JP2003092078A - Spherical aberration correction device for electron microscope - Google Patents

Spherical aberration correction device for electron microscope

Info

Publication number
JP2003092078A
JP2003092078A JP2002200768A JP2002200768A JP2003092078A JP 2003092078 A JP2003092078 A JP 2003092078A JP 2002200768 A JP2002200768 A JP 2002200768A JP 2002200768 A JP2002200768 A JP 2002200768A JP 2003092078 A JP2003092078 A JP 2003092078A
Authority
JP
Japan
Prior art keywords
spherical aberration
lens
electron microscope
electron
aberration correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002200768A
Other languages
Japanese (ja)
Other versions
JP3896043B2 (en
Inventor
Fumio Hosokawa
史生 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2002200768A priority Critical patent/JP3896043B2/en
Publication of JP2003092078A publication Critical patent/JP2003092078A/en
Application granted granted Critical
Publication of JP3896043B2 publication Critical patent/JP3896043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable to obtain magnification change in a spherical aberration correction optical system, and enable to correct rotation system within the plane vertical to the light axis between multiple elements without changing phase angles of the multipole elements. SOLUTION: With the spherical aberration correction device of the electron microscope with two axial symmetry lenses (10, 11) between two multipole elements (8, 9), a rotation correction lens (12) giving electrons rotation action within the plane vertical to the light axis is arranged in a converging face of an electron orbit generated between the axial symmetry lenses.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電子顕微鏡の球面収
差補正装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spherical aberration correction device for an electron microscope.

【0002】[0002]

【従来の技術】電子顕微鏡の軸対称レンズの球面収差を
補正する装置として、6極子場を発生する2つの多極子
間に2つの軸対称レンズを配置したものが知られてい
る。図3は従来の球面収差補正装置を備えた電子顕微鏡
の照射系の概略構成を示す図である。なお、図では偏向
系や一部集束系等を省略している。光源1からの電子線
2は、絞り3を有する集束レンズ4を通り、光軸に平行
な電子線が球面収差補正光学系5に入射し、補正光学系
5から出射した光軸に平行な電子線が対物レンズ6を通
して試料7に照射される。
2. Description of the Related Art As a device for correcting the spherical aberration of an axisymmetric lens of an electron microscope, there is known a device in which two axisymmetric lenses are arranged between two multipole elements which generate a hexapole field. FIG. 3 is a diagram showing a schematic configuration of an irradiation system of an electron microscope equipped with a conventional spherical aberration corrector. It should be noted that the deflection system and a part of the focusing system are omitted in the figure. An electron beam 2 from the light source 1 passes through a focusing lens 4 having a diaphragm 3, an electron beam parallel to the optical axis enters a spherical aberration correction optical system 5, and an electron parallel to the optical axis emitted from the correction optical system 5. The line is illuminated on the sample 7 through the objective lens 6.

【0003】球面収差補正光学系5は、6極子場を発生
する多極子8、9間に軸対称レンズ10、11を配置し
たものである。多極子8、9の各極は相互に光軸に対し
て位相が一致し、光軸と垂直な面内における光軸を中心
とした回転関係をもたないように配置される。軸対称レ
ンズ10、11は、焦点距離が同じfで、多極子8と軸
対称レンズ10との間の距離がf、軸対称レンズ10、
11間の距離が2f、軸対称レンズ11と多極子9との
間の距離がf、多極子8、9の励起強度Kと光軸方向の
幅(サイズ)Zがそれぞれ同じであるとき、球面収差が
補正される。
The spherical aberration correction optical system 5 comprises axisymmetric lenses 10 and 11 arranged between multipoles 8 and 9 which generate a hexapole field. The respective poles of the multipole elements 8 and 9 are arranged so that their phases coincide with each other with respect to the optical axis and do not have a rotational relationship about the optical axis in a plane perpendicular to the optical axis. The axially symmetric lenses 10 and 11 have the same focal length f, and the distance between the multipole element 8 and the axially symmetric lens 10 is f.
When the distance between 11 is 2f, the distance between the axisymmetric lens 11 and the multipole element f is f, the excitation intensity K of the multipole elements 8 and 9 and the width (size) Z in the optical axis direction are the same, Aberration is corrected.

【0004】[0004]

【発明が解決しようとする課題】しかし従来の球面収差
補正光学系では、同じ焦点距離の軸対称レンズを用いて
特定の配置条件とする必要があるため、補正光学系によ
り倍率変化は得ることはできない。従って得られる最小
電子プローブは球面収差による制限を受け、十分な電流
量をもつ十分小さな電子プローブは得られず、電子プロ
ーブの縮小作用は、他のレンズで受け持つ必要がある。
However, in the conventional spherical aberration correction optical system, since it is necessary to use the axially symmetric lens having the same focal length and specific arrangement conditions, it is possible to obtain a change in magnification by the correction optical system. Can not. Therefore, the minimum electron probe that can be obtained is limited by spherical aberration, and a sufficiently small electron probe having a sufficient amount of current cannot be obtained, and the reducing action of the electron probe must be handled by another lens.

【0005】また、多極子8、9は光軸と垂直な面内に
おける光軸を中心とした回転関係を持たないように配置
されなければならないが、実際には、製作、組み立て精
度内である程度の回転関係が混入するのはやむを得ず、
また、軸対称レンズ10、11を通過する電子は、光軸
と垂直な面内における回転作用を受け、コイル極性を逆
にするなどしても、ある程度の回転関係が混入するのは
やむを得ない。従って、多極子の励磁を制御し、作用場
の位相角度を回転させるなどして、混入した回転関係を
補正する必要が生ずるが、多極子をこのように使用した
場合、多極子の高次収差が発生し易くなってしまう。
Further, the multipoles 8 and 9 must be arranged so as not to have a rotational relationship about the optical axis in a plane perpendicular to the optical axis, but in reality, to some extent within the manufacturing and assembling accuracy. It is unavoidable that the rotation relation of is mixed,
Further, the electrons passing through the axially symmetric lenses 10 and 11 are subjected to a rotating action in a plane perpendicular to the optical axis, and even if the coil polarities are reversed, it is unavoidable that a certain rotational relationship is mixed. Therefore, it becomes necessary to correct the mixed rotational relationship by controlling the excitation of the multipole element and rotating the phase angle of the action field.However, when the multipole element is used in this way, higher order aberrations of the multipole element Is likely to occur.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するためのもので、球面収差補正光学系において倍率変
化が得られるようにし、また、多極子間の光軸に垂直な
面内での回転関係を多極子の位相角を変化させることな
く補正可能にしようとするものである。そのために本発
明は、2つの多極子間に2つの軸対称レンズを配置した
電子顕微鏡の球面収差補正装置において、軸対称レンズ
間にできる電子軌道の集光面内に、光軸と垂直な面内で
電子に回転作用を与える回転補正レンズを配置したこと
を特徴とする。また、本発明は、2つの多極子間に2つ
の軸対称レンズを配置した電子顕微鏡の球面収差補正装
置において、前段及び後段軸対称レンズの焦点距離をf
1、f2(f1≠f2)、前段多極子と前段軸対称レン
ズ間の距離をf1、軸対称レンズ間の距離をf1+f
2、後段軸対称レンズと後段多極子間の距離をf2、前
段及び後段多極子の励起強度をK1、K2、前段及び後
段多極子の光軸に沿った長さをZ1、Z2とし、a=f
2/f1としたとき、 Z2=a Z1 K2=K1/a としたことを特徴とする。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems by making it possible to obtain a change in magnification in a spherical aberration correction optical system, and in a plane perpendicular to the optical axis between multipoles. It is intended to make it possible to correct the rotational relation of (1) without changing the phase angle of the multipole element. Therefore, in the present invention, in a spherical aberration correction device for an electron microscope in which two axisymmetric lenses are arranged between two multipoles, a plane perpendicular to the optical axis is formed in a converging surface of an electron orbit formed between the axisymmetric lenses. It is characterized in that a rotation correction lens that gives a rotation effect to electrons is arranged inside. Further, according to the present invention, in a spherical aberration correction device for an electron microscope in which two axisymmetric lenses are arranged between two multipoles, the focal lengths of the front and rear axisymmetric lenses are set to f.
1, f2 (f1 ≠ f2), the distance between the front-stage multipole element and the front-stage axisymmetric lens is f1, and the distance between the axisymmetric lens is f1 + f
2, the distance between the rear-stage axisymmetric lens and the rear-stage multipole is f2, the excitation intensities of the front-stage and rear-stage multipoles are K1, K2, the lengths of the front-stage and rear-stage multipoles along the optical axis are Z1 and Z2, and a = f
When 2 / f1, Z2 = a 2 Z1 K2 = K1 / a 5 is characterized.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は本発明による電子顕微鏡の球面収差
補正装置の第1実施例を説明する図であり、図3と同一
番号は同一内容を示している。本実施例は、多極子8、
9が電子軌道に対して回転関係を持たざるを得ないこと
の解決策として、軸対称レンズ10、11間にできる電
子軌道の集光面内に、新たに回転補正レンズ12を配置
したものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a diagram for explaining a first embodiment of a spherical aberration correction device for an electron microscope according to the present invention, and the same numbers as in FIG. 3 indicate the same contents. In this embodiment, the multipole element 8,
As a solution to the problem that 9 has a rotational relationship with respect to the electron orbit, a rotation correction lens 12 is newly arranged in the converging surface of the electron orbit formed between the axisymmetric lenses 10 and 11. is there.

【0008】光源1からの電子線2が、絞り3を有する
集束レンズ4を通り、光軸に平行となって球面収差補正
光学系5′に入射し、補正光学系5′から出射した光軸
に平行な電子線が対物レンズ6を通して試料7に照射さ
れ、補正光学系5の軸対称レンズ10、11の焦点距離
が同じfで、多極子8と軸対称レンズ10との間の距離
がf、軸対称レンズ10、11間の距離が2f、軸対称
レンズ11と多極子9との間の距離がf、多極子8、9
の励起強度Kと光軸方向の幅(サイズ)Zが同じで、か
つ多極子8、9が光軸と垂直な面内における光軸を中心
とした回転関係をもたないように配置されたとき球面収
差が補正されるのは図3の場合と同じである。
An electron beam 2 from a light source 1 passes through a focusing lens 4 having a diaphragm 3, becomes parallel to the optical axis, enters a spherical aberration correction optical system 5 ', and exits from the correction optical system 5'. An electron beam parallel to is irradiated onto the sample 7 through the objective lens 6, the focal lengths of the axisymmetric lenses 10 and 11 of the correction optical system 5 are the same f, and the distance between the multipole element 8 and the axisymmetric lens 10 is f. , The distance between the axisymmetric lenses 10 and 11 is 2f, the distance between the axisymmetric lens 11 and the multipole element 9 is f, and the multipole elements 8 and 9 are
Have the same excitation intensity K and width (size) Z in the optical axis direction, and are arranged so that the multipoles 8 and 9 do not have a rotational relationship about the optical axis in a plane perpendicular to the optical axis. At this time, the spherical aberration is corrected as in the case of FIG.

【0009】球面収差補正光学系5′は、6極子場を発
生する多極子8、9間に配置された軸対称レンズ10、
11間にできる電子軌道の集光面内に、回転補正レンズ
12が配置される。この回転補正レンズ12は集光面内
に配置されることによって、電子ビームは光軸を通るこ
とになる。このため回転補正レンズ12は電子ビームに
集束作用を与えないようにできる。一方、この回転補正
レンズ12は磁場型レンズを採用することによって、電
子ビームに回転作用を与えることができる。このよう
に、この回転補正レンズ12は、電子に与える主な作用
は、通常のレンズのような集束作用は持たず、光軸と垂
直な面内での回転作用のみである。このときの回転角度
は磁場型レンズの励磁電流に比例する。
The spherical aberration correction optical system 5'includes an axisymmetric lens 10 arranged between multipoles 8 and 9 for generating a hexapole field.
The rotation correction lens 12 is arranged in the light condensing surface of the electron trajectory formed between 11. By arranging the rotation correction lens 12 on the light collecting surface, the electron beam passes through the optical axis. Therefore, the rotation correction lens 12 can prevent the electron beam from focusing. On the other hand, the rotation correction lens 12 can apply a rotating action to the electron beam by adopting a magnetic field type lens. As described above, the main function of the rotation correction lens 12 on electrons does not have a focusing function unlike an ordinary lens, but only a rotation function in a plane perpendicular to the optical axis. The rotation angle at this time is proportional to the exciting current of the magnetic field type lens.

【0010】従って、多極子8、9が製作、組み立て精
度等である程度の電子軌道に対する回転関係があって
も、従来のように多極子の位相角を制御することで補正
するのではなく、回転補正レンズ12のレンズ電流を変
化させることで混入した回転関係を補正することができ
る。このため多極子の位相制御に付随する有害な高次収
差が発生するのを防止することができる。
Therefore, even if the multipoles 8 and 9 have a certain rotational relationship with respect to the electron orbit due to manufacturing and assembling accuracy, etc., the rotation is not corrected by controlling the phase angle of the multipoles as in the prior art, but the rotation is performed. By changing the lens current of the correction lens 12, the mixed rotational relationship can be corrected. Therefore, it is possible to prevent harmful high-order aberrations associated with the phase control of the multipole element from occurring.

【0011】図2は本発明の第2実施例を説明する図で
あり、図1、図3と同一番号は同一内容を示している。
本実施例の収差補正光学系5″は、軸対称レンズ1
0′、11′の焦点距離をそれぞれf1、f2、多極子
8′と軸対称レンズ10′との間の距離をf1、軸対称
レンズ10′、11′間の距離をf1+f2、軸対称レ
ンズ11′と多極子9′との間の距離をf2、多極子
8、9の励起強度をそれぞれK1、K2、多極子8、9
の光軸方向の幅(サイズ)をそれぞれZ1、Z2とした
とき、多極子を従来と同様に6極子場として作用させた
場合の解析計算の結果、光軸と平行に入射する電子軌道
の光軸からの距離をr、この電子が補正光学系5″を射
出する時点において、補正光学系5″を通過したことで
与えられた電子線軌道の傾きをRとすると、 R= r(cos3θ)(K1Z1(f1/f2) −K2Z2(f2/f1)) +r(K1Z1(1/3)(f1/f2) +K2Z2(1/3)(f1/f2)) −K1K2Z2Z1(f2/f1)r(cos3θ)(Z2 (f1/f2)−Z1) (1) となる。
FIG. 2 is a diagram for explaining the second embodiment of the present invention, in which the same numbers as in FIGS. 1 and 3 indicate the same contents.
The aberration correction optical system 5 ″ of this embodiment is the axially symmetric lens 1
The focal lengths of 0 ′ and 11 ′ are f1 and f2, the distance between the multipole element 8 ′ and the axially symmetric lens 10 ′ is f1, the distance between the axially symmetric lenses 10 ′ and 11 ′ is f1 + f2, and the axially symmetric lens 11 is used. ′ And the multipole element 9 ′ are f2, the excitation intensities of the multipole elements 8 and 9 are K1 and K2, and the multipole elements 8 and 9 are respectively.
Assuming that the widths (sizes) in the direction of the optical axis are Z1 and Z2, respectively, the results of the analytical calculation when the multipole is made to act as a hexapole field as in the conventional case show that the light of the electron orbit incident parallel to the optical axis. Let r be the distance from the axis, and let R be the inclination of the electron beam trajectory given by passing through the correction optical system 5 ″ at the time when this electron exits the correction optical system 5 ″, R = r 2 (cos3θ ) (K1Z1 (f1 / f2) −K2Z2 (f2 / f1) 2 ) + r 3 (K1 2 Z1 3 (1/3) (f1 / f2) + K2 2 Z2 3 (1/3) (f1 / f2) 3 ) −K1K2Z2Z1 (f2 / f1) 2 r 3 (cos3θ) 2 (Z2 (f1 / f2) 2 −Z1) (1)

【0012】図4は、多極子として6極子を用いた場合
のrとθとを説明する図である。図は光軸に垂直な多極
子8′通る断面図である。Oは光軸、Aは電子が多極子
8′に入射する際の位置、gは光軸を中心とした回転を
考えたときの基準となる方向を示している。rは光軸O
からの距離、θは電子が多極子8′に入射する際の位置
Aの方向を示すための、基準gからの角度である。
FIG. 4 is a diagram for explaining r and θ when a hexapole is used as the multipole element. The figure is a sectional view through a multipole element 8'perpendicular to the optical axis. O is the optical axis, A is the position when the electrons are incident on the multipole element 8 ', and g is the reference direction when the rotation about the optical axis is considered. r is the optical axis O
Is a distance from the reference g for indicating the direction of the position A when the electron is incident on the multipole element 8 '.

【0013】さて上記(1)式の第1項は、2次3回対
称の収差で、微小電子プローブの形成のためには0にす
べき項である。(1)式の第2項は、この収差補正光学
系5″が形成する3次軸対称の収差(−δ)であって、
この収差(−δ)を用いて電子顕微鏡の照射系の球面収
差(δ)をキャンセルさせる項である。(1)式の第3
項は、3次6回対称の収差で、微小電子プローブの形成
のためには0にすべき項である。従って、球面補正の条
件は以下のようになる。
Now, the first term of the above equation (1) is an aberration of second-order and third-fold symmetry, and it is a term which should be set to 0 in order to form a minute electron probe. The second term of the equation (1) is the third-order axially symmetric aberration (−δ) formed by the aberration correction optical system 5 ″,
This is a term for canceling the spherical aberration (δ) of the irradiation system of the electron microscope by using this aberration (−δ). The third of the formula (1)
The term is the aberration of the third-order six-fold symmetry, which is a term that should be set to 0 in order to form the minute electron probe. Therefore, the conditions for spherical correction are as follows.

【0014】 K1Z1(f1/f2) −K2Z2(f2/f1)=0 (2) r(K1Z1(1/3)(f1/f2) +K2Z2(1/3)(f1/f2))=−δ (3) Z2 (f1/f2)−Z1=0 (4) ここで、δは球面収差による軌道の傾きの変化分(r
に比例)である。6極子場の強度を表すK1、K2は多
極子に流れる電流に比例する。ここで a=f2/f1 (5) とすると、(2)式、(4)式は、それぞれ Z2=a Z1 (6) K2=K1/a (7) となる。
K1Z1 (f1 / f2) −K2Z2 (f2 / f1) 2 = 0 (2) r 3 (K1 2 Z1 3 (1/3) (f1 / f2) + K2 2 Z2 3 (1/3) (f1 / f2) 3 ) = − δ (3) Z2 (f1 / f2) 2 −Z1 = 0 (4) where δ is the change in the inclination of the trajectory due to spherical aberration (r 3
Is proportional to). K1 and K2, which represent the intensity of the hexapole field, are proportional to the current flowing through the multipole. Here, if a = f2 / f1 (5), the equations (2) and (4) are respectively Z2 = a 2 Z1 (6) K2 = K1 / a 5 (7).

【0015】従来の球面収差補正装置は、a=1で、f
1=f2、Z2=Z1、K1=K2であったため、
(4)式、及び(2)式は自然に0となり、(3)式で
決まるK1(=K2)で球面収差を補正するものであっ
た。
In the conventional spherical aberration corrector, a = 1 and f
Since 1 = f2, Z2 = Z1, and K1 = K2,
The expressions (4) and (2) naturally become 0, and the spherical aberration is corrected by K1 (= K2) determined by the expression (3).

【0016】これに対して本発明では、まず軸対称レン
ズ10′、11′の焦点距離f1、f2を異なる値に定
め、異なるf1、f2の値に対する(4)式からの要請
で決まるZ2、Z1の関係が必然的に決まり、f1、f
2の関係と、Z1、Z2の関係と(2)式の関係からK
1、K2の関係が必然的に決まり、最終的に式(3)の
要請からk1、k2の値が決まり、球面収差を補正する
ものである。本発明においては、f1、f2の比を任意
に設計できるため、補正系による電子軌道の倍率変化を
与えることができ、補正光学系に無限遠結像とした場
合、1/aの倍率をもつレンズの機能を持たせることが
できる。
On the other hand, in the present invention, first, the focal lengths f1 and f2 of the axially symmetric lenses 10 'and 11' are set to different values, and Z2, which is determined by the request from the equation (4) for different values of f1 and f2. The relationship of Z1 is inevitably determined, and f1, f
From the relationship of 2 and the relationship of Z1 and Z2 and the relationship of the equation (2), K
The relationship of 1 and K2 is inevitably determined, and finally the values of k1 and k2 are determined from the request of the equation (3) to correct spherical aberration. In the present invention, since the ratio of f1 and f2 can be arbitrarily designed, it is possible to give a magnification change of the electron orbit by the correction system, and when the correction optical system is formed at infinity, it has a magnification of 1 / a. It can have the function of a lens.

【0017】なお、第1実施例における回転補正レンズ
12は、第2実施例の場合にも適用可能であることは言
うまでもなく、図5に示す如くに、軸対称レンズ1
0′、11′間にできる電子軌道の集光面内に回転補正
レンズ12を配置することにより、多極子8′、9′に
電子軌道に対する回転関係があってもこれを補正するこ
とが可能である。
Needless to say, the rotation correction lens 12 in the first embodiment can be applied to the case of the second embodiment as well, as shown in FIG.
By arranging the rotation correction lens 12 in the electron orbit focusing surface formed between 0'and 11 ', it is possible to correct even if the multipole elements 8'and 9'have a rotational relationship with respect to the electron orbit. Is.

【0018】更に、上記の図1〜3および図5を用いた
説明では、1は光源、4は集束レンズ、6は対物レン
ズ、7は試料として電子顕微鏡の照射系の球面収差補正
装置について説明したが、上記球面収差補正装置は電子
顕微鏡の結像系の球面収差補正装置としても有効であ
る。即ち、図1〜3および図5において、1を試料、4
を結像系の対物レンズ、6を結像系の最初の中間レン
ズ、7を最初の中間レンズ6で形成される像面とすれ
ば、結像系の球面収差補正装置として同様に動作するこ
とが説明できる。以下に本件発明の球面収差補正装置の
電子顕微鏡への適用例を図6を用いて説明する。
Further, in the above description with reference to FIGS. 1 to 3 and 5, 1 is a light source, 4 is a focusing lens, 6 is an objective lens, and 7 is a sample, which is a spherical aberration correction device of an irradiation system of an electron microscope. However, the spherical aberration corrector is also effective as a spherical aberration corrector for an image forming system of an electron microscope. That is, in FIGS. 1 to 3 and FIG.
Let S be the objective lens of the image forming system, 6 be the first intermediate lens of the image forming system, and 7 be the image plane formed by the first intermediate lens 6, and operate similarly as a spherical aberration correction device of the image forming system. Can be explained. An example of application of the spherical aberration corrector of the present invention to an electron microscope will be described below with reference to FIG.

【0019】図6は電子顕微鏡において、本件発明の球
面収差補正装置を用いる場合を説明する図である。21
は電子ビームを発生させ所望のエネルギーを与える電子
銃、22は電子ビームを集束するための複数のレンズか
ら成る集束レンズ、23は電子ビームを二次元的に偏向
・走査する偏向器、24は電子ビームを試料25に照射
するための対物レンズである。これら21から24まで
で構成された電子光学系を照射系と呼ぶ。
FIG. 6 is a diagram for explaining the case where the spherical aberration corrector of the present invention is used in an electron microscope. 21
Is an electron gun for generating an electron beam to give desired energy, 22 is a focusing lens composed of a plurality of lenses for focusing the electron beam, 23 is a deflector for two-dimensionally deflecting and scanning the electron beam, and 24 is an electron It is an objective lens for irradiating the sample 25 with the beam. An electron optical system composed of these 21 to 24 is called an irradiation system.

【0020】この照射系において、電子ビームを試料2
5に照射する形態には幾つかの使われ方がある。第1は
電子ビームを細く集束して試料25上の所望の位置に照
射する方法、第2は細く集束したて電子ビームを偏向器
23を用いて試料25上の所望の領域を二次元的に走査
しながら照射する方法、第3は、電子ビームを細く集束
したり走査はせずに、試料25上の所望の領域に一様な
電子ビーム(所望の領域と等しい太さの電子ビーム)を
照射する方法などである。
In this irradiation system, an electron beam is applied to the sample 2
There are several uses for the form of irradiating No. 5. The first is a method of finely focusing an electron beam to irradiate a desired position on the sample 25, and the second is a method of deflecting a finely focused electron beam to a desired area on the sample 25 two-dimensionally by using a deflector 23. In the third method of irradiating while scanning, a uniform electron beam (electron beam having the same thickness as the desired region) is applied to a desired region on the sample 25 without focusing or scanning the electron beam finely. For example, the irradiation method.

【0021】更に図6において、26は、例えば上記第
3の方法で電子ビームを試料25に照射し、試料25を
透過した電子ビームの透過像を拡大するための対物レン
ズ、27は対物レンズ26で拡大された透過像を更に拡
大するための複数のレンズから成る中間レンズ、28は
拡大された透過像を蛍光スクリーン29上に投影するた
めの投影レンズである。これら26から29までで構成
された電子光学系を結像系と呼ぶ。また、これら電子銃
21以下は全て真空雰囲気中に配置されている。なお、
上記は説明の都合で、対物レンズは24と26の2個か
ら成るかのように説明したが、通常1個のレンズで対物
レンズ24と対物レンズ26の2つの働きができるよう
になっている。
Further, in FIG. 6, reference numeral 26 is an objective lens for irradiating the sample 25 with the electron beam, for example, by the third method, and enlarging the transmission image of the electron beam transmitted through the sample 25, and 27 is the objective lens 26. An intermediate lens composed of a plurality of lenses for further enlarging the transmission image magnified in (2), and 28 is a projection lens for projecting the transmission image magnified on the fluorescent screen 29. An electron optical system composed of these 26 to 29 is called an image forming system. All of the electron guns 21 and below are arranged in a vacuum atmosphere. In addition,
Although the above description is made for convenience of description, the objective lens is described as if it is composed of two lenses, 24 and 26, but normally one lens can perform two functions of the objective lens 24 and the objective lens 26. .

【0022】また更に図6において、30は本件発明の
球面収差補正装置5’、5”、5'''の何れかを照射系
に適用した場合の球面収差補正装置であり、40は本件
発明の球面収差補正装置5’、5”、5'''の何れかを
結像系に適用した場合の球面収差補正装置である。そし
て、球面収差補正装置30は照射系の第1と第2の照射
方法において、集束した電子ビームの収差を補正してよ
り微小な電子プローブを得るものであり、球面収差補正
装置40は照射系の第3の照射方法において、結像系の
対物レンズ26の収差を補正してより高分解能な拡大像
を得るものである。
Further, in FIG. 6, reference numeral 30 is a spherical aberration corrector when any one of the spherical aberration correctors 5 ', 5 "and 5'" of the present invention is applied to the irradiation system, and 40 is the present invention. It is a spherical aberration corrector when any one of the spherical aberration correctors 5 ′, 5 ″ and 5 ′ ″ is applied to the image forming system. The spherical aberration correction device 30 is a device that obtains a finer electron probe by correcting the aberration of the focused electron beam in the first and second irradiation methods of the irradiation system. In the third irradiation method (3), the aberration of the objective lens 26 of the imaging system is corrected to obtain a higher resolution magnified image.

【0023】[0023]

【発明の効果】以上のように本発明によれば、まず第1
に以下の効果が達成できる。 球面収差補正装置を構成する2つの多極子間の光軸に
垂直な面内での回転関係を、多極子の位相角を変化させ
ることなく補正できるので、多極子の位相変化に伴う高
次収差の発生を防止することができる。
As described above, according to the present invention, first of all,
The following effects can be achieved. Since the rotational relationship in the plane perpendicular to the optical axis between the two multipoles constituting the spherical aberration corrector can be corrected without changing the phase angle of the multipole, higher-order aberrations accompanying the phase change of the multipole Can be prevented.

【0024】更に、本発明を電子顕微鏡の照射系に適用
した場合には、以下のような効果が達成できる。 照射系の球面収差が補正できるため、微小電子プロー
ブが得られ、これにより微小領域の特性X線分析が可能
となり、高分解能の観察が可能となる。 多段縮小系として設計される本来の照射系の役割の一
部を、球面収差補正装置で兼用することができる。
Further, when the present invention is applied to the irradiation system of an electron microscope, the following effects can be achieved. Since the spherical aberration of the irradiation system can be corrected, a micro electron probe can be obtained, which enables characteristic X-ray analysis of a micro area and enables high-resolution observation. A part of the original role of the irradiation system designed as a multi-stage reduction system can be shared by the spherical aberration corrector.

【0025】同じく本発明に電子顕微鏡の結像系に適用
すれば、、以下のような効果が達成できる。 結像系の球面収差が補正できるため、高分解能の透過
電子顕微鏡像の観察が可能となる。 多段拡大系として設計される本来の結像系の役割の一
部を、球面収差補正装置で兼用することができる。
Similarly, if the present invention is applied to an image forming system of an electron microscope, the following effects can be achieved. Since the spherical aberration of the imaging system can be corrected, a high resolution transmission electron microscope image can be observed. A part of the original role of the imaging system designed as a multi-stage magnifying system can be shared by the spherical aberration corrector.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による電子顕微鏡の球面収差補正装置
を説明する図である。
FIG. 1 is a diagram illustrating a spherical aberration correction device for an electron microscope according to the present invention.

【図2】 本発明による電子顕微鏡の球面収差補正装置
の他の例を説明する図である。
FIG. 2 is a diagram illustrating another example of the spherical aberration correction device for an electron microscope according to the present invention.

【図3】 従来の球面収差補正方法を説明する電子顕微
鏡の照射系の概略構成を示す図である。
FIG. 3 is a diagram showing a schematic configuration of an irradiation system of an electron microscope for explaining a conventional spherical aberration correction method.

【図4】 収差補正装置におけるパラメータrとθを説
明するための図である。
FIG. 4 is a diagram for explaining parameters r and θ in the aberration correction device.

【図5】 本発明による電子顕微鏡の球面収差補正装置
の更に他の例を説明する図である。
FIG. 5 is a diagram illustrating still another example of the spherical aberration correction device for an electron microscope according to the present invention.

【図6】 本発明による球面収差補正装置を電子顕微鏡
に適用する例を説明する図である。
FIG. 6 is a diagram illustrating an example in which the spherical aberration corrector according to the present invention is applied to an electron microscope.

【符号の説明】[Explanation of symbols]

1…光源、2…電子線、3…絞り、4…集束レンズ、
5′…球面収差補正光学系、6…対物レンズ、7…試
料、8,9…多極子、10,11…軸対称レンズ、12
…回転補正レンズ。
1 ... Light source, 2 ... Electron beam, 3 ... Aperture, 4 ... Focusing lens,
5 '... Spherical aberration correction optical system, 6 ... Objective lens, 7 ... Sample, 8, 9 ... Multipole, 10, 11 ... Axisymmetric lens, 12
… Rotation correction lens.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2つの多極子間に2つの軸対称レンズを
配置した電子顕微鏡の球面収差補正装置において、 軸対称レンズ間にできる電子軌道の集光面内に、光軸と
垂直な面内で電子に回転作用を与える回転補正レンズを
配置したことを特徴とする電子顕微鏡の球面収差補正装
置。
1. A spherical aberration correction device for an electron microscope, wherein two axially symmetric lenses are arranged between two multipole elements, wherein an electron trajectory condensing surface formed between the axially symmetric lenses is in a plane perpendicular to the optical axis. A spherical aberration correction device for an electron microscope, in which a rotation correction lens that gives a rotation effect to electrons is arranged.
【請求項2】 2つの多極子間に2つの軸対称レンズを
配置した電子顕微鏡の球面収差補正装置において、 前段及び後段軸対称レンズの焦点距離をf1、f2(f
1≠f2)、前段多極子と前段軸対称レンズ間の距離を
f1、軸対称レンズ間の距離をf1+f2、後段軸対称
レンズと後段多極子間の距離をf2、前段及び後段多極
子の励起強度をK1、K2、前段及び後段多極子の光軸
に沿った長さをZ1、Z2とし、a=f2/f1とした
とき、 Z2=a Z1 K2=K1/a としたことを特徴とする電子顕微鏡の球面収差補正装
置。
2. In a spherical aberration correction device for an electron microscope in which two axisymmetric lenses are arranged between two multipoles, the focal lengths of the front and rear axisymmetric lenses are f1, f2 (f
1 ≠ f2), the distance between the front-stage multipole and the front-stage axisymmetric lens is f1, the distance between the axi-symmetric lens is f1 + f2, the distance between the rear-stage axisymmetric lens and the rear-stage multipole is f2, and the excitation intensity of the front-stage and rear-stage multipoles Where K1 and K2, and the lengths of the front and rear multipoles along the optical axis are Z1 and Z2, and a = f2 / f1, Z2 = a 2 Z1 K2 = K1 / a 5 Spherical aberration corrector for electron microscope.
【請求項3】 前記2つの軸対称レンズ間にできる電子
軌道の集光面内に、光軸と垂直な面内で電子に回転作用
を与える回転補正レンズを配置したことを特徴とする請
求項2記載の電子顕微鏡の球面収差補正装置。
3. A rotation correction lens that gives a rotation action to electrons in a plane perpendicular to the optical axis is arranged in a converging surface of an electron orbit formed between the two axially symmetric lenses. 2. The spherical aberration correction device for an electron microscope according to 2.
JP2002200768A 2001-07-13 2002-07-10 Spherical aberration correction device for electron microscope Expired - Fee Related JP3896043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002200768A JP3896043B2 (en) 2001-07-13 2002-07-10 Spherical aberration correction device for electron microscope

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001213697 2001-07-13
JP2001-213697 2001-07-13
JP2002200768A JP3896043B2 (en) 2001-07-13 2002-07-10 Spherical aberration correction device for electron microscope

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006237088A Division JP3896150B2 (en) 2001-07-13 2006-09-01 Spherical aberration correction device for electron microscope

Publications (2)

Publication Number Publication Date
JP2003092078A true JP2003092078A (en) 2003-03-28
JP3896043B2 JP3896043B2 (en) 2007-03-22

Family

ID=26618697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002200768A Expired - Fee Related JP3896043B2 (en) 2001-07-13 2002-07-10 Spherical aberration correction device for electron microscope

Country Status (1)

Country Link
JP (1) JP3896043B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302523A (en) * 2005-04-15 2006-11-02 Jeol Ltd Transmission electron microscope having scan image observation function
JP2007027017A (en) * 2005-07-21 2007-02-01 Jeol Ltd Electron beam apparatus
US7420179B2 (en) 2005-09-27 2008-09-02 Jeol Ltd. Electron microscope
EP2020673A2 (en) 2007-08-02 2009-02-04 Jeol Ltd. Aberration correction system
JP2009076422A (en) * 2007-09-25 2009-04-09 National Institute Of Advanced Industrial & Technology Aberration correcting lens for charged particle beam
US7763862B2 (en) 2006-08-31 2010-07-27 Jeol Ltd. Method of aberration correction and electron beam system
EP4362056A1 (en) 2022-10-31 2024-05-01 Jeol Ltd. Method of adjusting charged particle optical system and charged particle beam apparatus
EP4362055A2 (en) 2022-10-31 2024-05-01 Jeol Ltd. Electron microscope, multipole element for use therein, and control method for such electron microscope

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302523A (en) * 2005-04-15 2006-11-02 Jeol Ltd Transmission electron microscope having scan image observation function
JP2007027017A (en) * 2005-07-21 2007-02-01 Jeol Ltd Electron beam apparatus
JP4721798B2 (en) * 2005-07-21 2011-07-13 日本電子株式会社 Electron beam equipment
US7420179B2 (en) 2005-09-27 2008-09-02 Jeol Ltd. Electron microscope
US7763862B2 (en) 2006-08-31 2010-07-27 Jeol Ltd. Method of aberration correction and electron beam system
EP3428949A1 (en) 2006-08-31 2019-01-16 Jeol Ltd. Electron beam system for aberration correction
EP2020673A2 (en) 2007-08-02 2009-02-04 Jeol Ltd. Aberration correction system
JP2009054565A (en) * 2007-08-02 2009-03-12 Jeol Ltd Aberration correcting device
US7723683B2 (en) 2007-08-02 2010-05-25 Jeol Ltd. Aberration correction system
JP2009076422A (en) * 2007-09-25 2009-04-09 National Institute Of Advanced Industrial & Technology Aberration correcting lens for charged particle beam
EP4362056A1 (en) 2022-10-31 2024-05-01 Jeol Ltd. Method of adjusting charged particle optical system and charged particle beam apparatus
EP4362055A2 (en) 2022-10-31 2024-05-01 Jeol Ltd. Electron microscope, multipole element for use therein, and control method for such electron microscope

Also Published As

Publication number Publication date
JP3896043B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
US6191423B1 (en) Correction device for correcting the spherical aberration in particle-optical apparatus
JP5226367B2 (en) Aberration correction device
JPH05205687A (en) Image-forming system, for changed elementary particle beams use, equipped with mirror corrector
JP4416208B2 (en) Electron microscope with magnetic imaging energy filter
US6836373B2 (en) Spherical aberration corrector for electron microscope
JPH05314938A (en) Electron beam device
JP4851268B2 (en) Aberration correction method and electron beam apparatus
JP3896043B2 (en) Spherical aberration correction device for electron microscope
JP6914666B2 (en) Energy filter and charged particle beam device
US7250599B2 (en) Energy filter image generator for electrically charged particles and the use thereof
JP3896150B2 (en) Spherical aberration correction device for electron microscope
US20040155200A1 (en) Optical particle corrector
JP7328477B2 (en) photoelectron microscope
JP2000228162A (en) Electron beam device
JP5452722B2 (en) Aberration correction apparatus and charged particle beam apparatus using the same
JP2003502802A (en) Electrostatic corrector to remove chromatic aberration of particle lens
JP4328192B2 (en) Multipole field generating device and aberration correcting device in charged particle optical system
JP2007266003A (en) Aberration corrector
EP1058287A2 (en) Magnetic energy filter
JP6808772B2 (en) Energy filter and charged particle beam device
JPH05290800A (en) Energy analyzer provided with function of correcting aberration
JP4365721B2 (en) electronic microscope
JP3692011B2 (en) Magnetic field type energy filter
JP2000215842A (en) In situ observation system in composite emission electron microscope
JP2001006601A (en) Transmission electron microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3896043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees