JP2020093381A - Discoidal work-piece processing method - Google Patents

Discoidal work-piece processing method Download PDF

Info

Publication number
JP2020093381A
JP2020093381A JP2019194320A JP2019194320A JP2020093381A JP 2020093381 A JP2020093381 A JP 2020093381A JP 2019194320 A JP2019194320 A JP 2019194320A JP 2019194320 A JP2019194320 A JP 2019194320A JP 2020093381 A JP2020093381 A JP 2020093381A
Authority
JP
Japan
Prior art keywords
disk
shaped work
thickness
polishing
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019194320A
Other languages
Japanese (ja)
Other versions
JP7417400B2 (en
Inventor
井上 雄貴
Yuki Inoue
雄貴 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to KR1020190154212A priority Critical patent/KR20200070103A/en
Priority to CN201911233068.3A priority patent/CN111283548B/en
Priority to US16/704,271 priority patent/US11400563B2/en
Priority to TW108144647A priority patent/TWI833851B/en
Publication of JP2020093381A publication Critical patent/JP2020093381A/en
Application granted granted Critical
Publication of JP7417400B2 publication Critical patent/JP7417400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/24Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding or polishing glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

To process a discoidal work-piece so that the discoidal work-piece already polished has uniform thicknesses.SOLUTION: A work-piece processing method comprises: a step in which a discoidal work-piece is held on a table 5; a step in which the work-piece is ground with a grindstone by rotating the work-piece and a grinding wheel 304; a step in which the work-piece is polished with a polishing pad 44 covering the work-piece, by rotating the work-piece already ground and the polishing pad 44; a step in which thicknesses of the work-piece are measured in at least two points of a first measurement point P1 at a center of the work-piece already polished and a second measurement point P2 near an outer peripheral edge of the work-piece; a step in which a thickness tendency in a radial direction of the work-piece is recognized from the thicknesses of the work-piece measured in the two measurement points P1 and P2; and a step in which an inclination relation between a rotary shaft 300 attached with the grinding wheel 304 and a rotary shaft 571 of the table 5 is changed in order to form in the subsequent grinding step a work-piece having the thickness tendency opposed to the thickness tendency recognized in the thickness tendency recognition step.SELECTED DRAWING: Figure 5

Description

本発明は、円板状ワークを研削及び研磨する加工方法に関する。 The present invention relates to a processing method for grinding and polishing a disk-shaped work.

円板状ワークからデバイスチップを製造する場合等においては、特許文献1に開示されているように、円板状ワークを研削砥石で研削して薄化した後に、円板状ワークの被研削面を覆う面積の研磨面を備える研磨パッドで被研削面を研磨している。 In the case where a device chip is manufactured from a disc-shaped work, etc., as disclosed in Patent Document 1, after the disc-shaped work is ground by a grinding wheel to be thinned, the surface to be ground of the disc-shaped work is The surface to be ground is polished with a polishing pad having a polishing surface with an area covering the area.

研削加工では、研削砥石を環状に配設した研削ホイールを回転させ、研削砥石で円板状ワークを均一な厚みに研削している。円板状ワークを均一な厚みに研削するために特許文献2に開示されているように、研削加工中に研削を一時停止させて、円板状ワークの半径において、半径の中点と、該中点から中心方向と外周方向とに同じ距離離反する2点との計3点での円板状ワーク厚みを測定する。そして、その3つの測定点の円板状ワークの厚み差が無くなるように、研削ホイールを回転させるスピンドル軸と円板状ワークを保持する保持テーブルのテーブル回転軸との傾き関係を変更している。 In the grinding process, a grinding wheel in which a grinding wheel is annularly arranged is rotated, and the disk-shaped work is ground by the grinding wheel to a uniform thickness. In order to grind a disk-shaped work to a uniform thickness, as disclosed in Patent Document 2, grinding is temporarily stopped during the grinding process, and in the radius of the disk-shaped work, the center point of the radius and the The thickness of the disk-shaped work is measured at a total of three points, that is, two points that are separated from each other by the same distance in the center direction and the outer circumferential direction from the midpoint. Then, the inclination relationship between the spindle shaft that rotates the grinding wheel and the table rotation shaft of the holding table that holds the disk-shaped work is changed so that the difference in thickness of the disk-shaped work at the three measurement points is eliminated. ..

均一な厚みに研削された円板状ワークを研磨した場合、研磨パッドが接触する時間が長い円板状ワークの中央部分が多く研磨され中凹形状の円板状ワークになってしまうことがある。また、研削と研磨とが同じ保持テーブルを使用する研削研磨装置では、保持テーブルの保持面が中心を頂点とする円錐形状になっている。その円錐形状の保持テーブルが保持する研削後の円板状ワークを研磨すると、円板状ワークの中心部分に研磨パッドが強くあてられるため中心部分が研磨されやすい。その対策として、特許文献3に開示されているように、研磨パッドの研磨面を部分的にドレスして、研磨面の中央が円板状ワークに強くあたらないように研磨面を形成することで、研磨後の円板状ワークの厚みが均一になるようにしている。 When polishing a disk-shaped work that has been ground to a uniform thickness, the polishing pad may take a long time to contact, so that the central part of the disk-shaped work is often polished, resulting in a disk-shaped work with a concave shape. .. Further, in a grinding and polishing apparatus that uses a holding table for grinding and polishing, the holding surface of the holding table has a conical shape with the center at the apex. When the disc-shaped work after grinding held by the conical holding table is polished, the polishing pad is strongly applied to the center of the disc-shaped work, so that the center is easily polished. As a measure against this, as disclosed in Patent Document 3, the polishing surface of the polishing pad is partially dressed, and the polishing surface is formed so that the center of the polishing surface does not hit the disk-shaped work strongly. The thickness of the disk-shaped work after polishing is made uniform.

特開2005−153090号公報JP, 2005-153090, A 特開2013−119123号公報JP, 2013-119123, A 特開2015−223636号公報JP, 2005-223636, A

しかし、研磨パッドを円板状ワークに押し付ける時間を長くする研磨加工では、特許文献3に開示されているように研磨パッドの研磨面を所望の形にドレスした場合であっても、研磨パッドが押しつぶされ、研磨後の円板状ワークは中凹形状になってしまうという問題がある。
さらに、ドレスによって研磨パッドが薄くなると研磨パッドのクッション性が小さくなり、保持テーブルが保持する円板状ワークの中心部分に研磨パッドが強く押し付けられ、研磨後の円板状ワークは中凹形状になってしまうという問題がある。
よって、円板状ワークを加工する場合には、研磨後の円板状ワークが均一な厚みになるように加工するという課題がある。
However, in the polishing process in which the time for pressing the polishing pad against the disk-shaped work is lengthened, even if the polishing surface of the polishing pad is dressed in a desired shape as disclosed in Patent Document 3, the polishing pad is There is a problem that the disk-shaped work after being crushed and polished becomes a concave shape.
Furthermore, when the dressing makes the polishing pad thinner, the cushioning property of the polishing pad becomes smaller, and the polishing pad is strongly pressed against the center part of the disk-shaped work held by the holding table, and the disk-shaped work after polishing becomes a concave shape. There is a problem of becoming.
Therefore, when processing a disk-shaped work, there is a problem that the disk-shaped work after polishing is processed to have a uniform thickness.

上記課題を解決するための本発明は、保持テーブルの保持面に保持させた円板状ワークを研削砥石で研削及び研磨パッドで研磨する円板状ワークの加工方法であって、該保持テーブルに該円板状ワークを保持させる保持工程と、該円板状ワークと該研削ホイールとをそれぞれ回転させ該研削砥石で該円板状ワークを研削する研削工程と、該研削工程後、該円板状ワークと該研磨パッドとをそれぞれ回転させて該研磨パッドが該円板状ワークを覆った状態で研磨する研磨工程と、該研磨工程後に、該円板状ワークの中心の第1の測定点と、該円板状ワークの外周縁近くの第2の測定点との少なくとも2つの測定点において該円板状ワークの厚みを測定する測定工程と、該測定工程で測定した該2つの測定点における該円板状ワークの厚みから該円板状ワークの径方向における厚み傾向を認識する厚み傾向認識工程と、次の該研削工程で該厚み傾向認識工程で認識した該厚み傾向に反する厚み傾向の円板状ワークを形成させるために、該研削ホイールが装着された回転軸と該保持テーブルの回転軸との傾き関係を変更する傾き変更工程と、を備える円板状ワークの加工方法である。 The present invention for solving the above-mentioned problems is a method for processing a disc-shaped work in which a disc-shaped work held on a holding surface of a holding table is ground by a grinding wheel and polished by a polishing pad, and A holding step of holding the disk-shaped work, a grinding step of rotating the disk-shaped work and the grinding wheel respectively to grind the disk-shaped work with the grinding wheel, and the disk after the grinding step Polishing step in which the circular workpiece and the polishing pad are respectively rotated to polish the circular workpiece while the polishing pad covers the circular workpiece, and a first measurement point at the center of the circular workpiece after the polishing step. And a measurement step of measuring the thickness of the disc-shaped work at at least two measurement points near the outer peripheral edge of the disc-shaped work, and the two measurement points measured in the measurement step. And a thickness tendency recognizing a thickness tendency in the radial direction of the disk-shaped work from the thickness of the disk-shaped work, and a thickness tendency contrary to the thickness tendency recognized in the thickness tendency recognition step in the next grinding step. In order to form the disc-shaped workpiece, the inclination changing step of changing the inclination relation between the rotation axis on which the grinding wheel is mounted and the rotation axis of the holding table is performed. ..

本発明に係る円板状ワークの加工方法においては、前記測定工程では、前記2つの測定点と、前記第1の測定点と前記第2の測定点との中間点である第3の測定点との少なくとも3つの測定点において前記円板状ワークの厚みを測定して、前記厚み傾向認識工程では、少なくとも該3つの測定点における該円板状ワークの厚みから該円板状ワークの径方向における厚み傾向を認識すると好ましい。 In the method for processing a disk-shaped workpiece according to the present invention, in the measuring step, a third measuring point which is an intermediate point between the two measuring points and the first measuring point and the second measuring point. And measuring the thickness of the disc-shaped work at at least three measurement points, and in the thickness tendency recognition step, the thickness of the disc-shaped work at least at the three measurement points is measured in the radial direction of the disc-shaped work. It is preferable to recognize the thickness tendency in.

本発明に係る円板状ワークの加工方法においては、前記研磨工程前に前記第1の測定点と、前記第2の測定点との少なくとも2つの測定点において該円板状ワークの厚みを測定する研磨前測定工程と、前記傾き変更工程前に、該研磨前測定工程で測定した該2つの測定点における該円板状ワークの厚みから前記測定工程で測定した該2つの測定点における該円板状ワークの厚みを差し引いて該2つの測定点における研磨除去量を算出する算出工程と、を含み、該傾き変更工程では、前記厚み傾向認識工程で認識した厚み傾向から該研磨除去量を差し引いた該円板状ワークの厚み傾向に反する厚み傾向の円板状ワークを次の前記研削工程で形成させるために、前記研削ホイールが装着された回転軸と前記保持テーブルの回転軸との傾き関係を変更すると好ましい。 In the method for processing a disk-shaped work according to the present invention, the thickness of the disk-shaped work is measured before the polishing step at at least two measurement points of the first measurement point and the second measurement point. The pre-polishing measuring step, and the circle at the two measuring points measured in the measuring step from the thickness of the disk-shaped workpiece at the two measuring points measured in the pre-polishing measuring step before the inclination changing step. And a calculation step of calculating the polishing removal amount at the two measurement points by subtracting the thickness of the plate-shaped work, in the inclination changing step, the polishing removal amount is subtracted from the thickness tendency recognized in the thickness tendency recognition step. Further, in order to form a disk-shaped work having a thickness tendency contrary to the thickness tendency of the disk-shaped work in the next grinding step, a tilt relationship between the rotary shaft on which the grinding wheel is mounted and the rotary shaft of the holding table is formed. Is preferably changed.

本発明に係る円板状ワークの加工方法においては、前記研磨前測定工程では、前記2つの測定点と、前記第1の測定点と前記第2の測定点との中間点である第3の測定点との少なくとも3つの測定点において前記円板状ワークの厚みを測定し、前記測定工程では、少なくとも該3つの測定点において該円板状ワークの厚みを測定し、前記算出工程では、該研磨前測定工程で測定した該3つの測定点における該円板状ワークの厚みから該測定工程で測定した該3つの測定点における該円板状ワークの厚みを差し引いて該3つの測定点における研磨除去量を算出し、前記厚み傾向認識工程では、少なくとも該3つの測定点における該円板状ワークの厚みから該円板状ワークの径方向における厚み傾向を認識すると好ましい。 In the disk-shaped workpiece processing method according to the present invention, in the pre-polishing measurement step, a third measurement point that is an intermediate point between the two measurement points and the first measurement point and the second measurement point is provided. The thickness of the disk-shaped workpiece is measured at at least three measurement points with the measurement points, in the measurement step, the thickness of the disk-shaped workpiece is measured at least at the three measurement points, and in the calculation step, Polishing at the three measurement points by subtracting the thickness of the disk-shaped work at the three measurement points measured at the measurement step from the thickness of the disk-shaped work at the three measurement points measured at the pre-polishing measurement step It is preferable that the removal amount is calculated, and in the thickness tendency recognition step, the thickness tendency in the radial direction of the disk-shaped work is recognized from the thickness of the disk-shaped work at least at the three measurement points.

本発明に係る円板状ワークの加工方法は、保持テーブルに円板状ワークを保持させる保持工程と、円板状ワークと研削ホイールとをそれぞれ回転させ研削砥石で円板状ワークを研削する研削工程と、研削工程後、円板状ワークと研磨パッドとをそれぞれ回転させて研磨パッドが円板状ワークを覆った状態で研磨する研磨工程と、研磨工程後に、円板状ワークの中心の第1の測定点と、円板状ワークの外周縁近くの第2の測定点との少なくとも2点において円板状ワークの厚みを測定する測定工程と、測定工程で測定した2つの測定点における円板状ワークの厚みから円板状ワークの径方向における厚み傾向(例えば、中凹状となる傾向)を認識する厚み傾向認識工程と、次の研削工程で厚み傾向認識工程で認識した厚み傾向に反する厚み傾向(例えば、中凸状となる傾向)の円板状ワークを形成させるために、研削ホイールが装着された回転軸と保持テーブルの回転軸との傾き関係を変更する傾き変更工程と、を備えることで、新たな円板状ワークを先に研磨加工された円板状ワークよりも研磨後に高精度に平坦化することが可能となる。
なお、研削研磨加工中に、研磨パッドは定期的にドレスを行っており、ドレスが繰り返され研磨パッドの厚みが薄くなると、研磨パッドはさらに中凹状になりやすいという現象があるが、本発明に係る円板状ワークの加工方法は、研磨パッドに定期的にドレスを施した場合でも、新たな円板状ワークを先に研磨加工された円板状ワークよりも研磨後に高精度に平坦化することが可能となる。
The method for processing a disk-shaped work according to the present invention includes a holding step of holding the disk-shaped work on a holding table, and a grinding process of rotating the disk-shaped work and a grinding wheel to grind the disk-shaped work with a grinding wheel. After the grinding step, the disk-shaped work and the polishing pad are respectively rotated to polish the disk-shaped work while the polishing pad covers the disk-shaped work. A measurement step of measuring the thickness of the disk-shaped work at at least two points, that is, one measurement point and a second measurement point near the outer peripheral edge of the disk-shaped work, and a circle at the two measurement points measured in the measurement step. It violates the thickness tendency recognition step that recognizes the thickness tendency (for example, the tendency to be concave) in the radial direction of the disk-shaped work from the thickness of the plate-shaped work, and the thickness tendency recognized in the thickness tendency recognition step in the next grinding step. An inclination changing step of changing the inclination relationship between the rotation axis on which the grinding wheel is mounted and the rotation axis of the holding table in order to form a disk-shaped work piece having a thickness tendency (for example, a tendency to have a medium convex shape). By including the new disk-shaped work, it becomes possible to flatten the new disk-shaped work with higher accuracy after polishing than the disk-shaped work that has been previously polished.
Incidentally, during the grinding and polishing process, the polishing pad is regularly dressed, and when the dressing is repeated and the thickness of the polishing pad becomes thin, there is a phenomenon that the polishing pad is more likely to have a concave shape. The disc-shaped workpiece machining method is such that even when the polishing pad is regularly dressed, the new disc-shaped workpiece is highly accurately flattened after polishing as compared with the disc-shaped workpiece previously polished. It becomes possible.

本発明に係る円板状ワークの加工方法においては、測定工程では、前記2つの測定点と、第1の測定点と第2の測定点との中間点である第3の測定点との少なくとも3つの測定点において円板状ワークの厚みを測定して、厚み傾向認識工程では、少なくとも3つの測定点における円板状ワークの厚みから円板状ワークの径方向における厚み傾向を認識することで、傾き変更工程において研削ホイールが装着された回転軸と保持テーブルの回転軸との傾き関係を変更する際に、測定点が2つである場合よりも適切に該傾き関係を変更することが可能となる。 In the method for processing a disk-shaped workpiece according to the present invention, in the measuring step, at least the two measuring points and a third measuring point which is an intermediate point between the first measuring point and the second measuring point. By measuring the thickness of the disk-shaped work at three measurement points and recognizing the thickness tendency in the radial direction of the disk-shaped work from the thickness of the disk-shaped work at at least three measurement points in the thickness tendency recognition step. When changing the tilt relationship between the rotary shaft on which the grinding wheel is mounted and the rotary shaft of the holding table in the tilt changing step, the tilt relationship can be changed more appropriately than when there are two measurement points. Becomes

本発明に係る円板状ワークの加工方法において、研磨工程前に第1の測定点と、第2の測定点との少なくとも2つの測定点において円板状ワークの厚みを測定する研磨前測定工程と、傾き変更工程前に、研磨前測定工程で測定した2つの測定点における円板状ワークの厚みから測定工程で測定した2つの測定点における円板状ワークの厚みを差し引いて2つの測定点における研磨除去量を算出する算出工程と、を含み、傾き変更工程では、厚み傾向認識工程で認識した厚み傾向から算出した研磨除去量を差し引いた円板状ワークの厚み傾向に反する厚み傾向の円板状ワークを次の研削工程で形成させるために、研削ホイールが装着された回転軸と保持テーブルの回転軸との傾き関係を変更することで、新たな円板状ワークを先に研磨加工された円板状ワークよりも研磨後に高精度に平坦化することが可能となる。 In the method for processing a disk-shaped work according to the present invention, a pre-polishing measurement step of measuring the thickness of the disk-shaped work at at least two measurement points including a first measurement point and a second measurement point before the polishing step. And before the inclination changing step, two measurement points are obtained by subtracting the thickness of the disk-shaped workpiece at the two measurement points measured in the measurement step from the thickness of the disk-shaped workpiece at the two measurement points measured in the pre-polishing measurement step. In the inclination changing step, a circle having a thickness tendency contrary to the thickness tendency of the disk-shaped work obtained by subtracting the polishing removal amount calculated from the thickness tendency recognized in the thickness tendency recognition step in the inclination changing step. In order to form a plate-shaped work in the next grinding process, a new disc-shaped work is polished first by changing the tilt relationship between the rotation axis of the grinding wheel and the rotation axis of the holding table. It becomes possible to perform flattening with higher accuracy after polishing than with a disc-shaped work.

本発明に係る円板状ワークの加工方法においては、研磨前測定工程では、前記2つの測定点と、第1の測定点と第2の測定点との中間点である第3の測定点との少なくとも3つの測定点において円板状ワークの厚みを測定し、測定工程では、少なくとも3つの測定点において円板状ワークの厚みを測定し、算出工程では、研磨前測定工程で測定した3つの測定点における円板状ワークの厚みから測定工程で測定した3つの測定点における円板状ワークの厚みを差し引いて3つの測定点における研磨除去量を算出し、厚み傾向認識工程では、少なくとも3つの測定点における円板状ワークの厚みから円板状ワークの径方向における厚み傾向を認識することで、傾き変更工程において研削ホイールが装着された回転軸と保持テーブルの回転軸との傾き関係を変更する際に、測定点が2つである場合よりも適切に該傾き関係を変更することが可能となる。 In the disk-shaped workpiece processing method according to the present invention, in the pre-polishing measurement step, the two measurement points and the third measurement point which is an intermediate point between the first measurement point and the second measurement point are included. The thickness of the disk-shaped work is measured at at least three measurement points of, the thickness of the disk-shaped work is measured at at least three measurement points in the measurement step, and the thickness of the disk-shaped work measured in the pre-polishing measurement step is calculated in the calculation step. The polishing removal amount at the three measurement points is calculated by subtracting the thickness of the disk-shaped work at the three measurement points measured in the measurement step from the thickness of the disk-shaped work at the measurement points. By recognizing the thickness tendency of the disk-shaped work in the radial direction from the thickness of the disk-shaped work at the measurement point, change the tilt relationship between the rotation axis on which the grinding wheel is mounted and the rotation axis of the holding table in the tilt change process. In this case, it is possible to change the inclination relationship more appropriately than when there are two measurement points.

研削研磨装置の一例を示す斜視図である。It is a perspective view showing an example of a grinding and polishing device. 位置調整ユニットと保持テーブルと保持テーブル回転手段とを示す斜視図である。It is a perspective view showing a position adjusting unit, a holding table, and a holding table rotating means. 傾き調整手段を構成する位置調整ユニットの配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement|positioning of the position adjustment unit which comprises an inclination adjustment means. 位置調整ユニットの例を示す断面図である。It is sectional drawing which shows the example of a position adjustment unit. 実施形態1の円板状ワークの加工方法の各工程の流れを説明するフローチャートである。6 is a flowchart illustrating a flow of each step of the method for processing a disk-shaped work according to the first embodiment. 保持テーブルに円板状ワークを保持させた状態を説明する断面図である。It is sectional drawing explaining the state which made the holding|maintenance table hold|maintain the disk-shaped workpiece. 板状ワークと研削ホイールとをそれぞれ回転させ研削砥石で円板状ワークを研削している状態を説明する断面図である。It is sectional drawing explaining the state which grinds a disk-shaped work with a grinding grindstone, rotating a plate-shaped work and a grinding wheel, respectively. 研削加工中における研削砥石による円板状ワークの加工領域を上方から見た場合の説明図である。It is explanatory drawing at the time of seeing from above the processing area|region of the disk-shaped workpiece|work by a grinding wheel during grinding. 円板状ワークと研磨パッドとをそれぞれ回転させて研磨パッドが円板状ワークを覆った状態で研磨を行っている状態を説明する断面図である。FIG. 6 is a cross-sectional view illustrating a state in which a disc-shaped work and a polishing pad are respectively rotated to perform polishing with the polishing pad covering the disc-shaped work. 研磨加工における研磨パッドによる円板状ワークの加工領域を下方から見た場合の説明図である。It is explanatory drawing at the time of seeing from below the processing area|region of the disk-shaped work by the polishing pad in polishing processing. 円板状ワークの中心の第1の測定点と、円板状ワークの外周縁近くの第2の測定点と、第1の測定点と第2の測定点との中間点である第3の測定点との3点において円板状ワークの厚みを測定している状態を説明する断面図である。A first measurement point at the center of the disc-shaped work, a second measurement point near the outer peripheral edge of the disc-shaped work, and a third point that is an intermediate point between the first measurement point and the second measurement point. It is sectional drawing explaining the state which is measuring the thickness of a disk-shaped workpiece|work at three points, a measurement point. 次の新たな円板状ワークに対する研削工程で厚み傾向認識工程で認識した厚み傾向に反する厚み傾向の円板状ワークを形成させるために、研削ホイールが装着された回転軸と保持テーブルの回転軸との傾き関係を変更している状態を説明する断面図である。In order to form a disk-shaped work with a thickness tendency contrary to the thickness tendency recognized in the next process for recognizing the thickness tendency in the grinding process for a new disk-shaped work, the rotation axis with the grinding wheel and the rotation axis of the holding table It is sectional drawing explaining the state which is changing the inclination relationship with. 実施形態2の円板状ワークの加工方法の各工程の流れを説明するフローチャートである。9 is a flowchart illustrating the flow of each step of the method for processing a disk-shaped work according to the second embodiment. 保持テーブルに一枚目の円板状ワークを保持させた状態を説明する断面図である。It is sectional drawing explaining the state which made the holding table hold|maintain the 1st disc-shaped work. 一枚目の板状ワークと研削ホイールとをそれぞれ回転させ研削砥石で円板状ワークを研削している状態を説明する断面図である。It is sectional drawing explaining the state which is rotating the 1st plate-shaped work and each grinding wheel, and grinds a disk-shaped work with a grinding wheel. 研磨前の一枚目の円板状ワークの中心の第1の測定点と、円板状ワークの外周縁近くの第2の測定点と、第1の測定点と第2の測定点との中間点である第3の測定点との3点において円板状ワークの厚みを測定している状態を説明する断面図である。The first measurement point at the center of the first disk-shaped work before polishing, the second measurement point near the outer peripheral edge of the disk-shaped work, the first measurement point and the second measurement point It is sectional drawing explaining the state which is measuring the thickness of a disk-shaped workpiece|work at three points, the 3rd measurement point which is an intermediate point. 一枚目の円板状ワークと研磨パッドとをそれぞれ回転させて研磨パッドが円板状ワークを覆った状態で研磨を行っている状態を説明する断面図である。FIG. 7 is a cross-sectional view illustrating a state in which the first disk-shaped work and the polishing pad are respectively rotated to perform polishing with the polishing pad covering the disk-shaped work. 研磨後の一枚目の円板状ワークの中心の第1の測定点と、円板状ワークの外周縁近くの第2の測定点と、第1の測定点と第2の測定点との中間点である第3の測定点との3点において円板状ワークの厚みを測定している状態を説明する断面図である。The first measurement point at the center of the first disk-shaped work after polishing, the second measurement point near the outer peripheral edge of the disk-shaped work, the first measurement point and the second measurement point It is sectional drawing explaining the state which is measuring the thickness of a disk-shaped workpiece|work at three points, the 3rd measurement point which is an intermediate point. 一枚目の円板状ワークについての厚み傾向認識工程で認識した厚み傾向、及び認識した厚み傾向から研磨除去量を差し引いた厚み傾向、並びに研磨除去量を差し引いた厚み傾向に反し次の研削工程で二枚目の円板状ワークに形成すべき厚み傾向を説明するための説明図である。Contrary to the thickness tendency recognized in the thickness tendency recognition step for the first disk-shaped workpiece, the thickness tendency obtained by subtracting the polishing removal amount from the recognized thickness tendency, and the thickness tendency subtracting the polishing removal quantity, the next grinding step FIG. 7 is an explanatory diagram for explaining a thickness tendency to be formed on the second disk-shaped work. 厚み傾向認識工程で認識した厚み傾向から算出した研磨除去量を差し引いた一枚目の円板状ワークの厚み傾向に反する厚み傾向の二枚目の円板状ワークを次の研削工程で形成させるために、保持テーブルの回転軸の傾きを変更する場合を説明する断面図である。The second disc-shaped work having a thickness tendency contrary to the thickness tendency of the first disc-shaped work obtained by subtracting the polishing removal amount calculated from the thickness tendency recognized in the thickness tendency recognition step is formed in the next grinding step. Therefore, it is a cross-sectional view for explaining a case of changing the inclination of the rotation axis of the holding table. 二枚目の円板状ワークを保持テーブルで保持して所望厚みになるように研削している状態を説明する断面図である。FIG. 6 is a cross-sectional view illustrating a state in which a second disk-shaped work is held by a holding table and ground to a desired thickness. 研磨前の二枚目の円板状ワークの中心の第1の測定点と、円板状ワークの外周縁近くの第2の測定点と、第1の測定点と第2の測定点との中間点である第3の測定点との3点において円板状ワークの厚みを測定している状態を説明する断面図である。The first measurement point at the center of the second disk-shaped work before polishing, the second measurement point near the outer peripheral edge of the disk-shaped work, the first measurement point and the second measurement point It is sectional drawing explaining the state which is measuring the thickness of a disk-shaped workpiece|work at three points, the 3rd measurement point which is an intermediate point. 二枚目の円板状ワークと研磨パッドとをそれぞれ回転させて研磨パッドが円板状ワークを覆った状態で研磨を行っている状態を説明する断面図である。FIG. 6 is a cross-sectional view illustrating a state in which the second disc-shaped work and the polishing pad are respectively rotated to perform polishing with the polishing pad covering the disc-shaped work. 研磨後の二枚目の円板状ワークの中心の第1の測定点と、円板状ワークの外周縁近くの第2の測定点と、第1の測定点と第2の測定点との中間点である第3の測定点との3点において円板状ワークの厚みを測定している状態を説明する断面図である。The first measurement point at the center of the second disk-shaped work after polishing, the second measurement point near the outer peripheral edge of the disk-shaped work, the first measurement point and the second measurement point It is sectional drawing explaining the state which is measuring the thickness of a disk-shaped workpiece|work at three points, the 3rd measurement point which is an intermediate point. 二枚目の円板状ワークにおける傾き変更工程における傾き維持を説明する断面図である。It is sectional drawing explaining the inclination maintenance in the inclination change process in the 2nd disk-shaped workpiece. 三枚目の円板状ワークを保持テーブルで保持して所望厚みになるように研削している状態を説明する断面図である。FIG. 6 is a cross-sectional view illustrating a state in which a third disk-shaped work is held by a holding table and is ground to have a desired thickness. 研磨前の三枚目の円板状ワークの中心の第1の測定点と、円板状ワークの外周縁近くの第2の測定点と、第1の測定点と第2の測定点との中間点である第3の測定点との3点において円板状ワークの厚みを測定している状態を説明する断面図である。The first measurement point at the center of the third disk-shaped work before polishing, the second measurement point near the outer peripheral edge of the disk-shaped work, the first measurement point and the second measurement point It is sectional drawing explaining the state which is measuring the thickness of a disk-shaped workpiece|work at three points, the 3rd measurement point which is an intermediate point. 三枚目の円板状ワークと研磨パッドとをそれぞれ回転させて研磨パッドが円板状ワークを覆った状態で研磨を行っている状態を説明する断面図である。FIG. 7 is a cross-sectional view illustrating a state in which the third disc-shaped work and the polishing pad are respectively rotated to perform polishing with the polishing pad covering the disc-shaped work. 研磨後の三枚目の円板状ワークの中心の第1の測定点と、円板状ワークの外周縁近くの第2の測定点と、第1の測定点と第2の測定点との中間点である第3の測定点との3点において円板状ワークの厚みを測定している状態を説明する断面図である。The first measurement point at the center of the third disk-shaped work after polishing, the second measurement point near the outer peripheral edge of the disk-shaped work, the first measurement point and the second measurement point It is sectional drawing explaining the state which is measuring the thickness of a disk-shaped workpiece|work at three points, the 3rd measurement point which is an intermediate point.

図1に示す研削研磨装置1は、粗研削手段30、仕上げ研削手段31、及び研磨手段4を備え、いずれかの保持テーブル5上に保持された円板状ワークWを粗研削手段30及び仕上げ研削手段31により研削し、さらに、研磨手段4により研磨する装置である。
研削研磨装置1は、例えば、第1の装置ベース10の後方(+Y方向側)に第2の装置ベース11を連結して構成されている。第1の装置ベース10上は、円板状ワークWの搬出入等が行われる搬出入領域Aとなっている。第2の装置ベース11上は、粗研削手段30、仕上げ研削手段31又は研磨手段4によって保持テーブル5で保持された円板状ワークWが加工される加工領域Bとなっている。
The grinding and polishing apparatus 1 shown in FIG. 1 includes a rough grinding unit 30, a finish grinding unit 31, and a polishing unit 4, and a disk-shaped work W held on any one of the holding tables 5 is roughly ground and finished. This is a device for grinding by the grinding means 31 and further by the grinding means 4.
The grinding/polishing device 1 is configured, for example, by connecting a second device base 11 to the rear (+Y direction side) of the first device base 10. The first device base 10 has a loading/unloading area A in which the disk-shaped workpiece W is loaded/unloaded. On the second device base 11, there is a processing area B in which the disk-shaped work W held by the holding table 5 by the rough grinding means 30, the finish grinding means 31 or the polishing means 4 is processed.

図1に示す円板状ワークWは、例えば、シリコン母材等からなる円形の半導体ウェーハであり、図1においては下方を向いている円板状ワークWの表面Waは、複数のデバイスが形成されており、図示しない保護テープが貼着されて保護されている。円板状ワークWの裏面Wbは、研削加工や研磨加工が施される被加工面となる。なお、円板状ワークWはシリコン以外にガリウムヒ素、サファイア、窒化ガリウム又はシリコンカーバイド等で構成されていてもよい。 The disk-shaped work W shown in FIG. 1 is, for example, a circular semiconductor wafer made of a silicon base material or the like, and a plurality of devices are formed on the surface Wa of the disk-shaped work W facing downward in FIG. A protective tape (not shown) is attached and protected. The back surface Wb of the disk-shaped work W is a surface to be processed that is subjected to grinding and polishing. The disk-shaped work W may be made of gallium arsenide, sapphire, gallium nitride, silicon carbide, or the like other than silicon.

第1の装置ベース10の正面側(−Y方向側)には、第1のカセット載置部150及び第2のカセット載置部151が設けられており、第1のカセット載置部150には加工前の円板状ワークWが収容される第1のカセット150aが載置され、第2のカセット載置部151には加工後の円板状ワークWが収容される第2のカセット151aが載置される。 The first cassette mounting portion 150 and the second cassette mounting portion 151 are provided on the front side (−Y direction side) of the first device base 10, and the first cassette mounting portion 150 is provided with the first cassette mounting portion 150. Is a second cassette 151a in which the first cassette 150a in which the disk-shaped work W before processing is accommodated is placed, and the second cassette 151a in which the disk-shaped work W after processing is accommodated in the second cassette mounting portion 151. Is placed.

第1のカセット150aの+Y方向側の開口の後方には、第1のカセット150aから加工前の円板状ワークWを搬出するとともに加工後の円板状ワークWを第2のカセット151aに搬入するロボット155が配設されている。ロボット155に隣接する位置には、仮置き領域152が設けられており、仮置き領域152には位置合わせ手段153が配設されている。位置合わせ手段153は、第1のカセット150aから搬出され仮置き領域152に載置された円板状ワークWを、縮径する位置合わせピンで所定の位置に位置合わせ(センタリング)する。 Behind the opening on the +Y direction side of the first cassette 150a, the disk-shaped work W before processing is carried out from the first cassette 150a and the disk-shaped work W after processing is carried into the second cassette 151a. A robot 155 is installed. A temporary placement area 152 is provided at a position adjacent to the robot 155, and a positioning means 153 is provided in the temporary placement area 152. The alignment means 153 aligns (centers) the disk-shaped work W, which has been unloaded from the first cassette 150a and placed on the temporary placement area 152, with a diameter-adjusting alignment pin at a predetermined position.

位置合わせ手段153と隣接する位置には、円板状ワークWを保持した状態で旋回するローディングアーム154aが配置されている。ローディングアーム154aは、位置合わせ手段153において位置合わせされた円板状ワークWを保持し、加工領域B内に配設されているいずれかの保持テーブル5へ搬送する。ローディングアーム154aの隣には、加工後の円板状ワークWを保持した状態で旋回するアンローディングアーム154bが設けられている。アンローディングアーム154bと近接する位置には、アンローディングアーム154bにより搬送された加工後の円板状ワークWを洗浄する枚葉式の洗浄手段156が配置されている。洗浄手段156により洗浄された円板状ワークWは、ロボット155により第2のカセット151aに搬入される。 At a position adjacent to the position adjusting means 153, a loading arm 154a that rotates while holding the disk-shaped work W is arranged. The loading arm 154a holds the disc-shaped work W aligned by the alignment means 153 and conveys it to any one of the holding tables 5 arranged in the processing area B. Next to the loading arm 154a, an unloading arm 154b that rotates while holding the processed disk-shaped work W is provided. At a position close to the unloading arm 154b, a single-wafer cleaning means 156 for cleaning the processed disk-shaped workpiece W conveyed by the unloading arm 154b is arranged. The disk-shaped work W cleaned by the cleaning means 156 is carried into the second cassette 151a by the robot 155.

第2の装置ベース11上の後方(+Y方向側)には第1のコラム12が立設されており、第1のコラム12の前面には粗研削送り手段20が配設されている。粗研削送り手段20は、鉛直方向(Z軸方向)の軸心を有するボールネジ200と、ボールネジ200と平行に配設された一対のガイドレール201と、ボールネジ200に連結しボールネジ200を回動させるモータ202と、内部のナットがボールネジ200に螺合し側部がガイドレール201に摺接する昇降板203と、昇降板203に連結され粗研削手段30を保持するホルダ204とから構成され、モータ202がボールネジ200を回動させると、これに伴い昇降板203がガイドレール201にガイドされてZ軸方向に往復移動し、ホルダ204に支持された粗研削手段30もZ軸方向に往復移動する。 A first column 12 is provided upright on the rear side (on the +Y direction side) of the second device base 11, and a rough grinding feed means 20 is provided on the front surface of the first column 12. The rough grinding feed means 20 connects the ball screw 200 having a vertical (Z-axis direction) axis, a pair of guide rails 201 arranged in parallel with the ball screw 200, and connects the ball screw 200 to rotate the ball screw 200. The motor 202 includes a motor 202, an elevating plate 203 whose internal nut is screwed to the ball screw 200 and a side portion of which is in sliding contact with the guide rail 201, and a holder 204 which is connected to the elevating plate 203 and holds the rough grinding means 30. When the ball screw 200 is rotated, the elevating plate 203 is guided by the guide rail 201 to reciprocate in the Z-axis direction, and the rough grinding means 30 supported by the holder 204 also reciprocates in the Z-axis direction.

粗研削手段30は、軸方向が鉛直方向(Z軸方向)である回転軸300と、回転軸300を回転可能に支持するハウジング301と、回転軸300を回転駆動するモータ302と、回転軸300の下端に接続された円形状のマウント303と、マウント303の下面に着脱可能に接続された研削ホイール304とを備える。そして、研削ホイール304は、ホイール基台304aと、ホイール基台304aの底面に環状に配設された略直方体形状の複数の粗研削砥石304bとを備える。粗研削砥石304bは、例えば、砥石中に含まれる砥粒が比較的大きな砥石である。
例えば、回転軸300の内部には、Z軸方向に延びる研削水流路が形成されており、この研削水流路に図示しない研削水供給手段が連通している。研削水供給手段から回転軸300に対して供給される研削水は、研削水流路の下端の開口から粗研削砥石304bに向かって下方に噴出し、粗研削砥石304bと円板状ワークWとの接触部位に到達する。
The rough grinding means 30 includes a rotary shaft 300 whose axial direction is the vertical direction (Z-axis direction), a housing 301 which rotatably supports the rotary shaft 300, a motor 302 which rotationally drives the rotary shaft 300, and a rotary shaft 300. A circular mount 303 connected to the lower end of the mount 303 and a grinding wheel 304 detachably connected to the lower surface of the mount 303. The grinding wheel 304 includes a wheel base 304a and a plurality of rough grinding wheels 304b that are annularly arranged on the bottom surface of the wheel base 304a and have a substantially rectangular parallelepiped shape. The rough grinding wheel 304b is, for example, a wheel in which the abrasive grains contained in the wheel are relatively large.
For example, a grinding water flow path extending in the Z-axis direction is formed inside the rotary shaft 300, and a grinding water supply unit (not shown) communicates with the grinding water flow path. The grinding water supplied from the grinding water supply means to the rotary shaft 300 is jetted downward from the opening at the lower end of the grinding water flow path toward the rough grinding wheel 304b, and the rough grinding wheel 304b and the disk-shaped work W are separated. Reach the contact area.

また、第2の装置ベース11上の後方には、第2のコラム13が第1のコラム12にX軸方向に並んで立設しており、第2のコラム13の前面には仕上げ研削送り手段21が配設されている。仕上げ研削送り手段21は、粗研削送り手段20と同様に構成されており、仕上げ研削手段31をZ軸方向に研削送りすることができる。仕上げ研削手段31は、砥石中に含まれる砥粒が比較的小さな仕上げ研削砥石314bを備えており、その他の構成は粗研削手段30と同様となっている。 In the rear of the second device base 11, a second column 13 is erected on the first column 12 side by side in the X-axis direction, and a finish grinding feed is provided on the front surface of the second column 13. Means 21 are provided. The finish grinding feed means 21 is configured similarly to the rough grinding feed means 20, and can feed the finish grinding means 31 by grinding in the Z-axis direction. The finish grinding means 31 includes a finish grinding stone 314b in which the abrasive grains contained in the grindstone are relatively small, and other configurations are similar to those of the rough grinding means 30.

第2の装置ベース11上の片側(−X方向側)には、第3のコラム14が立設されており、第3のコラム14の前面には、Y軸方向移動手段24が配設されている。Y軸方向移動手段24は、Y軸方向の軸心を有するボールネジ240と、ボールネジ240と平行に配設された一対のガイドレール241と、ボールネジ240を回動させるモータ242と、内部のナットがボールネジ240に螺合し側部がガイドレール241に摺接する可動板243とから構成される。そして、モータ242がボールネジ240を回動させると、これに伴い可動板243がガイドレール241にガイドされてY軸方向に移動し、可動板243上に配設された研磨手段4が可動板243の移動に伴いY軸方向に移動する。 A third column 14 is erected on one side (-X direction side) on the second device base 11, and a Y-axis direction moving means 24 is arranged on the front surface of the third column 14. ing. The Y-axis direction moving means 24 includes a ball screw 240 having an axis in the Y-axis direction, a pair of guide rails 241 arranged in parallel with the ball screw 240, a motor 242 for rotating the ball screw 240, and an internal nut. It is composed of a movable plate 243 which is screwed onto the ball screw 240 and whose side portion is in sliding contact with the guide rail 241. When the motor 242 rotates the ball screw 240, the movable plate 243 is guided by the guide rail 241 to move in the Y-axis direction, and the polishing means 4 disposed on the movable plate 243 moves the movable plate 243. Moves in the Y-axis direction.

可動板243上には、研磨手段4を保持テーブル5に対して接近又は離間するZ軸方向に昇降させる研磨送り手段25が配設されている。研磨送り手段25は、鉛直方向の軸心を有するボールネジ250と、ボールネジ250と平行に配設された一対のガイドレール251と、ボールネジ250に連結しボールネジ250を回動させるモータ252と、内部のナットがボールネジ250に螺合し側部がガイドレール251に摺接する昇降板253と、昇降板253に連結され研磨手段4を保持するホルダ254とから構成され、モータ252がボールネジ250を回動させると昇降板253がガイドレール251にガイドされてZ軸方向に移動し、ホルダ254に支持された研磨手段4もZ軸方向に移動する。 On the movable plate 243, polishing feed means 25 for moving the polishing means 4 up and down in the Z-axis direction, which approaches or separates from the holding table 5, is arranged. The polishing feed means 25 includes a ball screw 250 having a vertical axis, a pair of guide rails 251 arranged in parallel with the ball screw 250, a motor 252 for connecting the ball screw 250 to rotate the ball screw 250, and A motor 252 rotates the ball screw 250 by a nut 254 that is screwed onto the ball screw 250 and a side portion is slidably in contact with the guide rail 251 and a holder 254 that is connected to the elevator plate 253 and holds the polishing means 4. The elevating plate 253 is guided by the guide rails 251 to move in the Z-axis direction, and the polishing means 4 supported by the holder 254 also moves in the Z-axis direction.

研磨手段4は、例えば、軸方向が鉛直方向である回転軸40と、回転軸40を回転可能に支持するハウジング41と、回転軸40を回転駆動するモータ42と、回転軸40の下端に固定された円形板状のマウント43と、マウント43の下面に着脱可能に取り付けられた円形の研磨パッド44とから構成されている。研磨パッド44は、例えば、フェルト等の不織布からなり、中央部分にスラリ(遊離砥粒を含む研磨液)が通液される貫通孔が形成されている。研磨パッド44の直径は、マウント43の直径と同程度の大きさとなっており、また、保持テーブル5の直径よりも大径となっている。 The polishing means 4 is fixed to, for example, a rotary shaft 40 whose axial direction is a vertical direction, a housing 41 which rotatably supports the rotary shaft 40, a motor 42 which rotationally drives the rotary shaft 40, and a lower end of the rotary shaft 40. And a circular polishing pad 44 detachably attached to the lower surface of the mount 43. The polishing pad 44 is made of, for example, a non-woven fabric such as felt, and has a through hole formed in a central portion thereof through which slurry (polishing liquid containing loose abrasive grains) is passed. The diameter of the polishing pad 44 is about the same as the diameter of the mount 43, and is larger than the diameter of the holding table 5.

回転軸40の内部には、軸方向に延びるスラリ流路が形成されており、該スラリ流路に図示しないスラリ供給手段が連通している。スラリ供給手段から回転軸40に対して供給されるスラリは、スラリ流路の下端の開口から研磨パッド44に向かって噴出し、研磨パッド44の貫通孔を通り研磨パッド44と円板状ワークWとの接触部位に到達する。 A slurry passage extending in the axial direction is formed inside the rotary shaft 40, and a slurry supply means (not shown) communicates with the slurry passage. The slurry supplied from the slurry supply means to the rotating shaft 40 is jetted from the opening at the lower end of the slurry flow path toward the polishing pad 44, passes through the through hole of the polishing pad 44, and the polishing pad 44 and the disk-shaped work W. Reach the site of contact with.

図1に示すように、第2の装置ベース11上には、ターンテーブル6が配設され、ターンテーブル6の上面には、例えば保持テーブル5が周方向に等間隔を空けて4つ配設されている。ターンテーブル6の下面側にはエアを供給する図示しないエア供給源が接続されている。該エア供給源が供給するエアをターンテーブル6の下面に吹きつけることにより、ターンテーブル6を浮上させZ軸方向の軸心周りに回転可能な状態にすることができる。また、ターンテーブル6の中心には、ターンテーブル6を自転させるための図示しない回転軸が配設されており、回転軸を中心としてターンテーブル6をZ軸方向の軸心周りに自転させることができる。ターンテーブル6が自転することで、4つの保持テーブル5を公転させ、仮置き領域152の近傍から、粗研削手段30の下方、仕上げ研削手段31の下方、研磨手段4の下方へと保持テーブル5を順次位置付けることができる。 As shown in FIG. 1, a turntable 6 is arranged on the second device base 11, and four holding tables 5 are arranged on the upper surface of the turntable 6 at equal intervals in the circumferential direction. Has been done. An unillustrated air supply source for supplying air is connected to the lower surface side of the turntable 6. By blowing the air supplied from the air supply source onto the lower surface of the turntable 6, the turntable 6 can be levitated to be rotatable about the axis in the Z-axis direction. Further, a rotation shaft (not shown) for rotating the turntable 6 is provided at the center of the turntable 6, and the turntable 6 can be rotated about the axis in the Z-axis direction about the rotation shaft. it can. When the turntable 6 rotates, the four holding tables 5 revolve, and the holding tables 5 are moved from near the temporary placement area 152 to below the rough grinding means 30, below the finish grinding means 31, and below the polishing means 4. Can be positioned sequentially.

図1に示すように、保持テーブル5は、上部にポーラス部材50を備えており、ポーラス部材50は、枠体502によって囲繞されつつ支持されているとともに、図示しない吸引源に連通している。ポーラス部材50の上面は、円板状ワークWの表面Waを保持する保持面50aとなっており、また、保持テーブル5の回転中心を頂点とする極めて緩やか傾斜を備える円錐面に形成されている。そして、円板状ワークWも、円錐面である保持面50aにならって保持される。なお、保持面50aの傾斜は、肉眼では認識できないほどのわずかな傾斜である。 As shown in FIG. 1, the holding table 5 is provided with a porous member 50 on the upper portion, and the porous member 50 is supported while being surrounded by a frame body 502, and communicates with a suction source (not shown). The upper surface of the porous member 50 is a holding surface 50a that holds the front surface Wa of the disk-shaped work W, and is also formed into a conical surface having an extremely gentle inclination with the center of rotation of the holding table 5 as the apex. .. Then, the disk-shaped work W is also held following the holding surface 50a which is a conical surface. The inclination of the holding surface 50a is so slight that it cannot be recognized by the naked eye.

保持テーブル5は、保持面50aの中心を通る回転軸571を中心として回転可能となっている。図2に示すように、回転軸571には配管571bが貫通して形成されており、配管571bは、図示しない保持面50aの吸引力を生み出す吸引源に連通している。 The holding table 5 is rotatable about a rotation shaft 571 that passes through the center of the holding surface 50a. As shown in FIG. 2, a pipe 571b is formed so as to penetrate the rotating shaft 571, and the pipe 571b communicates with a suction source that generates a suction force of the holding surface 50a (not shown).

保持テーブル5は、図2に示す保持テーブル回転手段57によって回転可能となっている。保持テーブル回転手段57は、例えば、前記回転軸571と、保持テーブル5の中心を軸に保持テーブル5を回転させる駆動源となるモータ572とを備えたプーリ機構である。モータ572のシャフトには、プーリ573が取り付けられており、プーリ573には無端ベルト574が巻回されている。無端ベルト574は、回転軸571にも巻回されている。モータ572がプーリ573を回転駆動することで、プーリ573の回転に伴って無端ベルト574が回動し、無端ベルト574が回動することで回転軸571及び保持テーブル5が回転する。 The holding table 5 can be rotated by the holding table rotating means 57 shown in FIG. The holding table rotating means 57 is, for example, a pulley mechanism including the rotating shaft 571 and a motor 572 serving as a drive source for rotating the holding table 5 about the center of the holding table 5. A pulley 573 is attached to the shaft of the motor 572, and an endless belt 574 is wound around the pulley 573. The endless belt 574 is also wound around the rotating shaft 571. The motor 572 rotationally drives the pulley 573 to rotate the endless belt 574 with the rotation of the pulley 573, and the endless belt 574 rotates to rotate the rotating shaft 571 and the holding table 5.

図2に示すように、個々の保持テーブル5は、回転軸571の傾きを調整する傾き変更手段51を備えている。
傾き変更手段51は、支持台52と、支持台52に連結された位置調整ユニット53とから構成されている。支持台52は、円筒状に形成された支持筒部520と、支持筒部520から拡径したフランジ部521とから構成されている。支持台52は、回転軸571の上部側を囲繞しており、その内部に配設された図示しないベアリングを介して保持テーブル5の回転軸571を回転可能に支持している。そして、傾き変更手段51は、フランジ部521の傾きを調整することにより、回転軸571の傾き、即ち、保持面50aの傾きを調整する機能を有する。
As shown in FIG. 2, each holding table 5 includes an inclination changing unit 51 that adjusts the inclination of the rotating shaft 571.
The tilt changing unit 51 includes a support base 52 and a position adjustment unit 53 connected to the support base 52. The support base 52 includes a cylindrical support cylinder 520 and a flange 521 whose diameter is expanded from the cylindrical support 520. The support base 52 surrounds the upper side of the rotating shaft 571, and rotatably supports the rotating shaft 571 of the holding table 5 via a bearing (not shown) provided inside thereof. Then, the inclination changing unit 51 has a function of adjusting the inclination of the rotary shaft 571, that is, the inclination of the holding surface 50a by adjusting the inclination of the flange portion 521.

図2に示した位置調整ユニット53は、フランジ部521に周方向に等間隔空けて2つ以上設けられている。例えば図3に示すように、120度間隔で、2つの位置調整ユニット53と、フランジ部521を固定する固定ユニット53aとが配設される。また、位置調整ユニット53が3つ以上配設されるようにしてもよい。 Two or more position adjusting units 53 shown in FIG. 2 are provided on the flange portion 521 at equal intervals in the circumferential direction. For example, as shown in FIG. 3, two position adjusting units 53 and a fixing unit 53a for fixing the flange portion 521 are arranged at 120° intervals. Also, three or more position adjusting units 53 may be provided.

図2、4に示すように、位置調整ユニット53は、ビス539によってターンテーブル6に固定された筒部531と、筒部531を貫通するシャフト532と、シャフト532の下端に連結された駆動部533と、シャフト532の上端においてフランジ部521に固定された固定部534とから構成されている。駆動部533は、シャフト532を回転させるモータ533aと、シャフト532の回転速度を弱める減速機533bとから構成されている。 As shown in FIGS. 2 and 4, the position adjusting unit 53 includes a tubular portion 531 fixed to the turntable 6 by a screw 539, a shaft 532 penetrating the tubular portion 531 and a driving portion connected to a lower end of the shaft 532. 533 and a fixing portion 534 fixed to the flange portion 521 at the upper end of the shaft 532. The drive unit 533 includes a motor 533a that rotates the shaft 532, and a speed reducer 533b that reduces the rotational speed of the shaft 532.

図4に示すように、シャフト532の上端部には、第1の雄ねじ532aが形成されている。一方、固定部534は、第1の雄ねじ532aに螺合する第1の雌ねじ535aを有するナット535と、ボルト536aによってナット535に固定された挟持ナット536とから構成され、ナット535と挟持ナット536とでフランジ部521を挟持している。ボルト536aとシャフト532との間にはスプリング536bが介在している。 As shown in FIG. 4, a first male screw 532 a is formed on the upper end of the shaft 532. On the other hand, the fixing portion 534 includes a nut 535 having a first female screw 535a screwed to the first male screw 532a, and a holding nut 536 fixed to the nut 535 by a bolt 536a. The nut 535 and the holding nut 536 are provided. The flange portion 521 is sandwiched between and. A spring 536b is interposed between the bolt 536a and the shaft 532.

筒部531は、ターンテーブル6に形成された孔6cにおいて支持されている。また、シャフト532の下端部には、カップリング532cを介して減速機533b及びモータ533aが連結されており、モータ533aによる駆動によりシャフト532を回転させることができる。その結果、フランジ部521の傾きを変化させることができる。 The tubular portion 531 is supported in a hole 6c formed in the turntable 6. Further, a reducer 533b and a motor 533a are connected to a lower end portion of the shaft 532 via a coupling 532c, and the shaft 532 can be rotated by being driven by the motor 533a. As a result, the inclination of the flange portion 521 can be changed.

例えば、図1に示すように、ターンテーブル6の中央には、円柱状の支持台64が設けられており、支持台64上には、粗研削厚み測定手段65、仕上げ研削厚み測定手段66、及び研磨厚み測定手段67が配設されている。粗研削厚み測定手段65、仕上げ研削厚み測定手段66、及び研磨厚み測定手段67の構成は同様であるため、以下粗研削厚み測定手段65の構成について説明する。 For example, as shown in FIG. 1, a cylindrical support base 64 is provided in the center of the turntable 6, and on the support base 64, a rough grinding thickness measuring means 65, a finish grinding thickness measuring means 66, Also, a polishing thickness measuring means 67 is provided. Since the rough grinding thickness measuring means 65, the finish grinding thickness measuring means 66, and the polishing thickness measuring means 67 have the same structure, the structure of the rough grinding thickness measuring means 65 will be described below.

粗研削厚み測定手段65は、第2の装置ベース11に水平に延びるアーム650を備えており、アーム650は、支持台64上に固定された移動手段659によって水平に旋回移動可能となっている。
アーム650には、その延在方向に光センサ652、光センサ653、光センサ651が直線状に均等に離して並ぶように配設されている。
The rough grinding thickness measuring means 65 is provided with an arm 650 extending horizontally on the second apparatus base 11, and the arm 650 can be horizontally swung by a moving means 659 fixed on the support base 64. ..
An optical sensor 652, an optical sensor 653, and an optical sensor 651 are arranged on the arm 650 so as to be linearly and evenly spaced in the extending direction.

図1に示すように、研削研磨装置1は、例えば、装置全体の制御を行う制御手段9を備えている。制御手段9は、制御プログラムに従って演算処理するCPU及びメモリ等の記憶部90を備えており、粗研削送り手段20、仕上げ研削送り手段21、粗研削手段30、仕上げ研削手段31及び保持テーブル回転手段57(図2参照)等に電気的に接続されている。そして、制御手段9の制御の下で、粗研削送り手段20(仕上げ研削送り手段21)による粗研削手段30(仕上げ研削手段31)のZ軸方向への研削送り動作、及び粗研削手段30(仕上げ研削手段31)における研削ホイール304の回転動作、保持テーブル回転手段57による保持テーブル5の回転動作等が制御される。 As shown in FIG. 1, the grinding and polishing apparatus 1 includes, for example, a control unit 9 that controls the entire apparatus. The control means 9 includes a CPU for performing arithmetic processing according to a control program and a storage section 90 such as a memory. The rough grinding feed means 20, the finish grinding feed means 21, the rough grinding means 30, the finish grinding means 31, and the holding table rotating means. 57 (see FIG. 2) and the like. Then, under the control of the control means 9, the rough-grinding feed means 20 (finish-grinding feed means 21) performs the grinding-feeding operation of the rough-grinding means 30 (finish-grinding means 31) in the Z-axis direction, and the rough-grinding means 30 ( The rotation operation of the grinding wheel 304 in the finish grinding means 31) and the rotation operation of the holding table 5 by the holding table rotating means 57 are controlled.

(加工方法の実施形態1)
以下に、上記図1に示す研削研磨装置1を用いて円板状ワークWに研削加工及び研磨加工を施す場合の各工程について説明する。本発明に係る円板状ワークの加工方法(以下、実施形態1の加工方法とする。)の各工程は、例えば、図5に示すフローチャートに示す順番で実施されていく。
(Embodiment 1 of processing method)
Hereinafter, each step in the case where the disk-shaped workpiece W is ground and polished by using the grinding and polishing apparatus 1 shown in FIG. 1 will be described. Each step of the method for processing a disk-shaped work according to the present invention (hereinafter, referred to as the processing method of the first embodiment) is performed in the order shown in the flowchart of FIG. 5, for example.

(1)保持工程
まず、図1に示すターンテーブル6が自転することで、円板状ワークWが載置されていない状態の保持テーブル5が公転し、保持テーブル5がローディングアーム154aの近傍まで移動する。ロボット155が第1のカセット150aから一枚の円板状ワークWを引き出し、円板状ワークWを仮置き領域152に移動させる。次いで、位置合わせ手段153により円板状ワークWがセンタリングされた後、ローディングアーム154aが、センタリングされた円板状ワークWを保持テーブル5上に移動させる。そして、図6に示すように、保持テーブル5の中心と円板状ワークWの中心とが略合致するように、円板状ワークWが裏面Wbを上に向けた状態で保持面50a上に載置される。なお、図6においては傾き変更手段51や保持テーブル回転手段57等の構成を簡略化して示している。
(1) Holding Step First, by rotating the turntable 6 shown in FIG. 1, the holding table 5 in the state where the disk-shaped workpiece W is not placed revolves, and the holding table 5 reaches the vicinity of the loading arm 154a. Moving. The robot 155 pulls out one disk-shaped work W from the first cassette 150 a and moves the disk-shaped work W to the temporary placement area 152. Next, after the disc-shaped work W is centered by the alignment means 153, the loading arm 154a moves the centered disc-shaped work W onto the holding table 5. Then, as shown in FIG. 6, the disk-shaped work W is placed on the holding surface 50a with the back surface Wb facing upward so that the center of the holding table 5 and the center of the disk-shaped work W substantially coincide with each other. Placed. Note that, in FIG. 6, the configurations of the inclination changing means 51, the holding table rotating means 57, etc. are shown in a simplified manner.

そして、図示しない吸引源が作動して生み出された吸引力が、図2に示す配管571bを通り保持面50aに伝達されることで、保持テーブル5により円板状ワークWが保持される。また、緩やかな円錐面である保持面50aが図1に示す粗研削手段30の粗研削砥石304bの研削面(下面)に対して平行になるように、図2に示す傾き変更手段51によって保持テーブル5の傾き(回転軸571の傾き)が調整されることで、図7に示すように、円錐面である保持面50aにならって吸引保持されている円板状ワークWの裏面Wbが、粗研削砥石304bの研削面に対して略平行になる。 Then, the suction force generated by the operation of the suction source (not shown) is transmitted to the holding surface 50a through the pipe 571b shown in FIG. 2, so that the holding table 5 holds the disk-shaped work W. In addition, the holding surface 50a, which is a gentle conical surface, is held by the inclination changing means 51 shown in FIG. 2 so that it is parallel to the grinding surface (lower surface) of the rough grinding wheel 304b of the rough grinding means 30 shown in FIG. By adjusting the inclination of the table 5 (inclination of the rotation shaft 571), as shown in FIG. 7, the back surface Wb of the disk-shaped work W suction-held following the holding surface 50a that is a conical surface, It becomes substantially parallel to the grinding surface of the rough grinding wheel 304b.

(2)研削工程
図1に示すターンテーブル6が+Z方向から見て反時計回り方向に自転することで、円板状ワークWを吸引保持した状態の保持テーブル5が公転し、粗研削手段30の粗研削砥石304bと保持テーブル5に保持された円板状ワークWとの位置合わせがなされる。位置合わせは、例えば、図7、図8に示すように、粗研削砥石304bの回転中心が円板状ワークWの回転中心に対して所定の距離だけ水平方向にずれ、粗研削砥石304bの回転軌跡が円板状ワークWの回転中心を通るように行われる。
(2) Grinding process The turntable 6 shown in FIG. 1 rotates in the counterclockwise direction when viewed from the +Z direction, so that the holding table 5 in a state where the disc-shaped workpiece W is suction-held revolves, and the rough grinding means 30 is used. The rough grinding wheel 304b and the disk-shaped work W held on the holding table 5 are aligned with each other. For example, as shown in FIGS. 7 and 8, the alignment is performed by rotating the rough grinding wheel 304b by rotating the rough grinding wheel 304b horizontally with respect to the rotation center of the disk-shaped work W by a predetermined distance. It is performed so that the locus passes through the center of rotation of the disk-shaped work W.

図7に示すように、モータ302により回転軸300が所定の回転速度で回転されるのに伴って、粗研削砥石304bが回転する。また、粗研削手段30が粗研削送り手段20により−Z方向へと送られ、回転する粗研削砥石304bが保持テーブル5で保持された円板状ワークWの裏面Wbに当接することで研削加工が行われる。また、保持テーブル回転手段57が保持テーブル5を所定の回転速度で回転させるのに伴い保持面50a上に保持された円板状ワークWも回転するので、粗研削砥石304bが円板状ワークWの裏面Wb全面の粗研削加工を行う。粗研削加工中において、図示しない研削水供給手段が、研削水を回転軸300中の研削水流路を通して粗研削砥石304bと円板状ワークWの裏面Wbとの接触部位に供給して、接触部位を冷却・洗浄する。 As shown in FIG. 7, as the rotating shaft 300 is rotated at a predetermined rotation speed by the motor 302, the rough grinding wheel 304b is rotated. Further, the rough grinding means 30 is fed in the -Z direction by the rough grinding feed means 20, and the rotating rough grinding wheel 304b comes into contact with the back surface Wb of the disk-shaped work W held by the holding table 5 to perform grinding. Is done. Further, as the holding table rotating means 57 rotates the holding table 5 at a predetermined rotation speed, the disk-shaped work W held on the holding surface 50a also rotates, so that the rough grinding wheel 304b rotates the disk-shaped work W. Rough grinding is performed on the entire back surface Wb. During the rough grinding process, a grinding water supply means (not shown) supplies the grinding water to the contact part between the rough grinding wheel 304b and the back surface Wb of the disk-shaped work W through the grinding water flow path in the rotary shaft 300, and the contact part. To cool and wash.

円板状ワークWは保持テーブル5の緩やかな円錐面である保持面50aにならって吸引保持されているため、図8に示すように、粗研削砥石304bの回転軌跡中の矢印R1で示す範囲内において、粗研削砥石304bは円板状ワークWに当接し研削を行う。 Since the disk-shaped work W is sucked and held following the holding surface 50a which is a gentle conical surface of the holding table 5, as shown in FIG. 8, the range indicated by the arrow R1 in the rotation locus of the rough grinding wheel 304b. Inside, the rough grinding wheel 304b abuts on the disk-shaped work W to perform grinding.

仕上げ厚みの手前まで円板状ワークWが粗研削された後、図7に示す粗研削送り手段20が粗研削手段30を上昇させ円板状ワークWから離間させる。そして、図1に示すターンテーブル6が+Z方向から見て反時計回り方向に回転して、円板状ワークWを吸引保持する保持テーブル5が仕上げ研削手段31の下方まで移動する。 After the disk-shaped work W is roughly ground up to the finish thickness, the rough grinding feed means 20 shown in FIG. 7 raises the rough grinding means 30 to separate it from the disk-shaped work W. Then, the turntable 6 shown in FIG. 1 rotates counterclockwise when viewed from the +Z direction, and the holding table 5 that sucks and holds the disk-shaped workpiece W moves to below the finishing grinding means 31.

図1に示す仕上げ研削手段31の仕上げ研削砥石314bと保持テーブル5で吸引保持された円板状ワークWとの位置合わせが粗研削加工の場合と同様に行われた後、仕上げ研削手段31が仕上げ研削送り手段21により下方へと送られ、回転する仕上げ研削砥石314bが円板状ワークWの裏面Wbに当接し、また、保持テーブル5が回転することに伴って保持面50aに保持された円板状ワークWが回転して、円板状ワークWの裏面Wbの全面が仕上げ研削される。また、研削水が仕上げ研削砥石314bと円板状ワークWとの接触部位に対して供給され、接触部位が冷却・洗浄される。なお、保持テーブル5の傾き(回転軸571の傾き)は、粗研削時と同様となっている。 After the finish grinding wheel 314b of the finish grinding means 31 shown in FIG. 1 and the disk-shaped workpiece W suction-held by the holding table 5 are aligned in the same manner as in the rough grinding process, the finish grinding means 31 is The finishing grinding feed means 21 feeds downward, and the rotating finishing grinding stone 314b contacts the back surface Wb of the disk-shaped workpiece W, and is held on the holding surface 50a as the holding table 5 rotates. The disk-shaped work W rotates, and the entire back surface Wb of the disk-shaped work W is finish ground. Further, the grinding water is supplied to the contact portion between the finish grinding wheel 314b and the disk-shaped work W, and the contact portion is cooled and washed. The inclination of the holding table 5 (inclination of the rotating shaft 571) is the same as that during rough grinding.

(3)研磨工程
所望の仕上げ厚み(例えば、100μm)になるように研削され裏面Wbの平坦性がより高められた円板状ワークWから仕上げ研削砥石314bを離間させた後、図1に示すターンテーブル6が+Z方向から見て反時計回り方向に自転することで、仕上げ研削後の円板状ワークWを保持する保持テーブル5が公転し、研磨手段4が円板状ワークWを研磨する所定の研磨加工位置に保持テーブル5が位置付けられる。研磨手段4の研磨パッド44に対する円板状ワークWの位置合わせは、例えば、図9、10に示すように、研磨パッド44の回転中心が、円板状ワークWの回転中心に対して所定の距離だけ水平方向にずれ、円板状ワークWの裏面Wbの全面を研磨パッド44で覆った状態にする。なお、図示の例においては、研磨パッド44の外周と円板状ワークWの外周とが一部重なる状態となっているが、この状態に限られるものではない。
(3) Polishing Step After the finishing grinding wheel 314b is separated from the disk-shaped work W that has been ground to have a desired finishing thickness (for example, 100 μm) and the back surface Wb of which the flatness is further improved, it is shown in FIG. When the turntable 6 rotates in the counterclockwise direction when viewed from the +Z direction, the holding table 5 that holds the disc-shaped work W after finish grinding revolves, and the polishing means 4 polishes the disc-shaped work W. The holding table 5 is positioned at a predetermined polishing position. For the alignment of the disk-shaped work W with respect to the polishing pad 44 of the polishing means 4, for example, as shown in FIGS. 9 and 10, the rotation center of the polishing pad 44 is predetermined with respect to the rotation center of the disk-shaped work W. The polishing pad 44 covers the entire back surface Wb of the disk-shaped work W by shifting the distance in the horizontal direction. In the illustrated example, the outer periphery of the polishing pad 44 and the outer periphery of the disk-shaped work W are partially overlapped, but the state is not limited to this.

図9に示すように、モータ42により回転軸40が回転駆動されるのに伴って研磨パッド44が回転する。また、研磨手段4が研磨送り手段25により−Z方向へと送られ、研磨パッド44が円板状ワークWの裏面Wbに当接することで研磨加工が行われる。また、保持テーブル回転手段57が保持テーブル5を所定の回転速度で回転させるのに伴い保持面50a上に保持された円板状ワークWも回転するので、研磨パッド44が円板状ワークWの裏面Wb全面の研磨加工を行う。また、研磨加工中は、スラリを研磨パッド44と円板状ワークWの裏面Wbとの接触部位に対して供給する。 As shown in FIG. 9, the polishing pad 44 rotates as the rotary shaft 40 is rotationally driven by the motor 42. Further, the polishing means 4 is fed in the -Z direction by the polishing feed means 25, and the polishing pad 44 is brought into contact with the back surface Wb of the disk-shaped work W to perform the polishing process. Further, as the holding table rotating means 57 rotates the holding table 5 at a predetermined rotation speed, the disk-shaped work W held on the holding surface 50a also rotates, so that the polishing pad 44 serves as the disk-shaped work W. The entire back surface Wb is polished. Further, during the polishing process, the slurry is supplied to the contact portion between the polishing pad 44 and the back surface Wb of the disk-shaped work W.

円板状ワークWは保持テーブル5の緩やかな円錐面である保持面50aにならって吸引保持されているため、図10に示すように、研磨パッド44の研磨面中の矢印R2で示す範囲内において、研磨パッド44は円板状ワークWに当接し研磨を行う。 Since the disk-shaped work W is sucked and held following the holding surface 50a, which is a gentle conical surface of the holding table 5, as shown in FIG. 10, within the range shown by the arrow R2 in the polishing surface of the polishing pad 44. At, the polishing pad 44 contacts the disk-shaped work W to perform polishing.

なお、研磨加工中に研磨手段4を円板状ワークWの面方向(水平方向)に移動させない場合、裏面Wbに縞模様が形成される場合があり、これは円板状ワークWの抗折強度を低下させる要因となる。そこで、研磨加工中においては、Y軸方向移動手段24が研磨手段4をY軸方向に往復移動させて、研磨パッド44を円板状ワークWの裏面Wb上でY軸方向に摺動させてもよい。 When the polishing means 4 is not moved in the surface direction (horizontal direction) of the disk-shaped work W during the polishing process, a striped pattern may be formed on the back surface Wb, which is the bending strength of the disk-shaped work W. It becomes a factor to reduce the strength. Therefore, during the polishing process, the Y-axis direction moving means 24 reciprocates the polishing means 4 in the Y-axis direction to slide the polishing pad 44 on the back surface Wb of the disk-shaped workpiece W in the Y-axis direction. Good.

一枚の円板状ワークWの研磨を完了させた後、図9に示す研磨送り手段25により研磨手段4を+Z方向へと移動させて研磨加工済みの円板状ワークWから離間させる。 After the polishing of one disk-shaped work W is completed, the polishing feed means 25 shown in FIG. 9 moves the polishing means 4 in the +Z direction to separate it from the polished disk-shaped work W.

(4)測定工程
研磨工程後に、例えば、図11に示す円板状ワークWの中心の第1の測定点P1と、円板状ワークWの外周縁近くの第2の測定点P2と、第1の測定点P1と第2の測定点P2との中間点である第3の測定点P3との少なくとも3点において円板状ワークWの厚みを測定する。なお、測定点は第1の測定点P1と第2の測定点P2との2つだけであってもよい。具体的には、保持テーブル5の回転が停止された後に、例えば、図1に示す研磨厚み測定手段67のアーム650が旋回移動して円板状ワークWの半径の上方に位置付けられ、光センサ651、653、652の直下にそれぞれ第1の測定点P1、第3の測定点P3、第2の測定点P2が位置付けられる。
(4) Measurement Step After the polishing step, for example, a first measurement point P1 at the center of the disk-shaped work W, a second measurement point P2 near the outer peripheral edge of the disk-shaped work W, and a second measurement point P2 shown in FIG. The thickness of the disk-shaped work W is measured at at least three points, that is, a third measurement point P3 which is an intermediate point between the first measurement point P1 and the second measurement point P2. The number of measurement points may be only two, that is, the first measurement point P1 and the second measurement point P2. Specifically, after the rotation of the holding table 5 is stopped, for example, the arm 650 of the polishing thickness measuring means 67 shown in FIG. 1 is pivotally moved to be positioned above the radius of the disk-shaped work W, and the optical sensor A first measurement point P1, a third measurement point P3, and a second measurement point P2 are positioned immediately below 651, 653, and 652, respectively.

例えば、光センサ651、653、652は、その下方に位置付けられた円板状ワークWに対して、内蔵された投光素子が測定光を照射し、反射光を受光素子で受光する。そして、円板状ワークWの裏面Wbで反射した反射光と円板状ワークWを透過した後に表面Waで反射した反射光とを受光素子が受けた際の光路差を算出して、該算出値を基に干渉分光法の原理等から第1の測定点P1、第2の測定点P2、第3の測定点P3における円板状ワークWの厚みT1、T2、T3をそれぞれ測定する。 For example, in the optical sensors 651, 653, 652, the built-in light projecting element irradiates the disc-shaped work W positioned below the measuring light with the measuring light, and the light receiving element receives the reflected light. Then, the optical path difference when the light receiving element receives the reflected light reflected by the back surface Wb of the disk-shaped work W and the reflected light reflected by the surface Wa after passing through the disk-shaped work W is calculated. Based on the values, the thicknesses T1, T2, and T3 of the disk-shaped workpiece W at the first measurement point P1, the second measurement point P2, and the third measurement point P3 are measured based on the principle of interferometry and the like.

(5)厚み傾向認識工程
研磨厚み測定手段67の光センサ651、652、653が、測定した円板状ワークWの第1の測定点P1、第2の測定点P2、第3の測定点P3の厚みT1、T2、T3についての情報を図1に示す制御手段9に送る。制御手段9に送られた該情報は、制御手段9の記憶部90に記憶される。
制御手段9は、例えば、測定された第1の測定点P1、第2の測定点P2、第3の測定点P3における円板状ワークWの厚みT1、T2、T3から円板状ワークWの径方向における厚み傾向を認識する厚み傾向認識部91を備えている。例えば、測定された第1の測定点P1、第2の測定点P2、第3の測定点P3における円板状ワークWの厚みが、厚みT1=99μm、T2=102μm、T3=101μmであるとする。この場合には、厚み傾向認識部91は、研磨後の円板状ワークWが径方向外側に向かって厚くなる傾向、換言すれば、研磨後の円板状ワークWは中凹状になる傾向があると判断する。
(5) Thickness Tendency Recognition Step The optical sensors 651, 652, 653 of the polishing thickness measuring means 67 measure the first measurement point P1, the second measurement point P2, and the third measurement point P3 of the disc-shaped workpiece W. The information about the thicknesses T1, T2 and T3 of the slab is sent to the control means 9 shown in FIG. The information sent to the control means 9 is stored in the storage section 90 of the control means 9.
The control means 9 determines, for example, from the thicknesses T1, T2, T3 of the disk-shaped work W at the measured first measurement point P1, the second measurement point P2, and the third measurement point P3 to the disk-shaped work W. A thickness tendency recognition unit 91 that recognizes a thickness tendency in the radial direction is provided. For example, the thicknesses of the disk-shaped workpiece W at the measured first measurement point P1, second measurement point P2, and third measurement point P3 are thickness T1=99 μm, T2=102 μm, and T3=101 μm. To do. In this case, the thickness tendency recognition unit 91 tends to increase the thickness of the disk-shaped work W after polishing toward the outer side in the radial direction, in other words, the disk-shaped work W after polishing tends to have a concave shape. Judge that there is.

(6)傾き変更工程
また、ターンテーブル6が+Z方向から見て反時計回り方向に自転することで、研磨加工後の円板状ワークWを保持する保持テーブル5が公転し、保持テーブル5が図1に示すアンローディングアーム154bの近傍まで移動する。
次いで、保持テーブル5上に吸引保持されている研磨加工が施された円板状ワークWを、アンローディングアーム154bが吸引保持し、また、図示しない吸引源による吸引を止めて、保持テーブル5による円板状ワークWの吸引保持を解除する。アンローディングアーム154bが保持テーブル5から洗浄手段156へと円板状ワークWを搬送し、洗浄手段156で円板状ワークWの洗浄が行われる。洗浄が行われた円板状ワークWは、ロボット155により第2のカセット151a内に収容される。
(6) Inclination changing step In addition, the turntable 6 rotates in the counterclockwise direction when viewed from the +Z direction, so that the holding table 5 that holds the disk-shaped workpiece W after polishing revolves, and the holding table 5 moves. It moves to the vicinity of the unloading arm 154b shown in FIG.
Next, the unloading arm 154b suction-holds the disk-shaped work W that has been subjected to the polishing process and is suction-held on the holding table 5, and the suction by a suction source (not shown) is stopped, and the holding table 5 is used. The suction holding of the disk-shaped work W is released. The unloading arm 154b conveys the disk-shaped work W from the holding table 5 to the cleaning means 156, and the cleaning means 156 cleans the disk-shaped work W. The disc-shaped workpiece W that has been cleaned is accommodated in the second cassette 151a by the robot 155.

制御手段9は、例えば、新たな研削前の円板状ワークWに対して研削を施す場合に、次の新たな円板状ワークWに対する研削工程において、厚み傾向認識工程で認識した厚み傾向(径方向外側に向かって厚くなる傾向)に反する厚み傾向の円板状ワークWを形成させるために、粗研削手段30及び仕上げ研削手段31の研削ホイール304が装着された回転軸300と保持テーブル5の回転軸571との傾き関係を変更する。 For example, when performing grinding on a new disk-shaped work W before being ground, the control unit 9 recognizes the thickness tendency (recognized in the thickness tendency recognition step in the next grinding step for the new disk-shaped work W). In order to form a disk-shaped workpiece W having a thickness tendency against the tendency of becoming thicker toward the outside in the radial direction), the rotary shaft 300 to which the grinding wheels 304 of the rough grinding means 30 and the finish grinding means 31 are mounted, and the holding table 5. The inclination relationship with the rotation axis 571 of is changed.

例えば、図2に示す位置調整ユニット53の駆動部533のモータ533aが、図示しないパルス発振器から供給される駆動パルスによって動作するパルスモータである場合には、制御手段9が、モータ533aに供給される駆動パルス数をカウントすることで、各位置調整ユニット53によるフランジ部521の傾け角度を把握して、粗研削手段30の研削ホイール304が装着された鉛直方向の回転軸300に対する保持テーブル5の回転軸571の相対的な傾きを傾き変更手段51を介して変更する。即ち、本実施形態においては、図12に示すように、制御手段9による制御の下で、傾き変更手段51が保持テーブル5の外周側が+Z方向に所定距離持ち上がるように、回転軸571の傾き角度を変更する。 For example, when the motor 533a of the drive unit 533 of the position adjustment unit 53 shown in FIG. 2 is a pulse motor that operates by a drive pulse supplied from a pulse oscillator (not shown), the control means 9 is supplied to the motor 533a. The tilt angle of the flange portion 521 by each position adjustment unit 53 is grasped by counting the number of drive pulses to be generated, and the holding table 5 with respect to the vertical rotating shaft 300 on which the grinding wheel 304 of the rough grinding means 30 is mounted. The relative inclination of the rotating shaft 571 is changed via the inclination changing means 51. That is, in the present embodiment, as shown in FIG. 12, under the control of the control means 9, the tilt angle of the rotating shaft 571 is controlled so that the tilt changing means 51 lifts the outer peripheral side of the holding table 5 in the +Z direction by a predetermined distance. To change.

なお、位置調整ユニット53の駆動部533のモータ533aをサーボモータとし、サーボモータにロータリエンコーダが接続された構成としてもよい。ロータリエンコーダは、サーボアンプとしての機能も有する制御手段9に接続されており、制御手段9からサーボモータに対して動作信号が供給された後、エンコーダ信号(サーボモータの回転数)を制御手段9に対して出力する。制御手段9は受け取ったエンコーダ信号により、傾き変更手段51による回転軸571の傾け角度を把握する。 The motor 533a of the drive unit 533 of the position adjustment unit 53 may be a servo motor, and a rotary encoder may be connected to the servo motor. The rotary encoder is connected to the control means 9 which also has a function as a servo amplifier, and after the operation signal is supplied from the control means 9 to the servo motor, the encoder signal (the rotation number of the servo motor) is controlled by the control means 9. Output to. The control unit 9 grasps the tilt angle of the rotation shaft 571 by the tilt changing unit 51 based on the received encoder signal.

研削ホイール304が装着された回転軸300と保持テーブル5の回転軸571との傾き関係が変更されることで、次の保持テーブル5に保持された新たな円板状ワークWに対して研削工程において研削を施す際に、先に研削研磨された円板状ワークWにおいて研磨後に円板状ワークW中の第1の測定点P1より厚くなる第2の測定点P2及び第3の測定点P3が、粗研削砥石304b(仕上げ研削砥石314b)の研削面に対して第1の測定点P1に対して相対的に上方に上げられた状態で研削を行っていくことができる。したがって、先に研磨加工し終わった円板状ワークWの厚み傾向(径方向外側に向かって厚くなる傾向)に反する厚み傾向(径方向内側に向かって厚くなる傾向)の円板状ワークW、換言すれば中凸状の円板状ワークWを研削工程の完了によって形成できる。 By changing the inclination relationship between the rotary shaft 300 on which the grinding wheel 304 is mounted and the rotary shaft 571 of the holding table 5, a grinding process is performed on a new disc-shaped workpiece W held on the next holding table 5. In the case of performing the grinding in, the second measurement point P2 and the third measurement point P3, which become thicker than the first measurement point P1 in the disk-shaped work W after the grinding in the disk-shaped work W previously ground However, it is possible to perform grinding in a state in which the surface of the rough grinding wheel 304b (finishing grinding wheel 314b) is relatively raised above the first measurement point P1. Therefore, the disk-shaped work W having a thickness tendency (a tendency to become thicker toward the radially inner side) contrary to the thickness tendency (the tendency to become thicker toward the radially outer side) of the disk-shaped work W that has been polished first, In other words, the medium convex disk-shaped workpiece W can be formed by completing the grinding process.

次いで、径方向内側に向かって厚くなる傾向の円板状ワークWに先に説明した研磨加工を施すことで、先に実施した研磨加工において研磨されにくかった円板状ワークWの第2の測定点P2及び第3の測定点P3がより研磨されやすい状態(研磨パッド44により接触しやすい状態)で研磨が行われていくため、新たな研磨加工後の円板状ワークWは先に研削研磨加工が施された円板状ワークWより高精度に平坦化された状態になる。 Then, the disk-shaped workpiece W that tends to become thicker inward in the radial direction is subjected to the above-described polishing processing, so that the second measurement of the disk-shaped workpiece W that has been difficult to be polished in the previously performed polishing processing. Since the point P2 and the third measurement point P3 are polished in a state where they are more easily polished (the state where they are easily contacted by the polishing pad 44), the disk-shaped workpiece W after the new polishing process is first ground and polished. The processed disk-shaped workpiece W is flattened with higher accuracy.

上記のように、本発明に係る円板状ワークの加工方法は、保持テーブル5に円板状ワークWを保持させる保持工程と、円板状ワークWと研削ホイール304とをそれぞれ回転させ粗研削砥石304b(仕上げ研削砥石314b)で円板状ワークWを研削する研削工程と、研削工程後、円板状ワークWと研磨パッド44とをそれぞれ回転させて研磨パッド44が円板状ワークWを覆った状態で研磨する研磨工程と、研磨工程後に、円板状ワークWの中心の第1の測定点P1と、円板状ワークWの外周縁近くの第2の測定点P2と例えば第3の測定点P3との3点において円板状ワークWの厚みを測定する測定工程と、測定工程で測定した3つの測定点P1、P2、P3における円板状ワークWの厚みT1、T2、T3から円板状ワークWの径方向における厚み傾向(例えば、中凹状となる傾向)を認識する厚み傾向認識工程と、次の新たな円板状ワークWについての研削工程で厚み傾向認識工程で認識した厚み傾向に反する厚み傾向(例えば、中凸状となる傾向)の円板状ワークWを形成させるために、研削ホイール304が装着された回転軸300と保持テーブル5の回転軸571との傾き関係を変更する傾き変更工程と、を備えることで、新たな円板状ワークWを先に研磨加工された円板状ワークWよりも研磨加工を施すことで高精度に平坦化することが可能となる。
なお、研削研磨加工中に、研磨パッド44について定期的にドレスを行う場合、ドレスが繰り返され研磨パッド44の厚みが薄くなると、研磨パッド44はさらに中凹状になりやすいという現象があるが、本発明に係る円板状ワークWの加工方法は、研磨パッド44に定期的にドレスを施した場合でも、新たな円板状ワークWを先に研磨加工された円板状ワークWよりも研磨後に高精度に平坦化することが可能となる。
As described above, the disc-shaped work machining method according to the present invention includes the holding step of holding the disc-shaped work W on the holding table 5, and the rough grinding by rotating the disc-shaped work W and the grinding wheel 304, respectively. A grinding step of grinding the disk-shaped work W with the grindstone 304b (finish grinding wheel 314b), and after the grinding step, the disk-shaped work W and the polishing pad 44 are respectively rotated so that the polishing pad 44 changes the disk-shaped work W. After the polishing step of polishing in a covered state, after the polishing step, a first measurement point P1 at the center of the disk-shaped work W, a second measurement point P2 near the outer peripheral edge of the disk-shaped work W, and, for example, the third Measurement step of measuring the thickness of the disk-shaped work W at three points P3 and P3, and the thicknesses T1, T2, T3 of the disk-shaped work W at the three measurement points P1, P2, P3 measured in the measurement step. From the thickness tendency recognizing step for recognizing a thickness tendency (for example, a tendency to have a concave shape) in the radial direction of the disk-shaped workpiece W, and a thickness tendency recognizing step for the next grinding step for the new disk-shaped workpiece W. Inclination between the rotary shaft 300 on which the grinding wheel 304 is mounted and the rotary shaft 571 of the holding table 5 in order to form a disk-shaped work W having a thickness tendency (for example, a tendency to have a convex shape) contrary to the thickness tendency. By providing the inclination changing step of changing the relationship, it is possible to highly accurately flatten the new disk-shaped work W by polishing the disk-shaped work W that has been previously polished. Becomes
In the case where the polishing pad 44 is regularly dressed during the grinding/polishing process, if the dressing is repeated and the thickness of the polishing pad 44 becomes thin, the polishing pad 44 is likely to become more concave. Even if the polishing pad 44 is regularly dressed, the method for processing the disk-shaped work W according to the present invention is performed after polishing the new disk-shaped work W after polishing the disk-shaped work W that has been processed first. It becomes possible to flatten with high accuracy.

本実施形態のように、測定工程では、2つの測定点P1、P2と、第1の測定点P1と第2の測定点P2との中間点である第3の測定点P3との少なくとも3つの測定点において円板状ワークWの厚みを測定して、厚み傾向認識工程では、少なくとも3つの測定点P1〜P3における円板状ワークWの厚みT1〜T3から円板状ワークWの径方向における厚み傾向を認識することで、測定点が第1の測定点P1と第2の測定点P2との2つのみである場合よりも、傾き変更工程においてより適切に前記傾き関係を変更することが可能となる。 As in the present embodiment, in the measurement process, at least three of the two measurement points P1 and P2 and the third measurement point P3 that is an intermediate point between the first measurement point P1 and the second measurement point P2 are used. The thickness of the disk-shaped work W is measured at the measurement points, and in the thickness tendency recognition step, the thickness T1 to T3 of the disk-shaped work W at the at least three measurement points P1 to P3 is measured in the radial direction of the disk-shaped work W. By recognizing the thickness tendency, it is possible to change the inclination relationship more appropriately in the inclination changing step than in the case where there are only two measurement points, that is, the first measurement point P1 and the second measurement point P2. It will be possible.

(加工方法の実施形態2)
以下に、上記図1に示す研削研磨装置1を用いて円板状ワークWに研削加工及び研磨加工を施す場合の各工程について説明する。本発明に係る円板状ワークの加工方法(以下、実施形態2の加工方法とする。)の各工程は、例えば、図13に示すフローチャートに示す順番で実施されていく。
(Embodiment 2 of processing method)
Hereinafter, each step in the case where the disk-shaped workpiece W is ground and polished by using the grinding and polishing apparatus 1 shown in FIG. 1 will be described. Each step of the disk-shaped workpiece processing method according to the present invention (hereinafter, referred to as the processing method of Embodiment 2) is performed in the order shown in the flowchart of FIG. 13, for example.

(1)一枚目の円板状ワークについての保持工程〜(2)研削工程
保持工程は、実施形態1の場合と同様に行われ、図14に示すように、保持テーブル5により円板状ワークW(以下、一枚目の円板状ワークWとする)が保持される。さらに、研削工程において実施形態1の場合と同様に粗研削と仕上げ研削とが行われ、図15に示すように、円板状ワークWが所望の仕上げ厚み(例えば、100μm)になるように研削される。
(1) Holding process for the first disk-shaped work to (2) Grinding process The holding process is performed in the same manner as in the case of the first embodiment, and as shown in FIG. The work W (hereinafter, referred to as the first disk-shaped work W) is held. Further, in the grinding step, rough grinding and finish grinding are performed as in the case of the first embodiment, and as shown in FIG. 15, grinding is performed so that the disk-shaped work W has a desired finish thickness (for example, 100 μm). To be done.

(3)一枚目の円板状ワークについての研磨前測定工程
次いで、図16に示す円板状ワークWの中心の第1の測定点P1と、円板状ワークWの外周縁近くの第2の測定点P2と、第1の測定点P1と第2の測定点P2との中間点である第3の測定点P3との少なくとも3点において円板状ワークWの仕上げ研削後の厚みを測定する。なお、測定点は第1の測定点P1と第2の測定点P2との2つだけであってもよい。具体的には、保持テーブル5の回転が停止され、円板状ワークWから仕上げ研削砥石314bを離間させた後に、例えば、図1に示す仕上げ研削厚み測定手段66のアーム650が旋回移動して円板状ワークWの半径の上方に位置付けられ、光センサ651、652、653の直下にそれぞれ第1の測定点P1、第2の測定点P2、第3の測定点P3が位置付けられる。そして、第1の測定点P1、第2の測定点P2、第3の測定点P3における円板状ワークWの厚みT11、T12、T13が、光センサ651、652、653によってそれぞれ測定される。
(3) Pre-polishing measurement step for the first disk-shaped work Next, the first measurement point P1 at the center of the disk-shaped work W shown in FIG. The thickness of the disk-shaped workpiece W after finish grinding is measured at least at three points, namely, two measurement points P2 and a third measurement point P3 which is an intermediate point between the first measurement point P1 and the second measurement point P2. taking measurement. The number of measurement points may be only two, that is, the first measurement point P1 and the second measurement point P2. Specifically, after the rotation of the holding table 5 is stopped and the finish grinding wheel 314b is separated from the disk-shaped work W, for example, the arm 650 of the finish grinding thickness measuring means 66 shown in FIG. It is positioned above the radius of the disk-shaped work W, and the first measurement point P1, the second measurement point P2, and the third measurement point P3 are positioned immediately below the optical sensors 651, 652, and 653, respectively. Then, the thicknesses T11, T12, T13 of the disk-shaped workpiece W at the first measurement point P1, the second measurement point P2, and the third measurement point P3 are measured by the optical sensors 651, 652, 653, respectively.

仕上げ研削厚み測定手段66の光センサ651、652、653が、測定した円板状ワークWの第1の測定点P1、第2の測定点P2、第3の測定点P3の厚みT11、T12、T13についての情報を図1に示す制御手段9に送る。制御手段9に送られた該情報は、制御手段9の記憶部90に記憶される。例えば、測定された第1の測定点P1、第2の測定点P2、第3の測定点P3における円板状ワークWの仕上げ研削後の厚みは、厚みT11=102μm、T12=100μm、T13=101μmであるとする。 The optical sensors 651, 652, 653 of the finish grinding thickness measuring means 66 measure the first measurement point P1, the second measurement point P2, and the thicknesses T11, T12 of the third measurement point P3 of the disk-shaped workpiece W, The information about T13 is sent to the control means 9 shown in FIG. The information sent to the control means 9 is stored in the storage section 90 of the control means 9. For example, the thicknesses of the disk-shaped workpiece W at the measured first measurement point P1, second measurement point P2, and third measurement point P3 after finish grinding are: thickness T11=102 μm, T12=100 μm, T13= It is assumed to be 101 μm.

(4)一枚目の円板状ワークについての研磨工程
次いで、仕上げ厚みまで研削され裏面Wbの平坦性がより高められた円板状ワークWが研磨手段4の下方まで移動し、図17に示すように、実施形態1の場合と同様に円板状ワークWが研磨される。そして、一枚目の円板状ワークWの研磨を完了させた後、図18に示すように研磨手段4を+Z方向へと移動させて研磨加工済みの円板状ワークWから離間させる。
(4) Polishing step for the first disk-shaped work Next, the disk-shaped work W, which has been ground to the finished thickness and whose back surface Wb has a higher flatness, is moved to below the polishing means 4, and as shown in FIG. As shown, the disk-shaped work W is polished as in the case of the first embodiment. Then, after the polishing of the first disk-shaped work W is completed, the polishing means 4 is moved in the +Z direction as shown in FIG.

(5)一枚目の円板状ワークについての測定工程
保持テーブル5の回転が停止された後に、研磨厚み測定手段67の光センサ651、652、653の直下にそれぞれ第1の測定点P1、第2の測定点P2、第3の測定点P3が位置付けられる。そして、第1の測定点P1、第2の測定点P2、第3の測定点P3における円板状ワークWの厚みT21、T22、T23を、研磨厚み測定手段67の光センサ651、652、653がそれぞれ測定する。例えば、厚みT21=95μm、T22=98μm、T23=97μmとなる。なお、測定点は第1の測定点P1と第2の測定点P2との2つだけであってもよい。
(5) Measurement process for the first disk-shaped work After the rotation of the holding table 5 is stopped, the first measurement point P1 is provided immediately below the optical sensors 651, 652, 653 of the polishing thickness measurement means 67, respectively. The second measurement point P2 and the third measurement point P3 are located. Then, the thicknesses T21, T22, T23 of the disk-shaped workpiece W at the first measurement point P1, the second measurement point P2, and the third measurement point P3 are determined by the optical sensors 651, 652, 653 of the polishing thickness measuring means 67. Measure respectively. For example, the thickness T21=95 μm, T22=98 μm, and T23=97 μm. The number of measurement points may be only two, that is, the first measurement point P1 and the second measurement point P2.

(6)一枚目の円板状ワークについての算出工程
例えば制御手段9のCPUが、研磨前測定工程で測定した図16に示す第1の測定点P1、第2の測定点P2、第3の測定点P3における一枚目の円板状ワークWの仕上げ研削後の厚みT11=102μm、T12=100μm、T13=101μmから、測定工程で測定した図18に示す第1の測定点P1、第2の測定点P2、第3の測定点P3における円板状ワークWの研磨後の厚みT21=95μm、T22=98μm、T23=97μmを差し引いて3つの測定点における研磨除去量L1=102μm−95μm=7μm、L2=100μm−98μm=2μm、及びL3=101μm−97μm=4μmを算出する。
(6) Calculation process for the first disk-shaped work For example, the CPU of the control means 9 measures the first measurement point P1, the second measurement point P2, and the third measurement point P2 shown in FIG. From the thickness T11=102 μm, T12=100 μm, T13=101 μm after the finish grinding of the first disk-shaped work W at the measurement point P3, the first measurement point P1 shown in FIG. The polishing removal amount L1=102 μm-95 μm at the three measurement points after subtracting the thicknesses T21=95 μm, T22=98 μm, and T23=97 μm after polishing of the disk-shaped workpiece W at the second measurement point P2 and the third measurement point P3. =7 μm, L2=100 μm-98 μm=2 μm, and L3=101 μm-97 μm=4 μm.

(7)一枚目の円板状ワークについての厚み傾向認識工程
研磨厚み測定手段67の光センサ651、652、653が、測定した円板状ワークWの第1の測定点P1、第2の測定点P2、第3の測定点P3の厚みT21、T22、T23についての情報を図1に示す制御手段9に送る。例えば、図18に示す測定された厚みT21=95μm、T22=98μm、T23=97μmであるため、厚み傾向認識部91は、研磨後の円板状ワークWが径方向外側に向かって厚くなる傾向、換言すれば、研磨後の円板状ワークWは中凹状になる傾向があると判断する。
(7) Thickness tendency recognition step for the first disk-shaped work The optical sensors 651, 652, 653 of the polishing thickness measuring means 67 measure the first measurement point P1 and the second measurement point P1 of the disk-shaped work W. Information about the thicknesses T21, T22, T23 of the measurement point P2 and the third measurement point P3 is sent to the control means 9 shown in FIG. For example, since the measured thicknesses T21=95 μm, T22=98 μm, and T23=97 μm shown in FIG. 18, the thickness tendency recognizing unit 91 has a tendency that the disk-shaped workpiece W after polishing becomes thicker toward the outer side in the radial direction. In other words, it is determined that the disk-shaped work W after polishing tends to have a concave shape.

図1に示すターンテーブル6が+Z方向から見て反時計回り方向に自転することで、保持テーブル5がアンローディングアーム154bの近傍まで移動する。次いで、アンローディングアーム154bが保持テーブル5から洗浄手段156へと円板状ワークWを搬送する。洗浄が行われた一枚目の円板状ワークWは、ロボット155により第2のカセット151a内に収容される。 When the turntable 6 shown in FIG. 1 rotates in the counterclockwise direction when viewed from the +Z direction, the holding table 5 moves to the vicinity of the unloading arm 154b. Next, the unloading arm 154b conveys the disk-shaped work W from the holding table 5 to the cleaning means 156. The first disk-shaped work W that has been cleaned is accommodated in the second cassette 151a by the robot 155.

(8)一枚目の円板状ワークにおける傾き変更工程
本実施形態2における傾き変更工程では、厚み傾向認識工程で認識した厚み傾向(一枚目の円板状ワークWが中凹状になる傾向)から算出工程で算出した第1の測定点P1、第2の測定点P2、第3の測定点P3における研磨除去量L1=7μm、L2=2μm、及びL3=4μmを差し引いた円板状ワークWの厚み傾向に反する厚み傾向の円板状ワークW(二枚目の円板状ワークW)を次の研削工程で形成させるために、粗研削手段30及び仕上げ研削手段31の研削ホイール304が装着された回転軸300と保持テーブル5の回転軸571との傾き関係を変更する。一枚目の円板状ワークWにおいて、厚み傾向認識工程で認識した3つの測定点P1〜P3の厚み傾向から各研磨除去量L1〜L3を差し引いた厚み傾向は、図19に示すように、研磨後の一枚目の円板状ワークWの中凹状になる厚み傾向よりも、さらに傾斜の急な中凹状の厚み傾向となる。したがって、各研磨除去量L1〜L3を差し引いた厚み傾向に反する二枚目の円板状ワークWの厚み傾向(次の研削工程で形成すべき厚み傾向)は、図19に示すように中凸状の厚み傾向となる。
(8) Inclination changing step in the first disk-shaped work In the inclination changing step in the second embodiment, the thickness tendency recognized in the thickness tendency recognition step (the tendency of the first disk-shaped work W to be a concave shape). The disk-shaped work obtained by subtracting the polishing removal amounts L1=7 μm, L2=2 μm, and L3=4 μm at the first measurement point P1, the second measurement point P2, and the third measurement point P3 calculated in In order to form the disk-shaped work W (second disk-shaped work W) having a thickness tendency contrary to the thickness tendency of W in the next grinding step, the grinding wheels 304 of the rough grinding means 30 and the finish grinding means 31 are The tilt relationship between the mounted rotary shaft 300 and the rotary shaft 571 of the holding table 5 is changed. In the first disk-shaped work W, the thickness tendency obtained by subtracting the polishing removal amounts L1 to L3 from the thickness tendency of the three measurement points P1 to P3 recognized in the thickness tendency recognition step is as shown in FIG. The thickness tends to be more concave than the first disk-shaped work W after polishing and has a steeper slope. Therefore, the thickness tendency of the second disk-shaped work W (thickness tendency to be formed in the next grinding step), which is contrary to the thickness tendency obtained by subtracting the polishing removal amounts L1 to L3, has a convex shape as shown in FIG. Thickness tendency.

粗研削手段30及び仕上げ研削手段31の研削ホイール304が装着された回転軸300と保持テーブル5の回転軸571との傾き関係の変更の具体的な例については、例えば、図1に示す制御手段9によって、第1の測定点P1、第2の測定点P2、第3の測定点P3における研磨除去量L1=7μm、L2=2μm、及びL3=4μmの中の、最大の研磨除去量L1と最小の研磨除去量L2との差(L1−L2=5μm)が算出される。そして、該差は回転軸300と回転軸571との傾き関係を適切に変更するための補正値S1=5μmとなる。本実施形態においては、図20に示すように、制御手段9による制御の下で、傾き変更手段51が保持テーブル5の回転軸571の傾き角度を変更(例えば、保持テーブル5の外周側の保持面50aを所定距離上げる)して、仕上げ研削後の厚みが中凸5μm(補正値S1=5μm)となるように、即ち、第1の測定点P1の仕上げ研削後の厚みが所望の仕上げ厚み100μm+5μm(補正値S1)=105μmとなるようにする。 A specific example of changing the inclination relationship between the rotary shaft 300 on which the grinding wheel 304 of the rough grinding means 30 and the finish grinding means 31 is mounted and the rotary shaft 571 of the holding table 5 is shown in, for example, the control means shown in FIG. 9 shows the maximum polishing removal amount L1 among the polishing removal amounts L1=7 μm, L2=2 μm, and L3=4 μm at the first measurement point P1, the second measurement point P2, and the third measurement point P3. The difference (L1−L2=5 μm) from the minimum polishing removal amount L2 is calculated. Then, the difference becomes a correction value S1=5 μm for appropriately changing the inclination relationship between the rotary shaft 300 and the rotary shaft 571. In the present embodiment, as shown in FIG. 20, under the control of the control unit 9, the tilt changing unit 51 changes the tilt angle of the rotation shaft 571 of the holding table 5 (for example, holding on the outer peripheral side of the holding table 5). Raise the surface 50a by a predetermined distance) so that the thickness after finish grinding becomes a medium convexity 5 μm (correction value S1=5 μm), that is, the thickness after finish grinding at the first measurement point P1 is the desired finish thickness. 100 μm+5 μm (correction value S1)=105 μm.

(9)二枚目の円板状ワークについての保持工程〜(10)研削工程
新たに研削が施される円板状ワークW(以下、二枚目の円板状ワークW)についての保持工程が、一枚目の円板状ワークWに対する場合と同様に行われ、図20に示すように、保持テーブル5により円板状ワークWが保持される。さらに、研削工程における粗研削及び仕上げ研削が、保持テーブル5の回転軸571の傾きが変更されている点以外は一枚目の円板状ワークWに対する場合と同様に行われ、図21に示すように、円板状ワークWが所望の仕上げ厚み(例えば、100μm)になるように研削されることで、研削後の二枚目の円板状ワークWを中凸状の厚み傾向とすることができる。
(9) Holding process for second disc-shaped work to (10) Grinding process Holding process for disc-shaped work W to be newly ground (hereinafter, second disc-shaped work W) However, as in the case of the first disk-shaped work W, the disk-shaped work W is held by the holding table 5 as shown in FIG. Further, rough grinding and finish grinding in the grinding process are performed in the same manner as in the case of the first disk-shaped work W except that the inclination of the rotary shaft 571 of the holding table 5 is changed, as shown in FIG. As described above, the second disk-shaped work W after grinding is made to have a middle convex thickness tendency by grinding the disk-shaped work W so as to have a desired finished thickness (for example, 100 μm). You can

(11)二枚目の円板状ワークについての研磨前測定工程
次いで、図22に示す二枚目の円板状ワークWの前記第1の測定点P1〜第3の測定点P3の3点において円板状ワークWの仕上げ研削後の厚みを測定する。保持テーブル5の回転が停止され、円板状ワークWから仕上げ研削砥石314bを離間させた後に、図1に示す仕上げ研削厚み測定手段66の光センサ651、652、653によって、第1の測定点P1、第2の測定点P2、第3の測定点P3における円板状ワークWの厚みT31、T32、T33が測定される。なお、測定点は第1の測定点P1と第2の測定点P2との2つだけであってもよい。
(11) Pre-polishing measurement step for second disk-shaped work Next, three points of the first measurement point P1 to the third measurement point P3 of the second disk-shaped work W shown in FIG. At, the thickness of the disk-shaped workpiece W after finish grinding is measured. After the rotation of the holding table 5 is stopped and the final grinding wheel 314b is separated from the disk-shaped work W, the first measurement points are measured by the optical sensors 651, 652, 653 of the final grinding thickness measuring means 66 shown in FIG. The thicknesses T31, T32, T33 of the disk-shaped work W at P1, the second measurement point P2, and the third measurement point P3 are measured. The number of measurement points may be only two, that is, the first measurement point P1 and the second measurement point P2.

仕上げ研削厚み測定手段66の光センサ651、652、653が、測定した円板状ワークWの第1の測定点P1、第2の測定点P2、第3の測定点P3の厚みT31、T32、T33についての情報を図1に示す制御手段9に送る。例えば、測定された第1の測定点P1、第2の測定点P2、第3の測定点P3における円板状ワークWの仕上げ研削後の厚みは、厚みT31=105μm、T32=100μm、T33=102μmとなり、中凸状となる。 The optical sensors 651, 652, 653 of the finish grinding thickness measuring means 66 measure the first measurement point P1, the second measurement point P2, and the thicknesses T31, T32 of the third measurement point P3 of the disk-shaped workpiece W measured. The information about T33 is sent to the control means 9 shown in FIG. For example, the thickness of the disk-shaped workpiece W at the measured first measurement point P1, second measurement point P2, and third measurement point P3 after finish grinding is as follows: thickness T31=105 μm, T32=100 μm, T33= The thickness is 102 μm, and the shape is medium convex.

(12)二枚目の円板状ワークについての研磨工程
次いで、仕上げ厚みまで研削され裏面Wbの平坦性がより高められた円板状ワークWが研磨手段4の下方まで移動し、図23に示すように、保持テーブル5の回転軸571の傾きが変更されている点以外は一枚目の円板状ワークWに対する場合と同様に研磨が行われる。そして、二枚目の円板状ワークWの研磨を完了させた後、研磨送り手段25により研磨手段4を+Z方向へと移動させて研磨加工済みの円板状ワークWから離間させる。
(12) Polishing Step for Second Disc-Shaped Work Next, the disc-shaped work W, which has been ground to the finished thickness and whose back surface Wb has a higher flatness, moves to below the polishing means 4, and FIG. As shown, the polishing is performed in the same manner as the case of the first disk-shaped work W except that the inclination of the rotary shaft 571 of the holding table 5 is changed. Then, after the polishing of the second disk-shaped work W is completed, the polishing feed means 25 moves the polishing means 4 in the +Z direction and separates it from the polished disk-shaped work W.

(13)二枚目の円板状ワークについての測定工程
保持テーブル5の回転が停止された後に、研磨厚み測定手段67の光センサ651、652、653によって、図24に示すように、第1の測定点P1、第2の測定点P2、第3の測定点P3における二枚目の円板状ワークWの厚みT41、T42、T43を、研磨厚み測定手段67の光センサ651、652、653がそれぞれ測定する。例えば、厚みT41=98μm、T42=98μm、T43=98μmであるとする。なお、測定点は第1の測定点P1と第2の測定点P2との2つだけであってもよい。
(13) Measurement process for the second disk-shaped work After the rotation of the holding table 5 is stopped, the optical sensors 651, 652, 653 of the polishing thickness measuring means 67 are used to measure the first disc as shown in FIG. The thicknesses T41, T42, and T43 of the second disk-shaped work W at the measurement points P1, the second measurement points P2, and the third measurement points P3 of the optical sensors 651, 652, and 653 of the polishing thickness measuring means 67. Measure respectively. For example, assume that the thicknesses T41=98 μm, T42=98 μm, and T43=98 μm. The number of measurement points may be only two, that is, the first measurement point P1 and the second measurement point P2.

(14)二枚目の円板状ワークについての算出工程
制御手段9のCPUが、図22に示す研磨前測定工程で測定した第1の測定点P1、第2の測定点P2、第3の測定点P3における一枚目の円板状ワークWの仕上げ研削後の厚みT31=105μm、T32=100μm、T33=102μmから、図24に示す測定工程で測定した第1の測定点P1、第2の測定点P2、第3の測定点P3における円板状ワークWの研磨後の厚みT41=98μm、T42=98μm、T43=98μmを差し引いて3つの測定点における研磨除去量L11=105μm−98μm=7μm、L12=100μm−98μm=2μm、及びL13=102μm−98μm=4μmを算出する。
(14) Calculation process for the second disk-shaped work The CPU of the control means 9 measures the first measurement point P1, the second measurement point P2, and the third measurement point P1 measured in the pre-polishing measurement process shown in FIG. From the thickness T31=105 μm, T32=100 μm, T33=102 μm after the finish grinding of the first disk-shaped work W at the measurement point P3, the first measurement point P1 and the second measurement point P1 measured in the measurement process shown in FIG. The polishing removal amount L11=105 μm−98 μm=at three measurement points after subtracting the thickness T41=98 μm, T42=98 μm, T43=98 μm after polishing of the disk-shaped workpiece W at the measurement point P2 and the third measurement point P3. 7 μm, L12=100 μm−98 μm=2 μm, and L13=102 μm−98 μm=4 μm are calculated.

(15)二枚目の円板状ワークについての厚み傾向認識工程
研磨厚み測定手段67の光センサ651、652、653が、図24に示す測定した厚みT41、T42、T43についての情報を図1に示す制御手段9に送る。例えば、第1の測定点P1、第2の測定点P2、第3の測定点P3における円板状ワークWの研磨後の厚みは、厚みT41=98μm、T42=98μm、T43=98μmであるため、厚み傾向認識部91は、研磨後の円板状ワークWが平坦であると判断する。
その後、二枚目の円板状ワークWが保持テーブル5から搬出され、図1に示す第2のカセット151aに収納される。
(15) Thickness tendency recognition step for the second disk-shaped work The optical sensors 651, 652, 653 of the polishing thickness measuring means 67 provide information on the measured thicknesses T41, T42, T43 shown in FIG. To the control means 9 shown in FIG. For example, the thickness of the disk-shaped workpiece W after polishing at the first measurement point P1, the second measurement point P2, and the third measurement point P3 is T41=98 μm, T42=98 μm, and T43=98 μm. The thickness tendency recognizing unit 91 determines that the disk-shaped work W after polishing is flat.
After that, the second disk-shaped work W is carried out from the holding table 5 and stored in the second cassette 151a shown in FIG.

本発明に係る円板状ワークの加工方法において、研磨工程前に第1の測定点P1と、第2の測定点P2と、例えば第3の測定点P3との少なくとも3つの測定点P1、P2、P3において図16に示す円板状ワークWの厚みT11、T12、T13を測定する研磨前測定工程と、傾き変更工程前に、研磨前測定工程で測定した図16に示す3つの測定点P1、P2、P3における円板状ワークWの厚みT11、T12、T13から測定工程で測定した図18に示す3つの測定点P1、P2、P3における円板状ワークWの厚みT21、T22、T23を差し引いて3つの測定点P1、P2、P3における研磨除去量L1、L2、及びL3を算出する算出工程と、を含み、傾き変更工程では、厚み傾向認識工程で認識した厚み傾向(一枚目の円板状ワークWが中凹状になる傾向)から算出工程で算出した第1の測定点P1、第2の測定点P2、第3の測定点P3における研磨除去量L1〜L3を差し引いた一枚目の円板状ワークWの厚み傾向(中凹状の厚み傾向)に反する厚み傾向(中凸状の厚み傾向)の新たな二枚目の円板状ワークWを次の研削工程で形成させるために、研削ホイール304が装着された回転軸300と保持テーブル5の回転軸571との傾き関係を変更することで、図22に示すように、二枚目の円板状ワークWを研削工程後に中凸状の厚み傾向とすることができ、新たな円板状ワークW(二枚目の円板状ワークW)を先に研磨加工された一枚目の円板状ワークWよりも研磨後に高精度に平坦化することが可能となる。 In the disk-shaped workpiece processing method according to the present invention, at least three measurement points P1, P2, that is, a first measurement point P1, a second measurement point P2, and a third measurement point P3, for example, before the polishing step. , P3, the pre-polishing measurement step of measuring the thicknesses T11, T12, T13 of the disk-shaped workpiece W shown in FIG. 16 and the three measurement points P1 shown in FIG. 16 measured in the pre-polishing measurement step before the inclination changing step. , P2, P3, the thickness T21, T22, T23 of the disk-shaped work W at the three measurement points P1, P2, P3 shown in FIG. And a calculation step of calculating the polishing removal amounts L1, L2, and L3 at the three measurement points P1, P2, and P3 by subtracting the same. In the inclination changing step, the thickness tendency (first sheet One from which the polishing removal amounts L1 to L3 at the first measurement point P1, the second measurement point P2, and the third measurement point P3 calculated in the calculation process are subtracted from (the tendency of the disk-shaped work W to be concave) To form a new second disk-shaped work W having a thickness tendency (center-convex thickness tendency) contrary to the thickness tendency (center-concave thickness tendency) of the eye-shaped disk-shaped work W in the next grinding step. In addition, by changing the inclination relationship between the rotary shaft 300 on which the grinding wheel 304 is mounted and the rotary shaft 571 of the holding table 5, as shown in FIG. 22, the second disc-shaped work W is ground after the grinding process. It is possible to have a thickness tendency of a medium convex shape, and after polishing a new disc-shaped work W (second disc-shaped work W) after polishing the first disc-shaped work W. It becomes possible to flatten with high accuracy.

本実施形態のように、研磨前測定工程では、2つの測定点P1及びP2と、第1の測定点P1と第2の測定点P2との中間点である第3の測定点P3との少なくとも3つの測定点P3において円板状ワークWの厚みT11〜T13を測定し、測定工程では、少なくとも3つの測定点P1〜P3において円板状ワークWの厚みT21〜T23を測定し、算出工程では、研磨前測定工程で測定した3つの測定点P1〜P3における円板状ワークWの厚みT11〜T13から測定工程で測定した3つの測定点P1〜P3における円板状ワークWの厚みT21〜T23を差し引いて3つの測定点P1〜P3における研磨除去量L1〜L3を算出し、厚み傾向認識工程では、少なくとも3つの測定点P1〜P3における研磨後の円板状ワークWの厚みから円板状ワークWの径方向における厚み傾向を認識することで、測定点が第1の測定点P1と第2の測定点P2との2つのみである場合よりも、傾き変更工程においてより適切に前記傾き関係を変更することが可能となる。 As in the present embodiment, in the pre-polishing measurement step, at least two measurement points P1 and P2 and a third measurement point P3 that is an intermediate point between the first measurement point P1 and the second measurement point P2 are included. The thicknesses T11 to T13 of the disk-shaped work W are measured at three measurement points P3, the thickness T21 to T23 of the disk-shaped work W is measured at at least three measurement points P1 to P3 in the measurement step, and the calculation step is performed. From the thicknesses T11 to T13 of the disk-shaped work W at the three measurement points P1 to P3 measured in the pre-polishing measurement step, the thicknesses T21 to T23 of the disk-shaped work W at the three measurement points P1 to P3 measured in the measurement step Is calculated to calculate the polishing removal amounts L1 to L3 at the three measurement points P1 to P3, and in the thickness tendency recognition step, the thickness of the disk-shaped workpiece W after polishing at least at the three measurement points P1 to P3 is changed to a disk shape. By recognizing the thickness tendency of the work W in the radial direction, the inclination can be more appropriately adjusted in the inclination changing step than in the case where there are only two measurement points, the first measurement point P1 and the second measurement point P2. It is possible to change the relationship.

(16)二枚目の円板状ワークにおける傾き変更工程
本実施形態2における傾き変更工程では、厚み傾向認識工程で認識した厚み傾向(二枚目の研磨後の円板状ワークWが平坦となる傾向)から算出工程で算出した第1の測定点P1、第2の測定点P2、第3の測定点P3における研磨除去量L11=7μm、L12=2μm、及びL13=4μmを差し引いた円板状ワークWの厚み傾向(中凹状の厚み傾向)に反する厚み傾向(中凸状の厚み傾向)の三枚目の円板状ワークWを次の研削工程で形成させるために、粗研削手段30及び仕上げ研削手段31の研削ホイール304が装着された回転軸300と保持テーブル5の回転軸571との傾き関係を変更する。
(16) Inclination changing step in the second disk-shaped work In the inclination changing step in the second embodiment, the thickness tendency recognized in the thickness tendency recognition step (the second disk-shaped workpiece W after polishing is flat). Disk obtained by subtracting the polishing removal amounts L11=7 μm, L12=2 μm, and L13=4 μm at the first measurement point P1, the second measurement point P2, and the third measurement point P3 calculated in the calculation step In order to form the third disc-shaped work W having a thickness tendency (thickness tendency of a medium concave shape) contrary to the thickness tendency of the work piece W (thickness tendency of a concave shape), a rough grinding means 30 is formed. Also, the inclination relationship between the rotary shaft 300 on which the grinding wheel 304 of the finish grinding means 31 is mounted and the rotary shaft 571 of the holding table 5 is changed.

具体的には、例えば、制御手段9によって、第1の測定点P1、第2の測定点P2、第3の測定点P3における研磨除去量L11=7μm、L12=2μm、及びL13=4μmの中の最大の研磨除去量L11と最小の研磨除去量L12との差(L11−L12=5μm)が算出される。そして、該差は回転軸300と回転軸571との傾き関係を適切に変更するための補正値S2=5μmとなる。該補正値S2=5μmは、一枚目の円板状ワークWにおける傾き変更工程で算出された補正値S1=5μmと同じ値であるため、研削ホイール304が装着された回転軸300と保持テーブル5の回転軸571との傾き関係は図25に示すように維持され、次の三枚目の円板状ワークWの第1の測定点P1の仕上げ研削後の厚みが、二枚目の円板状ワークWと同じ所望の仕上げ厚み100μm+5μm(補正値S2)=105μmとなるようにする。 Specifically, for example, by the control means 9, the polishing removal amounts L11=7 μm, L12=2 μm, and L13=4 μm at the first measurement point P1, the second measurement point P2, and the third measurement point P3. The difference (L11−L12=5 μm) between the maximum polishing removal amount L11 and the minimum polishing removal amount L12 is calculated. Then, the difference becomes a correction value S2=5 μm for appropriately changing the inclination relationship between the rotary shaft 300 and the rotary shaft 571. Since the correction value S2=5 μm is the same value as the correction value S1=5 μm calculated in the inclination changing step of the first disk-shaped work W, the rotary shaft 300 on which the grinding wheel 304 is mounted and the holding table. The inclination relationship between the rotation axis 571 and the rotation axis 571 of 5 is maintained as shown in FIG. 25, and the thickness after the finish grinding of the first measurement point P1 of the third disk-shaped workpiece W is the second circle. The same desired finished thickness as the plate-shaped workpiece W is set to 100 μm+5 μm (correction value S2)=105 μm.

(17)三枚目の円板状ワークについての保持工程〜(18)研削工程
新たに研削が施される円板状ワークW(以下、三枚目の円板状ワークW)についての保持工程が、二枚目の円板状ワークWに対する場合と同様に行われ、図26に示すように、保持テーブル5により円板状ワークWが保持される。さらに、二枚目の円板状ワークWに対する場合と同様に、円板状ワークWが所望の仕上げ厚み(例えば、100μm)になるように粗研削及び仕上げ研削が行われることで、研削後の三枚目の円板状ワークWの厚み傾向を中凸状とすることができる。
(17) Holding step for the third disk-shaped work to (18) Grinding step Holding step for the disk-shaped work W to be newly ground (hereinafter, the third disk-shaped work W) Is performed in the same manner as for the second disk-shaped work W, and the disk-shaped work W is held by the holding table 5 as shown in FIG. Further, similarly to the case of the second disk-shaped work W, rough grinding and finish grinding are performed so that the disk-shaped work W has a desired finish thickness (for example, 100 μm), and thus, after the grinding, The thickness tendency of the third disk-shaped work W can be made to have a convex shape.

(19)三枚目の円板状ワークについての研磨前測定工程
次いで、図27に示す三枚目の第1の測定点P1と、第2の測定点P2と、第3の測定点P3との少なくとも3点において円板状ワークWの仕上げ研削後の厚みを測定する。保持テーブル5の回転が停止され、円板状ワークWから仕上げ研削砥石314bを離間させた後に、図1に示す仕上げ研削厚み測定手段66の光センサ651、652、653によって、第1の測定点P1、第2の測定点P2、第3の測定点P3における円板状ワークWの厚みT51、T52、T53が測定される。
仕上げ研削厚み測定手段66の光センサ651、652、653が、測定した厚みT51、T52、T53についての情報を図1に示す制御手段9に送る。例えば、測定された厚みは、厚みT51=105μm、T52=100μm、T53=102μmとなる。
(19) Pre-polishing measurement step for third disk-shaped work Next, the first measurement point P1, the second measurement point P2, and the third measurement point P3 of the third sheet shown in FIG. The thickness of the disk-shaped work W after finish grinding is measured at at least three points. After the rotation of the holding table 5 is stopped and the final grinding wheel 314b is separated from the disk-shaped work W, the first measurement points are measured by the optical sensors 651, 652, 653 of the final grinding thickness measuring means 66 shown in FIG. The thicknesses T51, T52, T53 of the disk-shaped work W at P1, the second measurement point P2, and the third measurement point P3 are measured.
The optical sensors 651, 652, 653 of the finish grinding thickness measuring means 66 send information about the measured thicknesses T51, T52, T53 to the control means 9 shown in FIG. For example, the measured thickness is T51=105 μm, T52=100 μm, and T53=102 μm.

(20)三枚目の円板状ワークについての研磨工程
次いで、仕上げ厚みまで研削された円板状ワークWが研磨手段4の下方まで移動し、図28に示すように、二枚目の円板状ワークWに対する場合と同様に研磨が行われる。そして、三枚目の円板状ワークWの研磨を完了させた後、研磨送り手段25により研磨手段4を+Z方向へと移動させて研磨加工済みの円板状ワークWから離間させる。
(20) Polishing Step for Third Disc-Shaped Work Next, the disc-shaped work W ground to the finished thickness moves to below the polishing means 4, and as shown in FIG. The polishing is performed as in the case of the plate-shaped work W. Then, after the polishing of the third disk-shaped work W is completed, the polishing feeding means 25 moves the polishing means 4 in the +Z direction to separate it from the polished disk-shaped work W.

(21)三枚目の円板状ワークについての測定工程
保持テーブル5の回転が停止された後に、図29に示すように、研磨厚み測定手段67の光センサ651、652、653によって、第1の測定点P1、第2の測定点P2、第3の測定点P3における三枚目の円板状ワークWの厚みT61、T62、T63がそれぞれ測定される。例えば、厚みT61=97.9μm、厚みT62=98μm、厚みT63=98μmとなる。
(21) Measuring Step for Third Disc-shaped Work After the rotation of the holding table 5 is stopped, as shown in FIG. 29, by the optical sensors 651, 652, 653 of the polishing thickness measuring means 67, the first The thicknesses T61, T62, T63 of the third disk-shaped work W at the measurement point P1, the second measurement point P2, and the third measurement point P3 are measured, respectively. For example, the thickness T61=97.9 μm, the thickness T62=98 μm, and the thickness T63=98 μm.

(22)三枚目の円板状ワークについての算出工程
例えば制御手段9のCPUが、図27に示す研磨前測定工程で測定した第1の測定点P1、第2の測定点P2、第3の測定点P3における三枚目の円板状ワークWの仕上げ研削後の厚みT51=105μm、T52=100μm、T53=102μmから、図29に示す測定工程で測定した第1の測定点P1、第2の測定点P2、第3の測定点P3における円板状ワークWの研磨後の厚みT61=97.9μm、T62=98μm、T63=98μmを差し引いて3つの測定点における研磨除去量L21=105μm−97.9μm=7.1μm、L22=100μm−98μm=2μm、及びL23=102μm−98μm=4μmを算出する。
(22) Calculation process for the third disk-shaped work For example, the CPU of the control means 9 measures the first measurement point P1, the second measurement point P2, and the third measurement point P1 measured in the pre-polishing measurement process shown in FIG. From the thickness T51=105 μm, T52=100 μm, T53=102 μm after the finish grinding of the third disk-shaped work W at the measurement point P3, the first measurement point P1 measured at the measurement step shown in FIG. The polishing removal amount L21=105 μm at the three measurement points after subtracting the thicknesses T61=97.9 μm, T62=98 μm, and T63=98 μm of the disk-shaped workpiece W after the polishing at the second measurement point P2 and the third measurement point P3. Calculate -97.9 μm=7.1 μm, L22=100 μm-98 μm=2 μm, and L23=102 μm-98 μm=4 μm.

(23)三枚目の円板状ワークについての厚み傾向認識工程
研磨後の円板状ワークWの測定された厚みは、図29に示すように厚みT61=97.9μm、T62=98μm、T63=98μmであるため、厚み傾向認識部91は、研磨後の円板状ワークWが僅かに中凹状で有ると判断する。即ち、研磨パッド44の変形等により研磨除去量が変化したことで、研磨後の円板状ワークWの平坦度が僅かに低下したと判断する。
その後、三枚目の円板状ワークWは、保持テーブル5から搬出されて図1に示す第2のカセット151a内に収容される。
(23) Step of recognizing the thickness tendency of the third disk-shaped work The measured thickness of the disk-shaped work W after polishing is, as shown in FIG. 29, thickness T61=97.9 μm, T62=98 μm, T63. =98 μm, the thickness tendency recognition unit 91 determines that the disk-shaped workpiece W after polishing has a slightly concave shape. That is, it is determined that the flatness of the disk-shaped workpiece W after polishing is slightly lowered due to the change in the polishing removal amount due to the deformation of the polishing pad 44 or the like.
After that, the third disk-shaped work W is carried out from the holding table 5 and accommodated in the second cassette 151a shown in FIG.

(24)三枚目の円板状ワークにおける傾き変更工程
本実施形態2における傾き変更工程では、厚み傾向認識工程で認識した厚み傾向(三枚目の円板状ワークWが僅かに中凹状になる傾向)から算出工程で算出した第1の測定点P1、第2の測定点P2、第3の測定点P3における研磨除去量L21=7.1μm、L22=2μm、及びL23=4μmを差し引いた三枚目の円板状ワークWの厚み傾向(中凹状の厚み傾向)に反する厚み傾向(中凸状の厚み傾向)の円板状ワークW(四枚目の円板状ワークW)を次の研削工程で形成させるために、粗研削手段30及び仕上げ研削手段31の研削ホイール304が装着された回転軸300と保持テーブル5の回転軸571との傾き関係を変更する。
(24) Inclination changing process in the third disk-shaped work In the inclination changing process in the second embodiment, the thickness tendency recognized in the thickness tendency recognition step (the third disk-shaped work W is slightly concaved). The tendency of the polishing removal) to subtract the polishing removal amount L21=7.1 μm, L22=2 μm, and L23=4 μm at the first measurement point P1, the second measurement point P2, and the third measurement point P3 calculated in the calculation step. Next, a disk-shaped work W (fourth disk-shaped work W) having a thickness tendency (center-convex thickness tendency) contrary to the thickness tendency (center-concave thickness tendency) of the third disk-shaped work W is next described. In order to form it in the grinding process of No. 3, the tilt relationship between the rotary shaft 300 on which the grinding wheels 304 of the rough grinding unit 30 and the finish grinding unit 31 are mounted and the rotary shaft 571 of the holding table 5 is changed.

具体的には、例えば、制御手段9によって、研磨除去量L21=7.1μm、L22=2μm、及びL23=4μmの中の最大の研磨除去量L21と最小の研磨除去量L22との差(L21−L22=5.1μm)が算出される。そして、該差は、研磨後の三枚目の円板状ワークWの中心の第1の測定点P1が、0.1μmだけ多く二枚目の円板状ワークWよりも研磨される傾向となってきたことに対して、回転軸300と回転軸571との傾き関係を適切に変更するための補正値S3=5.1μmとなる。 Specifically, for example, the controller 9 controls the difference (L21) between the maximum polishing removal amount L21 and the minimum polishing removal amount L22 among the polishing removal amounts L21=7.1 μm, L22=2 μm, and L23=4 μm. -L22=5.1 μm) is calculated. The difference is that the first measurement point P1 at the center of the third disk-shaped work W after polishing is increased by 0.1 μm and is more likely to be polished than the second disk-shaped work W. In contrast to this, the correction value S3 for appropriately changing the inclination relationship between the rotary shaft 300 and the rotary shaft 571 is 5.1 μm.

本実施形態2においては、制御手段9による制御の下で、傾き変更手段51が保持テーブル5の回転軸571の傾き角度を変更(例えば、保持テーブル5の外周側の保持面50aを所定距離上げる変更)して、次の四枚目の円板状ワークWの仕上げ研削後の厚みが中凸5.1μm(補正値S3=5.1μm)となるように、即ち、四枚目の円板状ワークWの第1の測定点P1の仕上げ研削後の厚みが所望の仕上げ厚み100μm+5.1μm(補正値S3)=105.1μmとなるようにする。これによって、研磨パッド44の変形等による研磨除去量の変化によって研磨後に図29に示すように平坦度に僅かに差が生じてしまった三枚目の円板状ワークWと異なり、四枚目の円板状ワークWの研磨後の平坦度に差が生じてしまわないように研磨除去量の変化に追従するように加工条件が補正され、四枚目の円板状ワークWの研削工程後の厚み傾向を適切に変更できる。 In the second embodiment, under the control of the control unit 9, the tilt changing unit 51 changes the tilt angle of the rotary shaft 571 of the holding table 5 (for example, the holding surface 50a on the outer peripheral side of the holding table 5 is raised by a predetermined distance. Change) so that the thickness of the next disc-shaped workpiece W after finish grinding becomes a medium convex of 5.1 μm (correction value S3=5.1 μm), that is, the fourth disc. The thickness of the workpiece W after the first grinding at the first measurement point P1 is set to a desired finished thickness of 100 μm+5.1 μm (correction value S3)=105.1 μm. As a result, unlike the third disk-shaped work W in which the flatness is slightly different after polishing as shown in FIG. 29 due to the change in the polishing removal amount due to the deformation of the polishing pad 44, etc. After the grinding process of the fourth disk-shaped work W, the processing conditions are corrected so as to follow the change in the polishing removal amount so that the flatness of the disk-shaped work W after polishing is not different. The thickness tendency of can be changed appropriately.

その結果、次の四枚目の円板状ワークWを研削工程後に中凸状の厚み傾向に形成でき、さらに、次の四枚目の円板状ワークWを先に研磨加工された三枚目の円板状ワークWよりも研磨後に高精度に平坦化する、即ち、第1の測定点P1、第2の測定点P2、第3の測定点P3における四枚目の円板状ワークWの研磨後の厚みを、二枚目の円板状ワークWと同様に例えば98μmにそろえることが可能となる。 As a result, the next fourth disk-shaped work W can be formed to have a thickness tendency of a medium convex shape after the grinding step, and further, the next fourth disk-shaped work W is ground three times. After polishing, the second disk-shaped work W is flattened more accurately than the disk-shaped work W, that is, the fourth disk-shaped work W at the first measurement point P1, the second measurement point P2, and the third measurement point P3. It is possible to make the thickness after polishing of, for example, 98 μm as in the case of the second disk-shaped work W.

本発明に係る円板状ワークの加工方法は上記実施形態1又は2に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。また、添付図面に図示されている研削研磨装置1の各構成についても、これに限定されず、本発明の効果を発揮できる範囲内で適宜変更可能である。 It goes without saying that the method for processing a disk-shaped work according to the present invention is not limited to the above-described first or second embodiment, and may be carried out in various different forms within the scope of its technical idea. Further, each configuration of the grinding and polishing apparatus 1 shown in the accompanying drawings is not limited to this, and can be appropriately changed within a range where the effect of the present invention can be exhibited.

W:円板状ワーク
1:研削研磨装置 10:第1の装置ベース A:搬出入領域
150:第1のカセット載置部 150a:第1のカセット 151:第2のカセット載置部 151a:第2のカセット
152:仮置き領域 153:位置合わせ手段 154a:ローディングアーム
154b:アンローディングアーム 155:ロボット 156:洗浄手段
11:第2の装置ベース B:加工領域
12:第1のコラム 20:粗研削送り手段 30:粗研削手段 304b:粗研削砥石
13:第2のコラム 21:仕上げ研削送り手段 31:仕上げ研削手段 314b:仕上げ研削砥石
14:第3のコラム 24:Y軸方向移動手段 25:研磨送り手段 4:研磨手段
6:ターンテーブル
64:支持台 65:粗研削厚み測定手段 650:アーム部 659:移動手段
651〜653:光センサ
66:仕上げ研削厚み測定手段
67:研磨厚み測定手段
5:保持テーブル 50:ポーラス部材 50a:保持面 502:枠体
51:傾き調整手段
52:支持台 520:支持筒部 521:フランジ部
53:位置調整ユニット 531:筒部 532:シャフト 532a:第1の雄ねじ
533:駆動部 533a:モータ 533b:減速機 534:固定部 535:ナット 536:挟持ナット
53a:固定ユニット
57:保持テーブル回転手段 571:回転軸 571b:配管 572:モータ 573:プーリ 574:無端ベルト
9:制御手段 90:記憶部 91:厚み傾向認識部
W: Disc-shaped work 1: Grinding/polishing device 10: First device base A: Loading/unloading area
150: 1st cassette mounting part 150a: 1st cassette 151: 2nd cassette mounting part 151a: 2nd cassette 152: Temporary mounting area 153: Positioning means 154a: Loading arm
154b: unloading arm 155: robot 156: cleaning means 11: second device base B: processing area
12: 1st column 20: Coarse grinding feed means 30: Coarse grinding means 304b: Coarse grinding wheel 13: 2nd column 21: Finishing grinding feeding means 31: Finishing grinding means 314b: Finishing grinding wheel 14: 3rd column 24: Y-axis direction moving means 25: Polishing feeding means 4: Polishing means 6: Turntable
64: Support base 65: Coarse grinding thickness measuring means 650: Arm part 659: Moving means 651-653: Optical sensor 66: Finish grinding thickness measuring means 67: Polishing thickness measuring means 5: Holding table 50: Porous member 50a: Holding surface 502: Frame body
51: Inclination adjusting means 52: Support base 520: Support cylinder part 521: Flange part 53: Position adjustment unit 531: Cylinder part 532: Shaft 532a: First male screw 533: Drive part 533a: Motor 533b: Reduction gear 534: Fixed Part 535: Nut 536: Holding nut 53a: Fixed unit 57: Holding table rotating means 571: Rotating shaft 571b: Piping 572: Motor 573: Pulley 574: Endless belt 9: Control means 90: Storage part 91: Thickness tendency recognizing part

Claims (4)

保持テーブルの保持面に保持させた円板状ワークを研削砥石で研削及び研磨パッドで研磨する円板状ワークの加工方法であって、
該保持テーブルに円板状ワークを保持させる保持工程と、
該円板状ワークと研削ホイールとをそれぞれ回転させ該研削砥石で該円板状ワークを研削する研削工程と、
該研削工程後、該円板状ワークと該研磨パッドとをそれぞれ回転させて該研磨パッドが該円板状ワークを覆った状態で研磨する研磨工程と、
該研磨工程後に、該円板状ワークの中心の第1の測定点と、該円板状ワークの外周縁近くの第2の測定点との少なくとも2つの測定点において該円板状ワークの厚みを測定する測定工程と、
該測定工程で測定した該2つの測定点における該円板状ワークの厚みから該円板状ワークの径方向における厚み傾向を認識する厚み傾向認識工程と、
次の該研削工程で該厚み傾向認識工程で認識した該厚み傾向に反する厚み傾向の円板状ワークを形成させるために、該研削ホイールが装着された回転軸と該保持テーブルの回転軸との傾き関係を変更する傾き変更工程と、を備える円板状ワークの加工方法。
A method of processing a disk-shaped work, comprising grinding a disk-shaped work held on a holding surface of a holding table with a grinding wheel and polishing with a polishing pad,
A holding step of holding the disk-shaped work on the holding table;
A grinding step of rotating the disk-shaped work and a grinding wheel, respectively, and grinding the disk-shaped work with the grinding wheel;
After the grinding step, a polishing step of rotating the disk-shaped work and the polishing pad respectively and polishing with the polishing pad covering the disk-shaped work,
After the polishing step, the thickness of the disc-shaped work at at least two measurement points, a first measurement point at the center of the disc-shaped work and a second measurement point near the outer peripheral edge of the disc-shaped work. A measurement process for measuring
A thickness tendency recognizing step of recognizing a thickness tendency in the radial direction of the disk-shaped work from the thicknesses of the disk-shaped work at the two measurement points measured in the measurement step;
In the next grinding step, in order to form a disk-shaped work having a thickness tendency contrary to the thickness tendency recognized in the thickness tendency recognition step, a rotary shaft on which the grinding wheel is mounted and a rotary shaft of the holding table are formed. A method of processing a disk-shaped workpiece, comprising a tilt changing step of changing a tilt relationship.
前記測定工程では、前記2つの測定点と、前記第1の測定点と前記第2の測定点との中間点である第3の測定点との少なくとも3つの測定点において前記円板状ワークの厚みを測定して、
前記厚み傾向認識工程では、少なくとも該3つの測定点における該円板状ワークの厚みから該円板状ワークの径方向における厚み傾向を認識する請求項1記載の円板状ワークの加工方法。
In the measuring step, at least three measuring points of the two measuring points and a third measuring point which is an intermediate point between the first measuring point and the second measuring point of the disk-shaped workpiece Measure the thickness,
2. The method for processing a disk-shaped work according to claim 1, wherein in the thickness tendency recognition step, a thickness tendency in the radial direction of the disk-shaped work is recognized from the thickness of the disk-shaped work at least at the three measurement points.
前記研磨工程前に前記第1の測定点と、前記第2の測定点との少なくとも2つの測定点において前記円板状ワークの厚みを測定する研磨前測定工程と、
前記傾き変更工程前に、該研磨前測定工程で測定した該2つの測定点における該円板状ワークの厚みから前記測定工程で測定した該2つの測定点における該円板状ワークの厚みを差し引いて該2つの測定点における研磨除去量を算出する算出工程と、を含み、
該傾き変更工程では、前記厚み傾向認識工程で認識した厚み傾向から該研磨除去量を差し引いた該円板状ワークの厚み傾向に反する厚み傾向の円板状ワークを次の前記研削工程で形成させるために、前記研削ホイールが装着された回転軸と前記保持テーブルの回転軸との傾き関係を変更する請求項1記載の円板状ワークの加工方法。
A pre-polishing measurement step of measuring the thickness of the disk-shaped workpiece at at least two measurement points of the first measurement point and the second measurement point before the polishing step;
Prior to the inclination changing step, the thickness of the disk-shaped work at the two measurement points measured in the measurement step is subtracted from the thickness of the disk-shaped work at the two measurement points measured in the pre-polishing measurement step. And a calculation step of calculating the polishing removal amount at the two measurement points,
In the inclination changing step, a disc-shaped work having a thickness tendency contrary to the thickness tendency of the disc-shaped work obtained by subtracting the polishing removal amount from the thickness tendency recognized in the thickness tendency recognition step is formed in the next grinding step. The method for machining a disk-shaped workpiece according to claim 1, wherein the tilt relationship between the rotary shaft on which the grinding wheel is mounted and the rotary shaft of the holding table is changed.
前記研磨前測定工程では、前記2つの測定点と、前記第1の測定点と前記第2の測定点との中間点である第3の測定点との少なくとも3つの測定点において前記円板状ワークの厚みを測定し、
前記測定工程では、少なくとも該3つの測定点において該円板状ワークの厚みを測定し、
前記算出工程では、該研磨前測定工程で測定した該3つの測定点における該円板状ワークの厚みから該測定工程で測定した該3つの測定点における該円板状ワークの厚みを差し引いて該3つの測定点における研磨除去量を算出し、
前記厚み傾向認識工程では、少なくとも該3つの測定点における該円板状ワークの厚みから該円板状ワークの径方向における厚み傾向を認識する請求項3記載の円板状ワークの加工方法。
In the pre-polishing measurement step, the disk shape is formed at at least three measurement points of the two measurement points and a third measurement point which is an intermediate point between the first measurement point and the second measurement point. Measure the work thickness,
In the measuring step, the thickness of the disk-shaped work is measured at least at the three measuring points,
In the calculation step, the thickness of the disc-shaped work at the three measurement points measured in the measurement step is subtracted from the thickness of the disc-shaped work at the three measurement points measured in the pre-polishing measurement step. Calculate the polishing removal amount at three measurement points,
4. The method for processing a disk-shaped work according to claim 3, wherein in the thickness tendency recognition step, the thickness tendency in the radial direction of the disk-shaped work is recognized from the thickness of the disk-shaped work at least at the three measurement points.
JP2019194320A 2018-12-07 2019-10-25 Processing method for disc-shaped workpieces Active JP7417400B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020190154212A KR20200070103A (en) 2018-12-07 2019-11-27 Method for processing disk-like workpiece
CN201911233068.3A CN111283548B (en) 2018-12-07 2019-12-05 Method for machining disc-shaped workpiece
US16/704,271 US11400563B2 (en) 2018-12-07 2019-12-05 Processing method for disk-shaped workpiece
TW108144647A TWI833851B (en) 2018-12-07 2019-12-06 Processing method of disc-shaped workpiece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018229799 2018-12-07
JP2018229799 2018-12-07

Publications (2)

Publication Number Publication Date
JP2020093381A true JP2020093381A (en) 2020-06-18
JP7417400B2 JP7417400B2 (en) 2024-01-18

Family

ID=71085967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019194320A Active JP7417400B2 (en) 2018-12-07 2019-10-25 Processing method for disc-shaped workpieces

Country Status (3)

Country Link
JP (1) JP7417400B2 (en)
KR (1) KR20200070103A (en)
TW (1) TWI833851B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054641A1 (en) * 2020-09-14 2022-03-17 東京エレクトロン株式会社 Processing apparatus and processing method
KR20220126032A (en) * 2021-03-08 2022-09-15 에이엠테크놀로지 주식회사 Circuit board grinding system and grinding method
US20220339753A1 (en) * 2021-04-26 2022-10-27 Disco Corporation Processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077369A (en) * 1998-09-01 2000-03-14 Mitsubishi Materials Corp Polishing system for semiconductor wafer and recording medium
JP2016201422A (en) * 2015-04-08 2016-12-01 株式会社東京精密 Workpiece processing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4464113B2 (en) 2003-11-27 2010-05-19 株式会社ディスコ Wafer processing equipment
JP2009246240A (en) * 2008-03-31 2009-10-22 Tokyo Seimitsu Co Ltd Grinding method for grinding back-surface of semiconductor wafer and grinding apparatus for grinding back-surface of semiconductor wafer used in same
JP2011245610A (en) * 2010-05-31 2011-12-08 Mitsubishi Electric Corp Method of manufacturing semiconductor device
JP5788304B2 (en) 2011-12-06 2015-09-30 株式会社ディスコ Grinding equipment
JP6271339B2 (en) 2014-05-26 2018-01-31 株式会社ディスコ Grinding and polishing equipment
JP6585445B2 (en) * 2015-09-28 2019-10-02 株式会社荏原製作所 Polishing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077369A (en) * 1998-09-01 2000-03-14 Mitsubishi Materials Corp Polishing system for semiconductor wafer and recording medium
JP2016201422A (en) * 2015-04-08 2016-12-01 株式会社東京精密 Workpiece processing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054641A1 (en) * 2020-09-14 2022-03-17 東京エレクトロン株式会社 Processing apparatus and processing method
JP7465986B2 (en) 2020-09-14 2024-04-11 東京エレクトロン株式会社 Processing device and processing method
KR20220126032A (en) * 2021-03-08 2022-09-15 에이엠테크놀로지 주식회사 Circuit board grinding system and grinding method
KR102524072B1 (en) * 2021-03-08 2023-04-21 에이엠테크놀로지 주식회사 Circuit board grinding system and grinding method
US20220339753A1 (en) * 2021-04-26 2022-10-27 Disco Corporation Processing method

Also Published As

Publication number Publication date
JP7417400B2 (en) 2024-01-18
TWI833851B (en) 2024-03-01
KR20200070103A (en) 2020-06-17
TW202021730A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
TWI554361B (en) Method of adjusting profile of a polishing member used in a polishing apparatus, and polishing apparatus
TW202305928A (en) Hard Wafer Grinding Method
KR100780588B1 (en) Planarization apparatus and method for semiconductor wafer
CN111283548B (en) Method for machining disc-shaped workpiece
JP7417400B2 (en) Processing method for disc-shaped workpieces
US20180099377A1 (en) Processing apparatus and processing method for workpiece
JP2019093517A (en) Method for processing work-piece and grinding/polishing device
JP2009038267A (en) Substrate backside grinding apparatus and backside grinding method
TWI785206B (en) Grinding device
JP7127994B2 (en) Dressing board and dressing method
US20220339753A1 (en) Processing method
JP7451043B2 (en) Grinding method and grinding device for workpiece
JP7025249B2 (en) Grinding method for workpieces.
JP6803171B2 (en) Grinding equipment and processing equipment
JP2011224697A (en) Method of adjusting polishing pad
JP2011245571A (en) Machining device
JP6487790B2 (en) Processing equipment
JP2019123046A (en) Dressing method
JP2015051479A (en) Grinding device
JP7206578B2 (en) WAFER GRINDING METHOD AND WAFER GRINDING APPARATUS
KR20220040375A (en) Polishing device
JP2021094661A (en) Grinding device and method for grinding work-piece
JP2024009560A (en) Workpiece grinding method
JP2021045821A (en) Abrasive pad and grinding method
KR20230163296A (en) Grinding apparatus and method of grinding wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240105

R150 Certificate of patent or registration of utility model

Ref document number: 7417400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150