JP2020091996A - Method of manufacturing electric wire with terminal - Google Patents

Method of manufacturing electric wire with terminal Download PDF

Info

Publication number
JP2020091996A
JP2020091996A JP2018228077A JP2018228077A JP2020091996A JP 2020091996 A JP2020091996 A JP 2020091996A JP 2018228077 A JP2018228077 A JP 2018228077A JP 2018228077 A JP2018228077 A JP 2018228077A JP 2020091996 A JP2020091996 A JP 2020091996A
Authority
JP
Japan
Prior art keywords
core wire
terminal
ultrasonic vibration
conductor core
electric wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018228077A
Other languages
Japanese (ja)
Inventor
泰徳 鍋田
Yasunori Nabeta
泰徳 鍋田
一栄 高橋
Kazue Takahashi
一栄 高橋
知哉 佐藤
Tomoya Sato
知哉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2018228077A priority Critical patent/JP2020091996A/en
Publication of JP2020091996A publication Critical patent/JP2020091996A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

To provide a method for manufacturing an electric wire with a terminal which is excellent in tensile strength at a place where a terminal is crimped to a conductor core wire.SOLUTION: A method for manufacturing an electric wire with a terminal includes the steps of: applying ultrasonic vibration processing to a conductor core wire 12 so that the tensile strength of the conductor core wire 12 in the step of applying the ultrasonic vibration processing is higher than that of the conductor core wire 12 before the ultrasonic vibration processing is applied; and crimping a terminal 20 to the conductor core wire 12 to which the ultrasonic vibration processing is applied. According to this manufacturing method, the tensile strength of the conductor core wire 12 can be improved.SELECTED DRAWING: Figure 5

Description

本発明は、端子付き電線の製造方法に関する。 The present invention relates to a method for manufacturing an electric wire with a terminal.

従来から、電線の許容電流を高めつつ曲げ強度を向上させる等の観点から、複数の導体芯線が束ねられた芯線束(例えば、撚り線)を有する電線が提案されている。このような芯線束(撚り線)に端子を圧着させた場合、芯線束の外周部に位置する導体芯線は端子に直接接触して電気的に接続されるものの、芯線束の中央部に位置する導体芯線は外周部に位置する導体を介して端子に電気的に接続されることになる。そのため、芯線束と端子との間の全体的な導電性を向上させるためには、導体芯線と端子との間の導電性(外周部の導電性)に加え、導体芯線同士の間の導電性(中央部の導電性)を向上させることが望ましい。 BACKGROUND ART Conventionally, an electric wire having a core wire bundle (for example, a stranded wire) in which a plurality of conductor core wires are bundled has been proposed from the viewpoint of increasing the allowable current of the electric wire and improving the bending strength. When a terminal is crimped to such a core wire bundle (stranded wire), the conductor core wire located on the outer peripheral portion of the core wire bundle is in direct contact with the terminal and electrically connected, but is located in the central portion of the core wire bundle. The conductor core wire is electrically connected to the terminal via the conductor located on the outer peripheral portion. Therefore, in order to improve the overall conductivity between the core wire bundle and the terminal, in addition to the conductivity between the conductor core wire and the terminal (the conductivity of the outer peripheral portion), the conductivity between the conductor core wires is also increased. It is desirable to improve (conductivity of the central portion).

一方、近年、銅に比べて軽量かつ低コストであること等を理由に、アルミニウム及びアルミニウム合金等が導体芯線の材料として用いられる場合がある。ところが、この場合、導体芯線の表面に自然形成される酸化皮膜(酸化アルミニウム)の絶縁性が高いため、上述した導電性(外周部の導電性・中央部の導電性)を向上させるための様々な工夫が求められる。 On the other hand, in recent years, aluminum and aluminum alloys may be used as the material of the conductor core wire because of their lighter weight and lower cost than copper. However, in this case, since the oxide film (aluminum oxide) that is naturally formed on the surface of the conductor core wire has a high insulating property, various properties for improving the above-mentioned conductivity (conductivity of the outer peripheral portion/conductivity of the central portion) are provided. It is required to devise.

例えば、従来の端子付き電線の製造方法の一つでは、アルミニウム製の導体芯線からなる芯線束(撚り線)に対して超音波振動処理を施すことにより、導体芯線の表面の酸化皮膜を破壊しつつ導体芯線同士を互いに接合させ、芯線束を一体化(単線化)するようになっている。これにより、芯線束の外周部に位置する導体芯線も中央部に位置する導体芯線も、実質的に端子に直接接触することになる。その結果、このような単線化がなされない場合に比べ、中央部の導電性が向上する分、芯線束と端子との間の全体的な導電性が向上し得ることになる(例えば、特許文献1,2を参照。)。 For example, in one of the conventional methods of manufacturing an electric wire with a terminal, ultrasonic wave vibration treatment is applied to a core wire bundle (stranded wire) made of an aluminum conductor core wire to destroy an oxide film on the surface of the conductor core wire. Meanwhile, the conductor core wires are joined to each other to integrate the core wire bundle (single wire). As a result, both the conductor core wire located in the outer peripheral portion of the core wire bundle and the conductor core wire located in the central portion substantially come into direct contact with the terminals. As a result, compared to the case where such a single wire is not formed, the conductivity of the central portion is improved, and thus the overall conductivity between the core wire bundle and the terminal can be improved (for example, Patent Document 1). See 1, 2).

特開2016−115525号公報JP, 2016-115525, A 特開2014−029884号公報JP, 2014-029884, A

ところで、発明者が行った実験および考察などによれば、上述した従来の製造方法によって一体化した芯線束に端子を圧着すると、芯線束と端子との間の導電性は向上し得るものの、その圧着に伴って芯線束の断面積が低下し、芯線束の引張強度が低下する場合があることが明らかになった。芯線束の引張強度が過度に低下すると、実際に端子付き電線が使用される際、周辺の部材が電線に接触する等の理由から電線に外力が及んだ場合、芯線束の端子が圧着されている箇所に破損などが生じる場合がある。この場合、芯線束と端子との間の導電性が適正に維持されず、端子付き電線としての性能が低下する可能性がある。 By the way, according to the experiments and consideration conducted by the inventor, when the terminal is crimped to the core wire bundle integrated by the above-described conventional manufacturing method, the conductivity between the core wire bundle and the terminal can be improved, It has been clarified that the cross-sectional area of the core wire bundle is reduced due to the pressure bonding, and the tensile strength of the core wire bundle may be reduced. If the tensile strength of the core wire bundle is excessively reduced, when the wire with a terminal is actually used and the external force is applied to the wire due to the reason that the peripheral members come into contact with the wire, the terminals of the core wire bundle will be crimped. Damaged parts may occur. In this case, the electrical conductivity between the core wire bundle and the terminal may not be properly maintained, and the performance of the electric wire with terminal may deteriorate.

本発明は、上述した事情に鑑みてなされたものであり、その目的は、導体芯線へ端子が圧着される箇所における引張強度に優れた端子付き電線の製造方法、を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a method of manufacturing an electric wire with a terminal, which is excellent in tensile strength at a portion where a terminal is crimped to a conductor core wire.

前述した目的を達成するために、本発明に係る端子付き電線の製造方法は、下記[1]〜[4]を特徴としている。
[1]
電線が有する導体芯線に端子が圧着された端子付き電線の製造方法であって、
前記導体芯線に対して超音波振動処理を施す工程であって、前記導体芯線の引張強度が前記超音波振動処理を施す前の前記導体芯線の引張強度よりも高まるように前記超音波振動処理を施す工程と、
前記超音波振動処理が施された前記導体芯線に前記端子を圧着する工程と、を備える、
端子付き電線の製造方法であること。
[2]
上記[1]に記載の端子付き電線の製造方法において、
前記超音波振動処理は、
前記超音波振動処理を施す前の前記導体芯線の引張強度よりも前記超音波振動処理を施した後の前記導体芯線の引張強度が10%以上高まるように施される、
端子付き電線の製造方法であること。
[3]
上記[1]又は上記[2]に記載の端子付き電線の製造方法において、
前記超音波振動処理は、
前記超音波振動処理を施す前の前記導体芯線の断面積S1に対する、前記超音波振動処理を施す前の前記導体芯線の断面積S1から前記超音波振動処理を施した後の前記導体芯線の断面積S2を減じた値の割合((S1−S2)/S1)、を圧縮率と定義したとき、前記圧縮率が10%未満となるように施される、
端子付き電線の製造方法であること。
[4]
上記[1]〜上記[3]の何れか一つに記載の端子付き電線の製造方法において、
前記導体芯線は、
アルミニウム又はアルミニウム合金から構成される、
端子付き電線の製造方法であること。
In order to achieve the above-mentioned object, the method of manufacturing an electric wire with a terminal according to the present invention is characterized by the following [1] to [4].
[1]
A method for manufacturing an electric wire with a terminal in which a terminal is crimped to a conductor core wire of an electric wire,
In the step of subjecting the conductor core wire to ultrasonic vibration treatment, the ultrasonic vibration treatment is performed so that the tensile strength of the conductor core wire is higher than the tensile strength of the conductor core wire before the ultrasonic vibration treatment. The process of applying
Crimping the terminal to the conductor core wire subjected to the ultrasonic vibration treatment,
It must be a method of manufacturing electric wires with terminals.
[2]
In the method of manufacturing an electric wire with a terminal according to the above [1],
The ultrasonic vibration treatment,
The tensile strength of the conductor core wire after the ultrasonic vibration treatment is 10% or more higher than the tensile strength of the conductor core wire before the ultrasonic vibration treatment.
It must be a method of manufacturing electric wires with terminals.
[3]
In the method of manufacturing an electric wire with a terminal according to the above [1] or the above [2],
The ultrasonic vibration treatment,
With respect to the cross-sectional area S1 of the conductor core wire before the ultrasonic vibration treatment, the cross-section area S1 of the conductor core wire before the ultrasonic vibration treatment cuts off the conductor core wire after the ultrasonic vibration treatment. When the ratio of the value obtained by subtracting the area S2 ((S1−S2)/S1) is defined as the compression ratio, the compression ratio is less than 10%.
It must be a method of manufacturing electric wires with terminals.
[4]
In the method of manufacturing an electric wire with a terminal according to any one of the above [1] to [3],
The conductor core wire is
Composed of aluminum or aluminum alloy,
It must be a method of manufacturing electric wires with terminals.

上記[1]の構成の端子付き電線の製造方法によれば、端子が圧着される前の導体芯線に対し、超音波振動処理が施される。この超音波振動処理は、処理前の導体芯線の引張強度よりも処理後の導体芯線の引張強度が高まるように、施される。発明者が行った実験等によれば、導体芯線の太さ及び材質、並びに、導体芯線の本数などに基づいて、超音波振動処理の処理時間、並びに、超音波振動の振幅および振動数などを調整することにより、導体芯線の引張強度を向上させられることが明らかになっている。したがって、本構成の製造方法によれば、導体芯線へ端子が圧着された箇所における引張強度に優れた端子付き電線を製造できる。なお、発明者による検討によれば、導体芯線の引張強度の向上は、例えば、超音波振動に伴って導体芯線の結晶方位がランダムな状態から規則性を持った状態に遷移することに起因すると考えられる。 According to the method of manufacturing an electric wire with a terminal having the above configuration [1], ultrasonic vibration treatment is applied to the conductor core wire before the terminals are crimped. This ultrasonic vibration treatment is performed so that the tensile strength of the conductor core wire after the treatment is higher than the tensile strength of the conductor core wire before the treatment. According to experiments conducted by the inventor, the processing time of ultrasonic vibration processing, the amplitude and frequency of ultrasonic vibration, etc. are determined based on the thickness and material of the conductor core wire, and the number of conductor core wires. It has been clarified that the tensile strength of the conductor core wire can be improved by adjusting. Therefore, according to the manufacturing method of this configuration, it is possible to manufacture an electric wire with a terminal having excellent tensile strength at a portion where the terminal is crimped to the conductor core wire. According to the study by the inventor, the improvement of the tensile strength of the conductor core wire is caused by, for example, the transition of the crystal orientation of the conductor core wire from a random state to a regular state with ultrasonic vibration. Conceivable.

上記[2]の構成の端子付き電線の製造方法について、発明者が行った実験等によれば、超音波振動処理の際に導体芯線に印加されるエネルギの大きさに対し、導体芯線の引張強度は、単純に線形的には変化せず、所定の特性カーブに沿って変化することが明らかになっている(図5及び図6を参照)。換言すると、事前に行った実験などに基づいて取得した特性カーブに基づき、どの程度のエネルギを導体芯線に印加すれば、導体芯線の引張強度をどの程度向上し得るかを把握できる。ここで、実用上、導体芯線へ端子が圧着された箇所における引張強度を向上させる観点から、処理前の導体芯線の引張強度よりも処理後の導体芯線の引張強度が10%以上高まることが好ましい。 Regarding the method of manufacturing the electric wire with a terminal having the above-mentioned configuration [2], according to an experiment conducted by the inventor, according to the magnitude of the energy applied to the conductor core wire during ultrasonic vibration treatment, the conductor core wire is pulled. It has been revealed that the intensity does not change simply linearly but changes along a predetermined characteristic curve (see FIGS. 5 and 6). In other words, based on the characteristic curve obtained based on the experiment conducted in advance, it is possible to understand how much energy should be applied to the conductor core wire to improve the tensile strength of the conductor core wire. Here, from the viewpoint of improving the tensile strength in a portion where the terminal is crimped to the conductor core wire in practical use, the tensile strength of the conductor core wire after the treatment is preferably 10% or more higher than the tensile strength of the conductor core wire before the treatment. ..

上記[3]の構成の端子付き電線の製造方法によれば、超音波振動処理は、処理前後の導体芯線の断面積に関連する圧縮率が10%未満であるように施される。よって、処理前後において、導体芯線の断面積が著しく減少することがない。その結果、超音波振動処理の後に導体芯線に端子が圧着されても、導体芯線の断面積が過度に小さくなることがなく、電線に及ぶ外力などに対する端子付き電線の耐性を更に向上できる。 According to the method of manufacturing an electric wire with a terminal having the above configuration [3], the ultrasonic vibration treatment is performed so that the compressibility related to the cross-sectional area of the conductor core wire before and after the treatment is less than 10%. Therefore, the cross-sectional area of the conductor core wire is not significantly reduced before and after the treatment. As a result, even if the terminal is crimped onto the conductor core wire after the ultrasonic vibration treatment, the cross-sectional area of the conductor core wire does not become excessively small, and the resistance of the electric wire with a terminal against an external force exerted on the electric wire can be further improved.

上記[4]の構成の端子付き電線の製造方法によれば、一般に用いられる銅製の導体芯線(銅線)に比べて表面に形成される酸化皮膜の絶縁性が大きいアルミニウム製またはアルミニウム合金製の導体芯線(アルミニウム電線)を用いるにあたり、引張強度の向上効果(即ち、電線に及ぶ外力などに対する端子付き電線の耐性の向上)を得られることになる。 According to the method of manufacturing an electric wire with a terminal having the above-mentioned configuration [4], an oxide film or an aluminum alloy, which has a larger insulation property of an oxide film formed on the surface than a generally used copper conductor core wire (copper wire), is used. When the conductor core wire (aluminum electric wire) is used, the effect of improving the tensile strength (that is, the resistance of the electric wire with a terminal against an external force exerted on the electric wire) can be obtained.

本発明によれば、導体芯線へ端子が圧着された箇所における引張強度に優れた端子付き電線の製造方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the electric wire with a terminal excellent in the tensile strength in the location where the terminal was crimped|bonded with the conductor core wire can be provided.

以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための形態(以下「実施形態」という。)を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。 The present invention has been briefly described above. Further, the details of the present invention will be further clarified by reading through the modes for carrying out the invention described below (hereinafter referred to as “embodiments”) with reference to the accompanying drawings.

図1は、本発明の実施形態に係る端子付き電線の製造方法の一連の工程を説明する図であって、図1(a)及び図1(b)は、電線の端部の斜視図であり、図1(c)及び図1(d)は、電線の端部に端子を圧着する様子の斜視図である。FIG. 1 is a diagram illustrating a series of steps of a method for manufacturing an electric wire with a terminal according to an embodiment of the present invention, and FIGS. 1A and 1B are perspective views of an end portion of the electric wire. Yes, FIG. 1C and FIG. 1D are perspective views of a state in which the terminal is crimped to the end portion of the electric wire. 図2は、電線の芯線束の形状の推移を説明する図であって、図2(a)は超音波振動が施される前の芯線束の正面図、図2(b)は超音波振動が施された後の芯線束の正面図である。2A and 2B are views for explaining the transition of the shape of the core wire bundle of the electric wire. FIG. 2A is a front view of the core wire bundle before ultrasonic vibration is applied, and FIG. 2B is ultrasonic vibration. It is a front view of a core wire bundle after being subjected to. 図3は、芯線束に対して超音波振動処理を施す超音波振動装置の概略図である。FIG. 3 is a schematic diagram of an ultrasonic vibration device that applies ultrasonic vibration processing to a core wire bundle. 図4は、電線に端子を圧着する端子圧着装置の概略図である。FIG. 4 is a schematic diagram of a terminal crimping device that crimps a terminal to an electric wire. 図5は、超音波振動が芯線束(導体芯線)の引張強度に及ぼす影響を示すグラフである。FIG. 5 is a graph showing the effect of ultrasonic vibration on the tensile strength of a core wire bundle (conductor core wire). 図6は、超音波振動が芯線束(導体芯線)の引張強度に及ぼす影響を示すグラフである。FIG. 6 is a graph showing the effect of ultrasonic vibration on the tensile strength of a core wire bundle (conductor core wire).

以下、図面を参照しながら、本発明の実施形態に係る端子付き電線の製造方法について説明する。 Hereinafter, a method of manufacturing an electric wire with a terminal according to an embodiment of the present invention will be described with reference to the drawings.

<概要>
まず、概要について述べる。電線10への端子20の圧着に際し、導体芯線12の引張強度の向上等の観点から超音波振動装置30による超音波振動処理が行われた後、端子圧着装置(アンビル40及びクリンパ50)による端子20の圧着処理が行われる。以下、これら装置の構成および作動等について、詳細に説明する。
<Outline>
First, an outline will be described. When crimping the terminal 20 to the electric wire 10, after ultrasonic vibration processing is performed by the ultrasonic vibration device 30 from the viewpoint of improving the tensile strength of the conductor core wire 12, the terminal is crimped by the terminal crimping device (anvil 40 and crimper 50). 20 crimping processes are performed. Hereinafter, the configurations and operations of these devices will be described in detail.

まず、図1(a)に示すように、本実施形態に係る端子付き電線の製造方法においては、電線10の絶縁被覆11を皮剥きして複数の導体芯線12からなる芯線束13を露出させる。次いで、図1(b)に示すように、芯線束13に対して超音波振動処理(詳細は後述される。)を施し、処理後芯線13Aを形成する。なお、図1(a)に示すように、電線10は、複数の導体芯線12が束ねられた断面円形状の芯線束13の外周を絶縁被覆11によって覆うように構成されている。本例では、導体芯線12は、アルミニウム又はアルミニウム合金製の非メッキ素線である。換言すると、電線10は、いわゆるアルミニウム電線またはアルミニウム合金電線である。 First, as shown in FIG. 1A, in the method for manufacturing an electric wire with a terminal according to the present embodiment, the insulation coating 11 of the electric wire 10 is peeled off to expose a core wire bundle 13 composed of a plurality of conductor core wires 12. .. Next, as shown in FIG. 1B, the core wire bundle 13 is subjected to ultrasonic vibration processing (details will be described later) to form a processed core wire 13A. As shown in FIG. 1A, the electric wire 10 is configured such that the outer circumference of a core wire bundle 13 having a circular cross section in which a plurality of conductor core wires 12 are bundled is covered with an insulating coating 11. In this example, the conductor core wire 12 is a non-plated element wire made of aluminum or an aluminum alloy. In other words, the electric wire 10 is a so-called aluminum electric wire or an aluminum alloy electric wire.

その後、図1(c)に示すように、処理後芯線13Aを端子20の所定箇所に配置した後、図1(d)に示すように、端子20を処理後芯線13A(及びその周辺の絶縁被覆11)に圧着する(詳細は後述される。)。以上の一連の工程を経て、端子付き電線1が製造される。 After that, as shown in FIG. 1C, after the processed core wire 13A is arranged at a predetermined position of the terminal 20, the terminal 20 is treated as shown in FIG. Pressure is applied to the coating 11) (details will be described later). The electric wire with a terminal 1 is manufactured through the series of steps described above.

<詳細>
次いで、上記の各工程について、より詳細に述べる。
<Details>
Next, each of the above steps will be described in more detail.

図1(b)及び図3に示すように、芯線束13に施される超音波振動処理に関し、超音波振動処理が施された後の芯線束13である処理後芯線13Aは、その軸線に直交する断面において矩形状の形状を有している。処理後芯線13Aでは、芯線束13を構成する複数本の導体芯線12の一部または全部が超音波振動によって互いに接合されていてもよく、接合されていなくてもよい。 As shown in FIGS. 1B and 3, regarding the ultrasonic vibration treatment applied to the core wire bundle 13, the processed core wire 13A, which is the core wire bundle 13 after the ultrasonic vibration treatment, is attached to the axis thereof. It has a rectangular shape in a cross section orthogonal to each other. In the post-processed core wire 13A, some or all of the plurality of conductor core wires 12 forming the core wire bundle 13 may or may not be bonded to each other by ultrasonic vibration.

図4を参照しながら、このような超音波振動処理を行う超音波振動装置30について説明する。図4に示すように、超音波振動装置30は、ホーン31と、固定されたサイドプレート32と、可動するスライドコア33と、アンビル34と、を備えている。ホーン31は、超音波発振器により、図中の紙面前後方向に超音波振動するようになっている。ホーン31の上面(芯線束13に接触する面)には、振動方向に直交する方向に延びる複数の凸条からなるローレット(図示省略)が形成されており、ホーン31の上面と芯線束13との間の滑りを抑制するようになっている。超音波振動装置30では、ホーン31、サイドプレート32、スライドコア33及びアンビル34によって画成される断面視矩形状の空間が接合処理室Vとされており、この接合処理室V内に配置した芯線束13に対して超音波振動処理を施すようになっている。 An ultrasonic vibration device 30 that performs such ultrasonic vibration processing will be described with reference to FIG. As shown in FIG. 4, the ultrasonic vibration device 30 includes a horn 31, a fixed side plate 32, a movable slide core 33, and an anvil 34. The horn 31 is adapted to vibrate ultrasonically in the front-back direction of the paper surface in the figure by an ultrasonic oscillator. On the upper surface of the horn 31 (the surface that comes into contact with the core wire bundle 13), knurls (not shown) formed of a plurality of ridges extending in the direction orthogonal to the vibration direction are formed. It is designed to prevent slippage between the two. In the ultrasonic vibration device 30, a rectangular space in cross section defined by the horn 31, the side plate 32, the slide core 33, and the anvil 34 is defined as a bonding processing chamber V, and the bonding processing chamber V is arranged in this bonding processing chamber V. Ultrasonic vibration processing is applied to the core wire bundle 13.

サイドプレート32は、ホーン31の側部に配置されている。スライドコア33は、ホーン31の上面におけるサイドプレート32と対向する位置に配置されており、サイドプレート32に対して近接または離間する方向へ移動可能とされている。図3では、スライドコア33は、図中の矢印Aに示す向きに移動し、この向きに芯線束13を押圧している。アンビル34は、ホーン31及びサイドプレート32の上方に配置されており、昇降することにより、ホーン31に対して近接または離間する方向へ移動可能とされている。図3では、アンビル34は、図中の矢印Bに示す向きに移動し、この向きに芯線束13を押圧している。 The side plate 32 is arranged on the side of the horn 31. The slide core 33 is arranged at a position facing the side plate 32 on the upper surface of the horn 31, and is movable in a direction of approaching or separating from the side plate 32. In FIG. 3, the slide core 33 moves in the direction indicated by the arrow A in the figure and presses the core wire bundle 13 in this direction. The anvil 34 is disposed above the horn 31 and the side plate 32, and can be moved in a direction in which the anvil 34 approaches or separates from the horn 31 by moving up and down. In FIG. 3, the anvil 34 moves in the direction indicated by the arrow B in the figure and presses the core wire bundle 13 in this direction.

超音波振動装置30は、スライドコア33及びアンビル34を上述したように移動させることにより、接合処理室Vの幅および高さ(ひいては、芯線束13が接合された処理後芯線13Aの断面積S2)を調整することが可能となっている。このように接合処理室Vの幅および高さを調整することにより、所望の圧縮率にて芯線束13を加工し、処理後芯線13Aを形成できるようになっている。 The ultrasonic vibration device 30 moves the slide core 33 and the anvil 34 as described above to thereby cause the width and height of the bonding processing chamber V (and thus the cross-sectional area S2 of the processed core wire 13A to which the core wire bundle 13 is bonded). ) Can be adjusted. By adjusting the width and height of the joining processing chamber V in this manner, the core wire bundle 13 can be processed at a desired compression rate and the processed core wire 13A can be formed.

ここで、図2に示すように、超音波振動処理を施す前の芯線束13の断面積S1に対する、超音波振動処理を施す前の芯線束13の断面積S1から超音波振動処理を施した後の芯線束13の断面積S2を減じた値の割合((S1−S2)/S1)、を「圧縮率」と定義する。本例では、圧縮率が10%未満であるように、超音波振動処理が施される。 Here, as shown in FIG. 2, the ultrasonic vibration treatment is performed from the cross-sectional area S1 of the core wire bundle 13 before the ultrasonic vibration treatment with respect to the sectional area S1 of the core wire bundle 13 before the ultrasonic vibration treatment. The ratio ((S1−S2)/S1) of the value obtained by subtracting the cross-sectional area S2 of the subsequent core wire bundle 13 is defined as “compression ratio”. In this example, ultrasonic vibration processing is performed so that the compression rate is less than 10%.

なお、芯線束13の断面積S1は、個々の導体芯線12の断面積の合計であってもよいし、芯線束13の断面を特定の形状(例えば、正円)に近似した場合における正円の面積であってもよい。処理後芯線13Aの断面積S2は、同様に、個々の導体芯線12の断面積の合計であってもよいし、芯線束13の断面を特定の形状(例えば、矩形)に近似した場合における矩形の面積であってもよい。 The cross-sectional area S1 of the core wire bundle 13 may be the total of the cross-sectional areas of the individual conductor core wires 12, or a perfect circle when the cross section of the core wire bundle 13 is approximated to a specific shape (for example, a perfect circle). May be the area. Similarly, the cross-sectional area S2 of the processed core wire 13A may be the total of the cross-sectional areas of the individual conductor core wires 12 or a rectangle when the cross section of the core wire bundle 13 is approximated to a specific shape (for example, a rectangle). May be the area.

次いで、再び図1(c)を参照すると、超音波振動処理の後に行われる処理後芯線13Aと端子20との圧着処理に関し、端子20は、電気接続部21と、圧着接続部22とを有している。端子20は、例えば、銅または銅合金などの導電性金属材料からなる金属板をプレス加工することによって形成されている。 Next, referring to FIG. 1C again, regarding the crimping process of the post-processed core wire 13A and the terminal 20 performed after the ultrasonic vibration process, the terminal 20 has an electric connecting portion 21 and a crimping connecting portion 22. is doing. The terminal 20 is formed by pressing a metal plate made of a conductive metal material such as copper or a copper alloy.

電気接続部21は、平板状の接続板部23を有しており、この接続板部23には、接続孔23aが形成されている。接続板部23は、例えば、接続孔23aに締結ボルトを挿通させて接続機器の端子台などに締結することにより、端子台に電気的に接続される。 The electric connecting portion 21 has a flat connecting plate portion 23, and the connecting plate portion 23 is formed with a connecting hole 23a. The connection plate portion 23 is electrically connected to the terminal block by, for example, inserting a fastening bolt through the connection hole 23a and fastening the connection bolt to a terminal block of the connection device.

圧着接続部22は、電気接続部21側から順に、導体圧着部24と、外被圧着部25と、を有している。導体圧着部24は、基底部26と、基底部26の両側部に形成された一対の導体圧着片27(圧着片)とを有している。基底部26には、処理後芯線13Aが載置される。導体圧着片27は、処理後芯線13Aを挟むように基底部26から延設されている。図1(d)に示すように、導体圧着部24は、一対の導体圧着片27を内側へ向けて湾曲させる(加締める)ことにより、電線10の処理後芯線13Aに圧着される。これにより、端子20が電線10の芯線束13と導通接続されることになる。 The crimp connection part 22 has a conductor crimp part 24 and an outer cover crimp part 25 in order from the electric connection part 21 side. The conductor crimping portion 24 has a base portion 26 and a pair of conductor crimping pieces 27 (crimping pieces) formed on both sides of the base portion 26. The processed core wire 13A is placed on the base portion 26. The conductor crimping piece 27 is extended from the base portion 26 so as to sandwich the processed core wire 13A. As shown in FIG. 1D, the conductor crimping portion 24 is crimped to the processed core wire 13A of the electric wire 10 by bending (crimping) the pair of conductor crimping pieces 27 inward. As a result, the terminal 20 is conductively connected to the core wire bundle 13 of the electric wire 10.

外被圧着部25は、基底部28と、基底部28の両側部に形成された一対の外被圧着片29とを有している。外被圧着部25の基底部28は、導体圧着部24の基底部26から延在されている。基底部28には、電線10の絶縁被覆11が載置される。外被圧着片29は、基底部28から電線10の絶縁被覆11部分を挟むように延設されている。図1(d)に示すように、外被圧着部25は、一対の外被圧着片29を内側へ向けて湾曲させる(加締める)ことにより、電線10の絶縁被覆11の部分に圧着され且つ固定されることになる。 The outer cover crimping portion 25 has a base portion 28 and a pair of outer cover crimping pieces 29 formed on both sides of the base portion 28. The base portion 28 of the outer cover crimping portion 25 extends from the base portion 26 of the conductor crimping portion 24. The insulating coating 11 of the electric wire 10 is placed on the base portion 28. The outer cover crimping piece 29 extends from the base portion 28 so as to sandwich the insulating coating 11 portion of the electric wire 10. As shown in FIG. 1D, the outer cover crimping portion 25 is crimped to the portion of the insulating coating 11 of the electric wire 10 by curving (crimping) the pair of outer cover crimping pieces 29 inward. It will be fixed.

なお、上述した処理後芯線13Aと端子20との圧着処理は、図4に示すような、一般的な端子圧着装置(アンビル40,クリンパ50)を用いて行われ得る。図4に示すように、アンビル40は、端子20及び処理後芯線13Aの下方に配置され、クリンパ50は、端子20及び処理後芯線13Aの上方に配置されている。クリンパ50は、アンビル40に対して相対的に上下方向へ移動可能となっている。 The crimping treatment between the post-treatment core wire 13A and the terminal 20 described above can be performed using a general terminal crimping device (anvil 40, crimper 50) as shown in FIG. As shown in FIG. 4, the anvil 40 is arranged below the terminal 20 and the processed core wire 13A, and the crimper 50 is arranged above the terminal 20 and the processed core wire 13A. The crimper 50 is vertically movable relative to the anvil 40.

アンビル40は、その頂部に、下方へ向けて窪むように湾曲した支持面41を有している。端子20の圧着の際、この支持面41は、端子20の基底部26を支持することになる。具体的には、端子20の基底部26の外面が支持面41に当接することになる。クリンパ50は、幅方向の中央部に、アンビル40側へ突出する山形部51を有するアーチ溝52を備えている。アーチ溝52は、山形部51の両側に形成された二つの円弧面から構成されている。そして、クリンパ50を下降させてアンビル40に近接させると、端子20の導体圧着片27がアーチ溝52によって互いに近接する方向へ押圧されて内側に湾曲する(巻き込む)ように変形し、処理後芯線13Aへの圧着がなされることになる。なお、上記同様、外被圧着片29に対するクリンパ(図示省略)を下降させることにより、外被圧着片29が絶縁被覆11に圧着されることになる。 The anvil 40 has a support surface 41 at the top thereof that is curved so as to be recessed downward. When the terminal 20 is crimped, the supporting surface 41 supports the base portion 26 of the terminal 20. Specifically, the outer surface of the base portion 26 of the terminal 20 contacts the support surface 41. The crimper 50 is provided with an arch groove 52 having a chevron-shaped portion 51 protruding toward the anvil 40 side in the center portion in the width direction. The arch groove 52 is composed of two arc surfaces formed on both sides of the chevron portion 51. Then, when the crimper 50 is lowered and brought close to the anvil 40, the conductor crimping pieces 27 of the terminal 20 are pressed by the arch grooves 52 in a direction in which they are close to each other and are deformed so as to be curved (rolled) inward, and the core wire after processing 13A will be crimped. Note that, similarly to the above, by lowering the crimper (not shown) for the outer cover crimping piece 29, the outer cover crimping piece 29 is crimped to the insulating coating 11.

<評価>
発明者は、上述した超音波振動処理の効果を検討するための試験を行った。
<Evaluation>
The inventor conducted a test for examining the effect of the ultrasonic vibration treatment described above.

(アルミニウム電線の場合)
具体的には、超音波振動処理を行わないサンプルと、芯線束13に及ぼすエネルギを種々変化させて超音波振動処理を行った複数のサンプルと、を準備した。これらサンプルには、アルミニウム製の導体芯線12が複数束ねられた芯線束13(即ち、アルミニウム電線。径:2.0sq)が用いられている。各サンプルに対し、超音波振動装置30のホーン31による振動時間、振幅および振動数などを変化させることにより調整された種々のエネルギによる超音波振動処理が施された。
(For aluminum wires)
Specifically, a sample that was not subjected to ultrasonic vibration treatment and a plurality of samples that were subjected to ultrasonic vibration treatment by varying the energy exerted on the core bundle 13 were prepared. A core wire bundle 13 (that is, an aluminum electric wire; diameter: 2.0 sq) in which a plurality of conductor core wires 12 made of aluminum are bundled is used for these samples. Each sample was subjected to ultrasonic vibration treatment using various energies adjusted by changing the vibration time, amplitude, frequency, etc. by the horn 31 of the ultrasonic vibration device 30.

その結果を図5に示す。図5では、横軸に超音波振動処理時に芯線束13に及ぼすエネルギが示され、縦軸に超音波振動処理後の処理後芯線13Aに対して引張試験を行った際の最大応力が示されている。なお、最大応力は、超音波振動処理が施された処理後芯線13Aを軸方向に引張速度50mm/分で引っ張るように引張試験を行った場合における、処理後芯線13Aの破断時の応力を表す。 The result is shown in FIG. In FIG. 5, the horizontal axis shows the energy exerted on the core wire bundle 13 during ultrasonic vibration treatment, and the vertical axis shows the maximum stress when a tensile test is performed on the treated core wire 13A after ultrasonic vibration treatment. ing. The maximum stress represents the stress at break of the treated core wire 13A when a tensile test is performed so as to pull the treated core wire 13A subjected to ultrasonic vibration treatment in the axial direction at a pulling speed of 50 mm/min. ..

本試験により、図5に示すように、超音波振動処理にて芯線束13に及ぼされるエネルギが大きくなるにつれて、処理後芯線13Aの引張試験における最大応力は、所定の特性カーブに沿って変化することが明らかになった。具体的には、この特性カーブは、芯線束13に及ぼされるエネルギが大きくなるにつれて、超音波振動処理を行わないサンプル(グラフ中の「処理なし」)の最大応力σ0よりも小さい極小値σBを経て、超音波振動処理を行わないサンプルの最大応力σ0よりも大きい極大値σPに至るような、形状を有する。 According to this test, as shown in FIG. 5, as the energy exerted on the core wire bundle 13 in the ultrasonic vibration treatment increases, the maximum stress in the tensile test of the treated core wire 13A changes along a predetermined characteristic curve. It became clear. Specifically, this characteristic curve shows a local minimum value σB smaller than the maximum stress σ0 of the sample not subjected to ultrasonic vibration treatment (“no treatment” in the graph) as the energy exerted on the core wire bundle 13 increases. After that, it has a shape that reaches a maximum value σP larger than the maximum stress σ0 of the sample that is not subjected to ultrasonic vibration treatment.

よって、アルミニウム電線についてこのような特性カーブをあらかじめ取得しておくことにより、例えば、芯線束13に及ぼされるエネルギを図5に示すE1以上E2以下の値とすることにより、超音波振動処理を行わないサンプルの最大応力σ0よりも10%大きな最大応力1.1σ0を有するように、処理後のサンプルの最大応力を制御することができる。なお、実用上、処理後芯線13Aへ端子20が圧着された箇所における引張強度を向上させる観点から、処理前の芯線束13の引張強度(即ち、最大応力)よりも処理後芯線13Aの引張強度が10%以上高まることが好ましい。 Therefore, by obtaining such a characteristic curve in advance for the aluminum electric wire, for example, by setting the energy applied to the core wire bundle 13 to a value of E1 or more and E2 or less shown in FIG. 5, ultrasonic vibration processing is performed. The maximum stress of the treated sample can be controlled to have a maximum stress of 1.1σ0 that is 10% greater than the maximum stress of the non-sample. Practically, from the viewpoint of improving the tensile strength at the portion where the terminal 20 is crimped to the post-treatment core wire 13A, the tensile strength of the post-treatment core wire 13A is higher than that of the pre-treatment core wire bundle 13 (that is, the maximum stress). Is preferably increased by 10% or more.

なお、径の大きさが異なる複数種類のアルミニウム電線について同様の試験を行った結果、特性カーブの形状が類似することが明らかになっている。換言すると、特性カーブの形状は、芯線束13を構成する材料に基づいて定まることが明らかになっている。 As a result of similar tests performed on a plurality of types of aluminum electric wires having different diameters, it has been revealed that the shapes of characteristic curves are similar. In other words, it has been clarified that the shape of the characteristic curve is determined based on the material forming the core wire bundle 13.

(銅電線の場合)
更に、図6に、他の材料から構成された電線10についての、同様の評価結果を示す。具体的には、銅製の導体芯線12が複数束ねられた芯線束13(即ち、銅電線。径:1.25sq)に対し、超音波振動処理を行わないサンプルと、芯線束13に及ぼすエネルギを種々変化させて超音波振動処理を行った複数のサンプルと、を準備した。
(For copper wire)
Further, FIG. 6 shows the same evaluation result for the electric wire 10 made of another material. Specifically, for a core wire bundle 13 in which a plurality of copper conductor core wires 12 are bundled (that is, a copper electric wire. Diameter: 1.25 sq), a sample that is not subjected to ultrasonic vibration treatment and energy exerted on the core wire bundle 13 are A plurality of samples subjected to ultrasonic vibration treatment with various changes were prepared.

図6に示すように、超音波振動処理にて芯線束13に及ぼされるエネルギが大きくなるにつれて、処理後芯線13Aの引張試験における最大応力は、所定の特性カーブに沿って変化することが明らかになった。この特性カーブの形状は、図5に示すアルミニウム電線における特性カーブの形状とは異なる。具体的には、この特性カーブは、芯線束13に及ぼされるエネルギが大きくなるにつれて、超音波振動処理を行わないサンプル(グラフ中の「処理なし」)の最大応力σ0よりも大きい第1の極大値σP1を経て、超音波振動処理を行わないサンプルの最大応力σ0よりも小さい極小値σBを経た後、再び超音波振動処理を行わないサンプルの最大応力σ0よりも大きい第2の極大値σP2に至るような、形状を有する。 As shown in FIG. 6, it is apparent that the maximum stress in the tensile test of the treated core wire 13A changes along a predetermined characteristic curve as the energy applied to the core wire bundle 13 by the ultrasonic vibration treatment increases. became. The shape of this characteristic curve is different from the shape of the characteristic curve in the aluminum electric wire shown in FIG. Specifically, this characteristic curve has a first maximum value larger than the maximum stress σ0 of the sample not subjected to ultrasonic vibration treatment (“no treatment” in the graph) as the energy applied to the core wire bundle 13 increases. After passing through the value σP1 and a local minimum value σB that is smaller than the maximum stress σ0 of the sample that is not subjected to the ultrasonic vibration treatment, a second local maximum value σP2 that is larger than the maximum stress σ0 of the sample that is not subjected to the ultrasonic vibration processing is passed. It has an all-round shape.

よって、銅電線について、このような特性カーブをあらかじめ取得しておくことにより、例えば、芯線束13に及ぼされるエネルギを図6に示すE1以上E2以下の値、又は、E3以上E4以下の値とすることにより、超音波振動処理を行わないサンプルの最大応力σ0よりも10%大きな最大応力1.1σ0を有するように、処理後のサンプルの最大応力を制御することができる。なお、径の大きさが異なる複数種類の銅電線について同様の試験を行った結果、特性カーブの形状が類似することが明らかになっている。この点について、上述したアルミニウム電線の場合と同様である。 Therefore, by acquiring such a characteristic curve in advance for the copper electric wire, for example, the energy exerted on the core wire bundle 13 is set to a value of E1 or more and E2 or less or a value of E3 or more and E4 or less shown in FIG. By doing so, the maximum stress of the sample after the treatment can be controlled so that the maximum stress 1.1σ0 is 10% larger than the maximum stress σ0 of the sample not subjected to the ultrasonic vibration treatment. As a result of performing the same test on a plurality of types of copper electric wires having different diameters, it has been clarified that the shapes of characteristic curves are similar. This point is the same as the case of the aluminum electric wire described above.

ところで、芯線束13に超音波振動処理を施すことによって処理後芯線13Aの引張強度が向上する原理については、現時点では検討中である。想定される原理の一例として、超音波振動処理により、超音波振動に伴って導体芯線12の結晶方位がランダムな状態から所定の規則性を持った状態に遷移することに起因すると考えられる。具体的には、例えば、引張強度の向上に適するような規則性を有するように結晶方位が揃うことで、処理後芯線13Aの引張強度が向上することになると考えられる。 By the way, the principle of improving the tensile strength of the treated core wire 13A by subjecting the core wire bundle 13 to ultrasonic vibration treatment is currently under study. As one example of the assumed principle, it is considered that the ultrasonic vibration process causes the crystal orientation of the conductor core 12 to transition from a random state to a state having a predetermined regularity due to the ultrasonic vibration. Specifically, it is considered that, for example, the crystal orientations are aligned so as to have regularity suitable for improving the tensile strength, so that the tensile strength of the treated core wire 13A is improved.

<作用・効果>
以上、本発明の実施形態に係る端子付き電線1の製造方法によれば、端子が圧着される前の導体芯線に対し、超音波振動処理が施される。この超音波振動処理は、処理前の導体芯線の引張強度よりも処理後の導体芯線の引張強度が高まるように、施される。発明者が行った実験等によれば、導体芯線の太さ及び材質、並びに、導体芯線の本数などに基づいて、超音波振動処理の処理時間、並びに、超音波振動の振幅および振動数などを調整することにより、導体芯線の引張強度を向上させられることが明らかになっている。したがって、本構成の製造方法によれば、導体芯線へ端子が圧着された箇所における引張強度に優れた端子付き電線を製造できる。
<Action/effect>
As described above, according to the method for manufacturing the electric wire with a terminal 1 according to the embodiment of the present invention, the ultrasonic vibration treatment is performed on the conductor core wire before the terminals are crimped. This ultrasonic vibration treatment is performed so that the tensile strength of the conductor core wire after the treatment is higher than the tensile strength of the conductor core wire before the treatment. According to experiments conducted by the inventor, the processing time of ultrasonic vibration processing, the amplitude and frequency of ultrasonic vibration, etc. are determined based on the thickness and material of the conductor core wire, and the number of conductor core wires. It has been clarified that the tensile strength of the conductor core wire can be improved by adjusting. Therefore, according to the manufacturing method of this configuration, it is possible to manufacture an electric wire with a terminal having excellent tensile strength at a portion where the terminal is crimped to the conductor core wire.

更に、事前に行った実験などに基づいて取得した特性カーブに基づき、どの程度のエネルギを導体芯線に印加すれば、導体芯線の引張強度をどの程度向上し得るかを把握可能である。また、実用上、処理前の導体芯線の引張強度よりも処理後の導体芯線の引張強度が10%以上高まることで、導体芯線へ端子が圧着された箇所における引張強度を適度に向上させられる。 Further, based on a characteristic curve obtained based on an experiment conducted in advance, it is possible to understand how much energy should be applied to the conductor core wire to improve the tensile strength of the conductor core wire. Further, in practice, the tensile strength of the conductor core wire after the treatment is increased by 10% or more as compared with the tensile strength of the conductor core wire before the treatment, so that the tensile strength at the portion where the terminal is crimped to the conductor core wire can be appropriately improved.

更に、超音波振動処理は、処理前後の導体芯線の断面積に関連する圧縮率が10%未満であるように施される。よって、処理前後において、導体芯線の断面積が著しく減少することがない。その結果、超音波振動処理の後に導体芯線に端子が圧着されても、導体芯線の断面積が過度に小さくなることがなく、電線に及ぶ外力などに対する端子付き電線の耐性を向上できる。 Furthermore, the ultrasonic vibration treatment is performed so that the compressibility related to the cross-sectional area of the conductor core wire before and after the treatment is less than 10%. Therefore, the cross-sectional area of the conductor core wire is not significantly reduced before and after the treatment. As a result, even if the terminal is crimped to the conductor core wire after the ultrasonic vibration treatment, the cross-sectional area of the conductor core wire does not become excessively small, and the resistance of the electric wire with a terminal against external force exerted on the electric wire can be improved.

<他の態様>
なお、本発明は上記各実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用できる。例えば、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。
<Other aspects>
The present invention is not limited to the above-mentioned embodiments, and various modifications can be adopted within the scope of the present invention. For example, the present invention is not limited to the above-described embodiments, and can be modified, improved, and the like as appropriate. In addition, the materials, shapes, dimensions, numbers, locations, etc. of the respective constituent elements in the above-described embodiments are arbitrary and are not limited as long as the present invention can be achieved.

例えば、本発明の製造方法が適用される電線は、アルミニウム製またはアルミニウム合金製の導体芯線を有する電線(アルミニウム電線)であってもよいし、銅製または銅合金製の導体芯線を有する電線(導電線)であってもよい。 For example, the electric wire to which the manufacturing method of the present invention is applied may be an electric wire (aluminum electric wire) having a conductor core made of aluminum or aluminum alloy, or an electric wire having a conductor core made of copper or copper alloy (conductive Line).

ここで、上述した本発明に係る端子付き電線の製造方法の特徴をそれぞれ以下[1]〜[4]に簡潔に纏めて列記する。
[1]
電線(10)が有する導体芯線(12)に端子(20)が圧着された端子付き電線の製造方法であって、
前記導体芯線(12)に対して超音波振動処理を施す工程であって、前記導体芯線(12)の引張強度が前記超音波振動処理を施す前の前記導体芯線(12)の引張強度よりも高まるように前記超音波振動処理を施す工程と、
前記超音波振動処理が施された前記導体芯線(12)に前記端子(20)を圧着する工程と、を備える、
端子付き電線の製造方法。
[2]
上記[1]に記載の端子付き電線の製造方法において、
前記超音波振動処理は、
前記超音波振動処理を施す前の前記導体芯線(12)の引張強度よりも前記超音波振動処理を施した後の前記導体芯線(12)の引張強度が10%以上高まるように施される、
端子付き電線の製造方法。
[3]
上記[1]又は上記[2]に記載の端子付き電線の製造方法において、
前記超音波振動処理は、
前記超音波振動処理を施す前の前記導体芯線(12)の断面積S1に対する、前記超音波振動処理を施す前の前記導体芯線(12)の断面積S1から前記超音波振動処理を施した後の前記導体芯線(12)の断面積S2を減じた値の割合((S1−S2)/S1)、を圧縮率と定義したとき、前記圧縮率が10%未満となるように施される、
端子付き電線の製造方法。
[4]
上記[1]〜上記[3]の何れか一つに記載の端子(20)付き電線(10)の製造方法において、
前記導体芯線(12)は、
アルミニウム又はアルミニウム合金から構成される、
端子付き電線の製造方法。
Here, the features of the method for manufacturing an electric wire with a terminal according to the present invention described above will be briefly summarized and listed below in [1] to [4].
[1]
A method of manufacturing an electric wire with a terminal, in which a terminal (20) is crimped to a conductor core wire (12) of an electric wire (10),
In the step of subjecting the conductor core wire (12) to ultrasonic vibration treatment, the tensile strength of the conductor core wire (12) is higher than the tensile strength of the conductor core wire (12) before the ultrasonic vibration treatment. A step of applying the ultrasonic vibration treatment so as to increase;
Crimping the terminal (20) to the conductor core wire (12) that has been subjected to the ultrasonic vibration treatment.
Manufacturing method of electric wire with terminal.
[2]
In the method of manufacturing an electric wire with a terminal according to the above [1],
The ultrasonic vibration treatment,
The tensile strength of the conductor core wire (12) after the ultrasonic vibration treatment is 10% or more higher than the tensile strength of the conductor core wire (12) before the ultrasonic vibration treatment.
Manufacturing method of electric wire with terminal.
[3]
In the method of manufacturing an electric wire with a terminal according to the above [1] or the above [2],
The ultrasonic vibration treatment,
After performing the ultrasonic vibration treatment from the cross-sectional area S1 of the conductor core wire (12) before performing the ultrasonic vibration treatment to the sectional area S1 of the conductor core wire (12) before performing the ultrasonic vibration treatment When the ratio ((S1-S2)/S1) of the value obtained by subtracting the cross-sectional area S2 of the conductor core wire (12) is defined as the compression rate, the compression rate is less than 10%.
Manufacturing method of electric wire with terminal.
[4]
In the method for manufacturing the electric wire (10) with a terminal (20) according to any one of the above [1] to [3],
The conductor core wire (12) is
Composed of aluminum or aluminum alloy,
Manufacturing method of electric wire with terminal.

1 端子付き電線
10 電線
12 導体芯線
13 芯線束
13A 処理後芯線
20 端子
1 Electric wire with terminal 10 Electric wire 12 Conductor core wire 13 Core wire bundle 13A Processed core wire 20 Terminal

Claims (4)

電線が有する導体芯線に端子が圧着された端子付き電線の製造方法であって、
前記導体芯線に対して超音波振動処理を施す工程であって、前記導体芯線の引張強度が前記超音波振動処理を施す前の前記導体芯線の引張強度よりも高まるように前記超音波振動処理を施す工程と、
前記超音波振動処理が施された前記導体芯線に前記端子を圧着する工程と、を備える、
端子付き電線の製造方法。
A method for manufacturing an electric wire with a terminal in which a terminal is crimped to a conductor core wire of an electric wire,
In the step of subjecting the conductor core wire to ultrasonic vibration treatment, the ultrasonic vibration treatment is performed so that the tensile strength of the conductor core wire is higher than the tensile strength of the conductor core wire before the ultrasonic vibration treatment. The process of applying
Crimping the terminal to the conductor core wire subjected to the ultrasonic vibration treatment,
Manufacturing method of electric wire with terminal.
請求項1に記載の端子付き電線の製造方法において、
前記超音波振動処理は、
前記超音波振動処理を施す前の前記導体芯線の引張強度よりも前記超音波振動処理を施した後の前記導体芯線の引張強度が10%以上高まるように施される、
端子付き電線の製造方法。
The method for manufacturing an electric wire with a terminal according to claim 1,
The ultrasonic vibration treatment,
The tensile strength of the conductor core wire after the ultrasonic vibration treatment is 10% or more higher than the tensile strength of the conductor core wire before the ultrasonic vibration treatment.
Manufacturing method of electric wire with terminal.
請求項1又は請求項2に記載の端子付き電線の製造方法において、
前記超音波振動処理は、
前記超音波振動処理を施す前の前記導体芯線の断面積S1に対する、前記超音波振動処理を施す前の前記導体芯線の断面積S1から前記超音波振動処理を施した後の前記導体芯線の断面積S2を減じた値の割合((S1−S2)/S1)、を圧縮率と定義したとき、前記圧縮率が10%未満となるように施される、
端子付き電線の製造方法。
The method for manufacturing an electric wire with a terminal according to claim 1 or 2,
The ultrasonic vibration treatment,
With respect to the cross-sectional area S1 of the conductor core wire before the ultrasonic vibration treatment, the cross-section area S1 of the conductor core wire before the ultrasonic vibration treatment cuts off the conductor core wire after the ultrasonic vibration treatment. When the ratio of the value obtained by subtracting the area S2 ((S1−S2)/S1) is defined as the compression rate, the compression rate is less than 10%.
Manufacturing method of electric wire with terminal.
請求項1〜請求項3の何れか一項に記載の端子付き電線の製造方法において、
前記導体芯線は、
アルミニウム又はアルミニウム合金から構成される、
端子付き電線の製造方法。
The method for manufacturing an electric wire with a terminal according to any one of claims 1 to 3,
The conductor core wire is
Composed of aluminum or aluminum alloy,
Manufacturing method of electric wire with terminal.
JP2018228077A 2018-12-05 2018-12-05 Method of manufacturing electric wire with terminal Pending JP2020091996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018228077A JP2020091996A (en) 2018-12-05 2018-12-05 Method of manufacturing electric wire with terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018228077A JP2020091996A (en) 2018-12-05 2018-12-05 Method of manufacturing electric wire with terminal

Publications (1)

Publication Number Publication Date
JP2020091996A true JP2020091996A (en) 2020-06-11

Family

ID=71013022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018228077A Pending JP2020091996A (en) 2018-12-05 2018-12-05 Method of manufacturing electric wire with terminal

Country Status (1)

Country Link
JP (1) JP2020091996A (en)

Similar Documents

Publication Publication Date Title
EP2192601B1 (en) Wire harness and its manufacturing method
JP5428789B2 (en) Electric wire with terminal fitting and method of manufacturing electric wire with terminal fitting
JP6574736B2 (en) Manufacturing method of electric wire with terminal
JP6574795B2 (en) Manufacturing method of electric wire with terminal
CN105580202B (en) Method for producing an electrically conductive connection between an electrical line and an electrically conductive component
CN107005014B (en) Terminal-equipped electric wire and method for manufacturing terminal-equipped electric wire
US20140311798A1 (en) Electric wire connection structure and electric wire connection method
US20140311797A1 (en) Electric wire connection structure and electric wire connection method
JP2014211953A (en) Connection method, connection device of wire
WO2015025695A1 (en) Conduction path and electric wire
WO2018198894A1 (en) Connection structure for electric wires, and method for manufacturing harness
KR20150121013A (en) Cylindrical body, crimping terminal, method for manufacturing said body and said terminal, and device for manufacturing said crimping terminal
JP6220559B2 (en) Electric wire connection method and connection device
CN111834855B (en) Method of manufacturing electric wire with terminal and method of damping electric wire
JP4731396B2 (en) Terminal and aluminum wire with terminal
JP2020091996A (en) Method of manufacturing electric wire with terminal
JP2011090804A (en) Electric wire with terminal fitting and method of manufacturing the same
JP2017126520A (en) Wire with terminal and method of manufacturing wire with terminal
JP6856418B2 (en) Manufacturing method and manufacturing system for electric wires with terminals
JP2014029884A (en) Electric wire with terminal fitting, and method for manufacturing electric wire with terminal fitting
KR20050044870A (en) Method for joining lacquered wires in an electrically conducting manner
JP2020017407A (en) Aluminum wire crimp terminal, crimping device, and crimping method
JP2018133194A (en) Terminal-equipped wire
JP5011173B2 (en) Terminal crimping apparatus and wire harness manufacturing method
JP2022015510A (en) Terminal-equipped wire, and manufacturing method and design method thereof