JP2009076422A - Aberration correcting lens for charged particle beam - Google Patents

Aberration correcting lens for charged particle beam Download PDF

Info

Publication number
JP2009076422A
JP2009076422A JP2007246818A JP2007246818A JP2009076422A JP 2009076422 A JP2009076422 A JP 2009076422A JP 2007246818 A JP2007246818 A JP 2007246818A JP 2007246818 A JP2007246818 A JP 2007246818A JP 2009076422 A JP2009076422 A JP 2009076422A
Authority
JP
Japan
Prior art keywords
lens
quadrupole
plane
concave
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007246818A
Other languages
Japanese (ja)
Other versions
JP5071792B2 (en
Inventor
Shigeo Okayama
重夫 岡山
Yasuhiko Sugiyama
安彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Hitachi High Tech Science Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, SII NanoTechnology Inc filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007246818A priority Critical patent/JP5071792B2/en
Publication of JP2009076422A publication Critical patent/JP2009076422A/en
Application granted granted Critical
Publication of JP5071792B2 publication Critical patent/JP5071792B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spherical aberration correction lens system which cancels spherical aberration of an axisymmetric lens having a great aberration coefficient, and an axisymmetric probe formation lens with no spherical aberration. <P>SOLUTION: A charged particle optical lens system is formed of quadrupole lenses of 4 stages, and three aperture electrodes. The aperture electrodes for inducing octopole lens action are arranged between the first and second stages, between the second and third stages, and between the third and fourth stages. Excitation control of the quadrupole lens is actuated to develop concave-convex-concave-convex lens action on an XZ plane, and convex-concave-convex-concave lens action on a YZ plane, and excitation intensity of the respective quadrupole lenses is adjusted so that a charged particle trajectory on the YZ plane intersects with an optical axis once between the quadrupole lenses of the second and third stages, the charged particle trajectories on the XZ plane and YZ plane intersect with an axis behind the quadrupole lens of the last stage so that the charged particle lens system satisfies an axisymmetric lens condition. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子ビーム、イオンビーム等の荷電粒子線用の開口収差補正レンズおよび球面収差補正レンズに関するものである。   The present invention relates to an aperture aberration correction lens and a spherical aberration correction lens for charged particle beams such as an electron beam and an ion beam.

荷電粒子線装置で一般的に利用されている軸対称な電界レンズ、磁界レンズでは、軸上収差である球面収差(軸非対称レンズの開口収差と同義)と色収差を補正することができない。光軸をZ軸とするとXY面に対を成す複数の電極または磁極から構成されている四極子レンズ、六極子レンズ、八極子レンズ、十二極子レンズ等の軸非対称な多極子レンズを組み合わせることで球面収差や色収差の補正が可能であることは既に多くの文献で明らかにされている。   An axially symmetric electric field lens and magnetic field lens generally used in charged particle beam apparatuses cannot correct spherical aberration (which is synonymous with axial aberration of an axially asymmetric lens) and chromatic aberration, which are axial aberrations. Combining axially asymmetric multipole lenses such as quadrupole lenses, hexapole lenses, octupole lenses, and twelve-pole lenses composed of multiple electrodes or magnetic poles paired on the XY plane when the optical axis is the Z-axis In many literatures, it is already possible to correct spherical aberration and chromatic aberration.

本発明で利用する四極子レンズの開口収差による焦点位置での軌道のズレに相当するボケΔX(Zix)、 ΔY(Ziy)は、XZ面とYZ面でのビーム開き角をそれぞれα、βとすると以下のように表現される。
ΔX(Zix)=CA30 α3+CA12 αβ2 (1)
ΔY(Ziy)=CA21 α2β+CA03 β3 (2)
上記の(1)、 (2)数式において、CA30、CA12、CA21 、CA03が開口収差係数である。Zix=Ziy、XZ面とYZ面での倍率MxとMyが等しいMx = Myの条件下では、荷電粒子軌道の軸対称性が得られ、開口収差係数CA12とCA21の値は等しくなる。
The blurs ΔX (Zix) and ΔY (Ziy) corresponding to the deviation of the trajectory at the focal position due to the aperture aberration of the quadrupole lens used in the present invention are the beam opening angles on the XZ plane and the YZ plane, α, β and Then it is expressed as follows.
ΔX (Zix) = C A30 α 3 + C A12 αβ 2 (1)
ΔY (Ziy) = C A21 α 2 β + C A03 β 3 (2)
In the above formulas (1) and (2), C A30 , C A12 , C A21 , and C A03 are aperture aberration coefficients. Under the condition of Zix = Ziy, Mx = My where the magnifications Mx and My in the XZ plane and YZ plane are equal, the axial symmetry of the charged particle trajectory is obtained, and the values of the aperture aberration coefficients C A12 and C A21 are equal.

軸非対称光学系において、個々のレンズの制御によって、光学的な軸対称性が得られ、かつ、八極子レンズ作用の制御によって、CA30 = CA12 ( = CA21) = CA03 の条件を満たす場合の開口収差係数は、軸対称レンズの球面収差係数と同義となる。これら3つの開口収差係数を八極子レンズ作用の制御によって、負の収差係数を発生させることができれば、正の値しか持ちえない軸対称レンズの球面収差を補正することができる。 In an axially asymmetric optical system, optical axial symmetry is obtained by controlling individual lenses, and the condition of C A30 = C A12 (= C A21 ) = C A03 is satisfied by controlling the octupole lens action. The aperture aberration coefficient in this case is synonymous with the spherical aberration coefficient of the axially symmetric lens. If these three aperture aberration coefficients can generate a negative aberration coefficient by controlling the octupole lens action, the spherical aberration of the axially symmetric lens that can only have a positive value can be corrected.

図1は、荷電粒子線を微細に集束させる軸対称レンズのための収差補正レンズの利用法の一例を示したものである。補正レンズ系1の前段にあるコンデンサーレンズ2、後段にある対物レンズ3は単独では、球面収差、色収差補正が不可能な電界型または磁界型の軸対称レンズである。11と12は、XZ面とYZ面の荷電粒子線の軌道である。後段の軸対称レンズの球面収差を補正するために負の開口収差係数を発生させる軌道特性としては、倍率|Mx| = |My| = 1で、補正レンズ系を装填する前後の荷電粒子線軌道が変わらない遠焦点型の軌道を取るように調整している。補正レンズ系内の荷電粒子線軌道は省略してあるが、図2の荷電粒子線の軌道例がこれに相当する。   FIG. 1 shows an example of how to use an aberration correction lens for an axisymmetric lens that finely focuses a charged particle beam. The condenser lens 2 at the front stage of the correction lens system 1 and the objective lens 3 at the rear stage are independently an electric field type or magnetic field type axially symmetric lens incapable of correcting spherical aberration and chromatic aberration. 11 and 12 are orbits of charged particle beams on the XZ plane and the YZ plane. The trajectory characteristics that generate a negative aperture aberration coefficient to correct the spherical aberration of the axisymmetric lens in the latter stage are charged particle beam trajectories before and after loading the correction lens system with a magnification of | Mx | = | My | Is adjusted to take a far-focused orbit that does not change. Although the charged particle beam trajectory in the correction lens system is omitted, the charged particle beam trajectory in FIG. 2 corresponds to this.

軸対称レンズの球面収差補正レンズ系として、すでに提案されている四極子・八極子補正レンズ系では、4段の四極子レンズと3段の八極子レンズから構成されている(非特許文献1)。走査透過電子顕微鏡の磁界型対物レンズの前に配置する球面収差補正レンズ系として4段の磁界型の四極子レンズと上記の3つの開口収差係数を制御するために、3段の八極子レンズを組み合わせた補正レンズ系が研究されている。実用化システムでは、厳しい四極子レンズ間のアライメント精度と励起制御を実現するために、四極子レンズの代わりに十二極子レンズを使い、個々の十二極子レンズの励起制御によって、軸合わせ、機械的・電磁的な非対称性を調整することで、四極子・八極子補正レンズ系を構築している。   As a spherical aberration correction lens system for an axially symmetric lens, a previously proposed quadrupole / octupole correction lens system includes a four-stage quadrupole lens and a three-stage octupole lens (Non-Patent Document 1). . As a spherical aberration correction lens system arranged in front of the magnetic field type objective lens of the scanning transmission electron microscope, a four-stage magnetic field type quadrupole lens and a three-stage octupole lens are used to control the above three aperture aberration coefficients. A combined correction lens system has been studied. In the practical application system, in order to achieve strict alignment accuracy and excitation control between quadrupole lenses, a twelve-pole lens is used instead of a quadrupole lens, and the alignment and mechanical alignment are performed by excitation control of each individual twelve-pole lens. A quadrupole and octupole correction lens system is constructed by adjusting the mechanical and electromagnetic asymmetry.

複雑で、厳しいアライメント精度を要する補正レンズの構造の改善策として、特許文献1にある四極子レンズと開口電極から構成される補正レンズ(非特許文献2)を利用することができる。この場合のXZ面とYZ面の荷電粒子線軌道と開口収差をシミュレーション計算した例を、図2に示す。Q1〜Q4は、電界型四極子レンズ、A1〜A3は開口電極である。四極子レンズの電極径φ・8mm、長さ14 mm、四極子レンズと開口電極の開口径 φ・6.987 mm、開口電極の厚さ 2 mm、四極子レンズ端面と開口電極端面の間隔は4 mmである。   As a measure for improving the structure of a correction lens that is complicated and requires strict alignment accuracy, a correction lens (Non-Patent Document 2) that includes a quadrupole lens and an aperture electrode disclosed in Patent Document 1 can be used. FIG. 2 shows an example of simulation calculation of charged particle beam trajectories and aperture aberrations in the XZ plane and YZ plane in this case. Q1 to Q4 are electric field type quadrupole lenses, and A1 to A3 are aperture electrodes. Electrode diameter of quadrupole lens φ8mm, length 14mm, aperture diameter of quadrupole lens and aperture electrode φ6.989mm, aperture electrode thickness 2mm, distance between end surface of quadrupole lens and aperture electrode 4mm It is.

電界型の四極子レンズはXZ面の電極にVQ [V] 印加した場合、YZ面の電極には−VQ [V]印加する。加速電圧がVa [V]の場合、四極子レンズの励起強度をVQ/Va、開口電極の励起強度をVA/Vaで表記する。図2のシミュレーション計算結果の例では、軸対称対物レンズの球面収差係数Cs = 56 mmを補正するために、四極子レンズと開口電極の励起制御によって、CA30 = CA12 ( = CA21) = CA03 = −56mmに調整している。11は、XZ面の荷電粒子線軌道、12はYZ面の荷電粒子線軌道である。21は四極子レンズの励起極性に対応した電位分布、31、32、33はそれぞれ、A1、A2、A3を励起することによって発現した八極子電位分布。41、42、43はそれぞれ、A1、A2、A3を励起することによって発生する軸対称な電位分布である。なお、4段の四極子レンズのXZ面における励起強度は、+0.05745 、−0.057265 、+0.057265 、−0.05745、YZ面の励起強度は、−0.05745 、+0.057265 、−0.057265 、+0.05745、開口電極の励起強度は、−0.300 、+0.125 、−0.300である。 In the electric field type quadrupole lens, when VQ [V] is applied to the electrode on the XZ plane, −VQ [V] is applied to the electrode on the YZ plane. When the acceleration voltage is Va [V], the excitation intensity of the quadrupole lens is expressed as VQ / Va, and the excitation intensity of the aperture electrode is expressed as VA / Va. In the example of the simulation calculation result in Fig. 2, in order to correct the spherical aberration coefficient Cs = 56 mm of the axisymmetric objective lens, C A30 = C A12 (= C A21 ) = C A03 = -56mm. 11 is a charged particle beam orbit of the XZ plane, and 12 is a charged particle beam orbit of the YZ plane. 21 is a potential distribution corresponding to the excitation polarity of the quadrupole lens, and 31, 32, and 33 are octupole potential distributions expressed by exciting A1, A2, and A3, respectively. Reference numerals 41, 42, and 43 are axisymmetric potential distributions generated by exciting A1, A2, and A3, respectively. The excitation intensity on the XZ plane of the four-stage quadrupole lens is +0.05745, −0.057265, +0.057265, −0.05745, and the excitation intensity on the YZ plane is −0.05745, +0.057265, −0.057265, +0.05745. The excitation intensity of the aperture electrode is −0.300, +0.125, and −0.300.

図1に示すような補正レンズ系の利用法では、四極子レンズの段数を増やすことによって、個々の四極子レンズの励起強度を低くし、多段四極子レンズ間の厳しいアライメント精度を緩和することが可能である(特許文献1)が、図1に示す補正レンズ系の倍率は|Mx| = |My| = 1であるため、光学系全体の倍率は、近似的に|M |= b/aとなり、補正レンズ系で縮小倍率を稼ぐような使い方はできない。また、軸対称レンズの球面収差係数が非常に大きい場合では、図2のような遠焦点型の荷電粒子軌道をとる補正レンズ系で、大きな負の開口収差を発生するには、八極子レンズまたは開口電極の励起強度が非常に強くなり、低加速電圧の荷電粒子装置以外では実用性が低い。また、倍率 |Mx| = |My| = 1の補正レンズ系と軸対称レンズを組合わせたシステムの色収差は、対物レンズの色収差に補正レンズ系の色収差を加えた値となる。
特願2007−042273号 M. G. R. Thomson, Optik, 34, 528-534 (1972) S. Okayama and H. Kawakatsu, A new correction lens, Journal of Physics E, 15, 580-586 (1982)
In the method of using a correction lens system as shown in Fig. 1, by increasing the number of steps of the quadrupole lens, the excitation intensity of each quadrupole lens can be lowered, and the strict alignment accuracy between the multistage quadrupole lenses can be relaxed. Although the magnification of the correction lens system shown in FIG. 1 is | Mx | = | My | = 1, the magnification of the entire optical system is approximately | M | = b / a. Therefore, it is not possible to use the correction lens system to increase the reduction magnification. In addition, when the spherical aberration coefficient of the axisymmetric lens is very large, an octupole lens or a correction lens system that takes a far-focus type charged particle trajectory as shown in FIG. The excitation intensity of the aperture electrode becomes very strong, and its practicality is low except for charged particle devices with a low acceleration voltage. Further, the chromatic aberration of the system in which the correction lens system having the magnification | Mx | = | My | = 1 and the axisymmetric lens is combined is a value obtained by adding the chromatic aberration of the correction lens system to the chromatic aberration of the objective lens.
Japanese Patent Application No. 2007-042273 MGR Thomson, Optik, 34, 528-534 (1972) S. Okayama and H. Kawakatsu, A new correction lens, Journal of Physics E, 15, 580-586 (1982)

荷電粒子光学系において、電子源やイオン源から放出された荷電粒子ビームを荷電粒子レンズで縮小する場合、光学系全体で縮小率を大きくすることが、微細な荷電粒子プローブを得る上で、重要である。また、大きな正の球面収差係数を持つ軸対称な対物レンズの前段に配置し、負の球面収差係数を発生させる補正レンズ系の実現では、図1に示したような補正レンズ系と軸対称レンズの関係では、縮小率を大きくとるために補正レンズ系は寄与していない。また、補正レンズ系内でのビーム離軸距離も大きくなり、四極子レンズの励起強度も強く、大きな負の開口収差を発生させる補正レンズ系としての利用は困難である。微細な荷電粒子プローブを形成するSEM、電子ビーム描画装置、集束イオンビーム装置等では、光学系全体で、荷電粒子源から放出された荷電粒子ビームを構成するレンズ系で効果的に縮小し、球面収差の補正を最適化することが重要である。そのためには図3に示すように補正レンズ系の倍率が|Mx| = |My|≠1となる条件で、軸対称レンズの球面収差を打ち消すことができる補正レンズ系が必要である。   In a charged particle optical system, when a charged particle beam emitted from an electron source or an ion source is reduced by a charged particle lens, it is important to obtain a fine charged particle probe by increasing the reduction ratio in the entire optical system. It is. Also, in the realization of a correction lens system that is arranged in front of an axially symmetric objective lens having a large positive spherical aberration coefficient and generates a negative spherical aberration coefficient, a correction lens system and an axially symmetric lens as shown in FIG. In this relationship, the correction lens system does not contribute to a large reduction ratio. In addition, the beam off-axis distance in the correction lens system is increased, the excitation intensity of the quadrupole lens is high, and it is difficult to use as a correction lens system that generates a large negative aperture aberration. In SEMs, electron beam lithography systems, focused ion beam systems, etc. that form fine charged particle probes, the entire optical system is effectively reduced by a lens system that constitutes a charged particle beam emitted from a charged particle source. It is important to optimize the correction of aberrations. For this purpose, as shown in FIG. 3, a correction lens system capable of canceling the spherical aberration of the axially symmetric lens under the condition that the magnification of the correction lens system is | Mx | = | My | ≠ 1 is required.

解決しようとする課題は、四極子レンズの段数と励起制御の設定によって、軸対称な縮小レンズ作用(|Mx| = |My|<1)を発現する開口収差補正レンズ系を形成するように、四極子レンズまたは十二極子レンズと、開口電極または八極子レンズの配置と励起条件を最適化して、XZ面とYZ面の荷電粒子線軌道の離軸距離を調整し、効果的に大きな負の球面収差を発生できる荷電粒子線軌道を形成するように四極子レンズまたは十二極子レンズの励起制御を調整するともに、開口電極または八極子レンズの励起制御によって、後段に配置する軸対称レンズの球面収差を補正することである。また、軸対称な縮小レンズ作用を発現する開口収差補正レンズ系の実現によって、容易に球面収差ゼロの軸対称対物レンズとして利用することができる。   The problem to be solved is to form an aperture aberration correction lens system that exhibits an axisymmetric reduction lens action (| Mx | = | My | <1) by setting the number of stages of the quadrupole lens and the excitation control. Optimizing the arrangement and excitation conditions of quadrupole or dodecapole lenses, aperture electrodes or octupole lenses, and adjusting the off-axis distance of the charged particle beam trajectories on the XZ and YZ planes, effectively increasing the negative Adjust the excitation control of the quadrupole lens or twelve-pole lens so as to form a charged particle beam trajectory that can generate spherical aberration, and the spherical surface of the axially symmetric lens placed in the latter stage by the excitation control of the aperture electrode or octupole lens It is to correct the aberration. In addition, by realizing an aperture aberration correction lens system that exhibits an axially symmetric reduction lens action, it can be easily used as an axially symmetric objective lens with zero spherical aberration.

4段の四極子レンズと3つの八極子レンズ作用を誘起する開口電極から構成され、前記開口電極を1段目と2段目の四極子レンズの間と2段目と3段目の間および3段目と4段目の間に配置した荷電粒子光学レンズにおいて、Z軸を光軸として、XZ面で凹凸凹凸レンズ作用、YZ面で凸凹凸凹レンズ作用を発現するように四極子レンズの励起極性を制御し、かつ、YZ面の荷電粒子軌道が2段目の四極子レンズの入口付近で光軸に交差し、4段目の四極子レンズ以降でXZ面とYZ面の荷電粒子軌道が光軸と交差するように個々の四極子レンズと開口電極の励起強度を調整することによって開口収差係数を制御することができる。   It is composed of a four-stage quadrupole lens and an aperture electrode that induces three octupole lens actions. The aperture electrode is arranged between the first and second quadrupole lenses, between the second and third stages, and In the charged particle optical lens arranged between the third and fourth stages, the quadrupole lens is excited so that the Z-axis is the optical axis and the concave / convex lens action is produced on the XZ plane and the convex / concave concave / convex lens action is produced on the YZ plane. Controlling the polarity, the charged particle trajectory on the YZ plane intersects the optical axis near the entrance of the second quadrupole lens, and the charged particle trajectory on the XZ plane and YZ plane after the fourth quadrupole lens. The aperture aberration coefficient can be controlled by adjusting the excitation intensity of each quadrupole lens and aperture electrode so as to intersect the optical axis.

前記の開口電極は八極子レンズに置き換えることができる。4段の四極子レンズと3段の八極子レンズから構成され、前記八極子レンズを1段目と2段目の四極子レンズの間と2段目と3段目の間および3段目と4段目の間に配置した荷電粒子光学レンズにおいて、XZ面で凹凸凹凸レンズ作用、YZ面で凸凹凸凹レンズ作用を発現するように四極子レンズの励起極性を制御し、かつ、YZ面の荷電粒子軌道のみが1段目と2段目の四極子レンズの間に配置した八極子レンズ付近で光軸に交差し、4段目の四極子レンズ以降でXZ面とYZ面の荷電粒子軌道が光軸と交差するように個々の四極子レンズと八極子レンズの励起強度の調整によって開口収差係数を制御することができる。   The aperture electrode can be replaced with an octupole lens. It is composed of a four-stage quadrupole lens and a three-stage octupole lens. The octupole lens is arranged between the first and second quadrupole lenses, between the second and third stages, and the third stage. In the charged particle optical lens arranged between the 4th stage, the excitation polarity of the quadrupole lens is controlled so that the convex / concave / concave lens action is developed on the XZ plane and the convex / concave / concave lens action is developed on the YZ plane, and the YZ plane is charged. Only the particle trajectory intersects the optical axis near the octupole lens placed between the first and second quadrupole lenses, and the charged particle trajectories on the XZ and YZ surfaces after the fourth quadrupole lens. The aperture aberration coefficient can be controlled by adjusting the excitation intensity of each quadrupole lens and octupole lens so as to intersect the optical axis.

高精度な電極アライメントを要する四極子レンズの代わりに、多段レンズ間の軸合わせ、電極の非対称性の補正が可能で、四極子レンズ作用を励起する十二極子レンズを利用することができる。十二極子レンズを使用する場合には、四極子レンズと開口電極の相互作用による八極子レンズ作用を利用できなくなるため、開口収差の制御には八極子レンズが必要である。したがって、4段の十二極子レンズと3段の八極子レンズ構成において、八極子レンズを1段目と2段目の十二極子レンズの間と、2段目と3段目の間、および3段目と4段目の間に配置した荷電粒子光学レンズにおいて、XZ面で凹凸凹凸レンズ作用、YZ面で凸凹凸凹レンズ作用を発現するように十二極子レンズの励起極性を制御し、YZ面の荷電粒子軌道が1段目と2段目の四極子レンズの間に配置した八極子レンズ付近で光軸に交差し、かつ、4段目の四極子レンズ以降でXZ面とYZ面の荷電粒子軌道が光軸と交差するように個々の十二極子レンズと八極子レンズの励起強度の調整によって開口収差係数を制御することができる。   Instead of a quadrupole lens requiring high-precision electrode alignment, axial alignment between multistage lenses and correction of electrode asymmetry are possible, and a twelve-pole lens that excites the quadrupole lens action can be used. When a twelve-pole lens is used, the octupole lens action due to the interaction between the quadrupole lens and the aperture electrode cannot be used. Therefore, an octupole lens is required to control the aperture aberration. Therefore, in a four-stage dodecapole lens and a three-stage octupole lens configuration, the octupole lens is between the first and second twelve-pole lenses, between the second and third stages, and In the charged particle optical lens placed between the 3rd and 4th stages, the excitation polarity of the twelve-pole lens is controlled so that the concave / convex lens action on the XZ plane and the convex / concave concave lens action on the YZ plane are controlled. The charged particle trajectory of the plane intersects the optical axis near the octupole lens placed between the first and second quadrupole lenses, and the XZ and YZ planes after the fourth quadrupole lens. The aperture aberration coefficient can be controlled by adjusting the excitation intensity of each dodecapole lens and octupole lens so that the charged particle trajectory intersects the optical axis.

補正レンズ系を構成する四極子レンズや十二極子レンズの励起強度を低くできるように、XZ面とYZ面の離軸距離を調整して、開口電極または八極子レンズの励起調整による開口収差係数の制御範囲を拡大するためには、使用する四極子レンズまたは十二極子レンズの段数を増やすことによって、個々のレンズの励起強度を低減することができるため、効果的に大きな負の開口収差係数を発生させることができる。そこで、6段の四極子レンズと八極子レンズ作用を誘起する3つまたは4つの開口電極から構成し、前記開口電極を、2段目と3段目の四極子レンズの間と3段目の四極子レンズの直後および、または、4段目の四極子レンズの直前、および4段目と5段目の四極子レンズの間に配置した荷電粒子光学レンズにおいて、Z軸を光軸として、XZ面で凹凸凸凹凹凸レンズ作用、YZ面で凸凹凹凸凸凹レンズ作用を発現するように四極子レンズの励起極性を制御し、かつ、YZ面の荷電粒子軌道が2段目と3段目の四極子レンズの間で光軸に交差し、6段目の四極子レンズ以降でXZ面とYZ面の荷電粒子軌道が光軸と交差するように個々の四極子レンズと開口電極の励起強度の調整によって開口収差係数を制御することができる。   Aperture aberration coefficient by adjusting the off-axis distance between the XZ plane and the YZ plane and adjusting the excitation of the aperture electrode or octupole lens so that the excitation intensity of the quadrupole lens and dodecapole lens constituting the correction lens system can be lowered. In order to expand the control range, the excitation intensity of each lens can be reduced by increasing the number of quadrupole lenses or twelve-pole lenses used. Can be generated. Therefore, it is composed of a six-stage quadrupole lens and three or four aperture electrodes for inducing the action of the octupole lens. The aperture electrode is provided between the second and third quadrupole lenses and the third stage. In the charged particle optical lens arranged immediately after the quadrupole lens and / or immediately before the fourth-stage quadrupole lens and between the fourth-stage and fifth-stage quadrupole lenses, The excitation polarity of the quadrupole lens is controlled so that the concave / convex / concave / convex lens action on the surface and the convex / concave / concave / convex lens action on the YZ plane are produced, and the charged particle trajectories on the YZ plane are the second and third quadrupoles. By adjusting the excitation intensity of each quadrupole lens and aperture electrode so that the charged particle trajectory on the XZ plane and YZ plane crosses the optical axis after the sixth stage quadrupole lens. The aperture aberration coefficient can be controlled.

6段の四極子レンズと3段または4段の八極子レンズから構成され、前記八極子レンズを、2段目と3段目の四極子レンズの間と3段目の四極子レンズの直後および、または、4段目の四極子レンズの直前、および4段目と5段目の四極子レンズの間に配置した荷電粒子光学レンズにおいて、Z軸を光軸として、XZ面で凹凸凸凹凹凸レンズ作用、YZ面で凸凹凹凸凸凹レンズ作用を発現するように四極子レンズの励起極性を制御し、かつ、YZ面の荷電粒子軌道が2段目と3段目の四極子レンズの間で光軸に交差し、6段目の四極子レンズ以降でXZ面とYZ面の荷電粒子軌道が光軸と交差するように個々の四極子レンズと八極子レンズの励起強度の調整によって開口収差係数を制御することができる。   It is composed of a 6-stage quadrupole lens and a 3-stage or 4-stage octupole lens. The octupole lens is placed between the second and third quadrupole lenses and immediately after the third stage quadrupole lens. Or, in a charged particle optical lens disposed immediately before the fourth-stage quadrupole lens and between the fourth-stage and fifth-stage quadrupole lenses, the concave / convex concave / convex lens on the XZ plane with the Z axis as the optical axis The excitation polarity of the quadrupole lens is controlled so that the convex / concave / concave / convex lens action appears on the YZ plane, and the charged particle trajectory on the YZ plane is the optical axis between the second and third quadrupole lenses. The aperture aberration coefficient is controlled by adjusting the excitation intensity of each quadrupole lens and octupole lens so that the charged particle trajectories of the XZ plane and YZ plane intersect the optical axis after the 6th stage quadrupole lens. can do.

6段の十二極子レンズと3段または4段の八極子レンズから構成され、八極子レンズを、2段目と3段目の十二極子レンズの間と3段目の十二極子レンズの直後および、または、4段目の十二極子レンズの直前、および4段目と5段目の十二極子レンズの間に配置した荷電粒子光学レンズにおいて、Z軸を光軸として、XZ面で凹凸凸凹凹凸レンズ作用、YZ面で凸凹凹凸凸凹レンズ作用を発現するように十二極子レンズの励起極性を制御し、かつ、YZ面の荷電粒子軌道が2段目と3段目の四極子レンズの間で光軸に交差し、6段目の四極子レンズ以降でXZ面とYZ面の荷電粒子軌道が光軸と交差するように個々の十二極子レンズの励起強度を調整するとともに、八極子レンズの励起強度の調整によって開口収差係数を制御することができる。   Consists of a 6-stage dodecapole lens and a 3-stage or 4-stage octupole lens. The octupole lens is arranged between the 2nd and 3rd stage 12-pole lenses and between the 3rd stage 12-pole lenses. In the charged particle optical lens immediately after and / or immediately before the fourth stage of the twelve-pole lens and between the fourth and fifth stage of the twelve-pole lens, the Z axis is the optical axis and the XZ plane is used. The excitation polarity of the twelve-pole lens is controlled so that the concave-convex concave-convex lens action and the convex-concave convex-concave convex-concave lens action are exhibited on the YZ plane, and the charged particle trajectory on the YZ plane is the second and third quadrupole lenses. The excitation intensity of each dodecapole lens is adjusted so that the charged particle trajectories of the XZ plane and the YZ plane cross the optical axis after the sixth stage quadrupole lens. The aperture aberration coefficient can be controlled by adjusting the excitation intensity of the pole lens.

本発明では、XZ面とYZ面の荷電粒子線軌道を制御する四極子レンズまたは十二極子レンズの段数を4段とすることによって、XZ面で凹凸凹凸レンズ作用、YZ面で凸凹凸凹レンズ作用、または6段とすることによって、XZ面で凹凸凸凹凹凸レンズ作用、YZ面で凸凹凹凸凸凹レンズ作用を発現するように、四極子レンズまたは十二極子レンズの励起極性を制御するとともに、4段の場合は、YZ面の荷電粒子軌道が1段目と2段目の四極子レンズの間で、6段の場合は、2段目と3段目の四極子レンズの間で光軸に交差し、4段の場合は、3段目と4段目の四極子レンズの間で、6段の場合は、4段目と5段目の四極子レンズの間で、YZ面の荷電粒子線軌道の離軸距離がXZ面の軌道の離軸距離に比べ大きくなるように、四極子レンズの励起強度を調整する。ここで、八極子レンズ作用を誘起する開口電極、または八極子レンズを上記の四極子レンズまたは十二極子レンズの間に、それぞれ配置して、効果的にCA30とCA03の制御を行う。また、四極子レンズまたは、十二極子レンズ4段の場合は2段目と3段目の間に、四極子レンズまたは、十二極子レンズ6段の場合は3段目と4段目の間に開口電極または八極子レンズを配置し、XZ面とYZ面の荷電粒子軌道の離軸距離が同程度となるように励起強度を調整することで、効果的にCA12 ( = CA21)を制御することが可能となり、全ての開口収差係数の制御範囲を拡大することができる。6段の場合の3段目と4段目の間に配置する開口電極または八極子レンズの数は制御するCA12 ( = CA21)の値に合わせて選択することができる。6段の四極子レンズまたは十二極子レンズの説明において、3つまたは4つの開口電極、または3個または4個の八極子レンズと説明したのはこのためである。 In the present invention, the number of steps of the quadrupole lens or twelve-pole lens for controlling the charged particle beam trajectory on the XZ plane and the YZ plane is set to four, so that the concave / convex lens action is on the XZ plane and the convex / concave concave lens action is on the YZ plane. In addition, by controlling the excitation polarity of the quadrupole lens or the twelve-pole lens so that the concave / convex / concave / concave lens action is generated on the XZ plane and the convex / concave / concave / concave lens action is expressed on the YZ plane, In the case of Y, the charged particle trajectory on the YZ plane intersects the optical axis between the first and second quadrupole lenses, and in the case of six, the optical axis intersects between the second and third quadrupole lenses. In the case of four stages, the charged particle beam on the YZ plane is between the third and fourth stage quadrupole lenses, and in the case of six stages, between the fourth and fifth stage quadrupole lenses. The excitation intensity of the quadrupole lens is adjusted so that the off-axis distance of the orbit is larger than the off-axis distance of the orbit on the XZ plane. Here, an aperture electrode for inducing an octupole lens action or an octupole lens is disposed between the quadrupole lens or the dodecapole lens, respectively, so that C A30 and C A03 are effectively controlled. In the case of a quadrupole lens or a twelve-pole lens having four stages, it is between the second and third stages. In the case of a quadrupole lens or a six-pole lens having six stages, the third and fourth stages. A CA12 (= CA21) is effectively controlled by arranging an aperture electrode or octupole lens in the X-axis and adjusting the excitation intensity so that the off-axis distances of the charged particle trajectories on the XZ and YZ planes are the same. Therefore, the control range of all aperture aberration coefficients can be expanded. The number of aperture electrodes or octupole lenses arranged between the third and fourth stages in the case of six stages can be selected in accordance with the value of C A12 (= C A21 ) to be controlled. This is the reason why the description of the six-stage quadrupole lens or the twelve-pole lens has been made with three or four aperture electrodes, or three or four octupole lenses.

本発明による補正レンズ系は、倍率 |Mx| = |My| = 1の遠焦点型補正レンズ系とは異なり、補正レンズ系を積極的に縮小レンズとして利用し、かつ、軸対称対物レンズの球面収差を補正するために、大きな負の開口収差係数を発生させ、制御できるところに特徴がある。その結果、図2に示したような4段の四極子レンズまたは十二極子レンズと3段の八極子レンズまたは開口電極から構成される倍率 |Mx| = |My| = 1の遠焦点型補正レンズ系や倍率 |Mx| = |My|が1に近い補正レンズ系の励起強度に比べ、XZ面とYZ面の荷電粒子軌道の離軸距離を小さくできることによって、荷電粒子線軌道を制御する四極子レンズまたは、十二極子レンズ、および開口収差係数を制御する八極子レンズまたは開口電極の励起強度を低くすることができる。このため、軸対称対物レンズの球面収差補正係数が大きく、これまで実現が困難であった開口収差係数が−10000 mmを越えるような補正レンズ系を提供することができる。その結果、大きな負の開口収差係数を発生できる利点を生かして、補正レンズ系の後段に配置する軸対称対物レンズの倍率がMO<1の場合においても、球面収差の補正が可能となり、利用範囲の大きい補正光学システムを提供することができる。 The correction lens system according to the present invention differs from the far-focus type correction lens system with a magnification of | Mx | = | My | = 1, and actively uses the correction lens system as a reduction lens and has a spherical surface of an axisymmetric objective lens. A feature is that a large negative aperture aberration coefficient can be generated and controlled to correct the aberration. As a result, as shown in Fig. 2, a far-focus correction with a magnification of | Mx | = | My | = 1 Compared with the excitation intensity of the lens system and the correction lens system with a magnification of | Mx | = | My | close to 1, the distance between the charged particle orbits of the XZ and YZ surfaces can be reduced, thereby controlling the charged particle beam trajectory. The excitation intensity of the pole lens, the dodecapole lens, and the octupole lens or aperture electrode that controls the aperture aberration coefficient can be reduced. Therefore, it is possible to provide a correction lens system in which the spherical aberration correction coefficient of the axially symmetric objective lens is large and the aperture aberration coefficient that has been difficult to realize so far exceeds −10000 mm. As a result, taking advantage of the ability to generate a large negative aperture aberration coefficient, spherical aberration can be corrected and used even when the magnification of the axially symmetric objective lens placed downstream of the correction lens system is M O <1. A correction optical system having a large range can be provided.

例えば、軸対称対物レンズの球面収差係数がCS = 1000 mm、倍率がMO =0.5の前段に配置する補正レンズ系の倍率が|Mx| = |My| = 0.3、軸上の色収差が
CCX = CCY = C mmの場合、軸対称対物レンズの球面収差をゼロにするには、開口電極または八極子レンズの励起強度を制御することで、補正レンズ系の開口収差をCA30 = CA12 ( = CA21) = CA03 = − CS/MO 4= − 16000 mmに調整することで、球面収差ゼロの軸対称対物レンズを実現することができる。ここで、荷電粒子光学系の総合倍率 は|MTOTAL|= |Mx|×MO = 0.15、対物レンズに影響を与える補正レンズの軸上色収差係数もC×MO 2 = 0.25 Cに低減することができる。このように大きな負の開口収差係数を発生できる補正レンズ系の実現によって、荷電粒子ビームを荷電粒子線用の光学レンズで縮小し、微細なプローブに集束して利用する各種の荷電ビーム装置における球面収差補正技術として利用分野を拡大することができる。
For example, the spherical aberration coefficient of an axially symmetric objective lens is C S = 1000 mm, the magnification of the correction lens system placed in the front stage where the magnification is M O = 0.5 is | Mx | = | My | = 0.3, and the axial chromatic aberration is
When C CX = C CY = C mm, the spherical aberration of the axisymmetric objective lens can be reduced to zero by controlling the excitation intensity of the aperture electrode or octupole lens, and the aperture aberration of the correction lens system can be reduced to C A30 = By adjusting C A12 (= C A21 ) = C A03 = −C S / M O 4 = −16000 mm, an axially symmetric objective lens having zero spherical aberration can be realized. Here, the total magnification of the charged particle optical system is | M TOTAL | = | Mx | × M O = 0.15, and the axial chromatic aberration coefficient of the correction lens affecting the objective lens is also reduced to C × M O 2 = 0.25 C be able to. By realizing a correction lens system capable of generating such a large negative aperture aberration coefficient, the charged particle beam is reduced by the charged particle beam optical lens, and the spherical surface in various charged beam devices used by focusing on a fine probe. The field of application can be expanded as an aberration correction technique.

本発明では、補正レンズ内のXZ面とYZ面の荷電粒子線軌道の離軸距離を低く抑えるための4段または6段の四極子レンズまたは十二極子レンズと、開口収差を補正する八極子レンズ作用を励起する開口電極または八極子レンズを3つまたは4つから構成される荷電粒子光学レンズ系において、四極子レンズまたは、十二極子レンズの励起極性を、XZ面で凹凸凹凸レンズ作用または、凹凸凸凹凹凸レンズ作用、YZ面で凸凹凸凹レンズ作用または、凸凹凹凸凸凹レンズ作用を発現するように制御するとともに、開口電極または八極子レンズによって、開口収差係数CA30 、 CA12 ( = CA21) 、CA03を効果的に制御できるように、四極子レンズまたは十二極子レンズ4段の場合は、2段目と3段目の間に、6段の場合は3段目と4段目の間に開口電極または八極子レンズを配置し、八極子レンズ作用を発現する位置付近で、一度光軸に交差し、4段の場合は、3段目と4段目の間、6段の場合は、4段目と5段目の間で、YZ面の荷電粒子軌道の離軸距離がXZ面の軌道の離軸距離に比べ大きくなるようにするとともに、軸対称レンズ条件を満たして補正レンズの後段でXZ面、YZ面の同一位置で集束するように個々の四極子レンズあるいは十二極子レンズの励起強度を調整し、開口電極の励起強度を調整することで、CA30 、 CA12 、 CA21、 CA03の開口収差係数を効率よく制御することができる。 In the present invention, a four-stage or six-stage quadrupole lens or a dodecapole lens for suppressing the off-axis distance of the charged particle beam trajectory on the XZ plane and the YZ plane in the correction lens, and an octupole for correcting aperture aberration. In a charged particle optical lens system composed of three or four aperture electrodes or octupole lenses for exciting a lens action, the excitation polarity of a quadrupole lens or a dodecapole lens , Convex / concave concave / convex lens action, convex / concave / concave / concave lens action on the YZ surface, or convex / concave / concave / concave / concave lens action is controlled, and aperture aperture coefficient C A30 , C A12 (= C A21 ) In order to control CA03 effectively, the quadrupole lens or the twelve-pole lens has four stages, the second and third stages, and the sixth stage has the third and fourth stages. Between the opening electrode or eight In the vicinity of the position where the octupole lens action is exhibited, the optical axis is once crossed, and in the case of 4 stages, between the 3rd and 4th stages, and in the case of 6 stages, the 4th stage. Between the fifth stage, the off-axis distance of the charged particle trajectory on the YZ plane is made larger than the off-axis distance of the XZ-plane trajectory, and the XZ plane at the rear stage of the correction lens satisfying the axisymmetric lens condition, By adjusting the excitation intensity of each quadrupole lens or twelve-pole lens so as to focus at the same position on the YZ plane, and adjusting the excitation intensity of the aperture electrode, C A30 , C A12 , C A21 , C A03 The aperture aberration coefficient can be controlled efficiently.

四極子レンズまたは十二極子レンズ6段から構成される補正レンズ系においては、2段目と3段目の四極子レンズまたは十二極子レンズの幾何学的な構造と励起強度、および、4段目と5段目の四極子レンズまたは十二極子レンズの幾何学的な構造と励起強度を同一または同程度とすることで、補正レンズの中心位置で構造を対称とすることができるため、製作、組立てを簡易化することができる。また、四極子レンズまたは十二極子レンズの制御電源の数を減らすことが可能である。また、補正レンズ系の中心位置に対して荷電粒子ビームの入射側と出射側の補正レンズ系を二体構造として、中間位置付近に2段の軸合わせ用偏向器、非点補正器を挿入することによって、6段の補正レンズ系全体の正確な軸合わせが可能である。   In a correction lens system composed of six stages of quadrupole lenses or twelve-pole lenses, the geometric structure and excitation intensity of the second and third stages of quadrupole lenses or twelve-pole lenses, and four stages By making the excitation intensity the same or similar to the geometric structure of the quadrupole lens or the twelve-pole lens of the fifth stage and the fifth stage, the structure can be made symmetric at the center position of the correction lens. Assembling can be simplified. It is also possible to reduce the number of control power supplies for the quadrupole lens or the dodecapole lens. Further, the correction lens system on the incident side and the exit side of the charged particle beam with respect to the center position of the correction lens system has a two-body structure, and a two-stage axial deflector and astigmatism corrector are inserted near the intermediate position. As a result, it is possible to accurately align the entire six-stage correction lens system.

図4は、本発明による4段の四極子レンズと3つの開口電極から構成された補正レンズ系の1実施例であり。Q1〜Q4は、電界型四極子レンズ、A1〜A3は開口電極である。補正レンズ系の電位分布、荷電粒子線軌道、補正特性は高精度なシミュレーション計算から求めたものである。Q1〜Q4の四極子レンズの励起強度は、XZ面では、+0.04300 、−0.04050 、+0.04570 、−0.014646、YZ面では、逆極性の−0.04300 、+0.04050 、−0.04570 、+0.014646である。開口収差係数CA30 = CA12 = CA21 = CA03 = −554 mmを得るための A1〜A3の開口電極の励起強度は、−0. 181677 、+0. 097013 、−0.135262である。11は、XZ面の荷電粒子線軌道、12はYZ面の荷電粒子線軌道である。21は四極子レンズの励起極性に対応した電位分布、31、32、33はそれぞれ、A1、A2、A3を励起することによって発現した八極子電位分布。41、42、43はそれぞれ、A1、A2、A3を励起することによって発生する軸対称な電位分布である。なお、本図では、四極子レンズ、開口電極を励起する制御電源については省略してある。   FIG. 4 shows an embodiment of a correction lens system comprising a four-stage quadrupole lens and three aperture electrodes according to the present invention. Q1 to Q4 are electric field type quadrupole lenses, and A1 to A3 are aperture electrodes. The potential distribution, charged particle beam trajectory, and correction characteristics of the correction lens system are obtained from highly accurate simulation calculations. The excitation intensity of the quadrupole lenses Q1 to Q4 is +0.04300, -0.04050, +0.04570, -0.014646 on the XZ plane, and -0.04300, +0.04050, -0.04570, +0.014646 of the opposite polarity on the YZ plane. It is. The excitation intensity of the aperture electrodes A1 to A3 for obtaining the aperture aberration coefficient CA30 = CA12 = CA21 = CA03 = −554 mm is −0.161877, +0.097013, and −0.135262. 11 is a charged particle beam orbit of the XZ plane, and 12 is a charged particle beam orbit of the YZ plane. 21 is a potential distribution corresponding to the excitation polarity of the quadrupole lens, and 31, 32, and 33 are octupole potential distributions expressed by exciting A1, A2, and A3, respectively. Reference numerals 41, 42, and 43 are axisymmetric potential distributions generated by exciting A1, A2, and A3, respectively. In the drawing, the control power source for exciting the quadrupole lens and the aperture electrode is omitted.

図5は、本発明による補正レンズ系で、大きな負の開口収差係数を発生させる場合の1実施例である。Q1〜Q6は、電界型四極子レンズ、A1〜A4は開口電極である。Q1〜Q6の四極子レンズの励起強度は、XZ面では、+0.02900 、−0.01233 、−0.01233、+0.014291 、+0.014291 、−0.020014、YZ面では、逆極性となる。開口収差係数CA30 = CA12 = CA21 = CA03 = −26000 mmを得るための A1〜A4の開口電極の励起強度は、−0. 1388 、+0. 2318 、+0. 2318 、−0.146847である。11は、XZ面の荷電粒子線軌道、12はYZ面の荷電粒子線軌道である。21、22は、補正レンズ系の中心位置に対して入射側と出射側の補正レンズによる四極子レンズの励起極性に対応した電位分布、31、32、33、34はそれぞれ、A1、A2、A3、A4を励起することによって発現した八極子電位分布。41、42、43、44はそれぞれ、A1、A2、A3、A4を励起することによって発生する軸対称な電位分布である。なお、四極子レンズ、開口電極を励起する制御電源については省略している。 FIG. 5 shows an embodiment in which a large negative aperture aberration coefficient is generated in the correction lens system according to the present invention. Q1 to Q6 are electric field type quadrupole lenses, and A1 to A4 are aperture electrodes. The excitation intensity of the quadrupole lenses of Q1 to Q6 has the opposite polarity on the + Z2 plane, +0.02900, −0.01233, −0.01233, +0.014291, +0.014291, −0.020014 on the XZ plane. Aperture aberration coefficients C A30 = C A12 = C A21 = C A03 = −26000 mm, the excitation intensity of the aperture electrodes A1 to A4 is −0.1388, +0.2318, +0.2318, −0.146847 . 11 is a charged particle beam orbit of the XZ plane, and 12 is a charged particle beam orbit of the YZ plane. 21 and 22 are potential distributions corresponding to the excitation polarity of the quadrupole lens by the correction lens on the incident side and the emission side with respect to the center position of the correction lens system, and 31, 32, 33, and 34 are A1, A2, and A3, respectively. , Octupole potential distribution expressed by exciting A4. Reference numerals 41, 42, 43, and 44 are axially symmetric potential distributions generated by exciting A1, A2, A3, and A4, respectively. Note that the control power source for exciting the quadrupole lens and the aperture electrode is omitted.

図5では、補正レンズを構成する電界型四極子レンズと開口電極が同一の幾何学的寸法で、補正レンズの中心で対称構造をとっているため、四極子レンズの励起強度の設定はVQ2 = VQ3 、VQ4 =VQ5 、開口電極の励起強度の設定ではVA2 = VA3である。なお、幾何学的な寸法に誤差が存在する場合は上記の関係式が成り立たなくなるため、個々の四極子レンズ、開口電極の励起強度を微調整する必要があることは自明であるが、制御電源については、簡易化が可能である。 In FIG. 5, since the electric field type quadrupole lens and the aperture electrode constituting the correction lens have the same geometric dimensions and a symmetrical structure at the center of the correction lens, the excitation intensity of the quadrupole lens is set to V Q2 = V Q3 , V Q4 = V Q5 , and V A2 = V A3 in setting the excitation intensity of the aperture electrode. If there is an error in the geometric dimensions, the above relational expression will not hold, so it is obvious that the excitation intensity of each quadrupole lens and aperture electrode must be finely adjusted. For, simplification is possible.

図6は、本発明による補正レンズ系に関する別の実施例である。構造は図5の実施例と同一である。図5の実施例に比べて、弱い開口電極励起強度で開口収差係数CA30 = CA12 ( = CA21) = CA03 = 0 mmを実現する球面収差ゼロのプローブ形成用の軸対称対物レンズとして収差補正レンズ系を利用することができる。Q1〜Q6の四極子レンズの励起強度は、XZ面では、+0.02900 、−0.013365 、−0.013365、+0.015437 、+0.015437 、−0.022102、YZ面では、逆極性となる。開口収差係数|CA30|=|CA12|=| CA21|= |CA03|< 0. 01mmを得るための開口電極A1〜A4の励起強度は、−0. 017291 、+0. 017144 、+0. 017144 、−0.018530であり、1段目の四極子レンズの励起を除き、残り5段の四極子レンズと4つの開口電極の励起強度を荷電粒子線の加速電圧の2%以下で実現することができる。ここで、四極子レンズ、開口電極を励起する制御電源については省略している。 FIG. 6 shows another embodiment of the correction lens system according to the present invention. The structure is the same as the embodiment of FIG. Compared to the embodiment of FIG. 5, an axisymmetric objective lens for forming a probe with zero spherical aberration that achieves an aperture aberration coefficient C A30 = C A12 (= C A21 ) = C A03 = 0 mm with weak aperture electrode excitation intensity An aberration correction lens system can be used. The excitation intensities of the quadrupole lenses Q1 to Q6 are +0.02900, −0.013365, −0.013365, +0.015437, +0.015437, −0.022102 on the XZ plane, and have opposite polarities on the YZ plane. Aperture aberration coefficient | C A30 | = | C A12 | = | C A21 | = | C A03 | <0.01 The excitation intensity of the aperture electrodes A1 to A4 to obtain 0.01 mm is −0.017291, +0.017144, +0 00.0144 and -0.018530, excluding the excitation of the first quadrupole lens, and realizing the excitation intensity of the remaining five quadrupole lenses and the four aperture electrodes at 2% or less of the acceleration voltage of the charged particle beam Can do. Here, the control power source for exciting the quadrupole lens and the aperture electrode is omitted.

図4、図5の実施例から、類推できるように、5段の四極子レンズと八極子レンズ作用を誘起する3つの開口電極から構成される荷電粒子光学レンズにおいても、本発明による補正レンズ系を構築することができる。図7はその1実施例である。開口電極を、1段目と2段目の四極子レンズの間と2段目と3段目および3段目と4段目の四極子レンズの間に配置した実施例で、Z軸を光軸として、XZ面で凹凸凹凹凸レンズ作用、YZ面で凸凹凸凸凹レンズ作用を発現するように四極子レンズの励起極性を制御し、かつ、YZ面の荷電粒子軌道が1段目と2段目の四極子レンズの間で光軸に交差し、5段目の四極子レンズ以降でXZ面とYZ面の荷電粒子軌道が光軸と交差するように個々の四極子レンズと開口電極の励起強度の調整によって開口収差係数を制御することができる。Q1〜Q5の四極子レンズの励起強度は、XZ面では、+0.03500 、−0.03242 、+0.02226 、+0.02226 、−0.020906、YZ面では、逆極性となる。開口収差係数CA30 = CA12 = CA21 = CA03 = −17000 mmを得るための A1〜A3の開口電極の励起強度は、−0. 3340 、+0. 2300 、−0.1330である。この実施例は図5のQ2・A1・Q3・A2・A3の役割を図7の実施例ではA1・Q2・A2に置き換えたことに相当する。 As can be inferred from the embodiments of FIGS. 4 and 5, the correction lens system according to the present invention is also applied to a charged particle optical lens including a five-stage quadrupole lens and three aperture electrodes for inducing the action of an octupole lens. Can be built. FIG. 7 shows one example. In an embodiment in which aperture electrodes are arranged between the first and second quadrupole lenses, between the second and third stages, and between the third and fourth quadrupole lenses, the Z axis is As the axis, the excitation polarity of the quadrupole lens is controlled so that the concave and convex lens action on the XZ plane and the convex and concave lens action on the YZ plane are expressed, and the charged particle trajectories on the YZ plane are the first and second stages. Excitation intensity of each quadrupole lens and aperture electrode so that the charged particle trajectories of the XZ plane and YZ plane cross the optical axis after the fifth stage quadrupole lens. The aperture aberration coefficient can be controlled by adjusting the angle. The excitation intensity of the quadrupole lenses Q1 to Q5 is +0.03500, −0.03242, +0.02226, +0.02226, −0.020906 on the XZ plane, and has a reverse polarity on the YZ plane. The excitation intensity of the aperture electrodes A1 to A3 for obtaining the aperture aberration coefficient C A30 = C A12 = C A21 = C A03 = −17000 mm is −0.3340, +0.2300, and −0.1330. This embodiment corresponds to replacing the roles of Q2, A1, Q3, A2, and A3 in FIG. 5 with A1, Q2, and A2 in the embodiment of FIG.

図4、図5、図6、図7のQ1〜Q6の電界型四極子レンズの代わりに磁界型の四極子レンズを利用することが可能である。但し、磁界型四極子レンズの場合は、四極子レンズの磁極は、電界型の電極に対してXY面で45度回転した位置に配置した場合に対応する。   Magnetic field type quadrupole lenses can be used instead of the electric field type quadrupole lenses Q1 to Q6 in FIGS. However, in the case of a magnetic field type quadrupole lens, this corresponds to the case where the magnetic pole of the quadrupole lens is arranged at a position rotated 45 degrees on the XY plane with respect to the electric field type electrode.

図4、図5、図6、図7の実施例で、Q1〜Q6の電界型四極子レンズの代わりに軸合わせ機能、非対称性補正が可能な電界型または磁界型十二極子レンズと、A1〜A4の開口電極の代わりに八極子レンズを利用することで、同様の補正レンズを実現することができる。   4, 5, 6, and 7, an electric field type or magnetic field type dodecapole lens capable of correcting an asymmetry and an axis alignment function instead of the electric field type quadrupole lenses Q1 to Q6, and A1 By using an octupole lens instead of the aperture electrode of ~ A4, a similar correction lens can be realized.

前記のように、図4、図5、図6、図7の実施例で、A1〜A4の開口電極代わりに八極子レンズを利用することができる。八極子レンズ作用は電界型または磁界型十二極子レンズの個々の極子の励起制御によっても、八極子レンズ作用を誘起することが可能であるので、A1〜A4の開口電極の代わりに十二極子レンズを利用することでも、同様の補正レンズを実現することができる。   As described above, the octupole lens can be used in place of the aperture electrodes A1 to A4 in the embodiments of FIGS. 4, 5, 6, and 7. Since the octupole lens action can also induce the octupole lens action by the excitation control of individual poles of the electric field type or magnetic field type dodecagon lens, the twelve pole elements can be used instead of the aperture electrodes of A1 to A4. A similar correction lens can also be realized by using a lens.

図4、図5、図6、図7の実施例から、電子線マイクロアナライザー、電子ビーム描画装置における球面収差補正レンズ系または球面収差ゼロのプローブ形成用の対物レンズとしての利用が可能である。また、磁界レンズに比べ、収差係数の大きい軸対称の電界レンズを利用する集束イオンビーム (Focused Ion Beam) 装置で利用することによる、高性能化が可能である。特に、図5に示した実施例では、四極子レンズの励起強度は加速電圧値の2.9%以下、開口電極の励起強度は23.2 %以下であるため、加速電圧200 KV程度までの電子ビーム装置での高性能化に寄与することができる。   4, 5, 6, and 7 can be used as an objective lens for forming a spherical aberration correcting lens system or a probe having zero spherical aberration in an electron beam microanalyzer and an electron beam drawing apparatus. In addition, a high performance can be achieved by using a focused ion beam apparatus using an axially symmetric electric field lens having a large aberration coefficient as compared with a magnetic lens. In particular, in the embodiment shown in FIG. 5, the excitation intensity of the quadrupole lens is 2.9% or less of the acceleration voltage value, and the excitation intensity of the aperture electrode is 23.2% or less. Therefore, in the electron beam apparatus up to about 200 KV acceleration voltage. Can contribute to higher performance.

軸対称対物レンズと収差補正レンズの利用法(従来技術)Use of Axisymmetric Objective Lens and Aberration Correction Lens (Prior Art) 4段四極子レンズと3つの開口電極による球面収差補正レンズ(従来技術)Spherical aberration correction lens with four-stage quadrupole lens and three aperture electrodes (prior art) 軸対称対物レンズ用収差補正レンズを縮小レンズとする利用法Use of aberration correction lens for axisymmetric objective lens as reduction lens 4段四極子レンズと3つの開口電極による開口収差補正レンズ(実施例1)Aperture aberration correction lens using a four-stage quadrupole lens and three aperture electrodes (Example 1) 6段四極子レンズと4つの開口電極による開口収差補正レンズ(実施例2)Aperture aberration correction lens using a six-stage quadrupole lens and four aperture electrodes (Example 2) 6段四極子レンズと4つの開口電極による球面収差ゼロの対物レンズ(実施例3)Objective lens with zero spherical aberration by a six-stage quadrupole lens and four aperture electrodes (Example 3) 5段四極子レンズと3つの開口電極による球面収差補正レンズ(実施例4)Spherical Aberration Correction Lens (Embodiment 4) with a 5-stage quadrupole lens and three aperture electrodes

符号の説明Explanation of symbols

1 荷電粒子線用収差補正レンズ系
2 軸対称コンデンサーレンズ
3 軸対称対物レンズ
11 XZ面の荷電粒子線軌道
12 YZ面の荷電粒子線軌道
13 荷電粒子線軌道の交差位置
21,22 四極子電位分布
31, 32, 33, 34 八極子電位分布
41, 42, 43 , 44 軸上電位分布
Q1, Q2, Q3, Q4, Q5, Q6 電界型四極子レンズ
A1, A2, A3, A4 開口電極
1 Aberration correction lens system for charged particle beam
2 Axisymmetric condenser lens
3 Axisymmetric objective lens
11 XZ-plane charged particle beam trajectory
12 YZ-plane charged particle beam trajectory
13 Crossing position of charged particle beam orbit
21,22 Quadrupole potential distribution
31, 32, 33, 34 Octupole potential distribution
41, 42, 43, 44 On-axis potential distribution
Q1, Q2, Q3, Q4, Q5, Q6 Electric field type quadrupole lens
A1, A2, A3, A4 Aperture electrode

Claims (6)

4段の四極子レンズと八極子レンズ作用を誘起する3つの開口電極から構成され、前記開口電極を1段目と2段目の四極子レンズの間と2段目と3段目の間および3段目と4段目の間に配置した荷電粒子光学レンズにおいて、Z軸を光軸として、XZ面で凹凸凹凸レンズ作用、YZ面で凸凹凸凹レンズ作用を発現するように四極子レンズの励起極性を制御し、かつ、YZ面の荷電粒子軌道が2段目の四極子レンズの入口付近で光軸に交差し、4段目の四極子レンズ以降でXZ面とYZ面の荷電粒子軌道が光軸と交差するように個々の四極子レンズと開口電極の励起強度を調整することによって開口収差係数を制御することを特徴とする開口収差補正レンズ。   It is composed of a four-stage quadrupole lens and three aperture electrodes for inducing the action of an octupole lens. The aperture electrodes are arranged between the first and second quadrupole lenses, between the second and third stages, and In the charged particle optical lens arranged between the third and fourth stages, the quadrupole lens is excited so that the Z-axis is the optical axis and the concave / convex lens action is produced on the XZ plane and the convex / concave concave / convex lens action is produced on the YZ plane. Controlling the polarity, the charged particle trajectory on the YZ plane intersects the optical axis near the entrance of the second quadrupole lens, and the charged particle trajectory on the XZ plane and YZ plane after the fourth quadrupole lens. An aperture aberration correction lens, wherein the aperture aberration coefficient is controlled by adjusting the excitation intensity of each quadrupole lens and aperture electrode so as to intersect the optical axis. 4段の四極子レンズと3段の八極子レンズから構成され、前記八極子レンズを1段目と2段目の四極子レンズの間と2段目と3段目の間および3段目と4段目の間に配置した荷電粒子光学レンズにおいて、Z軸を光軸として、XZ面で凹凸凹凸レンズ作用、YZ面で凸凹凸凹レンズ作用を発現するように四極子レンズの励起極性を制御し、かつ、YZ面の荷電粒子軌道のみが1段目と2段目の四極子レンズの間に配置した八極子レンズ付近で光軸に交差し、4段目の四極子レンズ以降でXZ面とYZ面の荷電粒子軌道が光軸と交差するように個々の四極子レンズと八極子レンズの励起強度の調整によって開口収差係数を制御することを特徴とする開口収差補正レンズ。   It is composed of a four-stage quadrupole lens and a three-stage octupole lens. The octupole lens is arranged between the first and second quadrupole lenses, between the second and third stages, and the third stage. In the charged particle optical lens placed between the 4th stage, the excitation polarity of the quadrupole lens is controlled so that the concave / convex lens action on the XZ plane and the convex / concave concave lens action on the YZ plane are expressed with the Z axis as the optical axis. And only the charged particle trajectory on the YZ plane intersects the optical axis near the octupole lens arranged between the first and second quadrupole lenses, and the XZ plane after the fourth quadrupole lens. An aperture aberration correction lens, wherein the aperture aberration coefficient is controlled by adjusting the excitation intensity of each quadrupole lens and octupole lens so that the charged particle trajectory on the YZ plane intersects the optical axis. 上記請求項2において四極子レンズを、十二極子レンズに置き換えた荷電粒子光学レンズにおいて、Z軸を光軸として、XZ面で凹凸凹凸レンズ作用、YZ面で凸凹凸凹レンズ作用を発現するように十二極子レンズの励起極性を制御し、YZ面の荷電粒子軌道が1段目と2段目の十二極子レンズの間に配置した八極子レンズ付近で光軸に交差し、かつ、4段目の十二極子レンズ以降でXZ面とYZ面の荷電粒子軌道が光軸と交差するように個々の十二極子レンズの励起強度を調整するとともに八極子レンズの励起強度の調整によって開口収差係数を制御することを特徴とする開口収差補正レンズ。   In the charged particle optical lens in which the quadrupole lens in claim 2 is replaced with a twelve-pole lens, the concave / convex concave / convex lens action is expressed on the XZ plane and the convex / concave concave / convex lens action is expressed on the YZ plane with the Z axis as the optical axis. Controls the excitation polarity of the twelve-pole lens, and the charged particle trajectory on the YZ plane intersects the optical axis near the octupole lens arranged between the first and second twelve-pole lenses, and has four stages. The aperture aberration coefficient is adjusted by adjusting the excitation intensity of each dodecapole lens and adjusting the excitation intensity of the octupole lens so that the charged particle trajectories on the XZ and YZ planes intersect the optical axis after the twelve-pole lens of the eye. An aperture aberration correction lens characterized by controlling the aperture. 6段の四極子レンズと八極子レンズ作用を誘起する3つまたは4つの開口電極から構成され、前記開口電極を、2段目と3段目の四極子レンズの間と3段目の四極子レンズの直後および、または、4段目の四極子レンズの直前、および4段目と5段目の四極子レンズの間に配置した荷電粒子光学レンズにおいて、Z軸を光軸として、XZ面で凹凸凸凹凹凸レンズ作用、YZ面で凸凹凹凸凸凹レンズ作用を発現するように四極子レンズの励起極性を制御し、かつ、YZ面の荷電粒子軌道が2段目と3段目の四極子レンズの間で光軸に交差し、6段目の四極子レンズ以降でXZ面とYZ面の荷電粒子軌道が光軸と交差するように個々の四極子レンズと開口電極の励起強度の調整によって開口収差係数を制御することを特徴とする開口収差補正レンズ。   It consists of a 6-stage quadrupole lens and 3 or 4 aperture electrodes that induce the action of an octupole lens. The aperture electrode is placed between the second and third quadrupole lenses and the third quadrupole element. In a charged particle optical lens arranged immediately after the lens and immediately before the fourth-stage quadrupole lens and between the fourth-stage and fifth-stage quadrupole lenses, the Z axis is the optical axis, and the XZ plane is used. The excitation polarity of the quadrupole lens is controlled so that the concave / convex / concave / convex lens action and the convex / concave / concave / convex lens action are expressed on the YZ plane, and the charged particle trajectories on the YZ plane are the second and third quadrupole lenses. Aperture aberration by adjusting the excitation intensity of each quadrupole lens and aperture electrode so that the charged particle trajectories on the XZ plane and YZ plane intersect the optical axis after the sixth stage quadrupole lens. An aperture aberration correction lens characterized by controlling a coefficient. 6段の四極子レンズと3段または4段の八極子レンズから構成され、前記八極子レンズを、2段目と3段目の四極子レンズの間と3段目の四極子レンズの直後および、または、4段目の四極子レンズの直前、および4段目と5段目の四極子レンズの間に配置した荷電粒子光学レンズにおいて、Z軸を光軸として、XZ面で凹凸凸凹凹凸レンズ作用、YZ面で凸凹凹凸凸凹レンズ作用を発現するように四極子レンズの励起極性を制御し、かつ、YZ面の荷電粒子軌道が2段目と3段目の四極子レンズの間で光軸に交差し、6段目の四極子レンズ以降でXZ面とYZ面の荷電粒子軌道が光軸と交差するように個々の四極子レンズと八極子レンズの励起強度の調整によって開口収差係数を制御することを特徴とする開口収差補正レンズ。   It is composed of a 6-stage quadrupole lens and a 3-stage or 4-stage octupole lens. The octupole lens is placed between the second and third quadrupole lenses and immediately after the third stage quadrupole lens. Or, in a charged particle optical lens disposed immediately before the fourth-stage quadrupole lens and between the fourth-stage and fifth-stage quadrupole lenses, the concave / convex concave / convex lens on the XZ plane with the Z axis as the optical axis The excitation polarity of the quadrupole lens is controlled so that the convex / concave / concave / convex lens action appears on the YZ plane, and the charged particle trajectory on the YZ plane is the optical axis between the second and third quadrupole lenses. The aperture aberration coefficient is controlled by adjusting the excitation intensity of each quadrupole lens and octupole lens so that the charged particle trajectories of the XZ plane and YZ plane intersect the optical axis after the 6th stage quadrupole lens. An aperture aberration correction lens. 上記請求項5において四極子レンズを、十二極子レンズに置き換えた荷電粒子光学レンズにおいて、Z軸を光軸として、XZ面で凹凸凸凹凹凸レンズ作用、YZ面で凸凹凹凸凸凹レンズ作用を発現するように十二極子レンズの励起極性を制御し、かつ、YZ面の荷電粒子軌道が2段目と3段目の十二極子レンズの間で光軸に交差し、6段目の十二極子レンズ以降でXZ面とYZ面の荷電粒子軌道が光軸と交差するように個々の十二極子レンズと八極子レンズの励起強度の調整によって開口収差係数を制御することを特徴とする開口収差補正レンズ。   In the charged particle optical lens in which the quadrupole lens in claim 5 is replaced with a twelve-pole lens, with the Z axis as the optical axis, the concave / convex concave / convex lens action on the XZ plane and the concave / convex concave / convex lens action on the YZ plane are exhibited. In this way, the excitation polarity of the twelve-pole lens is controlled, and the charged particle trajectory on the YZ plane intersects the optical axis between the second and third stage twelve-pole lenses, and the sixth stage twelve-pole element Aperture aberration correction characterized by controlling the aperture aberration coefficient by adjusting the excitation intensity of each dodecapole lens and octupole lens so that the charged particle trajectories on the XZ plane and YZ plane intersect the optical axis after the lens lens.
JP2007246818A 2007-09-25 2007-09-25 Aperture correction lens Expired - Fee Related JP5071792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007246818A JP5071792B2 (en) 2007-09-25 2007-09-25 Aperture correction lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246818A JP5071792B2 (en) 2007-09-25 2007-09-25 Aperture correction lens

Publications (2)

Publication Number Publication Date
JP2009076422A true JP2009076422A (en) 2009-04-09
JP5071792B2 JP5071792B2 (en) 2012-11-14

Family

ID=40611192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246818A Expired - Fee Related JP5071792B2 (en) 2007-09-25 2007-09-25 Aperture correction lens

Country Status (1)

Country Link
JP (1) JP5071792B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170099931A (en) * 2014-12-19 2017-09-01 가부시기가이샤다다노 Rough terrain crane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48104459A (en) * 1972-02-25 1973-12-27
JPH05234550A (en) * 1992-02-18 1993-09-10 Agency Of Ind Science & Technol Lens for charged beam
JP2003092078A (en) * 2001-07-13 2003-03-28 Jeol Ltd Spherical aberration correction device for electron microscope
JP2005353429A (en) * 2004-06-11 2005-12-22 Hitachi Ltd Charged-particle beam chromatic aberration correction device
JP2006216396A (en) * 2005-02-04 2006-08-17 Hitachi High-Technologies Corp Charged particle beam device
JP2006294609A (en) * 2005-04-05 2006-10-26 Fei Co Corpuscular optical device equipped with aberration correcting means

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48104459A (en) * 1972-02-25 1973-12-27
JPH05234550A (en) * 1992-02-18 1993-09-10 Agency Of Ind Science & Technol Lens for charged beam
JP2003092078A (en) * 2001-07-13 2003-03-28 Jeol Ltd Spherical aberration correction device for electron microscope
JP2005353429A (en) * 2004-06-11 2005-12-22 Hitachi Ltd Charged-particle beam chromatic aberration correction device
JP2006216396A (en) * 2005-02-04 2006-08-17 Hitachi High-Technologies Corp Charged particle beam device
JP2006294609A (en) * 2005-04-05 2006-10-26 Fei Co Corpuscular optical device equipped with aberration correcting means

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170099931A (en) * 2014-12-19 2017-09-01 가부시기가이샤다다노 Rough terrain crane
KR102240594B1 (en) 2014-12-19 2021-04-15 가부시기가이샤다다노 Rough terrain crane

Also Published As

Publication number Publication date
JP5071792B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5623719B2 (en) Chromatic aberration correction apparatus and method for correcting charged particle beam apparatus
JP2004303547A (en) Electron beam device with aberration corrector
US8785880B2 (en) Chromatic aberration corrector and electron microscope
JP6276101B2 (en) Multipole lens, aberration correction device, and electron microscope
EP3518269B1 (en) Aberration corrector and electron microscope with such corrector
JP4204902B2 (en) Charged particle beam device with aberration correction device
US6930312B2 (en) Charged-particle beam instrument and method of correcting aberration therein
JP2007128656A (en) Charged particle beam apparatus provided with aberration correction device
JP4291827B2 (en) Method for adjusting scanning electron microscope or length measuring SEM
JP6843794B2 (en) Aberration correction device and charged particle beam device
JPH06105598B2 (en) Charged beam lens
US6888145B2 (en) Optical particle corrector
JP4705812B2 (en) Charged particle beam device with aberration correction device
JP5071792B2 (en) Aperture correction lens
JP5069066B2 (en) Aberration correction apparatus and aberration correction method
JPH06111742A (en) Optical lens-barrel
US8791423B2 (en) Aberration correction device and charged particle beam device employing same
JP4899158B2 (en) Aberration correction lens for charged particle beam
JP5934517B2 (en) Chromatic aberration corrector and control method for chromatic aberration corrector
JP3950769B2 (en) Aberration correction apparatus in charged particle beam apparatus
JPS5835852A (en) Lens for charged beam
Haider et al. Design of an electron optical system for the correction of the chromatic aberration Cc of a TEM objective lens
Baranova et al. Computer simulation of hexapole aberration correctors

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Ref document number: 5071792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees