-02-24 2017-08-31 太平洋マテリアル株式会社 Non-shrink grout composition
JP2017165625A (en) * 2016-03-17 2017-09-21 太平洋マテリアル株式会社 Grout composition
JP2018193280A (en) * 2017-05-18 2018-12-06 太平洋マテリアル株式会社 Quick-hardening ultrahigh-strength grout composition
CN111320414A (en) * 2020-03-31 2020-06-23 桂林理工大学 Ultra-high performance concrete dry powder additive and preparation method thereof
JP2020158372A (en) * 2019-03-27 2020-10-01 太平洋マテリアル株式会社 Highly durable grout composition
CN112794689A (en) * 2020-12-31 2021-05-14 上海三瑞高分子材料股份有限公司 Sleeve grouting material for connecting assembled construction steel bars

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044308A (en) * 1998-07-24 2000-02-15 Denki Kagaku Kogyo Kk Grout admixture, cement composition and grout material
JP2009149457A (en) * 2007-12-19 2009-07-09 Sumitomo Osaka Cement Co Ltd Antiwashout underwater cement-based packing composition and antiwashout underwater cement mortar

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044308A (en) * 1998-07-24 2000-02-15 Denki Kagaku Kogyo Kk Grout admixture, cement composition and grout material
JP2009149457A (en) * 2007-12-19 2009-07-09 Sumitomo Osaka Cement Co Ltd Antiwashout underwater cement-based packing composition and antiwashout underwater cement mortar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016040619; 木虎智子: '68.骨材粒径がグラウト材の間隙充填性および分離抵抗性に及ぼす影響について' セメント・コンクリート論文集 No.51, 19971225, P.400-405 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149599A (en) * 2016-02-24 2017-08-31 太平洋マテリアル株式会社 Non-shrink grout composition
JP2017165625A (en) * 2016-03-17 2017-09-21 太平洋マテリアル株式会社 Grout composition
JP2018193280A (en) * 2017-05-18 2018-12-06 太平洋マテリアル株式会社 Quick-hardening ultrahigh-strength grout composition
JP2020158372A (en) * 2019-03-27 2020-10-01 太平洋マテリアル株式会社 Highly durable grout composition
JP7350425B2 (en) 2019-03-27 2023-09-26 太平洋マテリアル株式会社 Highly durable grout composition
CN111320414A (en) * 2020-03-31 2020-06-23 桂林理工大学 Ultra-high performance concrete dry powder additive and preparation method thereof
CN112794689A (en) * 2020-12-31 2021-05-14 上海三瑞高分子材料股份有限公司 Sleeve grouting material for connecting assembled construction steel bars

Also Published As

Publication number Publication date
JP6086585B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP5051579B2 (en) High fluidity super early strength admixture and high fluidity super early strength concrete
JP6086585B2 (en) Grout composition and grout material
JP5064206B2 (en) Underwater inseparable mortar composition for high temperature environment and underwater inseparable grout mortar composition for high temperature environment
JP4944734B2 (en) Cement fixing material
JP2011132041A (en) Admixture for cement grout
JP6674301B2 (en) Cement-based low-viscosity fast-hardening grout material
JP2018193280A (en) Quick-hardening ultrahigh-strength grout composition
JP2013249214A (en) Underwater anti-washout non-shrink grout
JP4538438B2 (en) Grout composition and grout material using the same
JP2011132040A (en) Thickener for anti-washout underwater hydraulic composition
JP6296600B2 (en) Premix grout composition
JP4976803B2 (en) Grout composition and grout material using the same
JP5227161B2 (en) Cement admixture and cement composition
JP6645820B2 (en) Inseparable mortar composition in water
JP5083966B2 (en) High fluidity lightweight mortar composition
JP5647465B2 (en) PC grout composition
JP6482861B2 (en) Inseparable mortar composition in water
JP3806420B2 (en) Low strength mortar filler using shirasu
JP6955938B2 (en) High fluid concrete
JP2009023878A (en) Concrete for repairing cross section, and construction method for repairing cross section of concrete structure using the same
JP6420043B2 (en) Mortar composition
JP2010155757A (en) Admixture for grout and grout composition
JP6997579B2 (en) Mortar composition and mortar
JP6654932B2 (en) High strength grout composition and high strength grout material
JP6626341B2 (en) Inseparable mortar composition in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170130

R150 Certificate of patent or registration of utility model

Ref document number: 6086585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250