JP2020079706A - Heat storage system and operation method of heat storage system - Google Patents

Heat storage system and operation method of heat storage system Download PDF

Info

Publication number
JP2020079706A
JP2020079706A JP2020037529A JP2020037529A JP2020079706A JP 2020079706 A JP2020079706 A JP 2020079706A JP 2020037529 A JP2020037529 A JP 2020037529A JP 2020037529 A JP2020037529 A JP 2020037529A JP 2020079706 A JP2020079706 A JP 2020079706A
Authority
JP
Japan
Prior art keywords
heat
heat storage
air
temperature
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020037529A
Other languages
Japanese (ja)
Other versions
JP6887543B2 (en
JP2020079706A5 (en
Inventor
正幸 谷野
Masayuki Yano
正幸 谷野
理亮 川上
Riryo Kawakami
理亮 川上
昇 陶
Noboru To
昇 陶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2020037529A priority Critical patent/JP6887543B2/en
Publication of JP2020079706A publication Critical patent/JP2020079706A/en
Publication of JP2020079706A5 publication Critical patent/JP2020079706A5/ja
Application granted granted Critical
Publication of JP6887543B2 publication Critical patent/JP6887543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

To allow, in a heat storage system using an adsorbent as a heat storage material, application to a large scale district, a factory and an industrial part, which consume a large quantity of energy.SOLUTION: In a heat storage material filling tank 21, a heat storage material M comprised of an adsorbent is accommodated. In heat storage operation, outside air taken in by a fan 13 is heated by a heating coil 14 and is then supplied into the heat storage material filling tank 21. In heat release operation, the outside air taken in is supplied into the heat storage material filling tank 21, and high-temperature and low-humidity air after adsorption of moisture is supplied as supply air to a heat demander. A heat source of the heating coil 14 is solar heat, cogeneration waste heat, or industrial waste heat.SELECTED DRAWING: Figure 1

Description

本発明は、吸着材を利用した蓄熱システム及び当該蓄熱システムの運転方法に関するものである。   The present invention relates to a heat storage system using an adsorbent and a method of operating the heat storage system.

東日本大震災以降、電力安定供給がことさら重要になってきているが、電力安定供給のための各種の施策の中で、現実的な方策の1つとしてコージェネレーションシステム(CGS)の普及促進が挙げられている。しかしながら、現状では経済的な観点から、機器容量に相当した安定的な熱需要量がなければCGSの導入判断には至らず、また、導入されたCGSにおいても、熱需要がなければ稼働されず、想定よりメリットが低くなっている事例もある。   Since the Great East Japan Earthquake, stable power supply has become more and more important. Among various measures for stable power supply, promotion of the cogeneration system (CGS) is one of the practical measures. ing. However, at present, from an economical point of view, the introduction of CGS cannot be judged unless there is a stable heat demand corresponding to the device capacity, and even if the introduced CGS does not have heat demand, it will not operate. In some cases, the merit is lower than expected.

CGSの稼働率の向上には蓄熱システムが有効と考えられるが、市販されている潜熱蓄熱材(PCM:Phase Change Material)には、蓄熱密度(潜熱蓄熱材の凝固潜熱)によって限定される蓄熱量当たりのコストの課題や、潜熱蓄熱材の凝固点(融点)によって限定される利用温度と稼働率の課題があげられ、現状では最適な蓄熱システムは見当たらない。   Although a heat storage system is considered to be effective in improving the operating rate of CGS, the amount of heat stored in the commercially available latent heat storage material (PCM: Phase Change Material) is limited by the heat storage density (solidification latent heat of the latent heat storage material). There are problems of cost per unit and problems of utilization temperature and operation rate limited by the freezing point (melting point) of the latent heat storage material, and at present, no optimal heat storage system is found.

そこで潜熱蓄熱材に代えて、ゼオライトなどの吸着材を用いて蓄熱することが提案されている(特許文献1)。これは入口と出口とを有する容器において、吸着質を吸着可能であって、吸着することにより吸着エネルギーを放出する吸着材を有し、容器内の吸着エネルギーによって暖められたガスを、昇温で暖められるべき場所に導くように構成され、自動車の暖房システムに使用されるものである。   Therefore, it has been proposed to store heat using an adsorbent such as zeolite instead of the latent heat storage material (Patent Document 1). This has an adsorbent capable of adsorbing an adsorbate in a container having an inlet and an outlet and releasing adsorption energy by adsorbing the adsorbate. The gas warmed by the adsorption energy in the container can be heated. It is designed to lead to the place to be warmed and is used in the heating system of automobiles.

特表2015−516909号公報Japanese Patent Publication No. 2015-516909

しかしながら前記した従来技術は、そもそも自動車のような限られた空間に適用されるものであり、エネルギーを大量に消費する、たとえば大規模な地域や工場・工業団地に適用することはできない。   However, the above-described conventional technique is applied to a limited space such as an automobile in the first place, and cannot be applied to a large amount of energy consumption, for example, a large area or a factory/industrial park.

本発明はかかる点に鑑みてなされたものであり、吸着材を蓄熱材として利用した蓄熱システムにおいて、エネルギーを大量に消費する、たとえば大規模な地域や工場・工業団地に適用することを可能にすることを目的としている。   The present invention has been made in view of such a point, and in a heat storage system using an adsorbent as a heat storage material, it consumes a large amount of energy, and can be applied to, for example, a large-scale area or a factory/industrial park. The purpose is to do.

前記目的を達成するため、本発明は、吸着材からなる蓄熱材を収容した収容体と、ファンと、当該ファンによって取り入れた外気に対して加熱する加熱部とを有し、前記加熱部によって加熱した後の空気を、前記ファンによって前記収容体内の蓄熱材に供給可能である蓄熱システムであって、
蓄熱運転時には、前記加熱部によって加熱された空気を前記収容体に供給して前記蓄熱材で蓄熱し、放熱運転時には、取り入れた外気を前記収容体に供給して前記蓄熱材で外気中の水分を吸着し、前記水分が吸着された後の空気を、給気として熱の需要先に供給するようにしたことを特徴としている。
In order to achieve the above-mentioned object, the present invention has a container containing a heat storage material made of an adsorbent, a fan, and a heating unit for heating the outside air taken in by the fan, and heating by the heating unit. A heat storage system capable of supplying the air after having performed to the heat storage material in the housing by the fan,
During the heat storage operation, the air heated by the heating unit is supplied to the storage body to store heat therein, and during the heat radiation operation, the outside air taken in is supplied to the storage body and the moisture in the outside air is stored into the storage material. Is adsorbed, and the air after adsorbing the moisture is supplied to the heat demand destination as air supply.

本発明によれば、蓄熱運転時には、加熱部によって加熱された空気を収容体に供給して当該収容体内の蓄熱で蓄熱し、放熱運転時には、取り入れた外気を前記収容体に供給して前記蓄熱材で外気中の水分を吸着し、前記水分が吸着された後の空気を、給気として熱の需要先に供給するようにしたので、エネルギーを大量に消費する、大規模な地域や工場・工業団地に適用することが可能である。すなわち、本発明においては、加熱部の熱源には、たとえば太陽熱、温排熱(たとえばコジェネレーション廃熱、工場廃熱、建物からの蒸気などの排熱、いわゆるOA排熱、またはデータセンタからの排熱)などを利用することができる。したがって、エネルギーを大量に消費する、大規模な地域や工場・工業団地に適用することが可能である。一方、取り入れた外気中の湿分を吸着材に直接吸着させ、その際に発生する熱による加熱が行われるから、利用温度帯の広い蓄熱が可能である。
また加熱部で加熱する際の熱源からの温熱媒体は、液体、気体のいずれも用いることができる。また蓄熱(脱着)に利用する熱の温度は、たとえば100℃程度あればよい。加熱部には型式の観点からは、たとえば熱媒との間接熱交換をするコイル方式が採用できる。たとえば加熱コイルをはじめとして水−空気熱交換器、空気−空気熱交換器などを必要に応じて用いることができる。そして温熱媒体の種類に応じて、加熱部には、公知の加熱手段を採用することができる。もちろん、電気ヒータや直接燃焼方式による空気加熱方式も採用することが可能である。
According to the present invention, during the heat storage operation, the air heated by the heating unit is supplied to the container to store the heat by the heat storage in the container, and during the heat radiation operation, the outside air taken in is supplied to the container to store the heat. The material absorbs the moisture in the outside air, and the air after the moisture is adsorbed is supplied to the heat demand destination as air supply, so a large amount of energy is consumed, large-scale areas and factories It can be applied to industrial parks. That is, in the present invention, the heat source of the heating unit may be, for example, solar heat, warm exhaust heat (for example, cogeneration waste heat, factory waste heat, exhaust heat of steam from a building, so-called OA exhaust heat, or data center exhaust heat). Waste heat) etc. can be used. Therefore, it can be applied to large-scale areas, factories and industrial parks that consume large amounts of energy. On the other hand, the taken-in moisture in the outside air is directly adsorbed by the adsorbent and heated by the heat generated at that time, so that heat can be stored in a wide temperature range.
As the heating medium from the heat source for heating in the heating unit, either liquid or gas can be used. The temperature of heat used for heat storage (desorption) may be, for example, about 100°C. From the standpoint of model, the heating unit may employ, for example, a coil system that indirectly exchanges heat with a heating medium. For example, a heating coil, a water-air heat exchanger, an air-air heat exchanger, or the like can be used as necessary. A known heating unit can be used for the heating unit depending on the type of heating medium. Of course, an electric heater or an air heating method using a direct combustion method can also be adopted.

かかる場合、給気として熱の需要先に供給するための流路に、加熱用の熱交換器を有するようにしてもよい。   In such a case, a heat exchanger for heating may be provided in the flow path for supplying the air as a supply air to a heat demand destination.

また本発明の蓄熱システムの運転方法は、前記放熱運転開始後に、熱の需要先に供給する給気の風量を制御することを特徴としている。   Further, the operation method of the heat storage system of the present invention is characterized by controlling the air volume of the supply air supplied to the heat demand destination after the heat radiation operation is started.

かかる場合、前記給気の風量を制御は、少なくともファンまたは熱の需要先に供給する給気の流路に設けられたダンパの開度を調整することで行うようにしてもよい。   In such a case, the air flow rate of the supply air may be controlled by adjusting at least the opening degree of a damper provided in the flow path of the supply air supplied to a fan or a heat demand destination.

さらに別な観点によれば、本発明の蓄熱システムの運転方法は、前記放熱運転開始後に、前記給気の一部を前記外気と合流させて前記収容体に供給する空気の温度を制御することを特徴としている。   According to still another aspect, in the method for operating the heat storage system of the present invention, after the heat radiation operation is started, a part of the supply air is merged with the outside air to control the temperature of the air supplied to the container. Is characterized by.

かかる場合、前記収容体に供給する空気の温度の制御は、前記外気と合流させる給気の風量を制御することで行うようにしてもよい。   In this case, the temperature of the air supplied to the container may be controlled by controlling the air volume of the supply air that joins with the outside air.

前記外気と合流させる給気の風量と共に、前記ファンを制御するようにしてもよい。   The fan may be controlled together with the flow rate of the supply air to be merged with the outside air.

本発明によれば、加熱部の熱源に、温排熱や太陽熱を利用しているので、エネルギーを大量に消費する、大規模な地域や工場・工業団地に適用することが可能である。   According to the present invention, since hot exhaust heat or solar heat is used as the heat source of the heating unit, it is possible to apply the present invention to a large-scale area or a factory/industrial complex that consumes a large amount of energy.

実施の形態にかかる蓄熱システムの構成の概略を模式的に示した説明図である。It is explanatory drawing which showed typically the outline of a structure of the heat storage system concerning embodiment. 放熱運転時の実施の形態にかかる蓄熱システムの構成の概略を模式的に示した説明図である。It is an explanatory view showing the outline of the composition of the heat storage system concerning an embodiment at the time of heat dissipation operation typically. 蓄熱システムの実験装置の構成の概略を模式的に示した説明図である。It is explanatory drawing which showed the outline of a structure of the experimental apparatus of a heat storage system typically. 図3の実験装置を用いて蓄熱運転したときの蓄熱材充填槽の各点の温度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the temperature of each point of the heat storage material filling tank when heat storage operation is carried out using the experimental apparatus of FIG. 図3の実験装置を用いて蓄熱運転したときの蓄熱材充填槽の各点の湿度等の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the humidity etc. of each point of the heat storage material filling tank at the time of heat storage operation using the experimental apparatus of FIG. 図3の実験装置を用いて大風量で放熱運転したときの蓄熱材充填槽の各点の温度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the temperature of each point of the heat storage material filling tank when heat-radiating operation is carried out with a large air volume using the experimental apparatus of FIG. 図3の実験装置を用いて大風量で放熱運転したときの蓄熱材充填槽の各点の湿度等の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the humidity etc. of each point of the heat storage material filling tank at the time of heat-radiating operation with a large air volume using the experimental apparatus of FIG. 図3の実験装置を用いて小風量で放熱運転したときの蓄熱材充填槽の各点の温度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the temperature of each point of the heat storage material filling tank when heat-radiating operation is carried out with a small air volume using the experimental apparatus of FIG. 図3の実験装置を用いて小風量で放熱運転したときの蓄熱材充填槽の各点の湿度等の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the humidity etc. of each point of the heat storage material filling tank at the time of heat-radiating operation with a small air volume using the experimental apparatus of FIG. 放熱運転終期の給気の温度低下を抑えるための熱交換器を備えた蓄熱システムの構成の概略を模式的に示した説明図である。It is explanatory drawing which showed typically the outline of a structure of the heat storage system provided with the heat exchanger for suppressing the temperature fall of the supply air at the end of heat radiation operation. 放熱運転終期の給気の温度低下を抑えるための熱交換器を備えた他の蓄熱システムの構成の概略を模式的に示した説明図である。It is explanatory drawing which showed typically the outline of a structure of the other heat storage system provided with the heat exchanger for suppressing the temperature fall of the supply air at the end of heat radiation operation. 放熱運転終期の給気の温度低下を抑えるためにインバータを備えた蓄熱システムの構成の概略を模式的に示した説明図である。It is explanatory drawing which showed typically the outline of a structure of the heat storage system provided with the inverter in order to suppress the temperature fall of the supply air at the end of heat radiation operation. 図12の蓄熱システムによって給気風量制御を実施したときの給気温度と風量割合との関係を経時変化で示したグラフである。13 is a graph showing the relationship between the air supply temperature and the air flow rate when the air supply air volume control is performed by the heat storage system of FIG. 放熱運転終期の給気の温度低下を抑えるために給気風量制御を実施するための他の蓄熱システムの構成の概略を模式的に示した説明図である。It is explanatory drawing which showed typically the outline of the structure of the other heat storage system for implementing air supply air volume control in order to suppress the temperature fall of the air supply at the end of heat radiation operation. 放熱運転終期の給気の温度低下を抑えるために再循環風量制御を実施するための他の蓄熱システムの構成の概略を模式的に示した説明図である。It is explanatory drawing which showed typically the outline of the structure of the other heat storage system for implementing recirculation air volume control in order to suppress the temperature fall of the supply air at the end of heat radiation operation. 図15の蓄熱システムによって再循環風量制御を実施したときの風量割合の経時変化を示したグラフである。It is a graph which showed the time-dependent change of the air volume ratio when implementing the recirculation air volume control by the heat storage system of FIG. 図15の蓄熱システムによって再循環風量制御を実施したときの蓄熱材充填槽の出入口温度の経時変化を示したグラフである。It is a graph which showed the time-dependent change of the entrance/exit temperature of the heat storage material filling tank when recirculating air volume control is implemented by the heat storage system of FIG. 放熱運転終期の給気の温度低下を抑えるために再循環風量制御を実施するための他の蓄熱システムの構成の概略を模式的に示した説明図である。It is explanatory drawing which showed typically the outline of the structure of the other heat storage system for implementing recirculation air volume control in order to suppress the temperature fall of the supply air at the end of heat radiation operation.

以下、実施の形態について説明すると、図1は、実施の形態にかかる蓄熱システム1の構成の概略を示しており、この蓄熱システム1は、吸着材充填槽内における乾燥吸着材の発熱によって、各種のバイオマス工場をはじめ、工場の乾燥工程に高温低湿の空気を供給するシステムとして構成されており、給気ユニット11と、蓄熱材充填槽21とを有している。   Hereinafter, an embodiment will be described. FIG. 1 shows an outline of a configuration of a heat storage system 1 according to the embodiment. This heat storage system 1 uses various types of heat generated by a dry adsorbent in an adsorbent filling tank. It is configured as a system that supplies high-temperature and low-humidity air to the drying process of the factory including the biomass factory, and has an air supply unit 11 and a heat storage material filling tank 21.

蓄熱材充填槽21は、筐体21a内の上部空間21b、下部空間21cとの間に、吸着材の造粒体からなる蓄熱材Mが、通風性を有する部材、たとえばパンチングメタル等によって構成された収容体内に充填収納されている。   In the heat storage material filling tank 21, the heat storage material M made of granules of an adsorbent is formed between the upper space 21b and the lower space 21c in the housing 21a by a member having ventilation, such as punching metal. It is filled and stored in the container.

給気ユニット11は、ケーシング12内にファン13、加熱部としての加熱コイル14を有しており、ダクトなどによって構成される導入流路15から導入した外気を加熱可能である。   The air supply unit 11 has a fan 13 and a heating coil 14 as a heating unit inside a casing 12, and can heat the outside air introduced from an introduction flow path 15 formed by a duct or the like.

この加熱コイル14には、太陽熱、コジェネレーション廃熱、工場廃熱などの熱によって加熱された流体、例えば温水や加熱された空気が使用される。すなわち、加熱コイル14の熱源は、これら太陽熱、コジェネレーション廃熱、工場廃熱などである。   A fluid heated by heat such as solar heat, cogeneration waste heat, and factory waste heat, for example, hot water or heated air is used for the heating coil 14. That is, the heat source of the heating coil 14 is solar heat, cogeneration waste heat, factory waste heat, or the like.

そしてファン13によって送り出された空気は、蓄熱材充填槽21内の上部空間21bと下部空間21cに各々切り替えて供給可能になっている。すなわち、給気ユニット11に接続された、ダクトなどによって構成された供給路16は、第1供給流路17、第2供給流路18に分岐され、これら第1供給流路17、第2供給流路18は、蓄熱材充填槽21内の上部空間21b、下部空間21cに夫々接続されている。そして後述のダンパD2、D3、D4、D5の開閉操作によって、蓄熱材充填槽21内の上部空間21bと下部空間21cに、必要に応じて調温された屋外空気やその他の外気(系外の空気)を各々切り替え供給可能となっている。   The air sent out by the fan 13 can be supplied by switching to the upper space 21b and the lower space 21c in the heat storage material filling tank 21. That is, the supply passage 16 that is connected to the air supply unit 11 and that is configured by a duct or the like is branched into the first supply passage 17 and the second supply passage 18, and the first supply passage 17 and the second supply passage 17 are provided. The flow path 18 is connected to the upper space 21b and the lower space 21c in the heat storage material filling tank 21, respectively. Then, by opening/closing operations of dampers D2, D3, D4, and D5 described later, in the upper space 21b and the lower space 21c in the heat storage material filling tank 21, temperature-controlled outdoor air or other outside air (outside the system) Air) can be switched and supplied.

蓄熱材充填槽21内の上部空間21b、下部空間21cには、各々ダクトなどによって構成された排気路22に通ずる第1排気流路23、第2排気流路24が接続されている。排気路22は、蓄熱材充填槽21から排気される意味での排気流路であるが、運転モードにより、負荷への給気、後述の循環利用では還気の各流路として機能する。すなわち、排気路22は、給気ユニット11に接続されている副導入路19(循環利用の際の還気の流路)と分岐し、分岐後には系外へ排気する排気路25(系外への排気路)を構成する。排気路22には、たとえば熱の需要先の一形態である需要家に通ずる高温低湿給気路26(負荷への給気路)が接続されている。以上の各流路は、たとえばダクト等によって構成されている。なお本実施の形態は、たとえば地域熱供給において、温風を直接住戸や施設などの単位需要家にも供給できることをも想定しているために、需要家という語を使用している。   The upper space 21b and the lower space 21c in the heat storage material filling tank 21 are connected to a first exhaust flow path 23 and a second exhaust flow path 24, which communicate with an exhaust path 22 constituted by a duct or the like. The exhaust passage 22 is an exhaust passage in the sense of being exhausted from the heat storage material filling tank 21, but functions as each passage of supply air to the load and return air in the later-described circulation use depending on the operation mode. That is, the exhaust passage 22 branches off from the sub-introduction passage 19 (return air passage during circulation use) connected to the air supply unit 11, and the exhaust passage 25 (outside the system) that exhausts to the outside of the system after branching. Exhaust path to). The exhaust passage 22 is connected to a high-temperature low-humidity air supply passage 26 (an air supply passage to a load) that is connected to a consumer, which is one form of a heat demand destination, for example. Each of the above flow paths is configured by, for example, a duct or the like. In the present embodiment, the term "customer" is used because it is also assumed that hot air can be directly supplied to unit customers such as dwelling units and facilities in district heat supply.

供給路16には、第1の湿度計31、第1の温度計32が設けられており、供給路16内を流れる空気の湿度、温度が夫々計測される。また排気路22には、第2の湿度計33、第2の温度計34が設けられており、排気路22内を流れる空気の湿度、温度が夫々計測される。   The supply path 16 is provided with a first hygrometer 31 and a first thermometer 32, and the humidity and temperature of the air flowing through the supply path 16 are measured. A second hygrometer 33 and a second thermometer 34 are provided in the exhaust passage 22, and the humidity and temperature of the air flowing in the exhaust passage 22 are measured.

そして導入流路15には、ダンパD1が、供給路16から分岐した第1供給流路17、第2供給流路18には、ダンパD2、D3が各々設けられ、排気路22に通ずる第1排気流路23、第2排気流路24には、ダンパD4、D5が各々設けられ、副導入流路19にはダンパD6が設けられ、排気路25にはダンパD7が設けられ、高温低湿給気路26にはダンパD8が設けられている。   A damper D1 is provided in the introduction flow path 15, a first supply flow path 17 branched from the supply path 16 and dampers D2 and D3 are provided in the second supply flow path 18, respectively. The exhaust passage 23 and the second exhaust passage 24 are provided with dampers D4 and D5, respectively, the auxiliary introduction passage 19 is provided with a damper D6, and the exhaust passage 25 is provided with a damper D7. A damper D8 is provided in the airway 26.

実施の形態にかかる蓄熱システム1は、以上のように構成されており、まず蓄熱運転時においては、図1に示したように、ダンパD1、D3、D4、D7が開放、ダンパD2、D5、D6、D8が閉鎖される。そしてファン13によって導入流路15から取り入れられた外気は、加熱コイル14によって昇温され、供給路16から第2供給流路18を経て、蓄熱材充填槽21内の下部空間21cに供給されて、蓄熱材Mを加熱する。これによって、吸着材造粒体からなる蓄熱材Mは乾燥される。   The heat storage system 1 according to the embodiment is configured as described above. First, during heat storage operation, as shown in FIG. 1, the dampers D1, D3, D4, D7 are open and the dampers D2, D5, D6 and D8 are closed. Then, the outside air taken in from the introduction flow path 15 by the fan 13 is heated by the heating coil 14 and is supplied from the supply path 16 to the lower space 21c in the heat storage material filling tank 21 via the second supply flow path 18. , The heat storage material M is heated. As a result, the heat storage material M made of the adsorbent granules is dried.

かかる蓄熱運転時においては、加熱コイル14には未利用の排熱が温熱媒として導入される。この場合、排熱が排気ならそのまま利用してもよい。また加熱コイル14自体は、空気対空気熱交換器を採用してもよい。利用しようとする排熱が液体で排出される場合には、水対空気熱交換器を採用することで、当該排熱の温水を直接利用することができる。また排熱源の側に熱交換器を設けて間接的に排熱を熱交換した後の熱媒(例えば温水)を水対空気熱交換器に送るようにしてもよい。   During such heat storage operation, unused waste heat is introduced into the heating coil 14 as a heating medium. In this case, if the exhaust heat is exhaust, it may be used as it is. The heating coil 14 itself may employ an air-to-air heat exchanger. When the waste heat to be used is discharged as a liquid, the hot water of the waste heat can be directly used by adopting the water-to-air heat exchanger. Alternatively, a heat exchanger may be provided on the side of the exhaust heat source to indirectly send the heat medium (for example, hot water) after exchanging heat to the water-to-air heat exchanger.

そのような蓄熱材Mの乾燥に供された後の空気は、蓄熱材充填槽21内の上部空間21bから、第1排気流路23、排気路22、排気路25を経て、系外に排気される。かかる運転を通じて、蓄熱材Mを構成する吸着材の造粒体からは水分が脱着される一方、蓄熱される。   The air after being used for drying the heat storage material M is exhausted from the upper space 21b in the heat storage material filling tank 21 to the outside of the system through the first exhaust flow path 23, the exhaust path 22, and the exhaust path 25. To be done. Through this operation, moisture is desorbed from the adsorbent granules constituting the heat storage material M, while heat is stored.

そして既述した各種のバイオマス工場をはじめ、工場の乾燥工程に高温低湿の空気を供給する場合には、放熱運転に切り替える。すなわち、図2に示したように、ダンパD1、D2、D5、D8が開放、ダンパD3、D4、D6、D7が閉鎖される。また加熱コイル14への温熱媒の供給は停止する。そしてファン13によって導入流路15から取り入れられた外気は、供給路16から第1供給流路17を経て、蓄熱材充填槽21内の上部空間21bに供給される。そうすると当該外気中の水分は、蓄熱材Mを構成する吸着材に吸着される。このとき熱が発生し、それによって蓄熱材Mの吸着材は水分を吸着するとともに昇温され、また蓄熱材Mで蓄熱されていた熱によっても昇温された空気は、蓄熱材充填槽21内の下部空間21cから、第2排気流路24、排気路22から高温低湿給気路26へと送られ、需要家であるたとえば各種のバイオマス工場や、工場の乾燥工程に対して高温低湿の空気を供給することができる。なお図1、図2に示した蓄熱システム1は、ダクト量の節約のために蓄熱運転時、放熱運転時とも、導入流路15、供給路16を用いて、第1供給流路17、第2供給流路18から外気を蓄熱材充填槽21内に供給するようにしているが、放熱運転時には、加熱コイル14を通過させる必要はないので、たとえば第1供給流路17、第2供給流路18に別途、外気の取り入れダクトを接続して、当該外気の取り入れダクトからの外気を、直接蓄熱材充填槽21内に供給するようにしてもよい。   When supplying high-temperature and low-humidity air to the drying process of the factories including the above-mentioned various biomass factories, it switches to heat radiation operation. That is, as shown in FIG. 2, the dampers D1, D2, D5 and D8 are opened and the dampers D3, D4, D6 and D7 are closed. Further, the supply of the heating medium to the heating coil 14 is stopped. The outside air taken in from the introduction flow path 15 by the fan 13 is supplied from the supply path 16 through the first supply flow path 17 to the upper space 21b in the heat storage material filling tank 21. Then, the moisture in the outside air is adsorbed by the adsorbent that constitutes the heat storage material M. At this time, heat is generated, whereby the adsorbent of the heat storage material M adsorbs moisture and is heated, and the air whose temperature is also raised by the heat stored in the heat storage material M is stored in the heat storage material filling tank 21. From the lower space 21c of the second exhaust flow path 24, the exhaust path 22 to the high temperature and low humidity air supply path 26, and the air of high temperature and low humidity for various biomass factories that are consumers and the drying process of the factory. Can be supplied. The heat storage system 1 shown in FIG. 1 and FIG. 2 uses the introduction flow path 15 and the supply path 16 in both the heat storage operation and the heat dissipation operation in order to save the amount of ducts. The outside air is supplied into the heat storage material filling tank 21 from the second supply flow path 18, but it is not necessary to pass through the heating coil 14 during the heat radiation operation, and therefore, for example, the first supply flow path 17 and the second supply flow path are provided. An external air intake duct may be separately connected to the passage 18 so that the external air from the external air intake duct is directly supplied to the heat storage material filling tank 21.

このように本実施の形態にかかる蓄熱システム1によれば、太陽熱、コジェネレーション廃熱、工場廃熱などからの熱を利用して、少ないエネルギーコストで高温低湿の空気を、各種のバイオマス工場をはじめ、工場の乾燥工程に供給することができる。   As described above, according to the heat storage system 1 according to the present embodiment, heat from solar heat, cogeneration waste heat, factory waste heat, and the like is used to generate high-temperature and low-humidity air at various energy plants with low energy cost. Initially, it can be supplied to the drying process of the factory.

なお前記したように、蓄熱運転と放熱運転を行うにあたり、たとえば夜は蓄熱運転を行い、昼は放熱運転を行うようにしてもよい。また放熱運転後に再び蓄熱運転を実施する場合、放熱が完了していなくとも、効率よく蓄熱することができる。   As described above, when performing the heat storage operation and the heat radiation operation, for example, the heat storage operation may be performed at night and the heat radiation operation may be performed at daytime. Further, when the heat storage operation is performed again after the heat radiation operation, the heat can be efficiently stored even if the heat radiation is not completed.

前記実施の形態では蓄熱材Mに、造粒された吸着材を使用している。この吸着材には、たとえばシリカゲルやゼオライト等公知の吸着材を用いることができるが、通風抵抗や熱/物質伝達など、所望の性能を有する吸着材の造粒体を蓄熱材として用いることができる。例えば、非晶質アルミニウムケイ酸塩と低結晶性粘土からなる複合体、たとえばハスクレイ(登録商標)や高分子収着剤の低温再生型吸着材は、従来の吸着材(シリカゲルやゼオライト等)に比べて幅広い湿度帯において水蒸気を吸着できるため、高密度な蓄熱材になり得る。   In the above embodiment, a granulated adsorbent is used as the heat storage material M. A known adsorbent such as silica gel or zeolite can be used as the adsorbent, and a granule of the adsorbent having desired properties such as ventilation resistance and heat/mass transfer can be used as the heat storage material. .. For example, a composite of amorphous aluminum silicate and low crystalline clay, such as Hasclay (registered trademark) or a low-temperature regenerated adsorbent of a polymer sorbent, can be used as a conventional adsorbent (such as silica gel or zeolite). In comparison, since it can adsorb water vapor in a wide range of humidity, it can be a high-density heat storage material.

ところで、図2に示した給気としての高温低湿空気を得るための放熱運転では、蓄熱材充填槽21の入口、すなわち上部空間21bに近い蓄熱材M(吸着材造粒体)は、供給された湿潤空気(外気)の水分を吸着、発熱して、通風空気が昇温されるが、放熱運転の時間経過とともに、水分を吸着、発熱する蓄熱材Mは、空気の入口部分である上部空間21bから、出口部分に近い下部空間21cに移動する。そうすると、放熱運転の終期では水分を吸着、発熱する蓄熱材Mの量(蓄熱材充填槽内21における水分吸着/発熱の領域)が減少することで、蓄熱材充填槽21出口となる第2排気流路24の入口での空気温度は次第に低下することになる。   By the way, in the heat radiation operation for obtaining the high temperature and low humidity air as the air supply shown in FIG. 2, the heat storage material M (adsorbent granulation body) near the inlet of the heat storage material filling tank 21, that is, the upper space 21b is supplied. The moisture of the wet air (outside air) is adsorbed and generates heat to raise the temperature of the ventilated air, but the heat storage material M that adsorbs and generates heat with time of the heat radiation operation is the upper space that is the inlet portion of the air. From 21b, it moves to the lower space 21c near the exit portion. Then, at the end of the heat radiation operation, the amount of the heat storage material M that adsorbs and heats moisture (the area of moisture adsorption/heat generation in the heat storage material filling tank 21) decreases, so that the second exhaust gas at the outlet of the heat storage material filling tank 21 The air temperature at the inlet of the flow path 24 gradually decreases.

この点について検証するために、図3の実験装置41を用いて、蓄熱、放熱運転を行った実験結果を基に説明する。図3に示した実験装置41は、給気部42、調温調湿部43、蓄熱槽部44から構成されている。給気部42は、給気ファン42aを有している。調温調湿部43は、給気ファン42aからの給気を減湿する減湿器45、減湿後の給気を流量調整する流量制御器46、流量調整した後の給気に対してダンパD10を介して加湿する加湿器47、加湿後の給気を加熱するヒータ48を有している。ヒータ48は、下流側に設置された温度検出器49の検出温度に基づいて、温度指示調節器50により加熱温度が制御される。温度検出器49の下流側には湿度検出器51が設けられている。   In order to verify this point, description will be made based on the experimental results of heat storage and heat radiation operation using the experimental apparatus 41 of FIG. The experimental apparatus 41 shown in FIG. 3 includes an air supply unit 42, a temperature adjustment/humidity adjustment unit 43, and a heat storage tank unit 44. The air supply unit 42 has an air supply fan 42a. The temperature control/humidity control unit 43 controls the dehumidifier 45 that dehumidifies the air supply from the air supply fan 42a, the flow rate controller 46 that adjusts the flow rate of the air supply after the dehumidification, and the air supply after the flow rate adjustment It has a humidifier 47 for humidifying via the damper D10 and a heater 48 for heating the supply air after humidification. The heating temperature of the heater 48 is controlled by the temperature instruction controller 50 based on the temperature detected by the temperature detector 49 installed on the downstream side. A humidity detector 51 is provided downstream of the temperature detector 49.

そしてヒータ48によって加熱された給気は、ダンパD11、D12を介して、蓄熱槽部44の蓄熱材充填槽52の下部空間52aへと送られる。蓄熱材充填槽52は、内部に吸着材からなる蓄熱材を収容している。蓄熱材充填槽52の上部空間52bからの空気は、ダンパD13、流量制御器53を経て系外に排気される。蓄熱材充填槽52は、直径が98.6mm、高さが300mmの円筒形を有している。   The supply air heated by the heater 48 is sent to the lower space 52a of the heat storage material filling tank 52 of the heat storage tank portion 44 via the dampers D11 and D12. The heat storage material filling tank 52 accommodates therein a heat storage material made of an adsorbent. The air from the upper space 52b of the heat storage material filling tank 52 is exhausted to the outside of the system via the damper D13 and the flow rate controller 53. The heat storage material filling tank 52 has a cylindrical shape with a diameter of 98.6 mm and a height of 300 mm.

そして蓄熱材充填槽52には、下部空間52a内の温度、すなわち入口空気の温度を検出する温度センサTinと上部空間52b内の温度、すなわち出口空気の温度を検出する温度センサToutが設けられている。そして蓄熱材充填槽52が収容している蓄熱材の温度を高さ方向に順次計測するための温度センサT1〜T5が下から順に等間隔で上下方向に設けられている。   The heat storage material filling tank 52 is provided with a temperature sensor Tin that detects the temperature in the lower space 52a, that is, the temperature of the inlet air, and a temperature sensor Tout that detects the temperature in the upper space 52b, that is, the temperature of the outlet air. There is. Further, temperature sensors T1 to T5 for sequentially measuring the temperature of the heat storage material accommodated in the heat storage material filling tank 52 in the height direction are provided at equal intervals in the vertical direction from the bottom.

この実験装置41を使用して、蓄熱運転、放熱運転での蓄熱材充填槽52の出入口の温湿度ととともに、蓄熱材充填槽52の出入口温度及び高さ方向の5点の温度を測定して、蓄熱材充填槽内の状態を確認した。なお蓄熱材には、汎用の「ゼオライト(13X)の造粒物」を用いた。   Using this experimental apparatus 41, the temperature and humidity at the entrance and exit of the heat storage material filling tank 52 during heat storage operation and heat radiation operation, as well as the entrance and exit temperature of the heat storage material filling tank 52 and the temperature at five points in the height direction were measured. The state inside the heat storage material filling tank was confirmed. A general-purpose "zeolite (13X) granulated product" was used as the heat storage material.

蓄熱材充填槽52に対して、約130℃の高温空気を供給したときの蓄熱運転の結果を図4、図5に示した。図4はそのときの温度の経時変化、図5は湿度の経時変化を各々示している。   The results of the heat storage operation when high temperature air of about 130° C. was supplied to the heat storage material filling tank 52 are shown in FIGS. 4 and 5. FIG. 4 shows the temperature change with time, and FIG. 5 shows the humidity change with time.

図4からわかるように、実験装置41の熱容量の影響によって蓄熱材充填槽52の入口温度は常温から上昇し、運転開始後約0.2時間後に120℃に達した。槽内の温度は入口に近い順番(温度センサT1〜T5の順番)で順次、常温から上昇し、蓄熱材充填槽52の出口温度は運転開始後約0.7時間後に上昇を開始し、運転開始後約2時間後に120℃に達した。このとき、図5に示したように、蓄熱材充填槽52内の出口相対湿度は殆ど0%RHを示し、蓄熱材充填槽52内の吸着材は乾燥状態となり、蓄熱運転は完了した。   As can be seen from FIG. 4, the inlet temperature of the heat storage material filling tank 52 increased from room temperature due to the influence of the heat capacity of the experimental device 41, and reached 120° C. approximately 0.2 hours after the start of operation. The temperature in the tank gradually rises from room temperature in the order close to the inlet (in the order of the temperature sensors T1 to T5), and the outlet temperature of the heat storage material filling tank 52 starts to rise about 0.7 hours after the start of operation and starts operation. About 2 hours after the start, the temperature reached 120°C. At this time, as shown in FIG. 5, the outlet relative humidity in the heat storage material charging tank 52 was almost 0% RH, the adsorbent in the heat storage material charging tank 52 was in a dry state, and the heat storage operation was completed.

このような乾燥状態の蓄熱材充填槽52を初期条件として、約30℃/約50%RHの常温空気を蓄熱材充填槽52に供給した際の、2種類の放熱運転(水分吸着運転)を行った結果を説明する。図6は蓄熱材充填槽52に供給する風量が多い場合(137L/minの場合)の温度の経時変化、図7はそのときの湿度変化を示し、図8は蓄熱材充填槽52に供給する風量が少ない場合(46L/minの場合)の放熱運転をおこなったときの温度の経時変化、図9はそのときの湿度変化を示している。   With the dry heat storage material filling tank 52 as an initial condition, two types of heat radiation operation (moisture adsorption operation) when normal temperature air of about 30° C./about 50% RH is supplied to the heat storage material filling tank 52 The results obtained will be explained. FIG. 6 shows the temperature change with time when the amount of air supplied to the heat storage material filling tank 52 is large (137 L/min), FIG. 7 shows the humidity change at that time, and FIG. FIG. 9 shows changes in temperature with time when heat dissipation operation is performed when the air volume is small (46 L/min), and FIG. 9 shows changes in humidity at that time.

図6に示したように、まず槽内の入口に近い場所(温度センサT1の場所)の吸着材が水分を吸着し発熱して温度上昇が起こった。そして入口に近い順番(温度センサT1〜T5の順番)で順次、発熱して温度上昇が起こり、蓄熱材充填槽52内出口温度(Tout)は運転開始後約0.2時間後に急上昇を開始し、70℃以上に達した。その後、運転開始後約1時間以降では蓄熱材充填槽52内出口温度(Tout)は低下して、運転開始から約1.5時間後には、蓄熱材充填槽52内出口温度(Tout)は蓄熱材充填槽52内入口温度(Tin)と同等の常温となり、放熱運転は完了した。運転開始から約1.5時間以降では、図7に示したように、蓄熱材充填槽52内出口相対湿度は急上昇し約40%RHを示した。   As shown in FIG. 6, first, the adsorbent at a location near the entrance (the location of the temperature sensor T1) in the tank adsorbs moisture, generates heat, and raises the temperature. Then, heat is sequentially generated in the order close to the inlet (in the order of the temperature sensors T1 to T5), and the temperature rises, and the outlet temperature (Tout) in the heat storage material charging tank 52 starts to rise rapidly about 0.2 hours after the start of operation. Reached over 70°C. Thereafter, the outlet temperature (Tout) in the heat storage material filling tank 52 decreases about 1 hour after the start of operation, and the outlet temperature (Tout) in the heat storage material filling tank 52 stores heat about 1.5 hours after the start of operation. The room temperature was equal to the inlet temperature (Tin) in the material filling tank 52, and the heat radiation operation was completed. After about 1.5 hours from the start of the operation, as shown in FIG. 7, the outlet relative humidity inside the heat storage material charging tank 52 rapidly increased to about 40% RH.

同様に、蓄熱材充填槽に約30℃/約50%RHの常温空気を約46L/minで供給した放熱運転の温度の経時変化を図8に、湿度の経時変化を図9に示されているが、図8に示したように、まず蓄熱材充填槽52の入口に近い場所(温度センサT1の場所)の吸着材が水分を吸着し発熱して温度上昇が起こった。入口に近い順番(温度センサT1〜T5の順番)で順次、発熱して温度上昇が起こり、蓄熱材充填槽52内の出口温度は運転開始後約0.5時間経過後に急上昇を開始し、70℃以上に達した。その後、運転開始後約3.6時間以降では蓄熱材充填槽52内の出口温度は低下して、運転開始後約5.3時間経過後には蓄熱材充填槽52内の出口温度は蓄熱材充填槽52の入口温度と同等の常温となり、放熱運転は完了した。   Similarly, FIG. 8 shows the temperature change with time of the heat radiation operation in which the room temperature air of about 30° C./about 50% RH was supplied at about 46 L/min to the heat storage material filling tank, and FIG. 9 shows the humidity change with time. However, as shown in FIG. 8, first, the adsorbent at a location near the inlet of the heat storage material filling tank 52 (the location of the temperature sensor T1) adsorbs moisture to generate heat and the temperature rises. The temperature rises due to heat generation in the order close to the inlet (in the order of the temperature sensors T1 to T5), and the outlet temperature in the heat storage material filling tank 52 starts to rise sharply about 0.5 hour after the start of operation, and 70 Reached over ℃. After that, the outlet temperature in the heat storage material filling tank 52 decreases after about 3.6 hours after the start of operation, and the outlet temperature in the heat storage material filling tank 52 decreases after about 5.3 hours after the start of operation. The temperature became the same as the inlet temperature of the tank 52, and the heat radiation operation was completed.

運転開始後約4.3時間経過以降では図9に示したように、蓄熱材充填槽52内出口相対湿度は急上昇し、運転開始後約5.3時間経過後には約40%RHを示した。   After about 4.3 hours after the start of operation, as shown in FIG. 9, the outlet relative humidity in the heat storage material charging tank 52 increased sharply, and about 40% RH after about 5.3 hours after the start of operation. ..

蓄熱材充填槽52に供給した常温空気と、蓄熱材充填槽52内の出口温度である80℃給気との温度差50degであるから、平均的な供給空気温度の低下速度を計算すると、風量が137L/minの場合(図6)は50/(1.5−1)・(1/60)=1.67deg./minであり、風量が46L/minの場合(図8)は、50/(5.3−3.6)・(1/60)=0.49deg./minであった。この図9の供給空気温度の低下速度は図7の低下速度の29%(0.49/1.67)であった。なお、この図8での風量は図6での風量の34%(46/137)である。   Since the temperature difference between the room temperature air supplied to the heat storage material filling tank 52 and the 80° C. air supply which is the outlet temperature in the heat storage material filling tank 52 is 50 deg, the average air supply temperature decrease rate is calculated. Is 137 L/min (FIG. 6), 50/(1.5-1)·(1/60)=1.67 deg. /Min, and when the air volume is 46 L/min (FIG. 8), 50/(5.3-3.6)·(1/60)=0.49 deg. It was /min. The decreasing rate of the supply air temperature in FIG. 9 was 29% (0.49/1.67) of the decreasing rate in FIG. 7. The air volume in FIG. 8 is 34% (46/137) of the air volume in FIG.

図6と図8のように、何れの風量の場合においても、放熱運転の終期には給気温度は徐々に低下することが判った。したがって、各種のバイオマス工場をはじめ、工場の乾燥工程に高温低湿の空気を供給する場合、放熱運転の終期に温度の低下(相対湿度の上昇)を抑えることが必要になる。   As shown in FIGS. 6 and 8, it was found that the supply air temperature gradually decreased at the end of the heat radiation operation regardless of the air volume. Therefore, when supplying high-temperature and low-humidity air to the drying process of various biomass factories and other factories, it is necessary to suppress the temperature decrease (increase in relative humidity) at the end of the heat radiation operation.

蓄熱システム1に対して、別の加熱熱交換器やボイラー等の熱源設備が直列接続された場合は、たとえば利用者側で、高温低湿給気の温度、湿度の調整を、これら加熱熱交換器やボイラー等の熱源設備で行うことができる。   When heat source equipment such as another heating heat exchanger or a boiler is connected in series to the heat storage system 1, for example, the user side adjusts the temperature and humidity of the high temperature and low humidity supply air to these heating heat exchangers. It can be performed with a heat source facility such as a boiler or a boiler.

すなわち、高温低湿の空気を供給する場合に、放熱運転の終期に温度の低下を防止するには、たとえば図10に示したように、高温低湿給気流路26に熱交換器61を設け、ボイラ(図示せず)からの蒸気または温水と、高温低湿給気流路26を流れる給気との間で熱交換して、温度低下分を補償すればよい。この場合、例えば図10に示したように、熱交換器61下流側の高温低湿給気流路26に温度検出器62を設け、当該温度検出器62の検出値に基づいて、熱交換を終えてボイラ(図示せず)に戻る還管63に設けたバルブ64の開閉を制御するようにすればよい。   That is, in the case of supplying high-temperature and low-humidity air, in order to prevent the temperature from decreasing at the end of the heat radiation operation, for example, as shown in FIG. The temperature decrease may be compensated for by exchanging heat between steam or hot water (not shown) and the supply air flowing through the high temperature and low humidity supply air passage 26. In this case, for example, as shown in FIG. 10, a temperature detector 62 is provided in the high-temperature low-humidity air supply passage 26 on the downstream side of the heat exchanger 61, and heat exchange is completed based on the detection value of the temperature detector 62. The opening/closing of the valve 64 provided on the return pipe 63 returning to the boiler (not shown) may be controlled.

また高温低湿の空気を供給する場合に、放熱運転の終期に温度の低下を防止すると共に湿度の調整を行うには、たとえば図11に示したように、熱交換器61、温度検出器62の他に湿度検出器65を設け、さらにボイラ(図示せず)からの蒸気を、熱交換器61に向かう往管66から分岐した分岐管67を通じて、熱交換器61上流に導入するようにしてもよい。この場合、湿度検出器65の検出値に基づいて、分岐管67に設けたバルブ68の開閉を制御するようにしてもよい。   Further, in the case of supplying high-temperature and low-humidity air, in order to prevent the temperature from decreasing and adjust the humidity at the end of the heat radiation operation, for example, as shown in FIG. In addition, a humidity detector 65 is provided, and steam from a boiler (not shown) is introduced upstream of the heat exchanger 61 through a branch pipe 67 branched from a forward pipe 66 heading for the heat exchanger 61. Good. In this case, the opening/closing of the valve 68 provided in the branch pipe 67 may be controlled based on the detection value of the humidity detector 65.

これら図10、図11に示した例は、蓄熱システム1に対して熱交換器61を付加した例であったが、蓄熱システム1の単独での設置や、他の熱源設備と並列設置した場合には、蓄熱システム1自身で、そのような放熱運転の終期に温度及び湿度の低下を防止することも可能である。   The examples shown in FIGS. 10 and 11 are examples in which the heat exchanger 61 is added to the heat storage system 1, but when the heat storage system 1 is installed alone or in parallel with other heat source equipment. In addition, the heat storage system 1 itself can prevent the temperature and humidity from decreasing at the end of such heat radiation operation.

図12は、ファン13に対してインバーター71によって回転数制御を行なって給気風量を制御する例を示している。かかる場合、蓄熱材充填槽21の出口温度が低下したときには、インバーター71によってファン13の回転数を低下させ給気風量を低下させる。この温度低下は水分の吸着量の低下によるものなので、温度の代わりに湿度の上昇によって制御することも可能であるが、一般には湿度計は温度計よりも高価であるので、温度によって制御する方が経済的である。このような給気の温度制御により、蓄熱材充填槽21の出口温度の低下を抑制する効果を、図13に基づいて説明する。   FIG. 12 shows an example in which the rotation speed of the fan 13 is controlled by the inverter 71 to control the supply air volume. In this case, when the outlet temperature of the heat storage material filling tank 21 decreases, the rotation speed of the fan 13 is decreased by the inverter 71 to decrease the supply air volume. Since this temperature drop is due to a decrease in the amount of moisture adsorbed, it is possible to control by increasing the humidity instead of the temperature, but in general a hygrometer is more expensive than a thermometer, so it is better to control by temperature. Is economical. The effect of suppressing the decrease in the outlet temperature of the heat storage material filling tank 21 by such temperature control of the supply air will be described based on FIG.

まず、既述した図6の放熱運転の状態を、図13のCase1として示す。図13において、上図は蓄熱材充填槽21の出入口温度の経時変化を、下図は風量(図6の風量を100%としたときの風量割合)の経時変化を示す。図13に示したように、Case1では運転開始後約1時間弱で出口温度は低下し、運転開始から約2時間経過後には、出口温度は入口温度と同等になった。ここで運転開始から約1時間後の時点で、風量を34%に低減したCase2の場合は、前述の図8の実験結果から、運転開始後約2時間弱までは80℃程度の出口温度が維持できることが推定できる。また、運転開始後約1時間経過後の時点から同約1.2時間後の間、風量を徐々に低下させて34%にした(出口温度による風量制御をした)Case3の場合は、Case2ほどではないが、Case1よりは長時間、出口温度が維持できると推定できる。   First, the state of the heat dissipation operation of FIG. 6 described above is shown as Case 1 of FIG. In FIG. 13, the upper diagram shows the change over time of the inlet/outlet temperature of the heat storage material filling tank 21, and the lower diagram shows the change over time of the air volume (air volume ratio when the air volume in FIG. 6 is 100%). As shown in FIG. 13, in Case 1, the outlet temperature decreased about 1 hour after the start of operation, and the outlet temperature became equal to the inlet temperature about 2 hours after the start of operation. At about 1 hour after the start of operation, in the case of Case 2 in which the air volume was reduced to 34%, from the experimental result of FIG. 8 described above, the outlet temperature of about 80° C. was maintained until about 2 hours after the start of operation. It can be estimated that it can be maintained. In the case of Case 3 in which the air volume was gradually reduced to 34% (air volume was controlled by the outlet temperature) from approximately 1 hour after the start of operation to approximately 1.2 hours after the operation, Case 2 was about the same. However, it can be estimated that the outlet temperature can be maintained for a longer time than Case 1.

これらのことから、放熱運転開始後に給気風量を低減させることで、給気温度の維持を図ることが可能である。ただし、給気風量自体は低減するが、需要家によっては、たとえば需要家がある乾燥工程を実施するために高温低湿の給気を必要としている場合、乾燥物の処理量が夕刻になって少なくなった際、風量は少なくとも初期の高温低湿の給気が必要な場合には、有効である。   From these things, it is possible to maintain the supply air temperature by reducing the supply air volume after the start of the heat radiation operation. However, although the supply air volume itself decreases, depending on the customer, for example, when the customer needs high-temperature and low-humidity air supply in order to perform a certain drying process, the throughput of the dry matter decreases in the evening. At that time, the air volume is effective at least when the initial high temperature and low humidity air supply is required.

なお図12に示した例は、インバーター71によってファン13の回転数を調整して給気風量を制御する方法を採用したものであったが、インバーター制御ではなく、図14に示したように、蓄熱材充填槽21の出口の空気の温度や湿度に基づいて、高温低湿給気流路26に設けたダンバーD8の開度を制御するようにしてもよい。このように高温低湿給気流路26に設けたダンバーD8の開度を直接制御することで、高温低湿給気の風量を制御することも可能である。   The example shown in FIG. 12 employs a method in which the rotation speed of the fan 13 is adjusted by the inverter 71 to control the supply air volume, but not the inverter control, but as shown in FIG. You may make it control the opening degree of the damper D8 provided in the high temperature and low humidity air supply flow path 26 based on the temperature and humidity of the air of the exit of the heat storage material filling tank 21. By directly controlling the opening degree of the damper D8 provided in the high-temperature low-humidity air supply passage 26 as described above, it is possible to control the air volume of the high-temperature low-humidity air supply.

そのような給気風量の制御に代えて、次に説明するような再循環給気制御によっても、放熱運転終期の給気温度、湿度の低下を抑えることができる。   Instead of such control of the supply air amount, the recirculation supply control as described below can also suppress the decrease in the supply air temperature and humidity at the end of the heat radiation operation.

実施の形態で説明した吸着材を利用した蓄熱システム1は、いわばヒートポンプシステムと捉えることができる。すなわち、既述した図13の上図での右軸の温度上昇がヒートポンプの作用であるため、蓄熱材充填槽21の入口温度を高くすることができると、高温低湿給気流路26に供給する給気の温度を高温に維持できる。   The heat storage system 1 using the adsorbent described in the embodiment can be considered as a heat pump system. That is, since the temperature increase on the right axis in the upper diagram of FIG. 13 described above is an action of the heat pump, if the inlet temperature of the heat storage material filling tank 21 can be increased, the temperature and humidity are supplied to the high temperature and low humidity air supply passage 26. The temperature of supply air can be maintained at a high temperature.

そこで、図15に示したように、高温低湿給気流路26に供給する給気の一部を給気ユニット11から蓄熱材充填槽21へと戻し、蓄熱材充填槽21からの高温低湿空気を再循環させることで、蓄熱材充填槽21の入口温度を高くすることが可能になり、これによって高温低湿給気流路26を通じて供給する高温低湿給気の温湿度を制御することができる。   Therefore, as shown in FIG. 15, part of the air supply supplied to the high temperature and low humidity air supply passage 26 is returned from the air supply unit 11 to the heat storage material filling tank 21, and the high temperature and low humidity air from the heat storage material filling tank 21 is supplied. By recirculating, the inlet temperature of the heat storage material filling tank 21 can be raised, and thereby the temperature and humidity of the high temperature and low humidity supply air supplied through the high temperature and low humidity supply air passage 26 can be controlled.

すなわち図15に示した例では、蓄熱材充填槽21の出口の空気の温度を計測する第2の温度検出器34、蓄熱材充填槽21の出口の空気の湿度を計測する第2の湿度検出器33の検出値に基づいて、高温低湿給気流路26に設けたダンパD8の開度と、高温低湿給気ユニット11の高温低湿空気の副導入流路19に設けたダンパD6の開度を制御するようになっている。   That is, in the example shown in FIG. 15, a second temperature detector 34 that measures the temperature of the air at the outlet of the heat storage material filling tank 21, and a second humidity detection that measures the humidity of the air at the outlet of the heat storage material filling tank 21. The opening degree of the damper D8 provided in the high-temperature low-humidity air supply passage 26 and the opening degree of the damper D6 provided in the high-temperature low-humidity air sub-introduction passage 19 of the high-temperature low-humidity air supply unit 11 are determined based on the detection value of the container 33. It is designed to be controlled.

このような制御を図16、図17に基づいて説明すると、図16は、再循環風量割合と給気風量割合の変化を示し、図17はそのときの蓄熱材充填槽21の出入口空気の変化を表している。   Such control will be described with reference to FIGS. 16 and 17. FIG. 16 shows changes in the recirculation air flow rate and the supply air flow rate, and FIG. 17 shows changes in the inlet and outlet air of the heat storage material filling tank 21 at that time. Is represented.

図16に示したように、運転時間後1時間経過の時点で、それまで0%だった再循環流量を徐々に増加させることで、図17に示したように、蓄熱材充填槽21の入口温度Tinが高くなり、それによって、蓄熱材充填槽21の出口温度Toutは約80℃に維持される。ただし、再循環流量の増加に伴い、高温低湿給気流路26を通じて供給される給気風量は減少することになる。   As shown in FIG. 16, when one hour has passed after the operating time, the recirculation flow rate, which was 0% until then, is gradually increased, and as shown in FIG. The temperature Tin rises, whereby the outlet temperature Tout of the heat storage material filling tank 21 is maintained at about 80°C. However, as the recirculation flow rate increases, the amount of supply air supplied through the high temperature and low humidity supply air passage 26 decreases.

このようなダンパの開度を調整して再循環給気制御することに、図18に示したように、さらにファン13のインバーター71による給気風量制御を加えるようにしてもよい。   In order to control the recirculation air supply by adjusting the opening degree of the damper as described above, as shown in FIG. 18, air supply air volume control by the inverter 71 of the fan 13 may be further added.

図18に示した例では、蓄熱材充填槽21の出口の空気の温度を計測する第2の温度検出器34、蓄熱材充填槽21の出口の空気の湿度を計測する第2の湿度検出器33の検出値に基づいて、高温低湿給気ユニット11の高温低湿空気の副導入流路19に設けたダンパD6の開度を制御するとともに、これら第2の温度検出器34、第2の湿度検出器33の検出値に基づいてインバーター71を制御してファン13による風量を制御するものである。これによってより現実的で制御範囲の広い運転が可能になる。   In the example shown in FIG. 18, a second temperature detector 34 that measures the temperature of the air at the outlet of the heat storage material filling tank 21, and a second humidity detector that measures the humidity of the air at the outlet of the heat storage material filling tank 21. Based on the detected value of 33, the opening degree of the damper D6 provided in the auxiliary introduction flow path 19 for the high temperature and low humidity air of the high temperature and low humidity air supply unit 11 is controlled, and the second temperature detector 34 and the second humidity are controlled. Based on the detection value of the detector 33, the inverter 71 is controlled to control the air volume of the fan 13. This enables more realistic operation with a wider control range.

以上のように、図15、図18に示した再循環給気制御は、蓄熱材充填槽21の入口温度によって、高温低湿給気の温湿度を制御できるということは、蓄熱材充填槽21が単なる熱交換器ではなく、蓄熱材充填槽21内に収容されている吸着材からなる蓄熱材が、水分を含有している外気の供給によって発熱反応を起こしているために制御できる手法であり、吸着材を利用した蓄熱システムの独特の制御方法である。   As described above, in the recirculation air supply control shown in FIGS. 15 and 18, it is possible to control the temperature and humidity of the high temperature and low humidity air supply by the inlet temperature of the heat storage material filling tank 21. This is not a mere heat exchanger, but a heat storage material made of an adsorbent housed in the heat storage material filling tank 21 is a method that can be controlled because an exothermic reaction is caused by the supply of outside air containing water, This is a unique control method for a heat storage system that uses an adsorbent.

以上の実施の形態でも分かるように、本発明は、工場廃熱、太陽熱、ヒートポンプ廃熱からの熱を利用して、吸着材からなる蓄熱材を加熱して蓄熱し、需要家での使用時、すなわち放熱運転時には、水分を含んだ外気を蓄熱材に供給することで、蓄熱された熱、及び吸着材の水分吸着時の発熱によって、高温低湿度の給気を需要家など、熱の需要先に供給することが可能である。   As can be seen from the above embodiments, the present invention utilizes heat from factory waste heat, solar heat, and heat pump waste heat to heat and store heat of a heat storage material made of an adsorbent, when used in a consumer's house. In other words, during heat dissipation operation, by supplying outside air containing moisture to the heat storage material, the accumulated heat and the heat generated when the adsorbent adsorbs moisture provide high temperature and low humidity supply air to the customer, etc. It is possible to supply it first.

こんにち我が国のエネルギー需要の大きな割合を占める家庭・業務部門では「ZEB(ネット・ゼロ・エネルギー・ビル)」や「ZEH(ネット・ゼロ・エネルギー・ハウス)」の実現に向けて、大幅な省エネルギーが求められている。したがって、都市域や工場・工業団地におけるCGS廃熱、工場廃熱、太陽熱、ヒートポンプ廃熱から冷暖房熱源を再生する大規模地域熱ネットワーク(以下、「メガストック」と称す))の展開を想定した場合、本発明を採用することで、空調システム系外からの熱を利用して空調システムのエネルギー消費(電力・ガス消費)を限りなくゼロに近づけられ、ZEBの実現やZEHの実現に寄与できる。   In the home and business sector, which occupy a large percentage of Japan's energy demand today, we have made great strides toward the realization of “ZEB (Net Zero Energy Building)” and “ZEH (Net Zero Energy House)”. Energy saving is required. Therefore, we assumed the deployment of a large-scale regional heat network (hereinafter referred to as "megastock") that regenerates heating and cooling heat sources from CGS waste heat, factory waste heat, solar heat, and heat pump waste heat in urban areas and factories and industrial parks. In this case, by adopting the present invention, the heat consumption from outside the air conditioning system can be used to bring the energy consumption (power/gas consumption) of the air conditioning system to as close to zero as possible, which can contribute to the realization of ZEB and ZEH. ..

また本発明を利用したメガストックは、従来未利用だった各所の廃熱を吸着材の乾燥に用い、冷温熱を必要とする利用側において吸着材を用いた空調技術に応用して供給することができる。さらにまた今後のESP(Energy Service Provider)は、ガス/電気/再生可能エネルギーのベストミックスが基本になると考えられるが、本発明を利用したメガストックはそのKey Technologyとして、民生/業務産業用での「ハード+ESP型or運営受託型」のビジネス展開を可能にする。   In addition, the megastock utilizing the present invention uses the waste heat of each place that has not been used conventionally for drying the adsorbent, and supplies it by applying it to the air conditioning technology using the adsorbent on the user side that requires cold and hot heat. You can Furthermore, it is considered that the future ESP (Energy Service Provider) will be based on the best mix of gas/electricity/renewable energy, but the megastock using the present invention is the Key Technology as the Key Technology, and is used in the consumer/business industry. Enables "hard +ESP type or management contract type" business development.

本発明は、大規模な地域や工場・工業団地において廃熱を利用する空調に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for air conditioning that utilizes waste heat in large-scale areas, factories and industrial parks.

1 蓄熱システム
11 給気ユニット
12 ケーシング
13 ファン
14 加熱コイル
15 導入流路
16 供給路
17 第1供給流路
18 第2供給流路
19 副導入流路
21 蓄熱材充填槽
21a 筐体
21b 上部空間
21c 下部空間
22、25 排気路
23 第1排気流路
24 第2排気流路
26 高温低湿給気路
31 第1の湿度計
32 第1の温度計
33 第2の湿度計
34 第2の温度計
41 実験装置
D1〜D8、D10〜D13 ダンパ
M 蓄熱材
1 Heat Storage System 11 Air Supply Unit 12 Casing 13 Fan 14 Heating Coil 15 Inlet Channel 16 Supply Channel 17 First Supply Channel 18 Second Supply Channel 19 Sub-Introduction Channel 21 Heat Storage Material Filling Tank 21a Housing 21b Upper Space 21c Lower space 22, 25 Exhaust passage 23 First exhaust passage 24 Second exhaust passage 26 High temperature and low humidity air supply passage 31 First hygrometer 32 First thermometer 33 Second hygrometer 34 Second thermometer 41 Experimental device D1 to D8, D10 to D13 Damper M Heat storage material

Claims (7)

吸着材からなる蓄熱材を収容した収容体と、ファンと、当該ファンによって取り入れた外気に対して加熱する加熱部とを有し、前記加熱部によって加熱した後の空気を、前記ファンによって前記収容体内の蓄熱材に供給可能である蓄熱システムであって、
蓄熱運転時には、前記加熱部によって加熱された空気を前記収容体に供給して前記蓄熱材で蓄熱し、
放熱運転時には、取り入れた外気を前記収容体に供給して前記蓄熱材で外気中の水分を吸着し、前記水分が吸着された後の空気を、給気として熱の需要先に供給するようにしたことを特徴とする、蓄熱システム。
An accommodating body accommodating a heat storage material made of an adsorbent, a fan, and a heating unit for heating the outside air taken in by the fan, and the air after being heated by the heating unit is accommodated by the fan. A heat storage system capable of supplying heat storage material in the body,
During the heat storage operation, the air heated by the heating unit is supplied to the container to store heat in the heat storage material,
During heat dissipation operation, the outside air taken in is supplied to the container to adsorb the moisture in the outside air by the heat storage material, and the air after the moisture is adsorbed is supplied to the heat demand destination as the supply air. A heat storage system that is characterized by
給気として熱の需要先に供給するための流路に、加熱用の熱交換器を有することを特徴とする、請求項1に記載の蓄熱システム。 The heat storage system according to claim 1, wherein a heat exchanger for heating is provided in a flow path for supplying heat to a destination of heat as supply air. 請求項1に記載の蓄熱システムの運転方法であって、
前記放熱運転開始後に、熱の需要先に供給する給気の風量を制御することを特徴とする、蓄熱システムの運転方法。
A method of operating the heat storage system according to claim 1, wherein
A method for operating a heat storage system, comprising controlling the amount of supply air supplied to a heat demand destination after starting the heat radiation operation.
前記給気の風量を制御は、少なくともファンまたは熱の需要先に供給する給気の流路に設けられたダンパの開度を調整することで行うことを特徴とする、請求項3に記載の蓄熱システムの運転方法。 The air flow rate of the supply air is controlled by adjusting an opening degree of a damper provided in at least a fan or a supply air flow path supplied to a heat demand destination. How to operate the heat storage system. 請求項1に記載の蓄熱システムの運転方法であって、
前記放熱運転開始後に、前記給気の一部を前記外気と合流させて前記収容体に供給する空気の温度を制御することを特徴とする、蓄熱システムの運転方法。
A method of operating the heat storage system according to claim 1, wherein
After the start of the heat radiation operation, a part of the supply air is merged with the outside air to control the temperature of the air supplied to the container.
前記収容体に供給する空気の温度の制御は、前記外気と合流させる給気の風量を制御することで行うことを特徴とする、請求項5に記載の蓄熱システムの運転方法。 The method of operating the heat storage system according to claim 5, wherein the temperature of the air supplied to the container is controlled by controlling the air volume of the supply air that joins with the outside air. 前記外気と合流させる給気の風量と共に、前記ファンを制御することを特徴とする、請求項6に記載の蓄熱システムの運転方法。 The method for operating the heat storage system according to claim 6, wherein the fan is controlled together with the flow rate of the supply air to be merged with the outside air.
JP2020037529A 2020-03-05 2020-03-05 How to operate the heat storage system and the heat storage system Active JP6887543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020037529A JP6887543B2 (en) 2020-03-05 2020-03-05 How to operate the heat storage system and the heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020037529A JP6887543B2 (en) 2020-03-05 2020-03-05 How to operate the heat storage system and the heat storage system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015218243A Division JP6673670B2 (en) 2015-11-06 2015-11-06 Thermal waste heat storage system and method of operating thermal waste heat storage system

Publications (3)

Publication Number Publication Date
JP2020079706A true JP2020079706A (en) 2020-05-28
JP2020079706A5 JP2020079706A5 (en) 2020-07-09
JP6887543B2 JP6887543B2 (en) 2021-06-16

Family

ID=70801659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020037529A Active JP6887543B2 (en) 2020-03-05 2020-03-05 How to operate the heat storage system and the heat storage system

Country Status (1)

Country Link
JP (1) JP6887543B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061351A (en) * 2021-11-15 2022-02-18 南京金合能源材料有限公司 Adsorption heat storage based multi-energy complementary mobile heat supply system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061351A (en) * 2021-11-15 2022-02-18 南京金合能源材料有限公司 Adsorption heat storage based multi-energy complementary mobile heat supply system and method

Also Published As

Publication number Publication date
JP6887543B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
KR101434563B1 (en) Desiccant air conditioner
Jurinak et al. Open-cycle desiccant air conditioning as an alternative to vapor compression cooling in residential applications
US8790451B1 (en) Method and system for integrated home cooling utilizing solar power
KR101594422B1 (en) Solar energy dehumidifying and cooling air system
JP6787885B2 (en) Dehumidification system and method
CN100373101C (en) Dehumidity and moistening unit
JP6116096B2 (en) Dehumidification system
JP5576327B2 (en) Air conditioning system
KR100795101B1 (en) Desiccant appartus, air conditioning apparatus and system having the same
JP6887543B2 (en) How to operate the heat storage system and the heat storage system
JP6673670B2 (en) Thermal waste heat storage system and method of operating thermal waste heat storage system
Hauer et al. Open absorption systems for air conditioning and thermal energy storage
JP4341848B2 (en) Air-collecting solar dehumidification cooler system
Elsheniti et al. Thermo-economic study on the use of desiccant-packed aluminum-foam heat exchangers in a new air-handling unit for high moisture-removal
JP7036491B2 (en) Humidity control device
Abdelgaied et al. Performance improvement of solar-assisted air-conditioning systems by using an innovative configuration of a desiccant dehumidifier and thermal recovery unit
JP5337112B2 (en) Humidity control device
JP5473404B2 (en) Regenerative humidity control air conditioning system
JP5822652B2 (en) Cogeneration system
Jani TRNSYS simulation of desiccant integrated hybrid cooling and dehumidification system
JP6591857B2 (en) Cold / Heat Supply Device, Heat Generation Method, and Cold Heat Generation Method
JP2020074758A (en) Dehumidification system for gardening facilities
Lulić et al. Exergy Analysis of a Solar Assisted Desiccant Cooling System
KR102456292B1 (en) Dedicated outdoor air system
Bakmeedeniya Modelling polygeneration with desiccant cooling system for tropical (and sub-tropical) climates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210518

R150 Certificate of patent or registration of utility model

Ref document number: 6887543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150