JP2020080705A - 変異型デカルボニラーゼ遺伝子、当該変異型デカルボニラーゼ遺伝子を有する組換え微生物及びアルカンの製造方法 - Google Patents

変異型デカルボニラーゼ遺伝子、当該変異型デカルボニラーゼ遺伝子を有する組換え微生物及びアルカンの製造方法 Download PDF

Info

Publication number
JP2020080705A
JP2020080705A JP2018218879A JP2018218879A JP2020080705A JP 2020080705 A JP2020080705 A JP 2020080705A JP 2018218879 A JP2018218879 A JP 2018218879A JP 2018218879 A JP2018218879 A JP 2018218879A JP 2020080705 A JP2020080705 A JP 2020080705A
Authority
JP
Japan
Prior art keywords
amino acid
substitution mutation
mutant
decarbonylase
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018218879A
Other languages
English (en)
Inventor
村松 正善
Masayoshi Muramatsu
正善 村松
小畑 充生
Shusei Obata
充生 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018218879A priority Critical patent/JP2020080705A/ja
Priority to US16/689,551 priority patent/US20200165619A1/en
Publication of JP2020080705A publication Critical patent/JP2020080705A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

【課題】アミノ酸置換変異を有するデカルボニラーゼ変異体をコードする変異型デカルボニラーゼ遺伝子、当該変異型デカルボニラーゼ遺伝子を有する組換え微生物及びアルカン製造方法の提供。【解決手段】特定のアミノ酸配列における29番目のバリン、35番目のグルタミン酸、39番目のアスパラギン、42番目のスレオニン、51番目のヒスチジン、54番目のロイシン、60番目のメチオニン、89番目のセリン、94番目のアスパラギン、169番目のロイシン、174番目のアスパラギン、175番目のロイシン、177番目のイソロイシン及び188番目のアスパラギン酸のいずれかを置換変異する。【選択図】図1

Description

本発明は、アミノ酸置換変異を有するデカルボニラーゼ変異体をコードする変異型デカルボニラーゼ遺伝子、当該変異型デカルボニラーゼ遺伝子を有する組換え微生物及びアルカンの製造方法に関する。
アルカンは、石油に含まれており分留によって精製され、様々な用途に利用される。また、アルカンは、化学工業における原料物質として広く利用されるのみならず、石油から得られるディーゼル燃料の主成分でもある。近年、藍藻由来のアシルACPレダクターゼ遺伝子及びデカルボニラーゼ遺伝子を大腸菌で共発現させ、軽油成分であるアルカンを発酵生産する技術が開発されている(特許文献1)。
また、アルカン合成のキイ酵素であるデカルボニラーゼは活性にフェレドキシンとフェレドキシンレダクターゼが必要なことが報告されており(非特許文献1及び特許文献2)、サッカロマイセス・セルビシエでアルカンを合成する際にはデカルボニラーゼ遺伝子だけでなく、大腸菌由来のフェレドキシン遺伝子とフェレドキシンレダクターゼ遺伝子の共発現が必要なことが報告されている(非特許文献2)。しかし、非特許文献2によれば、アルカン生産量は3μg/g-dry cell程度である。このときサッカロマイセス・セルビシエはフルグロースのO.D.600nm=20程度であり、乾燥菌体量は4g-drycell/L程度である。このことから計算すると、非特許文献2に記載された方法では、生産量は12μg/L程度と低いことが理解できる。
ところで、デカルボニラーゼは、反応時に発生する過酸化水素により活性が低下又は失活することが指摘されている(非特許文献3)。非特許文献3によれば、デカルボニラーゼをカタラーゼとの融合タンパク質とした場合には、過酸化水素に起因する活性低下又は失活を改善できると記載されている。また、デカルボニラーゼに関しては、結晶構造解析が行われ、酵素反応機構や反応に関与するアミノ酸残基の情報が明らかになっている(非特許文献4及び5)。
US Patent No. 8,846,371 WO 2013/024527
Science, Vol. 329, p. 559-562, (2010) Biotechnology Bioengineering, Vol. 112, No. 6, p. 1275-1279, (2015) Proceedings of the National Academy of Sciences of the United States of America 110, 8 (2013) 3191-3196 Biochemical and Biophysical Research Communications 477 (2016) 395-400 Protein Cell 6, 1 (2015) 55-67
しかしながら、従来のデカルボニラーゼは酵素活性が十分ではないといった問題があった。そこで、本発明は、上述したような実情に鑑み、デカルボニラーゼの酵素活性を向上させる置換変異を特定し、当該置換変異を有するデカルボニラーゼをコードする変異型デカルボニラーゼ遺伝子、当該変異型デカルボニラーゼ遺伝子を有する組換え微生物及びアルカンの製造方法を提供することを目的とする。
上述した目的を達成するため、本発明者らが鋭意検討した結果、デカルボニラーゼの特定のアミノ酸残基を置換することによって酵素活性が大幅に向上することを見いだし本発明を完成するに至った。
すなわち、本発明は以下を包含する。
(1)配列番号2に示すアミノ酸配列における
29番目のバリンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異、
35番目のグルタミン酸に相当するアミノ酸の疎水性度の高いアミノ酸への置換変異、
39番目のアスパラギンに相当するアミノ酸の疎水性度の高いアミノ酸への置換変異、
42番目のスレオニンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異、
51番目のヒスチジンに相当するアミノ酸の疎水性度の高いアミノ酸への置換変異、
54番目のロイシンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異、
60番目のメチオニンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異、
89番目のセリンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異、
94番目のアスパラギンに相当するアミノ酸の疎水性度の高いアミノ酸への置換変異、
169番目のロイシンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異、
174番目のアスパラギンに相当するアミノ酸の疎水性度の高いアミノ酸への置換変異、
175番目のロイシンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異、
177番目のイソロイシンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異及び
188番目のアスパラギン酸に相当するアミノ酸の疎水性度の高いアミノ酸への置換変異
からなる群から選ばれる少なくとも1つの置換変異を有するデカルボニラーゼをコードする変異型デカルボニラーゼ遺伝子。
(2)上記29番目のバリンに相当するアミノ酸の置換変異は、Y、W、S、G、A、M、C、F及びLからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(3)上記29番目のバリンに相当するアミノ酸の置換変異は、Y、W、S、G、A及びMからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(4)上記29番目のバリンに相当するアミノ酸の置換変異は、Mへの置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(5)上記35番目のグルタミン酸に相当するアミノ酸の置換変異は、P、Y、W、S、T、G、A、M、C、F、L、V及びIからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(6)上記35番目のグルタミン酸に相当するアミノ酸の置換変異は、P、Y、W、S、T及びGからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(7)上記35番目のグルタミン酸に相当するアミノ酸の置換変異は、Yへの置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(8)上記39番目のアスパラギンに相当するアミノ酸の置換変異は、G、A、C、F、L、V及びIからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(9)上記39番目のアスパラギンに相当するアミノ酸の置換変異は、C、F、L、V及びIからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(10)上記39番目のアスパラギンに相当するアミノ酸の置換変異は、Vへの置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(11)上記42番目のスレオニンに相当するアミノ酸の置換変異は、R、K、Q、N、D、E、H、P、Y、W、S及びGからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(12)上記42番目のスレオニンに相当するアミノ酸の置換変異は、K、Q、N、D、E、H、P及びYからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(13)上記42番目のスレオニンに相当するアミノ酸の置換変異は、N又はDへの置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(14)上記51番目のヒスチジンに相当するアミノ酸の置換変異は、P、Y、W、S、T及びGからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(15)上記51番目のヒスチジンに相当するアミノ酸の置換変異は、P又はYへの置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(16)上記51番目のヒスチジンに相当するアミノ酸の置換変異は、Yへの置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(17)上記54番目のロイシンに相当するアミノ酸の置換変異は、Q、N、D、H、P、Y、W、S、T及びGからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(18)上記54番目のロイシンに相当するアミノ酸の置換変異は、Q、N、D、H、P及びYからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(19)上記54番目のロイシンに相当するアミノ酸の置換変異は、Qへの置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(20)上記60番目のメチオニンに相当するアミノ酸の置換変異は、Q、D、E、H、P及びYからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(21)上記60番目のメチオニンに相当するアミノ酸の置換変異は、Q、D及びEからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(22)上記60番目のメチオニンに相当するアミノ酸の置換変異は、Dへの置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(23)上記89番目のセリンに相当するアミノ酸の置換変異は、Q、N、D、E、H、P及びYからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(24)上記89番目のセリンに相当するアミノ酸の置換変異は、Q、N、D及びEからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(25)上記89番目のセリンに相当するアミノ酸の置換変異は、Nへの置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(26)上記94番目のアスパラギンに相当するアミノ酸の置換変異は、C、F、L、V及びIからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(27)上記94番目のアスパラギンに相当するアミノ酸の置換変異は、L、V及びIからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(28)上記94番目のアスパラギンに相当するアミノ酸の置換変異は、Vへの置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(29)上記169番目のロイシンに相当するアミノ酸の置換変異は、P、Y、W、S、T、G、A及びMからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(30)上記169番目のロイシンに相当するアミノ酸の置換変異は、Y、W、S、T、G及びAからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(31)上記169番目のロイシンに相当するアミノ酸の置換変異は、Y、W及びAからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(32)上記174番目のアスパラギンに相当するアミノ酸の置換変異は、P、Y、W、S、T、G、A、M、C及びFからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(33)上記174番目のアスパラギンに相当するアミノ酸の置換変異は、W、S、T、G、A及びMからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(34)上記174番目のアスパラギンに相当するアミノ酸の置換変異は、T又はMへの置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(35)上記175番目のロイシンに相当するアミノ酸の置換変異は、R、K、Q、N、D、E、H、P及びYからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(36)上記175番目のロイシンに相当するアミノ酸の置換変異は、K、Q、N、D、E及びHからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(37)上記175番目のロイシンに相当するアミノ酸の置換変異は、K、Q及びEからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(38)上記177番目のイソロイシンに相当するアミノ酸の置換変異は、Q、N、D、E、H、P、Y、W、S、T、G、A及びMからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(39)上記177番目のイソロイシンに相当するアミノ酸の置換変異は、P、Y、W、S、T及びGからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(40)上記177番目のイソロイシンに相当するアミノ酸の置換変異は、Y又はWへの置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(41)上記188番目のアスパラギン酸に相当するアミノ酸の置換変異は、C、F、L、V及びIからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(42)上記188番目のアスパラギン酸に相当するアミノ酸の置換変異は、L、V及びIからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(43)上記188番目のアスパラギン酸に相当するアミノ酸の置換変異は、Vへの置換変異であることを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(44)配列番号2に示すアミノ酸配列に対して、V29M、E35Y、N39T、N39V、T42D、T42N、H51Y、L54Q、M60D、S89N、N94V、L169A、L169Y、L169W、N174M、N174T、L175Q、L175E、L175K、I177Y、I177W及びD188Vからなる群から選ばれる少なくとも1つの置換変異を有することを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(45)配列番号2に示すアミノ酸配列に対して、H51Y及び/又はL169Wを有することを特徴とする(1)記載の変異型デカルボニラーゼ遺伝子。
(46)上記(1)〜(45)のいずれかに記載された変異型デカルボニラーゼ遺伝子を宿主微生物に導入してなる組換え微生物。
(47)上記宿主微生物は大腸菌又はKlebsiella属細菌であることを特徴とする(46)記載の組換え微生物。
(48)上記(46)又は(47)記載の組換え微生物を培養する工程を含むアルカンの製造方法。
(49)上記組換え微生物を培養する培地よりアルカンを回収する工程を更に含むことを特徴とする(48)記載のアルカンの製造方法。
(50)上記組換え微生物を培養する培地よりアルカンを回収し、回収したアルカンを精製する工程を更に含むことを特徴とする(48)記載のアルカンの製造方法。
(51)炭素数9〜20のアルカンを製造することを特徴とする(48)記載のアルカンの製造方法。
本発明に係る変異型デカルボニラーゼ遺伝子は、変異を有しない野生型のデカルボニラーゼと比較して、デカルボニラーゼ活性に優れたタンパク質をコードする。したがって、本発明に係る変異型デカルボニラーゼ遺伝子を利用することで、アルカン合成能に優れたた組換え微生物を取得することができる。また、本発明に係る変異型デカルボニラーゼ遺伝子を導入した組換え微生物を利用したアルカン合成系におけるアルカン生産性を大幅に向上させることができ、アルカン製造における大幅なコストダウンが可能となる
N. punctiforme PCC 73102株由来のデカルボニラーゼのアミノ酸配列(配列番号2)における10個のαヘリックス構造(ヘリックス1〜10、下線部)及び置換対象のアミノ酸残基(矢印)を示す模式図である。 N. punctiforme PCC 73102株由来のデカルボニラーゼにおけるヘリックス1について、αヘリックス構造を軸方向から観察するように、αヘリックス構造を構成するアミノ酸配列を円周上に並べた図である。 N. punctiforme PCC 73102株由来のデカルボニラーゼにおけるヘリックス2について、αヘリックス構造を軸方向から観察するように、αヘリックス構造を構成するアミノ酸配列を円周上に並べた図である。 N. punctiforme PCC 73102株由来のデカルボニラーゼにおけるヘリックス3について、αヘリックス構造を軸方向から観察するように、αヘリックス構造を構成するアミノ酸配列を円周上に並べた図である。 N. punctiforme PCC 73102株由来のデカルボニラーゼにおけるヘリックス8について、αヘリックス構造を軸方向から観察するように、αヘリックス構造を構成するアミノ酸配列を円周上に並べた図である。 アミノ酸に関する疎水性度をまとめた表である。 ヘリックス1に対して置換変異を導入した形質転換体における炭化水素(ペンタデカン及びヘプタデカン)生産量を測定した結果を示す特性図である。 ヘリックス2に対して置換変異を導入した形質転換体における炭化水素(ペンタデカン及びヘプタデカン)生産量を測定した結果を示す特性図である。 ヘリックス3又は4に対して置換変異を導入した形質転換体における炭化水素(ペンタデカン及びヘプタデカン)生産量を測定した結果を示す特性図である。 ヘリックス5、6又は7に対して置換変異を導入した形質転換体における炭化水素(ペンタデカン及びヘプタデカン)生産量を測定した結果を示す特性図である。 ヘリックス8に対して置換変異を導入した形質転換体における炭化水素(ペンタデカン及びヘプタデカン)生産量を測定した結果を示す特性図である。 ヘリックス9に対して置換変異を導入した形質転換体における炭化水素(ペンタデカン及びヘプタデカン)生産量を測定した結果を示す特性図である。
以下、本発明を図面及び実施例を用いてより詳細に説明する。
本発明に係る変異型デカルボニラーゼ遺伝子(以下、単に変異型デカルボニラーゼ遺伝子と称する)は、野生型のデカルボニラーゼに所定の置換変異を導入したデカルボニラーゼ変異体をコードする遺伝子である。特に、置換変異を導入したデカルボニラーゼ変異体は、当該置換変異を導入する前のデカルボニラーゼ(例えば、野生型デカルボニラーゼ)と比較して優れたデカルボニラーゼ活性を示す。ここで、デカルボニラーゼ活性は、基質となるアルデヒド化合物を脱カルボニルして炭化水素を生成する活性を意味する。したがって、デカルボニラーゼ活性は、生産される炭化水素の量に基づいて評価することができる。
ここで、置換変異は、デカルボニラーゼを構成するαヘリックスに含まれる所定のアミノ酸残基を他のアミノ酸に置換する変異であり、αヘリックス構造の安定性を低める作用を示す可能性のあるアミノ酸残基から選択されたものである。より具体的に、置換対象のアミノ酸残基は、αヘリックス構造を取ったときに周囲に位置する他のアミノ酸残基と比較して、親水性及び/又は疎水性に関する特性が異なるアミノ酸残基から選択されたものである。
この置換対象のアミノ酸残基を他のアミノ酸に置換変異することによって、置換変異前のデカルボニラーゼ活性と比較して優れたデカルボニラーゼ活性を示すこととなる。このとき、置換変異後のアミノ酸残基は、αヘリックス構造を取ったときに周囲に位置する他のアミノ酸残基と比較して、親水性及び/又は疎水性に関する特性が置換変異前のアミノ酸残基よりも類似するものの中から任意に選択することができる。
親水性及び/又は疎水性に関する特性としては、例えばKyte J & Doolittle RF, 1982, J Mol Biol, 157:105-132に記載されているhydropathy index(疎水性度、疎水性スケールとも呼称される)を利用することができる。親水性及び/又は疎水性に関する特性としては、このKyte J & Doolittle RFに規定された疎水性度に限定されず、例えば、Hopp TP, Woods KR (1983) Mol Immunol 20(4):483-489に開示された疎水性度やEngelman DM, Steitz TA, Goldman A (1986) Annu Rev Biophys Biophys Chem 15:321-353に開示された疎水性度を適宜使用することができる。
すなわち、置換変異後のアミノ酸残基としては、αヘリックス構造を取ったときに置換対象のアミノ酸残基の周囲に位置する他のアミノ酸残基と疎水性度が近いアミノ酸残基から選ぶことができる。例えば、所定のアミノ酸残基が、αヘリックス構造を取ったときに周囲に位置する他のアミノ酸残基と比較して疎水性度が低い場合には、置換前のアミノ酸残基よりも高い疎水性度を示すアミノ酸で置換する。また、例えば、所定のアミノ酸残基の疎水性度が、αヘリックス構造を取ったときに周囲に位置する他のアミノ酸残基の疎水性度の平均値から所定の範囲内(例えば、KyteとDoolittleの疎水性度で±0.15の範囲内)にない場合、当該アミノ酸残基について、疎水性度が当該範囲内のアミノ酸のなかから置換後のアミノ酸残基を選ぶことができる。
また、所定のアミノ酸残基について、αヘリックス構造を取ったときに周囲に位置する他のアミノ酸残基とは、αヘリックス構造の軸方向に並ぶアミノ酸残基と定義することができる。ここで、αヘリックス構造を軸方向から観察するように、αヘリックス構造を構成するアミノ酸配列を円周上に並べると、隣り合うアミノ酸残基は、約100°ずれるという位置関係を示す。αヘリックス構造を構成するアミノ酸配列をこの位置関係をもって円周上に配置することで、αヘリックス構造の軸方向に並ぶアミノ酸残基を視覚的に認識することができる。すなわち、円周上に近接して配置されたアミノ酸残基群は、αヘリックス構造の軸方向に並ぶアミノ酸残基群として理解することができる。より具体的には、アミノ酸配列における所定のアミノ酸を1番目のアミノ酸としたとき、第5番目のアミノ酸、第8番目のアミノ酸、第12番目のアミノ酸、第19番目のアミノ酸、第26番目のアミノ酸及び第30番目のアミノ酸が円周上に近接しており、第1番目のアミノ酸の周囲に位置するアミノ酸と定義することができる。
したがって、αヘリックス構造に含まれる所定のアミノ酸残基について、周囲に位置する他のアミノ酸残基としては、当該所定のアミノ酸残基を1番目としたとき、N末端方向及び/又はC末端方向に並ぶ、第5番目のアミノ酸、第8番目のアミノ酸、第12番目のアミノ酸、第15番目のアミノ酸、第19番目のアミノ酸、第26番目のアミノ酸及び第30番目のアミノ酸とすることができる。また、所定のアミノ酸残基を1番目としたとき、当該所定のアミノ酸残基の周囲に位置する他のアミノ酸残基としては、N末端方向及び/又はC末端方向に並ぶ、第8番目のアミノ酸、第12番目のアミノ酸、第19番目のアミノ酸、第26番目のアミノ酸及び第30番目のアミノ酸とすることができる。さらに、所定のアミノ酸残基を1番目としたとき、当該所定のアミノ酸残基の周囲に位置する他のアミノ酸残基としては、N末端方向及び/又はC末端方向に並ぶ、第8番目のアミノ酸、第12番目のアミノ酸及び第19番目のアミノ酸とすることができる。
以下、野生型デカルボニラーゼのアミノ酸配列に基づいて、置換対象のアミノ酸残基について説明する。一例として、N. punctiforme PCC 73102株由来のデカルボニラーゼ遺伝子がコードする野生型デカルボニラーゼのアミノ酸配列を配列番号2に示す。なお、N. punctiforme PCC 73102株由来のデカルボニラーゼ遺伝子のコーディング領域の塩基配列を配列番号1に示す。
置換対象のアミノ酸残基は、配列番号2のアミノ酸配列における、29番目のバリン、35番目のグルタミン酸、39番目のアスパラギン、42番目のスレオニン、51番目のヒスチジン、54番目のロイシン、60番目のメチオニン、89番目のセリン、94番目のアスパラギン、169番目のロイシン、174番目のアスパラギン、175番目のロイシン、177番目のイソロイシン及び188番目のアスパラギン酸からなる群から選ばれる少なくとも1つのアミノ酸残基である。これら置換対象のアミノ酸残基は、デカルボニラーゼを構成するαヘリックス構造内に位置する。
ところで、N. punctiforme PCC 73102株由来のデカルボニラーゼについては、そのアミノ酸配列に基づく構造解析により、10個のαヘリックスを有することが示されている。これら10個のαヘリックスをN末端から順にヘリックス1〜ヘリックス10と称する。図1に、N. punctiforme PCC 73102株由来のデカルボニラーゼのアミノ酸配列(配列番号2)を記載し、10個のαヘリックス構造(ヘリックス1〜10、下線部)に対応するよう番号(丸数字)を付している。また、図1に、上述した置換対象のアミノ酸残基を矢印で示している。
図1に示すように、置換対象のアミノ酸残基は、ヘリックス1、ヘリックス2、ヘリックス3及びヘリックス8に位置している。図2〜5は、これらヘリックス1、ヘリックス2、ヘリックス3及びヘリックス8について、αヘリックス構造を軸方向から観察するように、αヘリックス構造を構成するアミノ酸配列を円周上に並べた図を示している。なお、図2〜5において、アミノ酸の種類を示すアルファベットの後の数値は、N末端のメチオニンを1番目としたときのアミノ酸の位置を示している。つまり、例えば、図2中、「V29」との表記は、配列番号2のアミノ酸配列における29番目のバリンを示している。
また、図2〜5には、疎水性度に応じた背景模様の上にアミノ酸を表記している。具体的には、図6に示すように、Kyte J & Doolittle RF, 1982, J Mol Biol, 157:105-132に記載された疎水性度を10段階にわけ、各段階に背景模様を設定した。本例では、疎水性度の低いほうから高い方にかけて、段階的に明るくなるように背景模様を設定した。図2〜5に示すように、αヘリックス構造を構成するアミノ酸配列を円周上に順に配置し、疎水性度に応じて背景模様を設定することで、αヘリックス構造の軸方向に並ぶアミノ酸群のなかで疎水性度が異なるアミノ酸残基を視覚的に容易に特定することができる。
例えば、図2に示すように、ヘリックス1においては、例えば、27番目のアラニンや29番目のバリン、39番目のアスパラギン等が、周囲のアミノ酸残基と異なる疎水性度を示していることがわかる。詳細には、図2より、27番目のアラニン及び29番目のバリンは、共に周囲のアミノ酸よりも疎水性度が極めて高く、また、39番目のアスパラギンは周囲のアミノ酸よりも疎水性度が極めて低いことがわかる。すなわち、図2に示したヘリックス1については、例えばこれら27番目のアラニンや29番目のバリン、39番目のアスパラギン等を置換変異して周囲のアミノ酸の疎水性度に合わせることが考えられる。
以上の考え方に基づいて、ヘリックス1における置換対象のアミノ酸は、後述する実施例に示したように、29番目のバリン、35番目のグルタミン酸、39番目のアスパラギン及び42番目のスレオニンとなる。なお、27番目のアラニンを周囲のアミノ酸と同等な疎水性度を有するアミノ酸に置換しても、デカルボニラーゼ活性が向上していなかったため、27番目のアラニンは置換対象のアミノ酸とはならない。ヘリックス2における置換対象のアミノ酸は、後述する実施例に示したように、51番目のヒスチジン、54番目のロイシン及び60番目のメチオニンとなる。ヘリックス3における置換対象のアミノ酸は、後述する実施例に示したように、89番目のセリン及び94番目のアスパラギンとなる。ヘリックス8における置換対象のアミノ酸は、169番目のロイシン、174番目のアスパラギン、175番目のロイシン、177番目のイソロイシン及び188番目のアスパラギン酸となる。
ヘリックス1に含まれる29番目のバリンは、周囲のアミノ酸残基よりも疎水性度が極めて高いため、疎水性度の低いアミノ酸に置換することが好ましい。具体的に、29番目のバリンは、チロシン、トリプトファン、セリン、グリシン、アラニン、メチオニン、システイン、フェニルアラニン及びロイシンからなる群から選ばれるアミノ酸に置換されることがより好ましい。なかでも、29番目のバリンは、チロシン、トリプトファン、セリン、グリシン、アラニン及びメチオニンからなる群から選ばれるアミノ酸に置換されることが更に好ましい。特に、29番目のバリンは、メチオニンに置換されることが最も好ましい。
ヘリックス1に含まれる35番目のグルタミン酸は、周囲のアミノ酸残基よりも疎水性度が極めて低いため、疎水性度の高いアミノ酸に置換することが好ましい。具体的に、35番目のグルタミン酸は、プロリン、チロシン、トリプトファン、セリン、スレオニン、グリシン、アラニン、メチオニン、システイン、フェニルアラニン、ロイシン、バリン及びイソロイシンからなる群から選ばれるアミノ酸に置換されることがより好ましい。なかでも、35番目のグルタミン酸は、プロリン、チロシン、トリプトファン、セリン、スレオニン及びグリシンからなる群から選ばれるアミノ酸に置換されることが更に好ましい。特に、35番目のグルタミン酸は、チロシンに置換されることが最も好ましい。
ヘリックス1に含まれる39番目のアスパラギンは、周囲のアミノ酸残基よりも疎水性度が極めて低いため、疎水性度の高いアミノ酸に置換することが好ましい。具体的に、39番目のアスパラギンは、グリシン、アラニン、システイン、フェニルアラニン、ロイシン、バリン及びイソロイシンからなる群から選ばれるアミノ酸に置換されることがより好ましい。なかでも、39番目のアスパラギンは、システイン、フェニルアラニン、ロイシン、バリン及びイソロイシンからなる群から選ばれるアミノ酸に置換されることが更に好ましい。特に、39番目のアスパラギンは、バリンに置換されることが最も好ましい。
ヘリックス1に含まれる42番目のスレオニンは、周囲のアミノ酸残基よりも疎水性度が極めて高いため、疎水性度の低いアミノ酸に置換することが好ましい。具体的に、42番目のスレオニンは、アルギニン、リシン、グルタミン、アスパラギン、アスパラギン酸、グルタミン酸、ヒスチジン、プロリン、チロシン、トリプトファン、セリン及びグリシンからなる群から選ばれるアミノ酸に置換されることがより好ましい。なかでも、42番目のスレオニンは、リシン、グルタミン、アスパラギン、アスパラギン酸、グルタミン酸、ヒスチジン、プロリン及びチロシンからなる群から選ばれるアミノ酸に置換されることが更に好ましい。特に、42番目のスレオニンは、アスパラギン又はアスパラギン酸に置換されることが最も好ましい。
ヘリックス2に含まれる51番目のヒスチジンは、周囲のアミノ酸残基よりも疎水性度が極めて低いため、疎水性度の高いアミノ酸に置換することが好ましい。具体的に、51番目のヒスチジンは、プロリン、チロシン、トリプトファン、セリン、スレオニン及びグリシンからなる群から選ばれるアミノ酸に置換されることがより好ましい。なかでも、51番目のヒスチジンは、プロリン又はチロシンに置換されることが更に好ましい。特に、51番目のヒスチジンは、チロシンへ置換されることが最も好ましい。
ヘリックス2に含まれる54番目のロイシンは、周囲のアミノ酸残基よりも疎水性度が極めて高いため、疎水性度の低いアミノ酸に置換することが好ましい。具体的に、54番目のロイシンは、グルタミン、アスパラギン、アスパラギン酸、ヒスチジン、プロリン、チロシン、トリプトファン、セリン、スレオニン及びグリシンからなる群から選ばれるアミノ酸に置換されることがより好ましい。なかでも、54番目のロイシンは、グルタミン、アスパラギン、アスパラギン酸、ヒスチジン、プロリン及びチロシンからなる群から選ばれるアミノ酸に置換されることが更に好ましい。特に、54番目のロイシンは、グルタミンへ置換されることが最も好ましい。
ヘリックス2に含まれる60番目のメチオニンは、周囲のアミノ酸残基よりも疎水性度が極めて高いため、疎水性度の低いアミノ酸に置換することが好ましい。具体的に、60番目のメチオニンは、グルタミン、アスパラギン酸、グルタミン酸、ヒスチジン、プロリン及びチロシンからなる群から選ばれるアミノ酸に置換されることがより好ましい。なかでも、60番目のメチオニンは、グルタミン、アスパラギン酸及びグルタミン酸からなる群から選ばれるアミノ酸に置換されることが更に好ましい。特に、60番目のメチオニンは、アスパラギン酸へ置換されることが最も好ましい。
ヘリックス3に含まれる89番目のセリンは、周囲のアミノ酸残基よりも疎水性度が極めて高いため、疎水性度の低いアミノ酸に置換することが好ましい。具体的に、89番目のセリンは、グルタミン、アスパラギン、アスパラギン酸、グルタミン酸、ヒスチジン、プロリン及びチロシンからなる群から選ばれるアミノ酸に置換されることがより好ましい。なかでも、89番目のセリンは、グルタミン、アスパラギン、アスパラギン酸及びグルタミン酸からなる群から選ばれるアミノ酸に置換されることが更に好ましい。特に、89番目のセリンは、アスパラギンへ置換されることが最も好ましい。
ヘリックス3に含まれる94番目のアスパラギンは、周囲のアミノ酸残基よりも疎水性度が極めて低いため、疎水性度の高いアミノ酸に置換することが好ましい。具体的に、94番目のアスパラギンは、システイン、フェニルアラニン、ロイシン、バリン及びイソロイシンからなる群から選ばれるアミノ酸に置換されることがより好ましい。なかでも、94番目のアスパラギンは、ロイシン、バリン及びイソロイシンからなる群から選ばれるアミノ酸に置換されることが更に好ましい。特に、94番目のセリンは、バリンへ置換されることが最も好ましい。
ヘリックス8に含まれる169番目のロイシンは、周囲のアミノ酸残基よりも疎水性度が極めて高いため、疎水性度の低いアミノ酸に置換することが好ましい。具体的に、169番目のロイシンは、プロリン、チロシン、トリプトファン、セリン、スレオニン、グリシン、アラニン及びメチオニンからなる群から選ばれるアミノ酸に置換されることがより好ましい。なかでも、169番目のロイシンは、チロシン、トリプトファン、セリン、スレオニン、グリシン及びアラニンからなる群から選ばれるアミノ酸に置換されることが更に好ましい。特に、169番目のロイシンは、チロシン、トリプトファン及びアラニンからなる群から選ばれるアミノ酸へ置換されることが最も好ましい。
ヘリックス8に含まれる174番目のアスパラギンは、周囲のアミノ酸残基よりも疎水性度が極めて低いため、疎水性度の高いアミノ酸に置換することが好ましい。具体的に、174番目のアスパラギンは、プロリン、チロシン、トリプトファン、セリン、スレオニン、グリシン、アラニン、メチオニン、システイン及びフェニルアラニンからなる群から選ばれるアミノ酸に置換されることがより好ましい。なかでも、174番目のアスパラギンは、トリプトファン、セリン、スレオニン、グリシン、アラニン及びメチオニンからなる群から選ばれるアミノ酸に置換されることが更に好ましい。特に、174番目のアスパラギンは、スレオニン又はメチオニンに置換されることが最も好ましい。
ヘリックス8に含まれる175番目のロイシンは、周囲のアミノ酸残基よりも疎水性度が極めて高いため、疎水性度の低いアミノ酸に置換することが好ましい。具体的に、175番目のロイシンは、アルギニン、リシン、グルタミン、アスパラギン、アスパラギン酸、グルタミン酸、ヒスチジン、プロリン及びチロシンからなる群から選ばれるアミノ酸に置換されることがより好ましい。なかでも、175番目のロイシンは、リシン、グルタミン、アスパラギン、アスパラギン酸、グルタミン酸及びヒスチジンからなる群から選ばれるアミノ酸に置換されることが更に好ましい。特に、175番目のロイシンは、リシン、グルタミン及びグルタミン酸からなる群から選ばれるアミノ酸に置換されることが最も好ましい。
ヘリックス8に含まれる177番目のイソロイシンは、周囲のアミノ酸残基よりも疎水性度が極めて高いため、疎水性度の低いアミノ酸に置換することが好ましい。具体的に、177番目のイソロイシンは、グルタミン、アスパラギン、アスパラギン酸、グルタミン酸、ヒスチジン、プロリン、チロシン、トリプトファン、セリン、スレオニン、グリシン、アラニン及びメチオニンからなる群から選ばれるアミノ酸に置換されることがより好ましい。なかでも、177番目のイソロイシンは、プロリン、チロシン、トリプトファン、セリン、スレオニン及びグリシンからなる群から選ばれるアミノ酸に置換されることが更に好ましい。特に、177番目のイソロイシンは、チロシン又はトリプトファンに置換されることが最も好ましい。
ヘリックス8に含まれる188番目のアスパラギン酸は、周囲のアミノ酸残基よりも疎水性度が極めて低いため、疎水性度の高いアミノ酸に置換することが好ましい。具体的に、188番目のアスパラギン酸は、システイン、フェニルアラニン、ロイシン、バリン及びイソロイシンからなる群から選ばれるアミノ酸に置換されることがより好ましい。なかでも、188番目のアスパラギン酸は、ロイシン、バリン及びイソロイシンからなる群から選ばれるアミノ酸に置換されることが更に好ましい。特に、188番目のアスパラギン酸は、バリンに置換されることが最も好ましい。
上述のように、所定のアミノ酸残基を置換変異してなるデカルボニラーゼ変異体は、当該置換変異を有しないデカルボニラーゼ(例えば、野生型デカルボニラーゼ)と比較して、優れたデカルボニラーゼ活性を示す。したがって、デカルボニラーゼ変異体を発現する組換え微生物は、例えば配列番号2のアミノ酸配列からなるデカルボニラーゼを発現する微生物と比較して炭化水素生産性能が優れたものとなる。
なお、上述した変異型デカルボニラーゼ遺伝子は、配列番号2のアミノ酸配列に対して上記置換変異を導入したデカルボニラーゼ変異体をコードするものに限定されず、配列番号2とは異なるアミノ酸配列に対して、上記置換変異を導入したデカルボニラーゼ変異体をコードするものであっても良い。ただし、詳細を後述するが、置換対象のアミノ酸残基に関するこれら具体的な数値及びアミノ酸の種類は、配列番号2のアミノ酸配列とは異なるアミノ酸配列を有するデカルボニラーゼにおいては、異なる数値及びアミノ酸の種類として規定される。
配列番号2のアミノ酸配列とは異なるアミノ酸配列からなるデカルボニラーゼとしては、N. punctiforme PCC 73102株由来のデカルボニラーゼ遺伝子がコードする野生型デカルボニラーゼと類似性及び/又は同一性の高いアミノ酸配列を有するものが挙げられる。具体的には、配列番号2のアミノ酸配列に対して50%以上の同一性、好ましくは60%以上の同一性、より好ましくは70%以上の同一性、更に好ましくは80%以上の同一性、更に好ましくは85%以上の同一性、最も好ましくは90%以上の同一性を有するアミノ酸配列からなり、且つ上述したデカルボニラーゼ活性を有するタンパク質をコードする遺伝子を挙げることができる。或いは、具体的には、配列番号2のアミノ酸配列に対して80%以上の類似性、好ましくは85%以上の類似性、より好ましくは90%以上の類似性、更に好ましくは95%以上の類似性、更に好ましくは97%以上の類似性を有するアミノ酸配列からなり、且つ上述したデカルボニラーゼ活性を有するタンパク質をコードする遺伝子を挙げることができる。
同一性の値は、BLASTアルゴリズムを実装したBLASTNやBLASTXプログラムにより算出することができる(デフォルトの設定)。なお、同一性の値は、一対のアミノ酸配列をペアワイズ・アライメント分析した際に完全に一致するアミノ酸残基を算出し、比較した全アミノ酸残基中の上記残基数の割合として算出される。また、類似性の値は、一対のアミノ酸配列をペアワイズ・アライメント分析した際に完全に一致するアミノ酸残基と性質が類似するアミノ酸残基を算出し、比較した全アミノ酸残基中の上記残基数の割合として算出される。
また、配列番号2のアミノ酸配列とは異なるアミノ酸配列からなるデカルボニラーゼとしては、配列番号2に示すアミノ酸配列に対して、1〜50個のアミノ酸、好ましくは1〜40個のアミノ酸、より好ましくは1〜30個のアミノ酸、更に好ましくは1〜20個のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列からなりデカルボニラーゼ活性を有するタンパク質でも良い。
さらに、配列番号2のアミノ酸配列とは異なるアミノ酸配列からなるデカルボニラーゼとしては、配列番号1示す塩基配列からなるDNAの相補鎖の全部又は一部に対して、ストリンジェントな条件下でハイブリダイズし、かつデカルボニラーゼ活性を有するタンパク質でも良い。ここでいう「ストリンジェントな条件」とはいわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件を意味し、例えばMolecular Cloning: A Laboratory Manual(Third Edition)を参照して適宜決定することができる。具体的には、サザンハイブリダイゼーションの際の温度や溶液に含まれる塩濃度、及びサザンハイブリダイゼーションの洗浄工程の際の温度や溶液に含まれる塩濃度によりストリンジェンシーを設定することができる。
なお、配列番号2のアミノ酸配列とは異なるアミノ酸配列からなるデカルボニラーゼをコードする塩基配列や、配列番号1に示す塩基配列と異なる塩基配列からなるDNAを作製する方法としては、特に限定することなく、従来公知の手法を適宜使用することができる。例えば、部位特異的突然変異誘発方法を使用して、所定の塩基を置換することができる。部位特異的突然変異誘発方法としては、例えばT. クンケル(Kunkel)の部位特異的変異導入法(Kunkel, T. A. Proc. Nati. Acad. Sci. U. S. A. 82, 488-492 (1985))、Gapped duplex法等が挙げられる。また、部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutan-K(宝酒造社製)やMutan-G(宝酒造社製))などを用いて、あるいは、宝酒造社製のLA PCR in vitro Mutagenesis シリーズキットを用いて変異を導入することもできる。
ここで、N. punctiforme PCC 73102株由来のデカルボニラーゼ遺伝子がコードする野生型デカルボニラーゼと類似性及び/又は同一性の高いアミノ酸配列を有するデカルボニラーゼをコードする遺伝子を有する微生物の例を表1に挙げる。
(KEGG)を付したものは、KEGGのエントリー番号である。
なお、表1において「アルカン合成能」の欄に○を付けた微生物は、既報によりアルカン合成能を有することが示されている。表1に示した微生物が有するデカルボニラーゼ遺伝子に関しては、そのコーディング領域の塩基配列及びコードするアミノ酸配列については、表1に記載した遺伝子名及び又はGenBank accession No.に基づいてGenBank等のデータベースより入手することができる。
表1に示した微生物由来のデカルボニラーゼについては、データベースから取得したアミノ酸配列と、配列番号2のアミノ酸配列とペアワイズ・アライメントを取ることで、上述した置換対象のアミノ酸残基を特定することができる。例えば、上述した置換対象のアミノ酸残基のうち、配列番号2のアミノ酸配列における29番目のバリンは、配列番号2のアミノ酸配列と異なるアミノ酸配列においては、29番目に位置しない可能性が高く、また対応する位置のアミノ酸残基がバリン以外のアミノ酸である可能性もある。この場合であっても、配列番号2のアミノ酸配列と異なるアミノ酸配列において、配列番号2のアミノ酸配列における29番目のバリンに相当するアミノ酸残基が置換対象となる。なお、本書において、例えば「29番目のバリンに相当するアミノ酸」と言う場合、配列番号2のアミノ酸配列における29番目のバリンと、配列番号2と異なるアミノ酸配列における当該バリンに相当するアミノ酸との両者を含む意味である。
上述のように、配列番号2のアミノ酸配列における置換対象のアミノ酸は、29番目のバリン、35番目のグルタミン酸、39番目のアスパラギン、42番目のスレオニン、51番目のヒスチジン、54番目のロイシン、60番目のメチオニン、89番目のセリン、94番目のアスパラギン、169番目のロイシン、174番目のアスパラギン、175番目のロイシン、177番目のイソロイシン及び188番目のアスパラギン酸である。すなわち、配列番号2のアミノ酸配列と異なるアミノ酸配列においては、これら具体的なアミノ酸に相当するアミノ酸残基が置換対象のアミノ酸となる。
また、配列番号2のアミノ酸配列と異なるアミノ酸配列において、置換後のアミノ酸残基は、配列番号2のアミノ酸配列からなるデカルボニラーゼと同様となる。表1に示したように、これら配列番号2のアミノ酸配列と異なるアミノ酸配列と配列番号2のアミノ酸配列と非常に高い同一性を示すからである。
一方、他にも、デカルボニラーゼをコードするデカルボニラーゼ遺伝子としては、[1]Nostoc punctiformeのNpun_R1711に代表されるデカルボニラーゼ(上記Science)、[2]アルデヒドデヒドロゲナーゼ類縁のデカルボニラーゼ(特許第5867586号)、[3]シロイヌナズナのCer1遺伝子に代表される長鎖アルカン合成酵素(Plant Cell, 24, 3106-3118, 2012)及び[4]ショウジョウバエのCYP4G1遺伝子に代表されるP450系のアルカン合成酵素(PNAS, 109, 37, 14858-14863, 2012)の4種類を挙げることができる。
より具体的に上記[1]については、Nostoc punctiformeのNpun_R0380(Npun_R1711のパラログ)、Nostoc sp.のNos7524_4304、Anabaena cylindricaのAnacy_3389、Anabaena azollaeのAazo_3371、Cylindrospermum stagnaleのCylst_0697、Gloeocapsa sp.のGlo7428_0150、Calothrix sp.のCal7507_5586、Fischerella sp.のFIS3754_06310、Microcoleus sp.のMic7113_4535、Chroococcidiopsis thermalisのChro_1554、Geitlerinema sp.のGEI7407_1564、Cyanothece sp.のCyan8802_0468等を挙げることができる。
上記[2]については、Escherichia coli K-12 W3110由来のBAE77705、BAA35791、BAA14869、BAA14992、BAA15032、BAA16524、BAE77705、BAA15538及びBAA15073;Pseudomonas putida_F1由来のYP_001268218、YP_001265586、YP_001267408、YP_001267629、YP_001266090、YP_001270490、YP_001268439、YP_001267367、YP_001267724、YP_001269548、YP_001268395、YP_001265936、YP_001270470、YP_001266779及びYP_001270298;Bacillus subtilis 168株由来のNP_388129、NP_389813、NP_390984、NP_388203、NP_388616、NP_391658、NP_391762、NP_391865及びNP_391675;Corynebacterium glutamicum ATCC13032由来のNP_599351、NP_599725、NP_601988、NP_599302、NP_601867及びNP_601908;Lactobacillus reuteri DSM20016由来のYP_001270647;Saccharomyces cerevisiae由来のNP_010996、NP_011904、NP_015264、NP_013828、NP_009560、NP_015019、NP_013893、NP_013892及びNP_011902;Candida tropicalis MYA-3404由来のXP_002548035、XP_002545751、XP_002547036、XP_002547030、XP_002550712、XP_002547024、XP_002550173、XP_002546610及びXP_002550289;Debaryomyces hansenii CBS767由来のXP_460395、XP_457244、XP_457404、XP_457750、XP_461954、XP_462433、XP_461708及びXP_462528;Pichia pastoris GS115由来のXP_002489360、XP_002493450、XP_002491418、XP_002493229、XP_002490175、XP_002491360及びXP_002491779;Schizosaccharomyces pombe由来のNP_593172、NP_593499、NP_594582;Aspergillus oryzae RIB40由来のXP_001822148、XP_001821214、XP_001826612、XP_001817160、XP_001817372、XP_001727192、XP_001826641、XP_001827501、XP_001825957、XP_001822309、XP_001727308、XP_001818713、XP_001819060、XP_001823047、XP_001817717及びXP_001821011;Zea mays由来のNP_001150417、NP_001105047、NP_001147173、NP_001169123、NP_001105781、NP_001157807、NP_001157804、NP_001105891、NP_001105046、NP_001105576、NP_001105589、NP_001168661、NP_001149126及びNP_001148092;Arabidopsis thaliana由来のNP_564204、NP_001185399、NP_178062、NP_001189589、NP_566749、NP_190383、NP_187321、NP_190400、NP_001077676及びNP_175812;Drosophila melanogaster由来のNP_733183、NP_609285、NP_001014665、NP_649099、NP_001189159、NP_610285及びNP_610107;Rattus norvegicus由来のNP_001006999、XP_001067816、XP_001068348、XP_001068253、NP_113919、XP_001062926、NP_071609、NP_071852、NP_058968、NP_001011975、NP_115792、NP_001178017、NP_001178707、NP_446348、NP_071992、XP_001059375、XP_001061872及びNP_001128170;Homo sapiens由来のNP_036322、NP_001193826、NP_001029345、NP_000684、NP_000680、NP_000683、NP_000681、NP_001071、NP_000687、NP_001180409、NP_001173、NP_000682、NP_000373、NP_001154976、NP_000685及びNP_000686;Klebsiella sp. NBRC100048株由来のKPN_02991、KPN_1455及びKPN_4772等を挙げることができる。
上記[3]については、Arabidopsis thaliana(シロイヌナズナ)のAT1G02190とAT1G02205(CER1)、Oryza sativa(コメ)の4330012、Solanum lycopersicum(トマト)の101252060、Capsella rubella(ホソミナズナ)のCARUB_v10008547mg、Brassica napus(セイヨウアブラナ)の106437024、Brassica rapa (ハクサイ)の103843834、Eutrema salsugineum(ユリワサビ)のEUTSA_v10009534mg、Tarenaya hassleriana(セイヨウフウチョウソウ)の104810724、Gossypium raimondii(ワタ)の105773703、Theobroma cacao(カカオ)のTCM_042351、Vitis vinifera(ワインブドウ)の100243849、Sesamum indicum(ゴマ)の105167221、Eucalyptus grandis(ユーカリ)の104442848、Pyrus bretschneideri(中国白桃)の103929751、Arachis ipaensisの107618742及びMalus domestica(リンゴ)の103428452等を挙げることができる。
上記[4]については、Drosophila melanogaster(キイロショウジョウバエ)のCYP4G1、Musca domestica(イエバエ)の101887882、Aedes aegypti(ネッタイシマカ)のAaeL_AAEL006824及びAnopheles gambiae(ハマダラカ)のAgaP_AGAP000877等を挙げることができる。
上述した種々のデカルボニラーゼ遺伝子についても、配列番号2のアミノ酸配列を基準として定義した置換変異を有するデカルボニラーゼ変異体をコードする変異型デカルボニラーゼ遺伝子とすることができる。上述した種々のデカルボニラーゼ遺伝子に基づく変異型デカルボニラーゼ遺伝子もまた、デカルボニラーゼ活性が向上したデカルボニラーゼ変異体をコードする。
以上のように、本発明にかかる変異型デカルボニラーゼ遺伝子は、アシル-ACPから脂肪アルデヒドへの変換を触媒するアシルACPレダクターゼ遺伝子とともに宿主微生物に導入されるか、アシルACPレダクターゼ遺伝子を有する宿主微生物に導入することで、アルカン生産能を有する組換え微生物を作製することができる。
アシルACPレダクターゼ遺伝子としては、特に限定されず、EC 1.2.1.80として登録されたアシルACPレダクターゼをコードするものを使用することができる。例えば、アシルACPレダクターゼ遺伝子としては、Synechococcus elongatusのSynpcc7942_1594、Synechococcus sp.のM744_09025、Leptolyngbya sp.のLEP3755_23580、Gloeocapsa sp.のGlo7428_0151、Nostoc sp.のNos7107_1027、Anabaena variabilisのAva_2534、Calothrix sp.のIJ00_07395、Crinalium epipsammumのCri9333_4415及びFischerella sp.のFIS3754_06320等を挙げることができる。
例えば、Synechococcus elongatus PCC 7942株由来のアシルACPレダクターゼ遺伝子は配列番号4のアミノ酸配列を有するタンパク質をコードする遺伝子である。ただし、アシルACPレダクターゼ遺伝子としては、配列番号4のアミノ酸配列に対して60%以上の同一性、好ましくは70%以上の同一性、好ましくは80%以上の同一性、より好ましくは90%以上の同一性、更に好ましくは95%の同一性、最も好ましくは98%以上の同一性を有するアミノ酸配列からなりアシルACPレダクターゼ活性を有するタンパク質をコードするものであっても良い。
同一性の値は、BLASTアルゴリズムを実装したBLASTNやBLASTXプログラムにより算出することができる(デフォルトの設定)。なお、同一性の値は、一対のアミノ酸配列をペアワイズ・アライメント分析した際に完全に一致するアミノ酸残基を算出し、比較した全アミノ酸残基中の上記残基数の割合として算出される。
さらに、アシルACPレダクターゼ遺伝子としては、配列番号4に示すアミノ酸配列をコードするものに限定されず、配列番号4に示すアミノ酸配列に対して、1〜50個のアミノ酸、好ましくは1〜40個のアミノ酸、より好ましくは1〜30個のアミノ酸、更に好ましくは1〜20個のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列からなりアシル-ACPレダクターゼとして機能するタンパク質をコードする遺伝子でも良い。
さらにまた、アシルACPレダクターゼ遺伝子としては、配列番号3に示す塩基配列からなるものに限定されず、配列番号3示す塩基配列からなるDNAの相補鎖の全部又は一部に対して、ストリンジェントな条件下でハイブリダイズし、かつアシル-ACPレダクターゼとして機能するタンパク質をコードする遺伝子でも良い。ここでいう「ストリンジェントな条件」とはいわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件を意味し、例えばMolecular Cloning: A Laboratory Manual(Third Edition)を参照して適宜決定することができる。具体的には、サザンハイブリダイゼーションの際の温度や溶液に含まれる塩濃度、及びサザンハイブリダイゼーションの洗浄工程の際の温度や溶液に含まれる塩濃度によりストリンジェンシーを設定することができる。
なお、配列番号4に示すアミノ酸配列に対して所定のアミノ酸が欠失、置換、付加又は挿入されたアミノ酸配列をコードする塩基配列や、配列番号3に示す塩基配列と異なる塩基配列からなるDNAを作製する方法としては、特に限定することなく、従来公知の手法を適宜使用することができる。例えば、部位特異的突然変異誘発方法を使用して、所定の塩基を置換することができる。部位特異的突然変異誘発方法としては、例えばT. クンケル(Kunkel)の部位特異的変異導入法(Kunkel, T. A. Proc. Nati. Acad. Sci. U. S. A. 82, 488-492 (1985))、Gapped duplex法等が挙げられる。また、部位特異的突然変異誘発法を利用した変異導入用キット(例えばMutan-K(宝酒造社製)やMutan-G(宝酒造社製))などを用いて、あるいは、宝酒造社製のLA PCR in vitro Mutagenesis シリーズキットを用いて変異を導入することもできる。
また、上述したアシルACPレダクターゼ遺伝子に代えて、上述したデカルボニラーゼ変異体の基質となるアルデヒドを合成する酵素をコードする遺伝子を使用することができる。
例えば、Photorhabdus luminescensのplu2079(luxC)、Photorhabdus asymbioticaのPAU_02514(luxC)、Aliivibrio fischeriのVF_A0923(luxC)及びVibrio campbelliiのVIBHAR_06244、Shewanella woodyiのSwoo_3633等の長鎖脂肪酸アシルCoAレダクターゼ [EC.1.2.1.50]をコードする遺伝子を使用することができる。また、例えばGlycine max(ダイズ)の100776505及び100801815等といった特開2015-226477記載のアシルCoAレダクターゼをコードする遺伝子を使用することができる。さらに、これらの他に、アルデヒドを合成できる酵素をコードする遺伝子であれば、何ら限定すること無く使用することができる。例えば、アルコールデヒドロゲナーゼ[EC.1.1.1.1]、アルコールオキシダーゼ[EC. 1.1.3.13]、アルデヒドデヒドロゲナーゼ[EC. 1.2.1.3]及びカルボン酸レダクターゼ[EC. 1.2.99.6]等の酵素をコードする遺伝子を使用することができる。
一方、変異型デカルボニラーゼ遺伝子を導入する微生物としては、特に限定されないが、大腸菌(Escherichia coli)及びKlebsiella属細菌を挙げることができる。また、変異型デカルボニラーゼ遺伝子を導入する微生物としては、Appl. Environ. Microbiol.,79(21):6776-6783 2013(Nov.)に開示されたCorynebacterium glutamicumを使用することができる。当該論文では、脂肪酸生産能を獲得したCorynebacterium glutamicum組換え体が開示されている。さらに、変異型デカルボニラーゼ遺伝子を導入する微生物としては、Food Bioprocess Technol (2011) 4:232-240に開示されたMortierella alpinaを使用することができる。Mortierella alpinaはアラキドン酸発酵で工業的に用いられている株であり、当該論文ではこれを用いて代謝工学を行っている。さらにまた、変異型デカルボニラーゼ遺伝子を導入する微生物としては、TRENDS IN BIOTECHNOLOGY, Vol. 34, No. 10, p. 798-809に開示されたYarrowia lipolyticaを使用することができる。
さらにまた、変異型デカルボニラーゼ遺伝子を導入する微生物としては、lipomyces属、Pseudozyma属、Rhodosporidium属及びRhodococcus属等に属する微生物を使用することができる。これら微生物に対してアルカン合成酵素遺伝子を導入するには、特に限定されないが、CRISPR/CasやTALEN等のゲノム編集システムを用いた遺伝子組換え技術を適用することができる。
さらにまた、変異型デカルボニラーゼ遺伝子を導入する微生物として酵母を使用する場合、酵母としては特に限定されないが、Pichia stipitis等のPichia属酵母、Saccharomyces cerevisiae等のSaccharomyces属酵母及びCandida tropicalisやCandida prapsilosis等のCandida属酵母等を挙げることができる。
上述した変異型デカルボニラーゼ遺伝子やアシルACPレダクターゼ遺伝子等を宿主に導入する際、例えば、変異型デカルボニラーゼ遺伝子やアシルACPレダクターゼ遺伝子等を含むDNA断片を、宿主微生物で機能する発現ベクター、好ましくはマルチコピー型のベクターと連結して組換えDNAを作製し、これを微生物に導入して形質転換すればよい。使用可能な発現ベクターは、特に限定されず、プラスミド型ベクター、又は宿主生物中のゲノムに組み込み可能な染色体導入型ベクターを挙げることができる。発現ベクターとしては、特に限定されず、入手可能な如何なる発現ベクターを宿主微生物に応じて適宜選択すればよい。なお、発現ベクターとしては、例えば、プラスミドDNA、バクテリオファージDNA、レトロトランスポゾンDNA、人工染色体DNA(YAC:yeast artificial chromosome)などが挙げられる。
プラスミド DNAとしては、例えばpRS413、pRS414、pRS415、pRS416、YCp50、pAUR112又はpAUR123などのYCp型大腸菌-酵母シャトルベクター、pYES2又はYEp13などのYEp型大腸菌-酵母シャトルベクター、pRS403、pRS404、pRS405、pRS406、pAUR101又はpAUR135などのYIp型大腸菌-酵母シャトルベクター、大腸菌由来のプラスミド(pBR322、pBR325、pUC18、pUC19、pUC118、pUC119、pTV118N、pTV119N、pBluescript、pHSG298、pHSG396又はpTrc99AなどのColE系プラスミド、pACYC177又はpACYC184などのp15A系プラスミド、pMW118、pMW119、pMW218又はpMW219などのpSC101系プラスミド等)、アグロバクテリウム由来のプラスミド(例えばpBI101等)、枯草菌由来のプラスミド(例えばpUB110、pTP5等)などが挙げられ、ファージDNAとしてはλファージ(Charon4A、Charon21A、EMBL3、EMBL4、λgt10、λgt11、λZAP)、φX174、M13mp18又はM13mp19などが挙げられる。レトロトランスポゾンとしては、Ty因子などが挙げられる。YAC用ベクターとしてはpYACC2などが挙げられる。さらに、レトロウイルス又はワクシニアウイルスなどの動物ウイルス、バキュロウイルスなどの昆虫ウイルスベクターを用いることもできる。
発現ベクターにおいて、変異型デカルボニラーゼ遺伝子は、発現可能な状態でベクターに組み込まれることが必要である。発現可能な状態とは、変異型デカルボニラーゼ遺伝子が導入される宿主生物において所定のプロモーターの制御下に発現されるように、変異型デカルボニラーゼ遺伝子とプロモーターとを連結してベクターに組み込むことを意味する。発現ベクターには、変異型デカルボニラーゼ遺伝子のほか、プロモーター及びターミネータ、所望によりエンハンサー等のシスエレメント、スプライシングシグナル、ポリA付加シグナル、選択マーカー、リボソーム結合配列(SD配列)等を連結することができる。なお、選択マーカーとしては、例えば、アンピシリン耐性遺伝子やカナマイシン耐性遺伝子やハイグロマイシン耐性遺伝子などの抗生物質耐性遺伝子が挙げられる。
また、発現ベクターを用いた形質転換法としても、従来公知の方法を適宜使用することができる。形質転換方法としては、塩化カルシウム法、コンピテントセル法、プロトプラスト又はスフェロプラスト法、電気パルス法等を例示することができる。
一方、変異型デカルボニラーゼ遺伝子のコピー数を高めるように導入しても良い。すなわち、変異型デカルボニラーゼ遺伝子を微生物の染色体DNA上に多コピー存在させるように導入しても良い。微生物の染色体DNA上に変異型デカルボニラーゼ遺伝子を多コピーで導入するには、染色体DNA上に多コピー存在する配列を標的に利用して相同組換えにより行うことができる。
さらに、変異型デカルボニラーゼ遺伝子の発現の増強は、導入した変異型デカルボニラーゼ遺伝子のプロモーター等の発現調節配列を、より高発現可能なものに置換する方法、所定の遺伝子の発現を上昇させるようなレギュレーターを導入する方法などによっても達成される。高発現可能なプロモーターとしては、特に限定されないが、例えば、lacプロモーター、trpプロモーター、trcプロモーター、pLプロモーター等を挙げることができる。また、内在する又は導入したフェレドキシン遺伝子やフェレドキシンレダクターゼ遺伝子の発現制御領域に突然変異を導入し、より高発現できるものに改変することも可能である。
<アルカン製造>
以上で説明したように、変異型デカルボニラーゼ遺伝子を導入した組換え微生物を使用することでアルカンを優れた生産性で合成できる。
変異型デカルボニラーゼ遺伝子を導入した組換え微生物を使用する系では、これら微生物に適した培地にて培養し、当該培地中にアルカンを生産することができる。より具体的には、本発明によれば、アルカン合成酵素によるアルカン合成能を向上させることができ、その結果、アルカンの生産性を向上することができる。
本発明において、生産対象のアルカンとしては特に限定されないが、例えば炭素数が9〜20の範囲、好ましくは14〜17の範囲、より好ましくは13〜16の範囲のアルカンとする。これらは、粘度の高い液体であり、軽油(ディーゼル油)や航空機燃料に使用することができる。このようなアルカンは、上述した組換え微生物を培養した反応系から定法に従って単離し、その後、精製することができる。また、ENGINEERING IN LIFE SCIENCES、巻: 16 号: 1 ページ: 53-59“Biosynthesis of chain-specific alkanes by metabolic engineering in Escherichia coli”に記載の方法を適用することで、短い鎖長のアルカンを合成することができる。
以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。
〔実施例1〕
[1.目的]
デカルボニラーゼは、次世代バイオディーゼル燃料であるアルカン(hydrocarbon)を大腸菌等の微生物で発酵生産する際のキイ酵素である。本実施例では、デカルボニラーゼの酵素活性を高める技術開発として、αへリックスを安定化させるアミノ酸置換変異を導入したデカルボニラーゼ変異体を作製し、デカルボニラーゼ活性の向上に寄与するアミノ酸置換変異の同定を行った。
[2.材料と方法]
2.1 試薬
本実施例で使用したプラスミド:pRSF-Duet-1とpCDF-Duet-1はNovagen社より購入した。また、本実施例において、製造元を個別に記載していない試薬は、ナカライテスクから購入した。
2.2 菌株
本実施例では、タカラバイオ社より購入したE. coli BL-21株と、ニッポンジーン社より購入したE. coli JM109株を使用した。
2.3 プラスミドの作製
2.3.1 pRSF-NpAD-PAの作製
先ず、以下のようにしてpRSF-NpAD-SeARを作製した。すなわち、Synechococcus elongatus PCC 7942株由来のアシル-ACPレダクターゼ遺伝子(YP_400611)とNostoc punctiforme PCC 73102株由来のデカルボニラーゼ遺伝子(YP_001865325)を化学合成した。これらの合成遺伝子はpUC57のEcoRVサイトに挿入し、それぞれpUC57-SeAAR、pUC57-NpADと命名した。
次に、これらpUC57-NpAD及びpUC57-SeAARをそれぞれ鋳型にし、Pfu Ultra II Fusion HS DNA Polymerase (STRATAGENE社製)を用いて下記PCRを行ない、それぞれ増幅したフラグメントNpADvoとSeAAvoを得た。
なお、各PCRの反応条件は、92℃で2分の後、92℃で10秒、55℃で20秒及び68℃で5分を1サイクルとして25サイクル行い、その後72℃で3分、16℃とする条件である。プライマー配列は以下のとおりである。
Primer pRSF-NpAS-inf-F:5’-cgagctcggcgcgcctgcagATGCAGCAGCTTACAGACCA-3’(配列番号5)
Primer pRSF-NpAS-inf-R:5’-gcaagcttgtcgacctgcagTTAAGCACCTATGAGTCCGT-3’(配列番号6)
Primer pRSF-SeAR-inf-F:5’-aaggagatatacatatgATGTTCGGTCTTATCGGTCA-3’(配列番号7)
Primer pRSF-SeAR-inf-R:5’-ttgagatctgccatatgTCAAATTGCCAATGCCAAGG-3’(配列番号8)
次に、Pst I処理したpRSF-1b(Novagen社製)とフラグメントNpADvoをIn-Fusion HD Cloning kit(Invitrogen社製)を用いて連結させ、得られたプラスミドをさらにNde I消化し、同様に同kitを用いてフラグメントSeAAvoと接続した。こうして得られたベクターをpRSF-NpAD-SeARと命名した。
そして、得られたpRSF-NpAD-SeARを鋳型として下記条件でPCRを行った。
PCRの温度条件は、95℃で2分の後、95℃で20秒、55℃で20秒及び72℃で30秒を1サイクルとして25サイクル行い、その後、72℃で3分とする条件である。プライマーの配列は以下のとおりである。
Primer FW1: AGGAGATATACCATGCAGCAGCTTACAGACC(配列番号9)
Primer Rv1: GCTCGAATTCGGATCTTACACCACATCATCTTCGGCACCTGGCATGGCAACGCCAGCACCTATGAGTCCGTAGG(配列番号10)
次に、PCRで増幅したDNA断片をpRSF-Duet-1のNcoIサイトとBamHIサイトの間にIn-Fusion HD Cloning kit(クロンテック社製)を用いて挿入した。得られたプラスミドをpRSF-NpAD-PAと命名した。
2.3.2 pCDF-SeARの作製
また、上記pRSF-NpAD-SeARを鋳型として下記条件でPCRを行った。
PCRの温度条件は、92℃で2分の後、92℃で10秒、55℃で20秒及び68℃で5分を1サイクルとして25サイクル行い、その後、72℃で3分とする条件である。プライマーの配列は以下のとおりである。
Primer FW2: AAGGAGATATACATATGATGTTCGGTCTTATCGGTCA(配列番号11)
Primer Rv2: TTGAGATCTGCCATATGTCAAATTGCCAATGCCAAGG(配列番号12)
次に、PCRで増幅したDNA断片をpCDD-Duet-1のNdeIサイトにIn-Fusion HD Cloning kit(クロンテック社製)を用いて挿入した。得られたプラスミドをpCDF-SeARと命名した。
2.3.3 NpAD変異型遺伝子発現プラスミドの作製
次に、上記で得られたpRSF-NpAD-PAを鋳型として、所定の位置に置換変異を導入することができるプライマーセットを用いて下記条件でPCRを行った。本実施例で使用したプライマーセットは表6にまとめた。
PCRの温度条件は、98℃で10秒、58℃で15秒及び72℃で30秒を1サイクルとして30サイクル行う条件である。
このPCRにて増幅した4.5kbのDNA断片を精製した。精製したDNA断片でE. coli JM109株を形質転換した。形質転換体から得られたプラスミド(No.1〜66)に含まれる変異型デカルボニラーゼ遺伝子の塩基配列を決定し、目的の変異が導入され、且つ他の場所に変異がないことを確認した。
2.4 変異型デカルボニラーゼ遺伝子の評価
上記で得られたプラスミドNo.1〜66とpCDF-SeARでE. coli BL-21株を形質転換し、変異体を調製した。プラスミドNo.1〜66の代わりにpRSF-NpAD-PAを用い、pRSF-NpAD-PAとpCDF-SeARで作製した形質転換体を野生株とした。野生型及び形質転換体を培養し、MG/CMSにより、炭化水素の生産量を定量的に比較した。
本実施例では、野生株の生産したO.D.600nm当たりの炭化水素量を1とした相対値で変異型デカルボニラーゼ遺伝子を発現させた形質転換体の炭化水素生産能を評価した。
培養は、まず、必要な抗生物質を含むLB Broth Miller培地(Difco社製 Luria-Bertani)3mlを含むBD Falcon社製14mlラウンドチューブに形質転換体を植菌し、ABLE社製三段式培養器MW-312を用い、100ストローク/分で18時間、37℃で振盪培養した。得られた前培養液を抗生物質を含む3mlのM9YE培地に1%植菌し、ディスポーザブルガラス試験管(IWAKI社製f16mm x 150mm)で同培養装置を用い、30℃、90ストローク/分で2〜3日間培養した。本培養においては、植菌後4時間に、IPTGを終濃度が1mMになるように添加した。
培養2日目または3日目に、培養液に等量(3ml)の酢酸エチルを添加し、ボルテックスを用いて10秒間混和した。TOMY社製LC-230遠心機を用いて室温で10分間2000rpmで遠心した後、酢酸エチル層1mlをGC/MSバイアルに移し、内部標準溶液(1μl/ml R-(-)-2-octanol/ethanol)を10 ml添加し締結した。
GC/MSによる定量方法は以下の通りである。まず、アガロースプレート上で生育した組換え体を、上記培地3mlを含むBD Falcon社製14mlラウンドチューブに植菌し、ABLE社製三段式培養器MW-312を用い、130ストローク/分で18時間所定の温度で培養した。こうして得られた前培養液を抗生物質を含む3mlのM9YE培地を含むディスポーザブルガラス試験管(IWAKI社製φ16×150mm)に1%植菌し、同様に90ストローク/分で4時間培養後、終濃度1mMのIPTGを添加し3日間培養した。
培養後、培養液1.5mlをエッペンドルフチューブに分取し、トミー社製小型遠心機MX-301を用いて、24℃、5800g、1分間遠心した。上清50μlを残して上清液を除去し菌体を懸濁した。次に、150μlの酢酸エチルを添加し、エッペンドルフ社製多サンプル用ボルテックスMixer5432を用いて5分間激しく混和した後、同様に24℃、13000g、1分間遠心し、酢酸エチル層100μlをGC/MSバイアルに移した。そして、50μlの内部標準物質溶液(2-プロパノールに溶解した0.4%(v/v)の2-オクタノール)を添加し、GC/MS(アジレント社製7890GC/5975MSD)に供した。分析条件を下記に示す。
[3.結果]
詳細は省略するが、本実施例で使用したNostoc punctiforme PCC73102株由来のデカルボニラーゼのモデリングを行ったところ、10個のαヘリックス(N末端から順にヘリックス1〜10)のみから構成される特殊な構造のタンパク質であることが明らかになった。一方、αヘリックス上の疎水性と親水性の乱れによってαヘリックスが不安定化し、変性することが知られていることから(特許:WO2016/199898)、乱れをなくすようにアミノ酸の置換変異をデカルボニラーゼに導入し、当該置換変異に起因する炭化水素の生産量に及ぼす影響を調べた。
図7に、ヘリックス1に対して置換変異を導入した形質転換体における炭化水素(ペンタデカン及びヘプタデカン)生産量を測定した結果を示した。また、図8にはヘリックス2に対して置換変異を導入した形質転換体、図9にはヘリックス3及び4に対して置換変異を導入した形質転換体、図10にはヘリックス5、6及び7に対して置換変異を導入した形質転換体、図11にはヘリックス8に対して置換変異を導入した形質転換体、図12にはヘリックス9に対して置換変異を導入した形質転換体における、炭化水素生産量を測定した結果を示した。
図7に示したように、ヘリックス1においては、29番目のバリン、35番目のグルタミン酸、39番目のアスパラギン及び42番目のスレオニンを、αヘリックスの不安定生を解消するように置換した場合に、炭化水素の生産性が大幅に向上することがわかる。また、図8に示したように、ヘリックス2においては、51番目のヒスチジン、54番目のロイシン及び60番目のメチオニンを、αヘリックスの不安定生を解消するように置換した場合に、炭化水素の生産性が大幅に向上することがわかる。さらに、図9に示したように、ヘリックス3においては、89番目のセリン及び94番目のアスパラギンを、αヘリックスの不安定生を解消するように置換した場合に、炭化水素の生産性が大幅に向上することがわかる。さらに、図11に示したように、ヘリックス8においては、169番目のロイシン、174番目のアスパラギン、175番目のロイシン、177番目のイソロイシン及び188番目のアスパラギン酸を、αヘリックスの不安定生を解消するように置換した場合に、炭化水素の生産性が大幅に向上することがわかる。
これらに対して、ヘリックス4〜7及び9に対する置換変異については、炭化水素の生産性に影響しないことが明らかとなった(図9、10及び12)。
特に、ペンタデカンの生産性が野生型と比較して3倍以上増加した置換変異は、H51Y(8.77倍)、V29M(5.82倍)、S89N(4.25倍)、E35Y(4.11倍)、N94V(4.08倍)、M60D(3.16倍)であった。また、ヘプタデカンの生産量が野生型と比較して3倍以上増加した置換変異はL169W(8.59倍)、N174M(7.95倍)、L175K(7.82倍)、L169Y(6.77倍)、L175Q(6.45倍)、L169A(6.32倍)、T191V(5.95倍)、I177Y(5.93倍)、I177W(5.42倍)、N174T(4.75倍)、H51Y(3.98倍)、L175E(3.32倍)、D188V(3.21倍)であった。

Claims (51)

  1. 配列番号2に示すアミノ酸配列における
    29番目のバリンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異、
    35番目のグルタミン酸に相当するアミノ酸の疎水性度の高いアミノ酸への置換変異、
    39番目のアスパラギンに相当するアミノ酸の疎水性度の高いアミノ酸への置換変異、
    42番目のスレオニンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異、
    51番目のヒスチジンに相当するアミノ酸の疎水性度の高いアミノ酸への置換変異、
    54番目のロイシンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異、
    60番目のメチオニンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異、
    89番目のセリンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異、
    94番目のアスパラギンに相当するアミノ酸の疎水性度の高いアミノ酸への置換変異、
    169番目のロイシンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異、
    174番目のアスパラギンに相当するアミノ酸の疎水性度の高いアミノ酸への置換変異、
    175番目のロイシンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異、
    177番目のイソロイシンに相当するアミノ酸の疎水性度の低いアミノ酸への置換変異及び
    188番目のアスパラギン酸に相当するアミノ酸の疎水性度の高いアミノ酸への置換変異
    からなる群から選ばれる少なくとも1つの置換変異を有するデカルボニラーゼ変異体をコードする変異型デカルボニラーゼ遺伝子。
  2. 上記29番目のバリンに相当するアミノ酸の置換変異は、チロシン、トリプトファン、セリン、グリシン、アラニン、メチオニン、システイン、フェニルアラニン及びロイシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  3. 上記29番目のバリンに相当するアミノ酸の置換変異は、チロシン、トリプトファン、セリン、グリシン、アラニン及びメチオニンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  4. 上記29番目のバリンに相当するアミノ酸の置換変異は、メチオニンへの置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  5. 上記35番目のグルタミン酸に相当するアミノ酸の置換変異は、プロリン、チロシン、トリプトファン、セリン、スレオニン、グリシン、アラニン、メチオニン、システイン、フェニルアラニン、ロイシン、バリン及びイソロイシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  6. 上記35番目のグルタミン酸に相当するアミノ酸の置換変異は、プロリン、チロシン、トリプトファン、セリン、スレオニン及びグリシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  7. 上記35番目のグルタミン酸に相当するアミノ酸の置換変異は、チロシンへの置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  8. 上記39番目のアスパラギンに相当するアミノ酸の置換変異は、グリシン、アラニン、システイン、フェニルアラニン、ロイシン、バリン及びイソロイシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  9. 上記39番目のアスパラギンに相当するアミノ酸の置換変異は、システイン、フェニルアラニン、ロイシン、バリン及びイソロイシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  10. 上記39番目のアスパラギンに相当するアミノ酸の置換変異は、バリンへの置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  11. 上記42番目のスレオニンに相当するアミノ酸の置換変異は、アルギニン、リシン、グルタミン、アスパラギン、アスパラギン酸、グルタミン酸、ヒスチジン、プロリン、チロシン、トリプトファン、セリン及びグリシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  12. 上記42番目のスレオニンに相当するアミノ酸の置換変異は、リシン、グルタミン、アスパラギン、アスパラギン酸、グルタミン酸、ヒスチジン、プロリン及びチロシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  13. 上記42番目のスレオニンに相当するアミノ酸の置換変異は、アスパラギン又はアスパラギン酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  14. 上記51番目のヒスチジンに相当するアミノ酸の置換変異は、プロリン、チロシン、トリプトファン、セリン、スレオニン及びグリシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  15. 上記51番目のヒスチジンに相当するアミノ酸の置換変異は、プロリン又はチロシンへの置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  16. 上記51番目のヒスチジンに相当するアミノ酸の置換変異は、チロシンへの置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  17. 上記54番目のロイシンに相当するアミノ酸の置換変異は、グルタミン、アスパラギン、アスパラギン酸、ヒスチジン、プロリン、チロシン、トリプトファン、セリン、スレオニン及びグリシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  18. 上記54番目のロイシンに相当するアミノ酸の置換変異は、グルタミン、アスパラギン、アスパラギン酸、ヒスチジン、プロリン及びチロシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  19. 上記54番目のロイシンに相当するアミノ酸の置換変異は、グルタミンへの置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  20. 上記60番目のメチオニンに相当するアミノ酸の置換変異は、グルタミン、アスパラギン酸、グルタミン酸、ヒスチジン、プロリン及びチロシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  21. 上記60番目のメチオニンに相当するアミノ酸の置換変異は、グルタミン、アスパラギン酸及びグルタミン酸からなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  22. 上記60番目のメチオニンに相当するアミノ酸の置換変異は、アスパラギン酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  23. 上記89番目のセリンに相当するアミノ酸の置換変異は、グルタミン、アスパラギン、アスパラギン酸、グルタミン酸、ヒスチジン、プロリン及びチロシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  24. 上記89番目のセリンに相当するアミノ酸の置換変異は、グルタミン、アスパラギン、アスパラギン酸及びグルタミン酸からなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  25. 上記89番目のセリンに相当するアミノ酸の置換変異は、アスパラギンへの置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  26. 上記94番目のアスパラギンに相当するアミノ酸の置換変異は、システイン、フェニルアラニン、ロイシン、バリン及びイソロイシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  27. 上記94番目のアスパラギンに相当するアミノ酸の置換変異は、ロイシン、バリン及びイソロイシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  28. 上記94番目のアスパラギンに相当するアミノ酸の置換変異は、バリンへの置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  29. 上記169番目のロイシンに相当するアミノ酸の置換変異は、プロリン、チロシン、トリプトファン、セリン、スレオニン、グリシン、アラニン及びメチオニンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  30. 上記169番目のロイシンに相当するアミノ酸の置換変異は、チロシン、トリプトファン、セリン、スレオニン、グリシン及びアラニンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  31. 上記169番目のロイシンに相当するアミノ酸の置換変異は、チロシン、トリプトファン及びアラニンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  32. 上記174番目のアスパラギンに相当するアミノ酸の置換変異は、プロリン、チロシン、トリプトファン、セリン、スレオニン、グリシン、アラニン、メチオニン、システイン及びフェニルアラニンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  33. 上記174番目のアスパラギンに相当するアミノ酸の置換変異は、トリプトファン、セリン、スレオニン、グリシン、アラニン及びメチオニンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  34. 上記174番目のアスパラギンに相当するアミノ酸の置換変異は、スレオニン又はメチオニンへの置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  35. 上記175番目のロイシンに相当するアミノ酸の置換変異は、アルギニン、リシン、グルタミン、アスパラギン、アスパラギン酸、グルタミン酸、ヒスチジン、プロリン及びチロシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  36. 上記175番目のロイシンに相当するアミノ酸の置換変異は、リシン、グルタミン、アスパラギン、アスパラギン酸、グルタミン酸及びヒスチジンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  37. 上記175番目のロイシンに相当するアミノ酸の置換変異は、リシン、グルタミン及びグルタミン酸からなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  38. 上記177番目のイソロイシンに相当するアミノ酸の置換変異は、グルタミン、アスパラギン、アスパラギン酸、グルタミン酸、ヒスチジン、プロリン、チロシン、トリプトファン、セリン、スレオニン、グリシン、アラニン及びメチオニンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  39. 上記177番目のイソロイシンに相当するアミノ酸の置換変異は、プロリン、チロシン、トリプトファン、セリン、スレオニン及びグリシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  40. 上記177番目のイソロイシンに相当するアミノ酸の置換変異は、チロシン又はトリプトファンへの置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  41. 上記188番目のアスパラギン酸に相当するアミノ酸の置換変異は、システイン、フェニルアラニン、ロイシン、バリン及びイソロイシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  42. 上記188番目のアスパラギン酸に相当するアミノ酸の置換変異は、ロイシン、バリン及びイソロイシンからなる群から選ばれる1つのアミノ酸への置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  43. 上記188番目のアスパラギン酸に相当するアミノ酸の置換変異は、バリンへの置換変異であることを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  44. 配列番号2に示すアミノ酸配列に対して、V29M、E35Y、N39T、N39V、T42D、T42N、H51Y、L54Q、M60D、S89N、N94V、L169A、L169Y、L169W、N174M、N174T、L175Q、L175E、L175K、I177Y、I177W及びD188Vからなる群から選ばれる少なくとも1つの置換変異を有することを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  45. 配列番号2に示すアミノ酸配列に対して、H51Y及び/又はL169Wを有することを特徴とする請求項1記載の変異型デカルボニラーゼ遺伝子。
  46. 請求項1〜請求項45のいずれか一項に記載された変異型デカルボニラーゼ遺伝子を宿主微生物に導入してなる組換え微生物。
  47. 上記宿主微生物は大腸菌又はKlebsiella属細菌であることを特徴とする請求項46記載の組換え微生物。
  48. 請求項46又は請求項47記載の組換え微生物を培養する工程を含むアルカンの製造方法。
  49. 上記組換え微生物を培養する培地よりアルカンを回収する工程を更に含むことを特徴とする請求項48記載のアルカンの製造方法。
  50. 上記組換え微生物を培養する培地よりアルカンを回収し、回収したアルカンを精製する工程を更に含むことを特徴とする請求項48記載のアルカンの製造方法。
  51. 炭素数9〜20のアルカンを製造することを特徴とする請求項48記載のアルカンの製造方法。
JP2018218879A 2018-11-22 2018-11-22 変異型デカルボニラーゼ遺伝子、当該変異型デカルボニラーゼ遺伝子を有する組換え微生物及びアルカンの製造方法 Pending JP2020080705A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018218879A JP2020080705A (ja) 2018-11-22 2018-11-22 変異型デカルボニラーゼ遺伝子、当該変異型デカルボニラーゼ遺伝子を有する組換え微生物及びアルカンの製造方法
US16/689,551 US20200165619A1 (en) 2018-11-22 2019-11-20 Mutant decarbonylase gene, recombinant microorganism having the mutant decarbonylase gene, and method for producing alkane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018218879A JP2020080705A (ja) 2018-11-22 2018-11-22 変異型デカルボニラーゼ遺伝子、当該変異型デカルボニラーゼ遺伝子を有する組換え微生物及びアルカンの製造方法

Publications (1)

Publication Number Publication Date
JP2020080705A true JP2020080705A (ja) 2020-06-04

Family

ID=70771258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018218879A Pending JP2020080705A (ja) 2018-11-22 2018-11-22 変異型デカルボニラーゼ遺伝子、当該変異型デカルボニラーゼ遺伝子を有する組換え微生物及びアルカンの製造方法

Country Status (2)

Country Link
US (1) US20200165619A1 (ja)
JP (1) JP2020080705A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522525A (ja) * 2008-05-16 2011-08-04 エルエス9・インコーポレイテッド 炭化水素を製造するための方法および組成物
WO2016199898A1 (ja) * 2015-06-10 2016-12-15 公立大学法人 富山県立大学 活性型変異酵素の製造方法および新規活性型変異酵素、並びに可溶性化変異タンパク質の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522525A (ja) * 2008-05-16 2011-08-04 エルエス9・インコーポレイテッド 炭化水素を製造するための方法および組成物
WO2016199898A1 (ja) * 2015-06-10 2016-12-15 公立大学法人 富山県立大学 活性型変異酵素の製造方法および新規活性型変異酵素、並びに可溶性化変異タンパク質の製造方法

Also Published As

Publication number Publication date
US20200165619A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
SG192706A1 (en) Cells and methods for producing isobutyric acid
JP5761352B2 (ja) アルカンの製造方法及びアルカン合成能を有する組換え微生物
AU2013227067B2 (en) Hydrocarbon synthase gene, and use thereof
CN114341351A (zh) 用于产生含血红素蛋白的菌株和方法
WO2012124890A2 (ko) meso-2,3-부탄다이올의 제조방법
CN112280722A (zh) 用于生产光学纯1,3-丁二醇的重组菌及其应用
CN110904018B (zh) 5-氨基乙酰丙酸生产菌株及其构建方法和应用
JP6607204B2 (ja) アルカン合成能を有する組換え微生物及びアルカンの製造方法
KR102123012B1 (ko) 기능성 감미료의 제조방법
CN112280723B (zh) 联产1,3-丙二醇和1,3-丁二醇的重组菌及其应用
JP7131416B2 (ja) 変異型デカルボニラーゼ遺伝子、当該変異型デカルボニラーゼ遺伝子を有する組換え微生物及びアルカンの製造方法
KR20120128776A (ko) 2,3-부탄다이올 생산을 위한 크렙시엘라 뉴모니아 균주 및 제조방법
KR102129379B1 (ko) 고활성의 말산 탈수소효소가 도입된 숙신산 생성용 변이 미생물 및 이를 이용한 숙신산 제조방법
JP2020080705A (ja) 変異型デカルボニラーゼ遺伝子、当該変異型デカルボニラーゼ遺伝子を有する組換え微生物及びアルカンの製造方法
US10894967B2 (en) Aldehyde synthase gene, recombinant microorganism comprising the same, and method for producing alkane using the same
KR101366763B1 (ko) meso-2,3-부탄다이올 제조방법
CN113025595A (zh) 耐酸脂肪酶
KR102488646B1 (ko) 스트렙-태그를 포함하는 오셔니써머스 프로펀더스 dsm 14977 균주 유래 초고내열성 메틸글라이옥살 합성효소 및 이를 이용한 메틸글라이옥살의 제조 방법
WO2022017389A1 (en) Method for the production of musk fragrance ingredient
KR20230018142A (ko) 스트레스에 대한 저항성 향상용 재조합 벡터 및 이를 이용하여 스트레스에 대한 저항성이 향상된 미생물
JP2007074959A (ja) アルカン水酸化に関連する蛋白質およびそれをコードする遺伝子並びにこれらを用いたアルカンジオールの製造方法
CN115896133A (zh) 一种谷氨酰激酶的表达调控序列及其应用
KR20130058236A (ko) meso-2,3-부탄다이올 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220412