JP2006302523A - Transmission electron microscope having scan image observation function - Google Patents

Transmission electron microscope having scan image observation function Download PDF

Info

Publication number
JP2006302523A
JP2006302523A JP2005118277A JP2005118277A JP2006302523A JP 2006302523 A JP2006302523 A JP 2006302523A JP 2005118277 A JP2005118277 A JP 2005118277A JP 2005118277 A JP2005118277 A JP 2005118277A JP 2006302523 A JP2006302523 A JP 2006302523A
Authority
JP
Japan
Prior art keywords
sample
electron beam
scanning
deflection
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005118277A
Other languages
Japanese (ja)
Inventor
Hideaki Sawada
英敬 沢田
Takeshi Tomita
健 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2005118277A priority Critical patent/JP2006302523A/en
Publication of JP2006302523A publication Critical patent/JP2006302523A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmission electron microscope having a scan image observation function for always passing a main beam through the center of an annular dark-field scan image detector even when scanning is carried out by a tilted electron beam on a sample. <P>SOLUTION: An electron beam is incident on the sample 7 diagonally by means of a first deflection means 25, and secondary scanning is carried out while diagonally irradiating condition is maintained. Therefore, the main beam transmitted through the sample 7 passes a position displaced from the center of an annular detection face by the dark-field scan image detector 10 through a locus as shown by a dotted line. In one embodiment, a scan signal for returning the electron beam in compliance with a tilt angle of the electron beam radiated to the sample is generated between the sample 7 and the dark-field scan image detector 10 by means of a control part 12, and by two-step deflection by a second deflection means 28, the locus of the main beam is returned to surely pass through the center of the annular detection face for the dark-field scan image detector 10. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子ビームを照射レンズ系によって試料上に集束させると共に試料上の電子ビームの照射位置を2次元的に走査し、試料から発生した2次電子や反射電子、あるいは透過電子を検出し、検出信号を試料上の走査に同期した陰極線管や液晶パネルなどモニターに供給し、画面に試料の走査像を表示するようにした走査像観察機能を有した透過電子顕微鏡や走査電子顕微鏡に関する。   In the present invention, an electron beam is focused on a sample by an irradiation lens system, and the irradiation position of the electron beam on the sample is two-dimensionally scanned to detect secondary electrons, reflected electrons, or transmitted electrons generated from the sample. The present invention relates to a transmission electron microscope and a scanning electron microscope having a scanning image observation function in which a detection signal is supplied to a monitor such as a cathode ray tube or a liquid crystal panel synchronized with scanning on a sample and a scanning image of the sample is displayed on a screen.

近年の透過電子顕微鏡には走査像観察機能が備えられている。透過電子顕微鏡像の観察時には、電子銃から発生し加速された電子ビームを複数のコンデンサレンズによって平行なビームとし、試料の観察領域に照射する。試料を透過した電子は、試料下部に配置された複数の結像レンズより成る結像レンズ系により、蛍光板上に試料の拡大像を投影したり、最近では、CCDカメラの検出面上に試料像を投影するようにしている。   Recent transmission electron microscopes have a scanning image observation function. At the time of observation of a transmission electron microscope image, an electron beam generated from an electron gun and accelerated is converted into a parallel beam by a plurality of condenser lenses, and irradiated to an observation region of the sample. The electrons that have passed through the sample project an enlarged image of the sample on the fluorescent screen by an imaging lens system composed of a plurality of imaging lenses arranged at the bottom of the sample, and recently, a sample image on the detection surface of a CCD camera. Is projected.

CCDカメラからの画素信号は、フレームメモリーに供給され、ノイズ低減のための画像積算処理などが施される。フレームメモリーに記憶された各画素信号は、読みとられて陰極線管や液晶ディスプレイに供給されて透過電子顕微鏡像が表示される。   Pixel signals from the CCD camera are supplied to a frame memory and subjected to image integration processing for noise reduction. Each pixel signal stored in the frame memory is read and supplied to a cathode ray tube or a liquid crystal display to display a transmission electron microscope image.

このような透過電子顕微鏡において、走査像の観察が行われるタイプのものが多く使用されている。この走査像を観察する場合、通常試料は対物レンズが形成する磁場の中に配置される。試料表面には、コンデンサレンズや対物レンズの試料の前方磁場を含む電子ビームの照射レンズ系により、試料上に細く電子ビームを集束する。試料上に照射される電子ビームは2次元的に走査され、電子ビームが照射される各ポイントごとに試料から発生する2次電子や反射電子、あるいは透過電子を検出し、検出信号は電子ビームの走査に同期したディスプレイ装置に供給される。   In such a transmission electron microscope, a type in which a scanning image is observed is often used. When observing this scanned image, the sample is usually placed in a magnetic field formed by the objective lens. A thin electron beam is focused on the sample surface by an electron beam irradiation lens system including the front magnetic field of the condenser lens or objective lens sample. The electron beam irradiated on the sample is scanned two-dimensionally, and secondary electrons, reflected electrons, or transmitted electrons generated from the sample are detected at each point where the electron beam is irradiated. It is supplied to a display device synchronized with scanning.

上記のような走査像の観察においては、試料に照射される電子ビームを正確に試料面上にフォーカスさせること、また、電子ビームそのものに非点などの収差があれば、走査像の分解能に悪影響を与えてしまう。そのため、実際に像の観察を行う前段階の手続として、試料面上に照射される電子ビームのフォーカスの状態、電子ビームの収差の向きや大きさを事前に検出し、これらの検出結果に応じて試料の前方の各光学系の調整を行って、実際の観察を開始するようにしている。   In the observation of the scanned image as described above, if the electron beam irradiated on the sample is accurately focused on the sample surface, and if the electron beam itself has aberration such as astigmatism, the resolution of the scanned image is adversely affected. Will be given. Therefore, as a procedure before the actual image observation, the focus state of the electron beam irradiated on the sample surface, the direction and magnitude of the electron beam aberration are detected in advance, and the detection results are determined accordingly. Thus, the actual optical observation is started by adjusting each optical system in front of the sample.

ここで、上記した走査像観察機能を有した透過型電子顕微鏡の一例を図1に基づいて説明する。図1において、電子銃の一部であるエミッター1からは電子が発生し、この電子は、図示していない制御電極や加速電極によって、電流量が制御され、また、加速電極に印加される(エミッター1と加速電極との間に印加される)加速電圧に応じて加速され、加速管2に入射する。加速管2によって更に加速された電子ビームは、照射系レンズ群3によって試料7に向け集束される。なお、試料7は対物レンズが形成する磁場中に配置され、その結果、試料7の前方には、対物前方磁界6が形成され、試料7の後方には、対物後方磁界8が形成される。したがって、電子ビームは照射系レンズ群(コンデンサレンズ群)3と対物前方磁界6によって、試料7の表面上に細く集束される。   Here, an example of a transmission electron microscope having the above-described scanning image observation function will be described with reference to FIG. In FIG. 1, electrons are generated from an emitter 1 which is a part of an electron gun, and the amount of current is controlled by a control electrode and an acceleration electrode (not shown) and applied to the acceleration electrode. It is accelerated according to an acceleration voltage (applied between the emitter 1 and the acceleration electrode) and enters the acceleration tube 2. The electron beam further accelerated by the accelerating tube 2 is focused toward the sample 7 by the irradiation system lens group 3. The sample 7 is arranged in a magnetic field formed by the objective lens. As a result, an objective front magnetic field 6 is formed in front of the sample 7, and an objective rear magnetic field 8 is formed behind the sample 7. Therefore, the electron beam is finely focused on the surface of the sample 7 by the irradiation system lens group (condenser lens group) 3 and the objective front magnetic field 6.

照射系レンズ群3を通過した電子ビームは、第1偏向コイル4と第2偏向コイル5に流される走査信号に応じて偏向を受ける。この第1の偏向コイル4の偏向の向きと第2の偏向コイル5の偏向の向きは互いに逆となっている。その結果、試料7に対して電子ビームは照射位置が走査されるに従って変化するものの、電子ビームは試料1に対して常に垂直入射の条件を満足して試料上の任意の大きさの範囲を2次元走査する。   The electron beam that has passed through the irradiation system lens group 3 is deflected in accordance with a scanning signal that flows through the first deflection coil 4 and the second deflection coil 5. The deflection direction of the first deflection coil 4 and the deflection direction of the second deflection coil 5 are opposite to each other. As a result, although the electron beam with respect to the sample 7 changes as the irradiation position is scanned, the electron beam always satisfies the normal incidence condition with respect to the sample 1 and has an arbitrary size range of 2 on the sample. Dimension scan.

試料7を透過した電子は、試料の後方に形成された対物後方磁界8と結像レンズ群9とによって集められ、ドーナッツ状の暗視野走査像検出器10によって検出される。なお、試料7の直ぐ上の側部には、2次電子検出器13が配置され、試料7への電子ビームの照射によって発生した2次電子は、検出器13方向に引っ張られ、検出される。暗視野走査像検出器10と2次電子検出器13の検出信号は、制御部12に供給される。制御部12は広い範囲の機能を有しており、例えば、スキャンジェネレータや偏向コイル駆動増幅器が含まれ、第1偏向コイル4と第2偏向コイル5には、制御部12から走査信号が供給される。   The electrons transmitted through the sample 7 are collected by the objective rear magnetic field 8 and the imaging lens group 9 formed behind the sample, and are detected by the donut-shaped dark field scanning image detector 10. Note that a secondary electron detector 13 is disposed on the side portion immediately above the sample 7, and secondary electrons generated by irradiation of the sample 7 with the electron beam are pulled in the direction of the detector 13 and detected. . Detection signals from the dark field scanning image detector 10 and the secondary electron detector 13 are supplied to the control unit 12. The control unit 12 has a wide range of functions. For example, the control unit 12 includes a scan generator and a deflection coil drive amplifier. A scan signal is supplied from the control unit 12 to the first deflection coil 4 and the second deflection coil 5. The

また、制御部12は、検出信号を内蔵のフレームメモリーに供給し、暗視野走査像検出器10と2次電子検出器13の検出信号は、それぞれ別個のフレームメモリーの走査位置に対応したアドレスに格納される。このフレームメモリーでは、暗視野走査像検出器10と2次電子検出器13によって検出された信号の積算処理が、それぞれ各画素ごとに施され、信号のSN比の向上が図られている。   Further, the control unit 12 supplies a detection signal to the built-in frame memory, and the detection signals of the dark field scanning image detector 10 and the secondary electron detector 13 have addresses corresponding to the scanning positions of the separate frame memories, respectively. Stored. In this frame memory, the signals detected by the dark-field scanning image detector 10 and the secondary electron detector 13 are integrated for each pixel to improve the signal-to-noise ratio of the signal.

なお、図1の構成では、試料を透過した電子を検出し、走査透過像を観察する例、および、試料の側部に配置した2次電子検出器10によって、試料7からの2次電子を検出し、走査2次電子像を取得する例について説明したが、透過電子顕微鏡における走査像の観察は、対物レンズ上部に2次電子検出器や反射電子検出器を配置し、試料から発生する2次電子を対物前方磁界6によって拘束して対物レンズ上部に取り出し、対物レンズ上部の検出器によって検出するように構成しても良い。   In the configuration of FIG. 1, secondary electrons from the sample 7 are detected by an example in which electrons transmitted through the sample are detected and a scanning transmission image is observed, and a secondary electron detector 10 disposed on the side of the sample. Although an example of detecting and acquiring a scanning secondary electron image has been described, observation of a scanning image with a transmission electron microscope is generated from a sample by arranging a secondary electron detector or a backscattered electron detector above the objective lens. The secondary electrons may be constrained by the objective front magnetic field 6 and taken out to the upper part of the objective lens and may be detected by the detector on the objective lens.

ここで、図1に示したごとき走査像観察機能を有した透過型電子顕微鏡において透過型電子顕微鏡像を観察する動作および走査像を得る際の動作について説明する。まず、透過型電子顕微鏡像を観察する場合、加速管2によって加速された電子ビームは、照射系レンズ群3によって試料7上の観察領域をカバーする範囲に平行ビームとして照射される。試料を透過した電子は、結像系レンズ群9によって図示していない蛍光板上に結像される。一般的にはこの蛍光板上に投影された像の観察を行い、目的の視野の像が確認できたら、蛍光板を光軸から取り除き、蛍光板の下部のカメラ装置によって所望の透過型電子顕微鏡像の写真を撮る。なお、最近では、蛍光板の位置にCCDカメラを配置し、このカメラの表面に投影された像を画素ごとに取り込み、各画素信号をディジタル処理を行った後、フレームメモリーに格納し、フレームメモリーに記憶された画像信号を取り出してディスプレイに供給し、ディスプレイ上で透過型電子顕微鏡像を観察することも行われている。   Here, an operation for observing a transmission electron microscope image and an operation for obtaining a scanning image in a transmission electron microscope having a scanning image observation function as shown in FIG. 1 will be described. First, when a transmission electron microscope image is observed, the electron beam accelerated by the accelerating tube 2 is irradiated as a parallel beam to a range covering the observation region on the sample 7 by the irradiation system lens group 3. The electrons transmitted through the sample are imaged on a fluorescent plate (not shown) by the imaging system lens group 9. In general, the image projected on the fluorescent screen is observed, and when the image of the target field of view is confirmed, the fluorescent screen is removed from the optical axis, and a photograph of a desired transmission electron microscope image is obtained by a camera device below the fluorescent screen. Take a picture. Recently, a CCD camera is arranged at the position of the fluorescent screen, the image projected on the surface of this camera is captured for each pixel, each pixel signal is digitally processed, stored in the frame memory, and stored in the frame memory. A stored image signal is taken out and supplied to a display, and a transmission electron microscope image is observed on the display.

次に、走査電子顕微鏡像を取得する場合について説明する。この場合、電子ビームは照射系レンズ群3と試料の前段の対物前方磁界3によって試料上に細く集束される。更に、電子ビームは第1偏向コイル4と第2偏向コイル5によって偏向を受ける。第1偏向コイル4,第2偏向コイル5には、制御部12から倍率に応じた2次元走査信号が供給され、その結果、試料上の所望の2次元領域が電子ビームによって走査される。試料への電子ビームの照射による透過電子と、試料7から発生した2次電子の両検出器10,13からの出力信号は、それぞれ制御部12に供給され、電子ビームの走査に同期して走査像モニター11に供給され、モニター上に走査2次電子像か暗視野走査像が表示される。   Next, a case where a scanning electron microscope image is acquired will be described. In this case, the electron beam is finely focused on the sample by the irradiation system lens group 3 and the objective front magnetic field 3 in front of the sample. Further, the electron beam is deflected by the first deflection coil 4 and the second deflection coil 5. The first deflection coil 4 and the second deflection coil 5 are supplied with a two-dimensional scanning signal corresponding to the magnification from the control unit 12, and as a result, a desired two-dimensional region on the sample is scanned with an electron beam. Output signals from both detectors 10 and 13 of the transmitted electrons due to the electron beam irradiation on the sample and the secondary electrons generated from the sample 7 are respectively supplied to the control unit 12 and scanned in synchronization with the scanning of the electron beam. The image is supplied to the image monitor 11, and a secondary scanning electron image or a dark field scanning image is displayed on the monitor.

上記したように、透過型電子顕微鏡像や走査電子顕微鏡像が観察できるが、高い分解能で像を観察するためには、試料に照射される電子ビームのフォーカスが合っていること、収差が補正されていることが重要である。このため、特許文献1では、試料の前後に配置された2段偏向系により、光軸から離れた視野を平行照射して、フォーカス合わせ、非点補正などを行い、像を撮影するときに視野を光軸に戻すようにしている。この方式の目的は、撮影視野に連続して電子ビームを照射することによる試料表面の汚染、損傷を撮影領域で生じないようにすることである。   As described above, transmission electron microscope images and scanning electron microscope images can be observed. However, in order to observe images with high resolution, the electron beam applied to the sample is in focus and aberrations are corrected. It is important that For this reason, in Patent Document 1, the field of view distant from the optical axis is irradiated in parallel by a two-stage deflection system arranged before and after the sample, and focusing, astigmatism correction, etc. are performed, and the field of view is taken. Is returned to the optical axis. The purpose of this method is to prevent contamination and damage of the sample surface caused by irradiating an electron beam continuously on the imaging field in the imaging region.

また、特許文献2には、透過型電子顕微鏡の照射系に球面収差補正装置を用い、集束した電子ビームの収差を補正してより微小な電子プローブを試料に照射する方法が示されている。球面収差補正装置を用いて収差補正を行う方法のひとつに、電子ビームの光軸に対して傾斜した電子プローブを試料に照射し、得られた暗視野走査像を用いて求めた電子プローブの断面形状などのデータに基づいて補正を行う方法がある。
特公昭59−19408号 特開2003−92078号
Patent Document 2 discloses a method of irradiating a sample with a finer electron probe by correcting the aberration of a focused electron beam by using a spherical aberration correction device in an irradiation system of a transmission electron microscope. One method for correcting aberrations using a spherical aberration corrector is to irradiate the sample with an electron probe tilted with respect to the optical axis of the electron beam and to obtain a cross-section of the electron probe obtained using the obtained dark-field scanning image There is a method of performing correction based on data such as a shape.
Japanese Patent Publication No.59-19408 JP 2003-92078 A

図1に示した従来の透過電子顕微鏡における走査像観察機能では、傾斜角を大きく取って電子ビームを走査することはなかったため、暗視野像検出器位置においては、主ビームが暗視野像検出器の中心から大きく外れた状態で検出されることはなかった。しかしながら、上記したように図1の構成において、照射系レンズ群の下部に収差補正器14を設けて、電子ビームの収差補正を行うためには、現状の収差の値を求める必要がある。このため、大きく傾斜したプローブで走査を行うと、上記のように暗視野像検出器10の中心から大きく外れた状態で透過電子を検出することになる。この状態では、正しく信号検出がされていないため、収差補正を行うための正しい情報が得られない。   The scanning image observation function in the conventional transmission electron microscope shown in FIG. 1 does not scan the electron beam with a large tilt angle, so that the main beam is the dark field image detector at the dark field image detector position. It was not detected in a state far from the center of. However, as described above, in order to correct the aberration of the electron beam by providing the aberration corrector 14 below the irradiation system lens group in the configuration of FIG. 1, it is necessary to obtain the current aberration value. For this reason, when scanning is performed with a probe having a large inclination, transmitted electrons are detected in a state of being largely deviated from the center of the dark field image detector 10 as described above. In this state, since correct signal detection is not performed, correct information for performing aberration correction cannot be obtained.

図2は、大きく傾斜したプローブで走査を行った場合の電子ビームの光線図であり、図3は、暗視野走査像検出器10を光源方向から見た平面図であり、検出器10に重ねて主ビームの位置を示している。図中21は暗視野走査像検出器10の検出面である。22で示すように、試料に対して垂直な主ビームが検出面21の中心を通過すれば、演算によりプローブ形状を正確に求めることができる。しかしながら、主ビームが傾斜することにより環状の検出面の中心を通らない23で示す状態では、偏った散乱強度を各検出面が検出することになり、この信号をもとに演算により求めたプローブ形状を計測するため、収差補正の情報が不正確となる。   FIG. 2 is a ray diagram of an electron beam when scanning is performed with a greatly inclined probe, and FIG. 3 is a plan view of the dark-field scanning image detector 10 as viewed from the light source direction. The position of the main beam is shown. In the figure, reference numeral 21 denotes a detection surface of the dark field scanning image detector 10. As indicated by 22, if the main beam perpendicular to the sample passes through the center of the detection surface 21, the probe shape can be obtained accurately by calculation. However, in the state indicated by 23 in which the main beam is inclined and does not pass through the center of the annular detection surface, each detection surface detects a biased scattering intensity, and the probe obtained by calculation based on this signal. Since the shape is measured, the aberration correction information is inaccurate.

本発明は上記課題に鑑みてなされたもので、電子ビームを試料上で傾斜させて走査した場合でも、主ビームが常に円環状の暗視野走査像検出器の中心を通るようにすることができる走査像観察機能を有した透過型電子顕微鏡を実現する。   The present invention has been made in view of the above problems, and even when the electron beam is tilted and scanned on the sample, the main beam can always pass through the center of the annular dark field scanning image detector. A transmission electron microscope having a scanning image observation function is realized.

請求項1の発明に基づく走査像観察機能を有した透過電子顕微鏡は、照射レンズ系によって、電子銃からの電子ビームを試料の所定領域に平行ビームとして照射し、試料を透過した電子を結像レンズ系により結像させて、透過電子顕微鏡像を形成する透過電子顕微鏡モードと、照射レンズ系によって電子ビームを試料に細く集束させ、試料上の2次元領域で電子ビームを走査し、電子ビームの照射により試料から発生した信号を検出する走査電子顕微鏡モードを有し、電子ビーム照射側の試料上で電子ビームを所定角度傾斜させて走査するための第1の偏向手段と、結像側で、試料を透過した電子を検出するための環状の検出面を有した暗視野走査像検出器と、試料と暗視野走査像検出器との間に配置され、結像側で主ビームを照射側の電子ビームの傾斜角に応じて光軸に振り戻すための第2の偏向手段とを備えたことを特徴としている。   A transmission electron microscope having a scanning image observation function based on the invention of claim 1 irradiates an electron beam from an electron gun as a parallel beam to a predetermined region of a sample by an irradiation lens system, and forms an image of electrons transmitted through the sample A transmission electron microscope mode that forms an image by a lens system to form a transmission electron microscope image, and an irradiation lens system finely focuses an electron beam on a sample, scans the electron beam in a two-dimensional region on the sample, A scanning electron microscope mode for detecting a signal generated from the sample by irradiation, a first deflecting means for scanning the electron beam irradiation side at a predetermined angle on the sample on the electron beam irradiation side; A dark-field scanning image detector having an annular detection surface for detecting electrons transmitted through the sample, and the sample and the dark-field scanning image detector. Electronic Is characterized in that a second deflection means for returning swing the optical axis in accordance with the inclination angle of the over arm.

請求項2の発明に基づく走査像観察機能を有した透過電子顕微鏡は、請求項1の発明において、円環状の検出面を有した暗視野走査像検出器は、結像側の回折像面に円環状の検出面の中心を光軸に一致させるようにして配置したことを特徴としている。   A transmission electron microscope having a scanning image observation function based on the invention of claim 2 is the transmission electron microscope according to claim 1, wherein the dark field scanning image detector having an annular detection surface is arranged on the diffraction image surface on the imaging side. It is characterized by being arranged so that the center of the annular detection surface coincides with the optical axis.

請求項3の発明に基づく走査像観察機能を有した透過電子顕微鏡は、請求項1〜2の発明において、第1の偏向手段と第2の偏向手段は、それぞれが2段偏向とされており、2段偏向のそれぞれがX、Y方向にそれぞれ2組の偏向コイルを有しており、それぞれ2組の偏向コイルの一方は、高倍率用にコイルの巻数が少なくされており、他方は、低倍率用にコイルの巻数が多くされていることを特徴としている。   A transmission electron microscope having a scanning image observation function based on the invention of claim 3 is the invention according to claims 1 to 2, wherein each of the first deflection means and the second deflection means is a two-stage deflection. Each of the two-stage deflections has two sets of deflection coils in the X and Y directions, respectively, one of the two sets of deflection coils each has a reduced number of turns for high magnification, and the other is It is characterized in that the number of turns of the coil is increased for low magnification.

請求項1の発明に基づく走査像観察機能を有した透過電子顕微鏡では、照射レンズ系によって、電子銃からの電子ビームを試料の所定領域に平行ビームとして照射し、試料を透過した電子を結像レンズ系により結像させて、透過電子顕微鏡像を形成する透過電子顕微鏡モードと、照射レンズ系によって電子ビームを試料に細く集束させ、試料上の2次元領域で電子ビームを走査し、電子ビームの照射により試料から発生した信号を検出する走査電子顕微鏡モードを有し、電子ビーム照射側の試料上で電子ビームを所定角度傾斜させて走査するための第1の偏向手段と、結像側で、試料を透過した電子を検出するための環状の検出面を有した暗視野走査像検出器と、試料と暗視野走査像検出器との間に配置され、結像側で主ビームを照射側の電子ビームの傾斜角に応じて光軸に振り戻すための第2の偏向手段とを備えたことを特徴としている。この結果、主ビームを環状の暗視野走査像検出器の中心を通すことができ、暗視野走査像検出信号から正確な電子ビームの収差による信号が得られ、この正確な収差信号に基づき、電子ビームの収差を精度高く補正することができる。   In the transmission electron microscope having the scanning image observation function based on the invention of claim 1, the irradiation lens system irradiates the electron beam from the electron gun as a parallel beam to a predetermined region of the sample, and forms an image of the electron transmitted through the sample A transmission electron microscope mode that forms an image by a lens system to form a transmission electron microscope image, and an irradiation lens system finely focuses an electron beam on a sample, scans the electron beam in a two-dimensional region on the sample, A scanning electron microscope mode for detecting a signal generated from the sample by irradiation, a first deflecting means for scanning the electron beam irradiation side at a predetermined angle on the sample on the electron beam irradiation side; A dark-field scanning image detector having an annular detection surface for detecting electrons transmitted through the sample, and the sample and the dark-field scanning image detector. Electric It is characterized in that a second deflection means for returning swing the optical axis in accordance with the inclination angle of the beam. As a result, the main beam can pass through the center of the annular dark field scanning image detector, and a signal due to the aberration of the accurate electron beam is obtained from the dark field scanning image detection signal. The aberration of the beam can be corrected with high accuracy.

請求項2の発明に基づく走査像観察機能を有した透過電子顕微鏡は、請求項1の発明において、請求項1の発明において、円環状の検出面を有した暗視野走査像検出器は、結像側の回折像面に円環状の検出面の中心を光軸に一致させるようにして配置したことを特徴としている。請求項1の発明と同様に、電子ビームの収差に応じた正確な情報を得ることができ、正確な電子ビームの収差補正を行うことができる。   The transmission electron microscope having a scanning image observation function based on the invention of claim 2 is the same as that of the invention of claim 1, and the dark field scanning image detector having an annular detection surface is the connection of the invention of claim 1. It is characterized in that the center of the annular detection surface coincides with the optical axis on the diffraction image surface on the image side. As in the first aspect of the invention, accurate information corresponding to the aberration of the electron beam can be obtained, and the aberration correction of the electron beam can be performed accurately.

請求項3の発明に基づく走査像観察機能を有した透過電子顕微鏡は、請求項1〜2の発明において、第1の偏向手段と第2の偏向手段は、それぞれが2段偏向とされており、2段偏向のそれぞれがX、Y方向にそれぞれ2組の偏向コイルを有しており、それぞれ2組の偏向コイルの一方は、高倍率用にコイルの巻数が少なくされており、他方は、低倍率用にコイルの巻数が多くされていることを特徴としている。その結果、低倍の際に振幅の大きな走査信号に対して、巻数が多いコイルが使用されるため、振幅の大きな信号に対する応答性がよく走査信号に基づく偏向電場に歪みが生じることはない。一方、高倍観察の際には、振幅の小さな走査信号に対して巻数の少ないコイルを用いたので、高速の繰り返しの走査信号にも偏向コイルが追随し、偏向電場が走査信号の変化に遅れるようなことは生じない。   A transmission electron microscope having a scanning image observation function based on the invention of claim 3 is the invention according to claims 1 to 2, wherein each of the first deflection means and the second deflection means is a two-stage deflection. Each of the two-stage deflections has two sets of deflection coils in the X and Y directions, respectively, one of the two sets of deflection coils each has a reduced number of turns for high magnification, and the other is It is characterized in that the number of turns of the coil is increased for low magnification. As a result, since a coil having a large number of turns is used for a scanning signal having a large amplitude when the magnification is low, the response to the signal having a large amplitude is good and the deflection electric field based on the scanning signal is not distorted. On the other hand, during high-magnification observation, a coil with a small number of turns is used for a scanning signal with a small amplitude, so that the deflection coil follows the high-speed repeated scanning signal, and the deflection electric field is delayed with respect to the scanning signal change. Nothing happens.

以下、図面を参照して本発明の実施の形態を詳細に説明する。図4は本発明に基づく走査像観察機能を有した透過電子顕微鏡を示しており、図1の従来装置と同一ないしは類似の構成要素には同一番号を付してその詳細な説明は省略する。図4において、試料への電子ビームの照射側には、第1の偏向手段25が設けられている。第1の偏向手段25は、第1と第2の偏向コイル26,27より構成されている。第1と第2の偏向コイル26,27は、それぞれX方向とY方向の偏向コイルを有しており、2段偏向の構成とされている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 4 shows a transmission electron microscope having a scanning image observation function based on the present invention. The same or similar components as those in the conventional apparatus of FIG. In FIG. 4, a first deflecting means 25 is provided on the side of the sample irradiated with the electron beam. The first deflection means 25 is composed of first and second deflection coils 26 and 27. The first and second deflection coils 26 and 27 have deflection coils in the X direction and the Y direction, respectively, and have a two-stage deflection configuration.

上記第1と第2の偏向コイル26,27は、それぞれX方向とY方向の偏向コイルを有している。更にそれぞれがX方向に2組の偏向コイルを、Y方向にも2組の偏向コイルを有している場合もある。その場合、第1の偏向コイル26のX方向の2組のコイルの内一方は巻数の多いコイルであり、他方のX方向のコイルは、巻数の少ないコイルである。第1の偏向コイル26のY方向の2組のコイルの内一方は巻数の多いコイルであり、他方のY方向のコイルは、巻数の少ないコイルである。X、Y方向共に、低倍観察の時には、巻数が多いコイルが使用され、高倍観察の時には、巻数が少ないコイルが用いられる。   The first and second deflection coils 26 and 27 have deflection coils in the X direction and the Y direction, respectively. Further, each may have two sets of deflection coils in the X direction and two sets of deflection coils in the Y direction. In that case, one of the two sets of coils in the X direction of the first deflection coil 26 is a coil with a large number of turns, and the other coil in the X direction is a coil with a small number of turns. One of the two sets of coils in the Y direction of the first deflection coil 26 is a coil with a large number of turns, and the other coil in the Y direction is a coil with a small number of turns. In both the X and Y directions, a coil with a large number of turns is used for low magnification observation, and a coil with a small number of turns is used for high magnification observation.

同様に、第2の偏向コイル27のX方向の2組のコイルの内一方は巻数の多いコイルであり、他方のX方向のコイルは、巻数の少ないコイルである。第2の偏向コイル27のY方向の2組のコイルの内一方は巻数の多いコイルであり、他方のY方向のコイルは、巻数の少ないコイルである。X、Y方向共に、低倍観察の時には、巻数が多いコイルが使用され、高倍観察の時には、巻数が少ないコイルが用いられる。   Similarly, one of the two sets of coils in the X direction of the second deflection coil 27 is a coil with a large number of turns, and the other coil in the X direction is a coil with a small number of turns. One of the two sets of coils in the Y direction of the second deflection coil 27 is a coil with a large number of turns, and the other coil in the Y direction is a coil with a small number of turns. In both the X and Y directions, a coil with a large number of turns is used for low magnification observation, and a coil with a small number of turns is used for high magnification observation.

その結果、低倍の際に振幅の大きな走査信号に対して、巻数が多いコイルが使用されるため、振幅の大きな信号に対する応答性がよく走査信号に基づく偏向電場に歪みが生じることはない。一方、高倍観察の際には、振幅の小さな走査信号に対して巻数の少ないコイルを用いたので、高速の繰り返しの走査信号にも偏向コイルが追随し、偏向電場が走査信号の変化に遅れるようなことは生じない。   As a result, since a coil having a large number of turns is used for a scanning signal having a large amplitude when the magnification is low, the response to the signal having a large amplitude is good and the deflection electric field based on the scanning signal is not distorted. On the other hand, during high-magnification observation, a coil with a small number of turns is used for a scanning signal with a small amplitude, so that the deflection coil follows the high-speed repeated scanning signal, and the deflection electric field is delayed with respect to the scanning signal change. Nothing happens.

図4に示すように、第1の偏向手段25により、電子ビームは試料に対して斜めに入射し、斜め照射の状態を保ったまま2次元走査が行われる。この図に示すように、通常、電子ビームを試料7に斜めに入射させた場合、試料を透過した主ビームは、暗視野走査像検出器10の環状の検出面の中心から外れた位置を通過する。   As shown in FIG. 4, the first deflecting means 25 causes the electron beam to enter the sample obliquely, and two-dimensional scanning is performed while maintaining the oblique irradiation state. As shown in this figure, normally, when an electron beam is incident obliquely on the sample 7, the main beam transmitted through the sample passes through a position off the center of the annular detection surface of the dark field scanning image detector 10. To do.

本実施の形態では、結像系レンズ群9の後段の暗視野走査像検出器との間に第2の偏向手段28が設けられている。第2の偏向手段28は、第1と第2の偏向コイル29,30より構成されている。第1と第2の偏向コイル29,30は、それぞれX方向とY方向の偏向コイルを有しており、2段偏向の構成とされている。   In the present embodiment, the second deflecting means 28 is provided between the imaging system lens group 9 and the downstream dark field scanning image detector. The second deflection means 28 is composed of first and second deflection coils 29 and 30. The first and second deflection coils 29 and 30 have deflection coils in the X direction and the Y direction, respectively, and have a two-stage deflection configuration.

上記第1と第2の偏向コイル29,30は、それぞれX方向とY方向の偏向コイルを有している。更にそれぞれがX方向に2組の偏向コイルを、Y方向にも2組の偏向コイルを有している場合もある。その場合、第1の偏向コイル29のX方向の2組のコイルの内一方は巻数の多いコイルであり、他方のX方向のコイルは、巻数の少ないコイルである。第1の偏向コイル29のY方向の2組のコイルの内一方は巻数の多いコイルであり、他方のY方向のコイルは、巻数の少ないコイルである。X、Y方向共に、低倍観察の時には、巻数が多いコイルが使用され、高倍観察の時には、巻数が少ないコイルが用いられる。   The first and second deflection coils 29 and 30 have deflection coils in the X direction and the Y direction, respectively. Further, each of them may have two sets of deflection coils in the X direction and two sets of deflection coils in the Y direction. In that case, one of the two sets of coils in the X direction of the first deflection coil 29 is a coil with a large number of turns, and the other coil in the X direction is a coil with a small number of turns. One of the two sets of coils in the Y direction of the first deflection coil 29 is a coil with a large number of turns, and the other coil in the Y direction is a coil with a small number of turns. In both the X and Y directions, a coil with a large number of turns is used for low magnification observation, and a coil with a small number of turns is used for high magnification observation.

同様に、第2の偏向コイル30のX方向の2組のコイルの内一方は巻数の多いコイルであり、他方のX方向のコイルは、巻数の少ないコイルである。第2の偏向コイル30のY方向の2組のコイルの内一方は巻数の多いコイルであり、他方のY方向のコイルは、巻数の少ないコイルである。X、Y方向共に、低倍観察の時には、巻数が多いコイルが使用され、高倍観察の時には、巻数が少ないコイルが用いられる。   Similarly, one of the two sets of coils in the X direction of the second deflection coil 30 is a coil with a large number of turns, and the other coil in the X direction is a coil with a small number of turns. One of the two sets of coils in the Y direction of the second deflection coil 30 is a coil with a large number of turns, and the other coil in the Y direction is a coil with a small number of turns. In both the X and Y directions, a coil with a large number of turns is used for low magnification observation, and a coil with a small number of turns is used for high magnification observation.

その結果、低倍の際に振幅の大きな走査信号に対して、巻数が多いコイルが使用されるため、振幅の大きな信号に対する応答性がよく走査信号に基づく偏向電場に歪みが生じることはない。一方、高倍観察の際には、振幅の小さな走査信号に対して巻数の少ないコイルを用いたので、高速の繰り返しの走査信号にも偏向コイルが追随し、偏向電場が走査信号の変化に遅れるようなことは生じない。   As a result, since a coil having a large number of turns is used for a scanning signal having a large amplitude when the magnification is low, the response to the signal having a large amplitude is good and the deflection electric field based on the scanning signal is not distorted. On the other hand, during high-magnification observation, a coil with a small number of turns is used for a scanning signal with a small amplitude, so that the deflection coil follows the high-speed repeated scanning signal, and the deflection electric field is delayed with respect to the scanning signal change. Nothing happens.

前記したように、図4に示した実施の形態では、第1の偏向手段25により、電子ビームを試料7に対して斜めに入射させ、斜め照射の状態を保ったまま2次元走査を行うようにした。したがって、試料7を透過した主ビームは、点線で軌道を示すように、暗視野走査像検出器10の環状の検出面の中心から外れた位置を通過する。本実施の形態では、試料7と暗視野走査像検出器10との間に、試料に照射される電子ビームの傾斜角に応じた電子ビームの振り戻しのための走査信号を制御部12が作成し、第2の偏向手段28による2段偏向により、主ビームの軌道は振り戻され、暗視野走査像検出器10の環状の検出面の中心を必ず通過することになる。   As described above, in the embodiment shown in FIG. 4, the first deflecting unit 25 causes the electron beam to enter the sample 7 obliquely, and two-dimensional scanning is performed while maintaining the oblique irradiation state. I made it. Therefore, the main beam transmitted through the sample 7 passes through a position off the center of the annular detection surface of the dark field scanning image detector 10 as indicated by the dotted line. In the present embodiment, the control unit 12 creates a scanning signal for returning the electron beam according to the tilt angle of the electron beam irradiated on the sample between the sample 7 and the dark field scanning image detector 10. However, due to the two-stage deflection by the second deflection means 28, the trajectory of the main beam is turned back and always passes through the center of the annular detection surface of the dark field scanning image detector 10.

このようにして、主ビームが環状の検出面の中心を常に通過させるようにしたので、暗視野走査像検出器10の検出信号に基づいて、現状の収差の値を求めることができ、この求められた値に基づいて図1に示した収差補正器14を制御すれば、電子ビームの収差補正を正確に行うことができる。   In this way, since the main beam always passes through the center of the annular detection surface, the current aberration value can be obtained based on the detection signal of the dark field scanning image detector 10, and this calculation is performed. If the aberration corrector 14 shown in FIG. 1 is controlled based on the obtained value, the electron beam aberration can be accurately corrected.

従来の走査像観察機能を有した透過電子顕微鏡の一例を示す図であり、試料に電子ビームを垂直入射させた場合の電子ビームの主ビームの軌跡を示す図である。It is a figure which shows an example of the transmission electron microscope with the conventional scanning image observation function, and is a figure which shows the locus | trajectory of the main beam of an electron beam at the time of making an electron beam perpendicularly incident on a sample. 試料に照射される電子ビームを傾斜させて走査したときの電子ビームの主ビームの軌跡を示す図である。It is a figure which shows the locus | trajectory of the main beam of an electron beam when inclining and scanning the electron beam irradiated to a sample. 暗視野走査像検出器の環状の検出面と、主ビームの通過位置との関係を示す図である。It is a figure which shows the relationship between the cyclic | annular detection surface of a dark field scanning image detector, and the passage position of a main beam. 本発明の一実施の形態である走査像観察機能を有した透過電子顕微鏡を示す図である。It is a figure which shows the transmission electron microscope which has the scanning image observation function which is one embodiment of this invention.

符号の説明Explanation of symbols

1 エミッター
2 加速管
3 照射系レンズ群
4,5,26,27,29,30 偏向コイル
6 対物前方磁界
7 試料
8 対物後方磁界
9 結像系レンズ群
10 暗視野走査像検出器
11 モニター
12 制御部
13 2次電子検出器
25 第1の偏向手段
28 第2の偏向手段
DESCRIPTION OF SYMBOLS 1 Emitter 2 Accelerating tube 3 Irradiation system lens group 4, 5, 26, 27, 29, 30 Deflection coil 6 Objective front magnetic field 7 Sample 8 Objective back magnetic field 9 Imaging system lens group 10 Dark field scanning image detector 11 Monitor 12 Control Part 13 Secondary electron detector 25 First deflecting means 28 Second deflecting means

Claims (3)

照射レンズ系によって、電子銃からの電子ビームを試料の所定領域に平行ビームとして照射し、試料を透過した電子を結像レンズ系により結像させて、透過電子顕微鏡像を形成する透過電子顕微鏡モードと、照射レンズ系によって電子ビームを試料に細く集束させ、試料上の2次元領域で電子ビームを走査し、電子ビームの照射により試料から発生した信号を検出する走査電子顕微鏡モードを有し、電子ビーム照射側の試料上で電子ビームを所定角度傾斜させて走査するための第1の偏向手段と、結像側で、試料を透過した電子を検出するための環状の検出面を有した暗視野走査像検出器と、試料と暗視野走査像検出器との間に配置され、結像側で主ビームを照射側の電子ビームの傾斜角に応じて光軸に振り戻すための第2の偏向手段とを備えた走査像観察機能を有した透過電子顕微鏡。   A transmission electron microscope mode that forms a transmission electron microscope image by irradiating an electron beam from an electron gun as a parallel beam to a predetermined area of the sample with the irradiation lens system and forming an image with the imaging lens system. And a scanning electron microscope mode in which the electron beam is finely focused on the sample by the irradiation lens system, the electron beam is scanned in a two-dimensional region on the sample, and a signal generated from the sample by the irradiation of the electron beam is detected. A dark field having a first deflecting means for scanning the electron beam on the beam irradiation side at a predetermined angle, and an annular detection surface for detecting electrons transmitted through the sample on the imaging side A second deflector disposed between the scanning image detector and the sample and the dark field scanning image detector for returning the main beam to the optical axis on the imaging side according to the tilt angle of the electron beam on the irradiation side. Means and equipment Transmission electron microscope having a scanning image observation function was. 円環状の検出面を有した暗視野走査像検出器は、結像側の回折像面に円環状の検出面の中心を光軸に一致させるようにして配置した請求項1記載の走査像観察機能を有した透過電子顕微鏡。   2. The scanning image observation according to claim 1, wherein the dark-field scanning image detector having an annular detection surface is arranged on the diffraction image surface on the imaging side so that the center of the annular detection surface coincides with the optical axis. A transmission electron microscope with functions. 第1の偏向手段と第2の偏向手段は、それぞれが2段偏向とされており、2段偏向のそれぞれがX、Y方向にそれぞれ2組の偏向コイルを有しており、それぞれ2組の偏向コイルの一方は、高倍率用にコイルの巻数が少なくされており、他方は、低倍率用にコイルの巻数が多くされている請求項1又は2記載の走査像観察機能を有した透過電子顕微鏡。
Each of the first deflection means and the second deflection means is a two-stage deflection, and each of the two-stage deflections has two sets of deflection coils in the X and Y directions, respectively. 3. A transmission electron having a scanning image observation function according to claim 1, wherein one of the deflection coils has a reduced number of coil turns for high magnification and the other has a larger number of coil turns for low magnification. microscope.
JP2005118277A 2005-04-15 2005-04-15 Transmission electron microscope having scan image observation function Pending JP2006302523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118277A JP2006302523A (en) 2005-04-15 2005-04-15 Transmission electron microscope having scan image observation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005118277A JP2006302523A (en) 2005-04-15 2005-04-15 Transmission electron microscope having scan image observation function

Publications (1)

Publication Number Publication Date
JP2006302523A true JP2006302523A (en) 2006-11-02

Family

ID=37470597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118277A Pending JP2006302523A (en) 2005-04-15 2005-04-15 Transmission electron microscope having scan image observation function

Country Status (1)

Country Link
JP (1) JP2006302523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112236837A (en) * 2018-06-04 2021-01-15 株式会社日立高新技术 Electron beam apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139458A (en) * 1978-04-17 1979-10-29 Philips Nv Electron microscope
JPS5919408B2 (en) * 1978-09-20 1984-05-07 日本電子株式会社 electronic microscope
JPS60140641A (en) * 1983-12-07 1985-07-25 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of optically regulating image correcting control variable of electron microscope
JPS614144A (en) * 1984-06-15 1986-01-10 Jeol Ltd Diffraction pattern display method by electron microscope
JPH08162056A (en) * 1994-12-01 1996-06-21 Hitachi Ltd Electron microscope
JP2003092078A (en) * 2001-07-13 2003-03-28 Jeol Ltd Spherical aberration correction device for electron microscope
JP2003331773A (en) * 2002-05-13 2003-11-21 Jeol Ltd Electron microscope
JP2004127930A (en) * 2002-09-11 2004-04-22 Hitachi High-Technologies Corp Charged particle beam apparatus and charged particle beam irradiation method
JP2006173027A (en) * 2004-12-20 2006-06-29 Hitachi High-Technologies Corp Scanning transmission electron microscope, aberration measuring method, and aberration correction method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139458A (en) * 1978-04-17 1979-10-29 Philips Nv Electron microscope
JPS5919408B2 (en) * 1978-09-20 1984-05-07 日本電子株式会社 electronic microscope
JPS60140641A (en) * 1983-12-07 1985-07-25 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of optically regulating image correcting control variable of electron microscope
JPS614144A (en) * 1984-06-15 1986-01-10 Jeol Ltd Diffraction pattern display method by electron microscope
JPH08162056A (en) * 1994-12-01 1996-06-21 Hitachi Ltd Electron microscope
JP2003092078A (en) * 2001-07-13 2003-03-28 Jeol Ltd Spherical aberration correction device for electron microscope
JP2003331773A (en) * 2002-05-13 2003-11-21 Jeol Ltd Electron microscope
JP2004127930A (en) * 2002-09-11 2004-04-22 Hitachi High-Technologies Corp Charged particle beam apparatus and charged particle beam irradiation method
JP2006173027A (en) * 2004-12-20 2006-06-29 Hitachi High-Technologies Corp Scanning transmission electron microscope, aberration measuring method, and aberration correction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112236837A (en) * 2018-06-04 2021-01-15 株式会社日立高新技术 Electron beam apparatus
CN112236837B (en) * 2018-06-04 2024-03-15 株式会社日立高新技术 Electron beam apparatus

Similar Documents

Publication Publication Date Title
JP4383950B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
US20040188611A1 (en) Scanning electron microscope and sample observing method using it
US20090039258A1 (en) Scanning Electron Microscope And Method For Detecting An Image Using The Same
TW201721224A (en) Method and system for focus adjustment of a multi-beam scanning electron microscopy system
JP2007179753A (en) Scanning transmission electron microscope, and aberration measuring method
JP2010062106A (en) Scanning charged particle microscope device, and method of processing image acquired by the same
JP4359232B2 (en) Charged particle beam equipment
JP2017010608A (en) Inclination correction method for charged particle beam, and charged particle beam device
JP6876418B2 (en) Image acquisition method and electron microscope
JP2006173027A (en) Scanning transmission electron microscope, aberration measuring method, and aberration correction method
JP3101114B2 (en) Scanning electron microscope
JP2001210263A (en) Scanning electron microscope, its dynamic focus control method and shape identifying method for semiconductor device surface and cross section
JPS614144A (en) Diffraction pattern display method by electron microscope
JP2005235665A (en) Dark field scanning transmission electron microscope and observation method
US11545337B2 (en) Scanning transmission electron microscope and adjustment method of optical system
JP4129088B2 (en) Scanning transmission electron microscope
JP2006302523A (en) Transmission electron microscope having scan image observation function
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP2010244740A (en) Review device and review method
EP3379557A1 (en) Scanning transmission electron microscope and method for high throughput acquisition of electron scattering angle distribution images
JP2007287561A (en) Charged particle beam device
JP2007194060A (en) Method and device for adjusting automatic axis of electron lens of scanning electron microscope
KR102628711B1 (en) Charged particle beam device
JP7285871B2 (en) Scanning Transmission Electron Microscope and Optical System Adjustment Method
JP5502794B2 (en) electronic microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019