JP2020085873A - Photoemission electron microscope - Google Patents

Photoemission electron microscope Download PDF

Info

Publication number
JP2020085873A
JP2020085873A JP2018228545A JP2018228545A JP2020085873A JP 2020085873 A JP2020085873 A JP 2020085873A JP 2018228545 A JP2018228545 A JP 2018228545A JP 2018228545 A JP2018228545 A JP 2018228545A JP 2020085873 A JP2020085873 A JP 2020085873A
Authority
JP
Japan
Prior art keywords
sample
objective lens
aberration
yoke
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018228545A
Other languages
Japanese (ja)
Other versions
JP7328477B2 (en
Inventor
正雄 武藤
Masao Muto
正雄 武藤
津野 勝重
Katsushige Tsuno
勝重 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkai Hikaridenshi Co Ltd
Original Assignee
Hokkai Hikaridenshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkai Hikaridenshi Co Ltd filed Critical Hokkai Hikaridenshi Co Ltd
Priority to JP2018228545A priority Critical patent/JP7328477B2/en
Publication of JP2020085873A publication Critical patent/JP2020085873A/en
Application granted granted Critical
Publication of JP7328477B2 publication Critical patent/JP7328477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a photoemission electron microscope that has high spatial resolving power capable of observing a bulk sample.SOLUTION: A photoemission electron microscope is composed of: an objective lens 6 that is an electric field magnetic field overlapping type characterized in which a tip 13 of a yoke cone part 15 facing a sample 9 is shaped into a ring (an external diameter r1 and inner diameter r2), the external diameter r1 is more than three times a distance g between the tip 13 and sample 9, an angle (cone angle) 14 formed with the yoke cone part 15 with respect to a surface 13 (in this fig., a horizontally arranged sample stand 30) vertical to an optical axis 12 is equal to or more than 20°, and in a yoke outer peripheral part 18, a boring part 17 is provided symmetrically relative to an axis at even portions; and a two-stage mirror aberration corrector in which an aberration corrector 32 has two pairs of mirror type aberration correctors coaxially faced and arranged.SELECTED DRAWING: Figure 3

Description

本発明は、バルク材料の表面に光を当てて、放出された光電子を対物レンズと収差補正手段を用い、原子分解能での観察を可能とする光電子顕微鏡に関する。 The present invention relates to a photoelectron microscope capable of observing emitted photoelectrons by illuminating the surface of a bulk material with an objective lens and an aberration correcting means at atomic resolution.

電子顕微鏡には、PEEM(光電子顕微鏡)、LEEM(低エネルギー電子顕微鏡)、TEM(透過電子顕微鏡)、SEM(走査電子顕微鏡)などの種類があり、電子光学の立場から、PEEMはLEEMと共通し、TEM/SEMとは著しく異なるものと認識されている。 There are various types of electron microscopes such as PEEM (photoelectron microscope), LEEM (low energy electron microscope), TEM (transmission electron microscope), and SEM (scanning electron microscope). From the viewpoint of electron optics, PEEM is common with LEEM. , TEM/SEM is recognized as being significantly different.

PEEM/LEEMでは、使用するレンズの収差が大きいことがそれほど問題にされず、むしろ装置内部を超高真空状態に保ち、像観察よりも表面の様態分析が主体であることなどの理由から、空間分解能がTEM/SEMに比べてかなり低かった。 In PEEM/LEEM, the large aberration of the lens used is not so much of a problem, rather, the inside of the device is kept in an ultra-high vacuum state, and the surface aspect analysis is the main component rather than the image observation. The resolution was considerably lower than that of TEM/SEM.

一方、TEMでは電子銃1−像観察部(蛍光板)2間の加速電圧を200kV以上に上げて電子線の波長を短くし、原子像が観察できる高分解能型が市場に出回っている(図2(a)参照)。また、レンズの収差補正を施すことで40kVなどの低加速電圧でも原子分解能を実現している。しかしながら、TEMの場合は試料3を薄膜化するという制約があり、試料の本来の姿であるバルク状で原子が観察されることが望まれていた。 On the other hand, in the TEM, a high resolution type in which the accelerating voltage between the electron gun 1 and the image observation unit (fluorescent plate) 2 is increased to 200 kV or more to shorten the wavelength of the electron beam and the atomic image can be observed is on the market (Fig. 2 (See (a)). Further, by correcting the aberration of the lens, atomic resolution is realized even at a low acceleration voltage such as 40 kV. However, in the case of TEM, there is a restriction that the sample 3 is made thin, and it has been desired that atoms are observed in the bulk form which is the original form of the sample.

バルク試料の観察にはSEMが用いられるが、図1(b)に示すように、入射電子が試料内部で拡散し、入射位置の周囲からも二次電子26が発生することから像のボケにつながり、TEMに比べ一桁以上分解能が下回ることになり、原子像まで観察することは困難とされていた。
また、原子間力顕微鏡という、試料に探針を近接させ、発生する原子間力を一定に保つように探針を走査させて原子間力を一定に保つための電圧を試料位置に対して表示する装置は、原子の配列を観察できるが、あらゆる試料の原子像が観察できるわけではなく、低倍や中倍での観察が困難であることや、組成分析ができないなど像観察以外の機能に乏しいことから、用途は限定的である。
Although SEM is used for observing the bulk sample, as shown in FIG. 1B, incident electrons diffuse inside the sample, and secondary electrons 26 are generated from the periphery of the incident position, which causes blurring of the image. However, the resolution was lower than that of TEM by one digit or more, and it was difficult to observe even an atomic image.
In addition, the atomic force microscope displays the voltage for keeping the atomic force constant by scanning the probe so that the generated atomic force is kept constant by bringing the probe close to the sample. Although it can observe the arrangement of atoms, it cannot observe the atomic images of all samples, and it is difficult to observe at low and medium magnifications, and composition analysis is not possible. Its use is limited because it is scarce.

これに対し、PEEMは他の電子顕微鏡とは異なり、入射線源に光を用いてバルク試料を観察する電子顕微鏡であり、また入射ビームが光であるため、唯一試料内での電子の拡散がTEM試料厚さと同程度にとどまることから、図1(a)に示すように、試料を照らすだけで試料の内部には拡散しない。 On the other hand, unlike other electron microscopes, PEEM is an electron microscope that observes a bulk sample using light as an incident radiation source, and since the incident beam is light, the only diffusion of electrons in the sample is Since the thickness remains the same as the TEM sample thickness, as shown in FIG. 1A, the sample is only illuminated and does not diffuse into the sample.

バルク材料の表面を観察するPEEMとして、対物レンズに静電型レンズを用いた汎用型PEEMが市販・開示されている。しかし、このPEEMは試料の結晶構造を観察することを特長とし、保証分解能は300nmに留まり、高分解能を目的にするものではなかった。(非特許文献1、特許文献1)
また、SPECS社はミラーを採用した収差補正法を採用しているが、連続電子線のためビームセレクターによる行きと返りの切り分けを必要として、そのため新たな収差を発生させ補正機能の妨げになっていた。(非特許文献2)
それに対し小池らは2段ミラーを採用した新しい収差補正法を提案(非特許文献3)しているが、TEMを対象とするもので、PEEMにそのまま適用するものではなかった。
As a PEEM for observing the surface of a bulk material, a general-purpose PEEM using an electrostatic lens as an objective lens is commercially available and disclosed. However, this PEEM is characterized by observing the crystal structure of the sample, the guaranteed resolution remains at 300 nm, and it was not intended for high resolution. (Non-Patent Document 1, Patent Document 1)
Also, SPECS employs an aberration correction method that uses a mirror, but since it is a continuous electron beam, it is necessary to distinguish between going and returning by a beam selector, which causes a new aberration and hinders the correction function. It was (Non-patent document 2)
On the other hand, Koike et al. proposed a new aberration correction method using a two-step mirror (Non-Patent Document 3), but it was intended for TEM and was not directly applied to PEEM.

特許第5690610号公報(段落番号0008、図6)Japanese Patent No. 5690610 (paragraph number 0008, FIG. 6)

カタログ「光放出電子顕微鏡 MyPEEM」,株式会社菅製作所,p.2Catalog “Light Emission Electron Microscope MyPEEM”, Suga Seisakusho Co., Ltd., p. Two カタログ「FE−低エネルギー電子顕微鏡/光電子顕微鏡」,株式会社東京インスツルメンツ,p.1Catalog "FE-Low Energy Electron Microscope/Photoelectron Microscope", Tokyo Instruments, Inc., p. 1 小池紘民、2段MirrorによるCc/Cs同時補正法の提案、日本顕微鏡学会第67回学術講演会、16Aam_I1−5Hiromi Koike, Proposal of Cc/Cs Simultaneous Correction Method by 2-Stage Mirror, The 67th Academic Meeting of the Microscopy Society of Japan, 16Aam_I1-5

本発明は、このような点に鑑みてなされたもので、その目的は、従来は300nmと開発が遅れていたPEEMの分解能をTEMと同じレベルに向上させるための発明技術であり、バルク材料の表面を原子分解能での観察が可能となる。 The present invention has been made in view of such a point, and an object thereof is an invention technology for improving the resolution of PEEM, which has been delayed to 300 nm in the past, to the same level as that of TEM. The surface can be observed with atomic resolution.

本発明に係るPEEMは、光源からの光を試料に照射することにより、試料から放出される光電子を対物レンズと収差補正器を介して、拡大像を得るPEEMであって、
(1)前記対物レンズ6は、図3に示すように、試料9に対面するヨーク円錐部15の先端13がリング形状(外径r1、内径r2)をなし、外形r1は先端13と試料9との距離gの3倍以上であって、光軸12に垂直な面13(この図では水平に配置された試料台30)に対するヨーク円錐部15との角度(円錐角)14を20°以上とし、
ヨーク外周部18に穿孔部17を設けたこと、ただし、形状の不均衡による像の非点収差発生を防ぐために、穿孔部17を軸対称に偶数箇所設けたことを特徴とする電場磁場重畳型の対物レンズと、
(2)前記収差補正器32は、図5に示すように、入射電子線を反射させる静電板(ミラー部)20、凹面鏡を形成させる静電板(凹面鏡形成部)21、球面収差を補正する静電板(球面収差補正用)22、色収差を補正する静電板(色収差補正用)23を一組とするミラー収差補正器二組を、静電板(色収差補正用)23が相対するように同軸上に配置したことを特徴とする二段ミラー収差補正器、とから構成されるPEEMである。
A PEEM according to the present invention is a PEEM that obtains a magnified image of a photoelectron emitted from a sample by irradiating the sample with light from a light source through an objective lens and an aberration corrector.
(1) In the objective lens 6, as shown in FIG. 3, the tip 13 of the yoke conical portion 15 facing the sample 9 has a ring shape (outer diameter r1, inner diameter r2), and the outer shape r1 has the tip 13 and the sample 9. And the angle g (cone angle) 14 with respect to the surface 13 perpendicular to the optical axis 12 (the sample table 30 arranged horizontally in this figure) that is 3 times the distance g or more and 20° or more. age,
A perforated portion 17 is provided on the outer peripheral portion 18 of the yoke. However, in order to prevent the occurrence of astigmatism of the image due to the shape imbalance, the perforated portion 17 is provided in an axially symmetric even-numbered place. Objective lens of
(2) The aberration corrector 32, as shown in FIG. 5, corrects an electrostatic plate (mirror portion) 20 that reflects an incident electron beam, an electrostatic plate (concave mirror forming portion) 21 that forms a concave mirror, and spherical aberration. The electrostatic plate (for chromatic aberration correction) 23 faces two sets of mirror aberration correctors, each of which includes one electrostatic plate (for spherical aberration correction) 22 and an electrostatic plate (for chromatic aberration correction) 23 for correcting chromatic aberration. And a two-stage mirror aberration corrector which is arranged coaxially as described above.

本発明の対物レンズの収差シミュレーション結果を図3(b)に、従来の対物レンズ(特許文献1、図4)の収差シミュレーション結果を図4(b)に、比較して示す。本発明の対物レンズが、従来の対物レンズに比べ、分解能が2桁(62/4倍)改善することが判明した。ただし、
シミュレーションについては、下記プロセスにより実施している。
▲1▼レンズの各部位に印加した電圧により、レンズ周辺の空間に発生する等電位線 を有限要素法により図に表す。
▲2▼同様にレンズに印加した磁気により、周辺に発生する等磁力線を図に表す。
▲3▼資料により発生する光電子線を位置、角度を変えて電場、磁場空間をどのよう に飛行するかを図に表す。
▲4▼その結果を基にレンズ作用の性能を収差の程度で計算する。図3(b)の場合 は4μmという値になった。
The aberration simulation result of the objective lens of the present invention is shown in FIG. 3B, and the aberration simulation result of the conventional objective lens (Patent Document 1, FIG. 4) is shown in FIG. 4B for comparison. It has been found that the objective lens of the present invention has a resolution improved by two digits (62/4 times) as compared with the conventional objective lens. However,
The simulation is conducted by the following process.
(1) The equipotential lines generated in the space around the lens by the voltage applied to each part of the lens are shown in the figure by the finite element method.
(2) Similarly, the lines of isomagnetic force generated in the periphery by the magnetism applied to the lens are shown in the figure.
(3) The figure shows how the photoelectron beam generated by the material flies in the electric field and magnetic field space by changing the position and angle.
(4) Based on the result, the performance of the lens action is calculated by the degree of aberration. In the case of FIG. 3B, the value was 4 μm.

従来のPEEM(特許文献1)では静電レンズを対物レンズとして採用することが多かったが、これを図6のように磁界を試料に及ぼすことのできるレンズ形状の磁界レンズに変更し、光電子を引き出す電場との重畳作用で光電子の収量を増大させる方式を採用することで、分解能は3倍向上する。 In conventional PEEM (Patent Document 1), an electrostatic lens was often adopted as an objective lens, but this was changed to a lens-shaped magnetic lens capable of exerting a magnetic field on a sample as shown in FIG. By adopting the method of increasing the yield of photoelectrons by the superposition action with the electric field for extraction, the resolution is improved three times.

また、小池らが提案した二段ミラーを用いた球面収差と色収差の同時補正法を採用し、図5に示すように、ミラーの断続によりパルス状にすることで、ミラーでの行き返りを混在させることなく、直線的な光路を維持したまま収差補正を完遂させる。 これは非特許文献2に示す新たな収差の発生を無用にすることにつながる。これにより分解能は2〜3倍改善される Moreover, the simultaneous correction method of spherical aberration and chromatic aberration using a two-stage mirror proposed by Koike et al. is adopted, and as shown in FIG. Aberration correction is completed without maintaining the linear optical path. This leads to unnecessary generation of the new aberration shown in Non-Patent Document 2. This improves resolution by 2-3 times

以上の改善を施すことにより現行のPEEM分解能300nmより、サブnm以下を実現する可能性を示し、これによりサブnmのサイズである原子が観察できることになる。さらに対物レンズに放電対策を施したうえで、図2(b)試料9と像観察部(検出器)10の間の加速電圧を通常の10kVから100kV以上に上げれば、光電子線の波長が短くなり、計算により約4倍分解能が改善され、原子の観察がさらに容易になる。
全体の光電子顕微鏡の構成を図7に示す。
By making the above improvements, it is possible to realize sub-nm or less from the current PEEM resolution of 300 nm, which makes it possible to observe atoms having a sub-nm size. Further, if the objective lens is provided with a discharge countermeasure and the accelerating voltage between the sample 9 and the image observation unit (detector) 10 in FIG. 2B is increased from the normal 10 kV to 100 kV or more, the wavelength of the photoelectron beam is shortened. Therefore, the calculation improves the resolution by about 4 times, and makes it easier to observe atoms.
The structure of the entire photoelectron microscope is shown in FIG.

本発明の科学的根拠となる(a)光と(b)電子線の試料内拡散図である。FIG. 3 is a diffusion diagram in the sample of (a) light and (b) electron beam, which is the scientific basis of the present invention. (a)透過電子顕微鏡と(b)光電子顕微鏡の比較の電子線(光線)図である。It is an electron beam (ray) figure of a (a) transmission electron microscope and a (b) photoelectron microscope for comparison. 本発明の対物レンズの(a)断面図と(b)収差シミュレーション結果である。It is (a) sectional drawing of the objective lens of this invention, and (b) aberration simulation result. 従来型PEEM用対物レンズの(a)断面図と(b)収差シミュレーション結果である。It is (a) sectional drawing and the (b) aberration simulation result of the objective lens for conventional PEEMs. ミラー型収差補正機構の(a)構成図と(b)電子線図である。It is (a) block diagram of a mirror type|mold aberration correction mechanism, and (b) electron beam diagram. 電場磁場重畳型対物レンズの光電子収斂の図である。It is a figure of the photoelectron convergence of the electric field magnetic field superposition type objective lens. 本発明の装置構成図である。It is a device block diagram of this invention.

1.電子線源
2.像観察部(蛍光板)
3.試料(薄膜)
4.第一集束レンズ
5.第二集束レンズ
6.対物レンズ
7.投影レンズ
8.光源
9.試料(バルク材料)
10.像観察部(検出器)
11.ヨーク
12.光軸
13.ヨーク先端
14.円錐角
15.ヨーク円錐部
16.シミュレーション図(底面平板状)
17.穿孔部
18.ヨーク外周部
19.シミュレーション図(円錐型)
20.静電板(ミラー部)
21.静電板(凹面鏡形成部)
22.静電板(球面収差補正用)
23.静電板(色収差補正用)
24.電子線
25.電圧可変部
26.二次電子
27.光電子
28.磁場
29.電場
30.試料台
31.スリット
32.収差補正器
33.結像系
g 試料―対物レンズ底面部 距離(ギャップ)
r1 対物レンズ底面円環部外径
r2 対物レンズ底面円環部内径
1. Electron beam source 2. Image observation part (fluorescent plate)
3. Sample (thin film)
4. First focusing lens 5. Second focusing lens 6. Objective lens 7. Projection lens 8. Light source 9. Sample (bulk material)
10. Image observation unit (detector)
11. York 12. Optical axis 13. Yoke tip 14. Cone angle 15. Yoke conical section 16. Simulation diagram (bottom plate shape)
17. Perforated portion 18. Outer portion of yoke 19. Simulation diagram (conical)
20. Electrostatic plate (mirror part)
21. Electrostatic plate (concave mirror forming part)
22. Electrostatic plate (for spherical aberration correction)
23. Electrostatic plate (for chromatic aberration correction)
24. Electron beam 25. Voltage variable unit 26. Secondary electron 27. Photoelectron 28. Magnetic field 29. Electric field 30. Sample table 31. Slit 32. Aberration corrector 33. Imaging system g Sample-Bottom of objective lens Distance (gap)
r1 Objective ring bottom ring outer diameter r2 Objective lens bottom ring inner diameter

Claims (3)

光源からの光を試料に照射することにより、前記試料から放出される光電子を対物レンズと収差補正器を介して、拡大像を得る光電子顕微鏡であって、
前記対物レンズは、前記試料に対面するヨーク円錐部の先端がリング形状(外径r1、内径r2)をなし、外径r1は前記先端と試料台との距離gの3倍以上であって、光軸に垂直な面(前記試料台)に対するヨーク円錐部との角度(円錐角)を20°以上とする対物レンズと、
前記収差補正器は、入射電子線を反射させる静電板(ミラー部)、凹面鏡を形成させる静電板(凹面鏡形成部)、球面収差を補正する静電板(球面収差補正用)、色収差を補正する静電板(色収差補正用)を一組とするミラー型収差補正器二組を、前記静電板(色収差補正用)が対面するように同軸上に配置したことを特徴とする2段ミラー型収差補正器と、
から構成されることを特徴とする光電子顕微鏡。
A photoelectron microscope that obtains a magnified image by irradiating a sample with light from a light source to emit photoelectrons emitted from the sample through an objective lens and an aberration corrector.
In the objective lens, the tip of the yoke conical portion facing the sample has a ring shape (outer diameter r1, inner diameter r2), and the outer diameter r1 is 3 times or more the distance g between the tip and the sample table, An objective lens having an angle (cone angle) with the yoke cone of the plane perpendicular to the optical axis (the sample stage) of 20° or more;
The aberration corrector includes an electrostatic plate (mirror unit) that reflects an incident electron beam, an electrostatic plate (concave mirror forming unit) that forms a concave mirror, an electrostatic plate (for spherical aberration correction) that corrects spherical aberration, and chromatic aberration. Two stages, wherein two sets of mirror-type aberration correctors, one set of which is an electrostatic plate (for chromatic aberration correction) to be corrected, are coaxially arranged so that the electrostatic plates (for chromatic aberration correction) face each other. A mirror type aberration corrector,
A photoelectron microscope comprising:
前記対物レンズは、前記ヨーク外周部に穿孔部を軸対称に偶数箇所設けたことを特徴とする請求項1記載のPEEM。 2. The PEEM according to claim 1, wherein the objective lens is provided with perforated portions on an outer peripheral portion of the yoke in axially symmetrical even-numbered locations. 前記対物レンズは、電場磁場型重畳型対物レンズとすることを特徴とする請求項1または請求項2記載の光電子顕微鏡。 3. The photoelectron microscope according to claim 1, wherein the objective lens is an electric field/magnetic field type superimposing type objective lens.
JP2018228545A 2018-11-16 2018-11-16 photoelectron microscope Active JP7328477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018228545A JP7328477B2 (en) 2018-11-16 2018-11-16 photoelectron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018228545A JP7328477B2 (en) 2018-11-16 2018-11-16 photoelectron microscope

Publications (2)

Publication Number Publication Date
JP2020085873A true JP2020085873A (en) 2020-06-04
JP7328477B2 JP7328477B2 (en) 2023-08-17

Family

ID=70909873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018228545A Active JP7328477B2 (en) 2018-11-16 2018-11-16 photoelectron microscope

Country Status (1)

Country Link
JP (1) JP7328477B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6954704B1 (en) * 2021-04-30 2021-10-27 株式会社北海光電子 Photoemission electron microscope
DE102022103835A1 (en) 2021-03-31 2022-10-06 Hitachi High-Tech Corporation ELECTRON BEAM APPLICATION DEVICE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347137A (en) * 1992-06-15 1993-12-27 Jeol Ltd Electron microscope
JP2005127967A (en) * 2003-10-27 2005-05-19 Osaka Electro-Communication Univ High resolution/chemical bond electron/secondary ion microscope apparatus
WO2008013232A1 (en) * 2006-07-26 2008-01-31 National University Corporation NARA Institute of Science and Technology Spherical aberration correction moderating type lens, spherical aberration correction lens system, electron spectroscopy device, and optical electron microscope
JP2009094020A (en) * 2007-10-12 2009-04-30 Topcon Corp Charged particle beam reflecting apparatus and electron microscope
JP2012173008A (en) * 2011-02-17 2012-09-10 Suga Seisakusho:Kk Photoelectric microscope
WO2018016961A1 (en) * 2016-07-22 2018-01-25 Technische Universiteit Delft Aberration correcting device for an electron microscope and an electron microscope comprising such a device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347137A (en) * 1992-06-15 1993-12-27 Jeol Ltd Electron microscope
JP2005127967A (en) * 2003-10-27 2005-05-19 Osaka Electro-Communication Univ High resolution/chemical bond electron/secondary ion microscope apparatus
WO2008013232A1 (en) * 2006-07-26 2008-01-31 National University Corporation NARA Institute of Science and Technology Spherical aberration correction moderating type lens, spherical aberration correction lens system, electron spectroscopy device, and optical electron microscope
JP2009094020A (en) * 2007-10-12 2009-04-30 Topcon Corp Charged particle beam reflecting apparatus and electron microscope
JP2012173008A (en) * 2011-02-17 2012-09-10 Suga Seisakusho:Kk Photoelectric microscope
WO2018016961A1 (en) * 2016-07-22 2018-01-25 Technische Universiteit Delft Aberration correcting device for an electron microscope and an electron microscope comprising such a device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
吉川英樹: "放射光励起光電子顕微鏡における対物レンズの開発(I)", 応用物理学関係連合講演会講演予稿集, vol. 48, no. 2, JPN6022048941, 2001, pages 724, ISSN: 0004925203 *
小嗣真人: "光電子顕微鏡の基礎と応用", 表面化学, vol. 37, no. 1, JPN6022048940, 2016, pages 3 - 8, ISSN: 0004925202 *
朝倉清高: "新しいPEEM(光放出電子顕微鏡)を求めて", 顕微鏡, vol. 48, no. 3, JPN6022048938, 2013, pages 201 - 204, ISSN: 0004925201 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022103835A1 (en) 2021-03-31 2022-10-06 Hitachi High-Tech Corporation ELECTRON BEAM APPLICATION DEVICE
US11915903B2 (en) 2021-03-31 2024-02-27 Hitachi High-Tech Corporation Electron beam application apparatus
JP6954704B1 (en) * 2021-04-30 2021-10-27 株式会社北海光電子 Photoemission electron microscope
JP2022170848A (en) * 2021-04-30 2022-11-11 株式会社北海光電子 photoelectron microscope

Also Published As

Publication number Publication date
JP7328477B2 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
JP5147734B2 (en) Aberration correction cathode lens microscope equipment
US6329659B1 (en) Correction device for correcting the lens defects in particle-optical apparatus
JP3403036B2 (en) Electron beam inspection method and apparatus
US10755888B2 (en) Aberration corrector and charged particle beam device
JP2007128893A (en) Corrector for correcting chromatic aberration in particle optical device
JP2020085873A (en) Photoemission electron microscope
JP2020047589A (en) Multi-electron beam imaging device with improved performance
JP6498309B2 (en) Scanning transmission electron microscope equipped with an electron beam energy loss spectrometer and its observation method
JP7194849B2 (en) electron optical system
US10446362B2 (en) Distortion correction method and electron microscope
JP6533665B2 (en) Electron microscope and aberration measurement method
US9018581B2 (en) Transmission electron microscope
JP2003092078A (en) Spherical aberration correction device for electron microscope
US4097739A (en) Beam deflection and focusing system for a scanning corpuscular-beam microscope
US3345514A (en) Television camera combined with an electron microscope and having a plurality of cathodoconductive targets
JP5690610B2 (en) Photoelectron microscope
JP7465295B2 (en) Aberration corrector and electron microscope
JP7481378B2 (en) Aberration corrector and electron microscope
JP2001006605A (en) Focusing ion beam processing device and processing method for specimen using focusing ion beam
JP2013175329A (en) Color aberration correction device and method of controlling the same
JP6857575B2 (en) Aberration measurement method and electron microscope
US3504175A (en) Field ion shadow projection microscope
US11276549B1 (en) Compact arrangement for aberration correction of electron lenses
KR20030062638A (en) Electron gun for projection cathode ray tube and method for testing alignment thereof
Grinstead A new desk-top scanning electron microscope--the MINI-SEM by International Scientific Instruments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230512

R150 Certificate of patent or registration of utility model

Ref document number: 7328477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150