JP5473404B2 - Regenerative humidity control air conditioning system - Google Patents

Regenerative humidity control air conditioning system Download PDF

Info

Publication number
JP5473404B2
JP5473404B2 JP2009126418A JP2009126418A JP5473404B2 JP 5473404 B2 JP5473404 B2 JP 5473404B2 JP 2009126418 A JP2009126418 A JP 2009126418A JP 2009126418 A JP2009126418 A JP 2009126418A JP 5473404 B2 JP5473404 B2 JP 5473404B2
Authority
JP
Japan
Prior art keywords
air
water vapor
damper
vapor adsorption
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009126418A
Other languages
Japanese (ja)
Other versions
JP2010276217A (en
Inventor
琢昌 渡邊
英男 稲葉
Original Assignee
株式会社岡山エコエネルギー技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社岡山エコエネルギー技術研究所 filed Critical 株式会社岡山エコエネルギー技術研究所
Priority to JP2009126418A priority Critical patent/JP5473404B2/en
Publication of JP2010276217A publication Critical patent/JP2010276217A/en
Application granted granted Critical
Publication of JP5473404B2 publication Critical patent/JP5473404B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は連続換気を行う、オフィス、商業施設、体育館、イベント会場、ホテル、工場、などの空調空間を所定の温度・湿度状態に保つ省エネルギー型換気空調システム技術に関する。   The present invention relates to an energy-saving ventilation air conditioning system technology that maintains air conditioning spaces such as offices, commercial facilities, gymnasiums, event venues, hotels, factories, and the like in a predetermined temperature and humidity state for continuous ventilation.

近年、地球温暖化の傾向が顕著となっている。その対策として主たる温室効果ガスである二酸化炭素の排出量を削減すべく電力ならびに化石燃料の高効率使用(省エネルギー活動)が進められている。その一方で、工場やオフィス、イベント会場などでの換気需要は年々増大し、換気に伴う外気処理(潜熱負荷、顕熱負荷)を如何に高効率に処理するかが大きな課題となっている。具体的な換気時のエネルギー的問題として、高温多湿状態にある外気を直接室内へ導入すると、空調機での除湿負荷が増大する結果、空調機のエネルギー消費量が大幅に増大する点が挙げられる。特に夏季の昼間(午後2時頃)に高まる冷房除湿負荷に伴う空調エネルギー消費は民生・業務・産業分野の消費エネルギーピーク増大の一因となっており、発電設備の部分負荷運用に伴う運転効率悪化など早期に解決すべき課題と言える。   In recent years, the trend of global warming has become prominent. As a countermeasure, high-efficiency use of electric power and fossil fuels (energy saving activities) are being promoted to reduce the amount of carbon dioxide, the main greenhouse gas. On the other hand, the demand for ventilation in factories, offices, event venues and the like is increasing year by year, and how to efficiently process the outside air treatment (latent heat load, sensible heat load) associated with ventilation is a major issue. As a specific energy problem at the time of ventilation, when outside air in a hot and humid state is directly introduced into the room, the dehumidification load in the air conditioner increases, resulting in a significant increase in the energy consumption of the air conditioner. . Air-conditioning energy consumption accompanying cooling and dehumidifying loads that increase especially during the daytime in summer (around 2 pm) contributes to the increase in energy consumption peaks in the consumer, business, and industrial fields. This can be said to be a problem that should be resolved early, such as deterioration.

ところが、これまでの冷凍機を使用する調湿空調システムでは、冷却除湿と過冷却された空気を再加熱する方式であったため、多大なエネルギーを消費せざるを得なかった。また、この解決策として、シリカゲルやゼオライトなどの除湿剤を担持した通風可能なデシカントロータと冷凍機を組み合わせたハイブリッド型の調湿空調システムが提案・実用化されているが除湿能力が不十分な上、高価な設備となることから普及する状況には無い。   However, in the humidity control air-conditioning system using the conventional refrigerator, since it was a method of reheating the dehumidified and supercooled air, a great deal of energy had to be consumed. As a solution to this problem, a hybrid humidity control air conditioning system that combines a desiccant rotor capable of ventilating with a dehumidifying agent such as silica gel or zeolite and a refrigerator has been proposed and put into practical use, but the dehumidifying capacity is insufficient. In addition, it is not in widespread use because of expensive equipment.

例えば、従来、吸湿剤(デシカント剤)を使用する除湿装置が知られている。しかし、この種の除湿装置は、吸湿剤の再生(脱着)に都市ガスや電力という高級なエネルギーを使用するケースが多くあったため、結果的に性能が悪く、装置が大型で高価となるなどの問題を抱えていた。   For example, conventionally, a dehumidifying device using a hygroscopic agent (desiccant) is known. However, this type of dehumidifying device often uses high-grade energy such as city gas or electric power for regeneration (desorption) of the moisture absorbent, resulting in poor performance, resulting in a large and expensive device. I had a problem.

また、省エネルギー空調設備として、シリカゲルやゼオライトなどの除湿材を通風可能なロータ形状とし、これを一定速度(毎時10回転以上)で回転させつつ、その半円部分で空気中の水分を吸着し、残りの半円部分で除湿材を乾燥させるデシカント装置と冷凍機を組み合わせたハイブリッド型の調湿空調システムが提案・実用化されている(例えば、特許文献1,2を参照。国内では(株)西部技研のDSTシリーズのFF方式デシカント除湿機などがある。)。   In addition, as an energy-saving air-conditioning facility, a rotor shape that allows ventilation of dehumidifying materials such as silica gel and zeolite, while rotating this at a constant speed (more than 10 rotations per hour), adsorbs moisture in the air in its semicircular part, A hybrid humidity control air conditioning system that combines a desiccant device that dries the dehumidifying material with the remaining semicircular part and a refrigerator has been proposed and put to practical use (see, for example, Patent Documents 1 and 2 in Japan. There is FF type desiccant dehumidifier of DST series of Seibu Giken.)

これら装置では、除湿剤をロータ形状として連続回転させ、ロータ面に摺動シールを接触させて空気流路を分割している。そのため、ロータ摺動面の硬度を確保した上で、摺動面を平滑化する作業が不可欠で、かつ摺動シールの磨耗対策が必要となることから、装置価格や保守コストが増大すると共に摺動シールを介しての空気漏洩などの課題を有している。また、ロータ摺動面の硬度確保の必要からロータ母材に紙や繊維性の樹脂を使用する際には、硬化処理が不可欠となり、担持される吸着剤の性能確保が困難となるなどの問題がある。   In these devices, the dehumidifying agent is continuously rotated as a rotor shape, and the air flow path is divided by bringing a sliding seal into contact with the rotor surface. Therefore, it is indispensable to smooth the sliding surface while ensuring the hardness of the sliding surface of the rotor, and it is necessary to take measures against the wear of the sliding seal. There are problems such as air leakage through the dynamic seal. In addition, when using paper or fibrous resin for the rotor base material due to the need to ensure the hardness of the rotor sliding surface, the curing process is indispensable, making it difficult to ensure the performance of the adsorbent to be supported. There is.

これらの他にも、除湿剤をロータ形状とせずに容器内に充填し(本発明での水蒸気吸脱着ユニットに相当)、この容器に対し交互に処理空気ならびに再生空気を送る構成とする提案(例えば、特許文献3を参照。)がある。しかしながら、通気ダクトに対して除湿剤を内包する複数の容器を毎時10回以上の間隔で移動させる構成であることから、装置構成が複雑となり大容量システムとしては不向きであり、また、冷却手段はあくまで通過空気の顕熱処理が目的であることから、本発明のように冷却手段により通過空気の潜熱処理までを考慮した運用ならびに構成では無く、高度な調湿への対応という課題を有している。   In addition to these, a dehumidifying agent is filled in a container without forming a rotor shape (corresponding to the water vapor adsorption / desorption unit in the present invention), and a proposal is made to send processing air and regeneration air alternately to this container ( For example, see Patent Document 3.) However, since the plurality of containers containing the dehumidifying agent are moved to the ventilation duct at intervals of 10 times or more per hour, the apparatus configuration becomes complicated and is not suitable for a large capacity system. Since the purpose is sensible heat treatment of the passing air, it is not an operation and configuration that takes into account the latent heat treatment of the passing air by the cooling means as in the present invention, but has a problem of dealing with high humidity control. .

米国特許第6557365号明細書US Pat. No. 6,557,365 米国特許第4719761号明細書U.S. Pat. No. 4,719,761 特開平10−009633号公報JP 10-009633 A

本発明は、上記課題を解決するためになされたものであり、外気導入(換気)に伴う除湿あるいは室内気の除湿が必要となる民生・業務・産業分野での空調において、除湿の潜熱負荷ならびに再加熱の顕熱負荷を軽減することで電力やガスなどの消費エネルギーを低減し、安価で高性能な蓄熱式調湿空調システムの提供するものである。   The present invention has been made in order to solve the above-mentioned problems. In the air conditioning in the consumer / business / industrial fields where dehumidification accompanying introduction of outside air (ventilation) or dehumidification of room air is required, the latent heat load of dehumidification and By reducing the sensible heat load of reheating, energy consumption such as electric power and gas is reduced, and an inexpensive and high-performance regenerative humidity control air conditioning system is provided.

より具体的には、工場や建築物の換気空調において、特に夏季の昼間(午後2時頃)に高まる冷房除湿に伴う空調ピーク負荷を、新規の蓄熱式調湿空調システムにて低減すると共に、単位電力量当たりの二酸化炭素排出比率の低い夜間電力を活用すると共に、従来から使用される水蓄熱装置や氷蓄熱装置の大幅な効率改善と運用改善を達成して、安全で快適な室内空調環境を提供することを目的としている。すなわち、本発明の主たる目的は、換気が必要な空調システムにおいて、除湿時の空調機消費エネルギーを削減できる蓄熱式調湿空調システムを提供することにある。   More specifically, in the ventilation and air conditioning of factories and buildings, especially during the summer daytime (around 2pm), the air conditioning peak load accompanying cooling and dehumidification is reduced by a new regenerative humidity control air conditioning system, A safe and comfortable indoor air-conditioning environment by utilizing nighttime power with a low carbon dioxide emission rate per unit of electric energy and at the same time greatly improving the efficiency and operation of water storage devices and ice storage devices. The purpose is to provide. That is, the main object of the present invention is to provide a regenerative humidity control air conditioning system that can reduce the energy consumed by the air conditioner during dehumidification in an air conditioning system that requires ventilation.

前記課題を解決するために、請求項1に係る本発明では、紙または樹脂膜に吸湿性を有する微細粒子を担持させた吸湿平板と、該吸湿平板をコルゲート加工した吸湿波板を相互に接着させた後に、巻回あるいは積層して通気性を確保した円筒または矩形形状の水蒸気吸脱着素子とし、これを円筒形状あるいは矩形状の水蒸気吸脱着モジュール内に通過空気の漏洩が発生しないように固定し、その上で、水蒸気吸脱着モジュールを水蒸気吸脱着ユニット内に1個または複数個を設置することで水蒸気吸脱着ユニットを形成するようにしたので通過する空気風量に応じ簡単に吸着剤量の調整が可能となると共に、水蒸気吸脱着モジュールの量産効果による低価格化も達成される。   In order to solve the above-mentioned problem, in the present invention according to claim 1, a moisture-absorbing plate in which fine particles having hygroscopic properties are supported on a paper or a resin film and a moisture-absorbing corrugated plate obtained by corrugating the moisture-absorbing plate are bonded to each other. Then, it is wound or stacked to form a cylindrical or rectangular water vapor adsorption / desorption element that ensures air permeability, and this is fixed to prevent leakage of passing air in the cylindrical or rectangular water vapor adsorption / desorption module. On top of that, one or more water vapor adsorption / desorption modules are installed in the water vapor adsorption / desorption unit to form the water vapor adsorption / desorption unit. In addition to being able to make adjustments, it is possible to reduce the price due to the mass production effect of the water vapor adsorption / desorption module.

その結果、従来の連続回転方式のデシカントロータを使用するシステムでは基本的に不可能であった紙や樹脂を母材とする水蒸気吸脱着素子を追加加工せずに使用することが可能となるので、システムの軽量化や価格低減が容易に達成される。   As a result, it becomes possible to use a water vapor adsorption / desorption element based on paper or resin as a base material, which was basically impossible with a system using a conventional continuous rotation type desiccant rotor, without additional processing. , System weight reduction and price reduction are easily achieved.

また、除湿処理対象空気を、水蓄熱装置あるいは氷蓄熱装置から供給される冷水(冷媒)を使用する熱交換器(冷却手段)にて所定温度まで冷却した後に水蒸気吸脱着ユニットへ導く構成としているので、水蒸気吸脱着ユニット内に設置される水蒸気吸脱着素子に担持される吸湿剤は常に相対湿度が100%に近い空気を対象とする吸湿運転が可能となり、吸湿剤となる吸着剤あるいは発明者によりその特性が明確化されている高分子収着剤は最も高い吸湿率条件にての吸湿作用を発揮できる。   The dehumidification target air is cooled to a predetermined temperature by a heat exchanger (cooling means) using cold water (refrigerant) supplied from a water heat storage device or an ice heat storage device, and then guided to a water vapor adsorption / desorption unit. Therefore, the hygroscopic agent carried on the water vapor adsorption / desorption element installed in the water vapor adsorption / desorption unit can always perform a moisture absorption operation for air whose relative humidity is close to 100%, and the adsorbent or inventor serving as the hygroscopic agent. Thus, the polymer sorbent whose characteristics are clarified can exhibit a hygroscopic action under the highest moisture absorption conditions.

高分子収着剤に付いては、たとえば「革新的高機能収着剤による高度ヒートサイクルの展開」日本機会学会誌、vol.104 No.987,pp.32,2001年2月、あるいは「吸湿能力2倍以上の新素材:高分子収着剤の展開」建築設備と配管工事、PP.32−36、2006年1月 などに概要が紹介されている。   For polymer sorbents, for example, “Development of advanced heat cycle with innovative high-performance sorbents”, Journal of the Japan Opportunity Association, vol.104 No.987, pp.32, February 2001, or “Hygroscopic Absorption” New materials with more than twice the capacity: Development of polymer sorbents ”Building equipment and piping work, PP. The outline is introduced in 32-36, January 2006.

一方再生運転モードでは、夜間電力を使用して冷熱を製造する水蓄熱装置や氷蓄熱装置から排出される温排熱を直接使用したり、または一時蓄熱した後に、通過する外気の加熱手段へ導き、高温化(相対湿度低下)した後に水蒸気吸脱着ユニットへ導く構成としているので、水蒸気吸脱着ユニット内に設置される水蒸気吸脱着素子の再生のために必要な熱エネルギーを全て排熱でまかなうことが可能となる。   On the other hand, in the regenerative operation mode, hot exhaust heat discharged from a water heat storage device or ice heat storage device that produces cold using electric power at night is directly used, or after temporary heat storage, it is led to a heating means for passing outside air. Since it is configured to lead to the water vapor adsorption / desorption unit after high temperature (relative humidity reduction), all the heat energy necessary for regeneration of the water vapor adsorption / desorption element installed in the water vapor adsorption / desorption unit must be covered by exhaust heat. Is possible.

この結果、再生運転モードでは、水蓄熱装置あるいは氷蓄熱装置に使用される冷凍機の運転効率向上を含めて、高い省エネルギー運転が達成される。   As a result, in the regeneration operation mode, high energy-saving operation is achieved including improvement of the operation efficiency of the refrigerator used for the water heat storage device or the ice heat storage device.

また、水蒸気吸脱着ユニット内に設置される水蒸気吸脱着素子の量は、水蒸気吸脱着モジュールの個数を調整することで加減できる構成としたので、設備容量に応じて水蒸気吸脱着モジュールを設計・製造する手間が省け、かつ量産効果による低価格化が可能となっている。   In addition, the amount of water vapor adsorption / desorption element installed in the water vapor adsorption / desorption unit can be adjusted by adjusting the number of water vapor adsorption / desorption modules, so the water vapor adsorption / desorption module is designed and manufactured according to the equipment capacity. This makes it possible to reduce the cost of mass production.

請求項2に係る本発明では、冷却手段を通過した後の空気温度が所定値となるように、冷却手段に循環する冷水等の温度と流量を調整するため、導入する外気条件に関わらず(外気は結露条件以下まで冷却され)、冷却手段を通過後の空気の相対湿度は100%近傍まで上昇させることが可能となる。その結果、水蒸気吸脱着ユニット内に設置される水蒸気吸脱着素子に担持される吸湿剤は最も高い吸湿率条件にての吸湿作用を発揮できると共に、通過空気は吸湿に伴う絶対湿度の低下と温度上昇は空気線図上の等エンタルピー線にほぼ従って変動させることが可能となる。   In the present invention according to claim 2, the temperature and flow rate of cold water or the like circulating to the cooling means are adjusted so that the air temperature after passing through the cooling means becomes a predetermined value. The outside air is cooled to below the dew condensation condition), and the relative humidity of the air after passing through the cooling means can be increased to near 100%. As a result, the hygroscopic agent supported by the water vapor adsorption / desorption element installed in the water vapor adsorption / desorption unit can exhibit a moisture absorption effect under the highest moisture absorption condition, and the passing air has a decrease in absolute humidity and temperature due to moisture absorption. The rise can be varied approximately according to the isoenthalpy line on the air diagram.

結果的に特段の制御手段を使用せずとも水蒸気吸脱着ユニットを通過した後の空気条件をほぼ確定させることが可能となる。   As a result, the air condition after passing through the water vapor adsorption / desorption unit can be almost determined without using any special control means.

請求項3に係る本発明では、水蒸気吸脱着ユニット内に設置される水蒸気吸脱着素子に担持される吸湿剤として高分子収着剤を使用したので、他の吸湿剤に比して相対湿度100%近傍の空気を対象とする吸湿率が格段に高い特性での除湿運転モードが可能となり、結果的に同一量の水分を吸湿する条件における吸湿剤使用量が低減でき、結果的に水蒸気吸脱着ユニットの小型化、軽量化が達成できる。   In the present invention according to claim 3, since the polymer sorbent is used as the hygroscopic agent supported on the water vapor adsorption / desorption element installed in the water vapor adsorption / desorption unit, the relative humidity is 100 as compared with other hygroscopic agents. % Dehumidification operation mode with a characteristic of extremely high moisture absorption for air in the vicinity of% is possible. As a result, the amount of hygroscopic agent used under the condition of absorbing the same amount of moisture can be reduced, resulting in water vapor adsorption / desorption. The unit can be reduced in size and weight.

請求項4に係る本発明では、夜間の運転を専ら水蒸気吸脱着ユニットの再生を行う再生運転モードとし、昼間の運転を専ら水蒸気吸脱着ユニットによる外気あるいは通過空気の除湿を行う除湿運転モードとしたので、夜間の冷熱製造時に水蓄熱装置や氷蓄熱装置から排出される排熱を吸湿剤の再生に利用することが可能となるほか、昼間の除湿運転モードにおける冷却手段への冷熱供給において水蓄熱装置や氷蓄熱装置からの冷水利用が可能となる。この結果、水蓄熱装置や氷蓄熱装置への冷水の還り温度を高温化することが可能となり、蓄熱装置の蓄熱容量が拡大されると共に、特に氷蓄熱装置での解氷率が向上するメリットが発生する。   In the present invention according to claim 4, the night operation is a regeneration operation mode in which the steam adsorption / desorption unit is exclusively regenerated, and the daytime operation is exclusively in a dehumidification operation mode in which the outside air or the passing air is dehumidified by the steam adsorption / desorption unit. Therefore, it is possible to use the exhaust heat discharged from the water heat storage device or ice heat storage device during nighttime cold heat production for the regeneration of the moisture absorbent, and to store water in the cold supply to the cooling means in the dehumidifying operation mode during the daytime. Use of cold water from a device or an ice heat storage device becomes possible. As a result, it is possible to increase the return temperature of cold water to the water heat storage device or ice heat storage device, and the heat storage capacity of the heat storage device is expanded, and in particular, there is a merit that the ice melting rate in the ice heat storage device is improved. Occur.

請求項5に係る本発明では、夜間の冷熱製造時に水蓄熱装置や氷蓄熱装置から排出される排熱を温水の形で蓄熱する構成としたので、水蓄熱装置や氷蓄熱装置に使用される冷凍機の運転に関わらず、再生運転モードを導入可能となる。その結果、再生運転モードと除湿運転モードの切り替え自由度が向上し、特に、水蒸気吸脱着ユニットの小型化が達成できる。   In this invention which concerns on Claim 5, since it was set as the structure which heat-stores the exhaust heat discharged | emitted from a water thermal storage apparatus or an ice thermal storage apparatus at the time of nighttime cold energy manufacture in the form of warm water, it is used for a water thermal storage apparatus or an ice thermal storage apparatus Regardless of the operation of the refrigerator, the regeneration operation mode can be introduced. As a result, the degree of freedom of switching between the regeneration operation mode and the dehumidification operation mode is improved, and in particular, the water vapor adsorption / desorption unit can be reduced in size.

請求項6に係る本発明では、除湿運転モード時において運転継続と共に水蒸気吸脱着ユニット内に吸湿された水分量が増大し、水蒸気吸脱着素子に担持される吸湿剤の状態も変化する。このため、除湿運転モードでは運転開始時点と運転終了時点での水蒸気吸脱着ユニット通過後の空気条件が変動するが、水蒸気吸脱着ユニットをバイパスする空気流路と当該空気流路内に空気流量を調整するダンパーを設置したので、水蒸気吸脱着ユニットを通過した空気と水蒸気吸脱着ユニットをバイパスした空気を混合することで、所定の空気条件(温度、湿度)が達成可能となる。   In the present invention according to claim 6, as the operation continues in the dehumidifying operation mode, the amount of moisture absorbed in the water vapor adsorption / desorption unit increases, and the state of the moisture absorbent carried on the water vapor adsorption / desorption element also changes. For this reason, in the dehumidifying operation mode, the air condition after passing through the water vapor adsorption / desorption unit at the start of operation and at the end of operation varies, but the air flow rate bypassing the water vapor adsorption / desorption unit and the air flow rate in the air flow channel are changed. Since the damper to be adjusted is installed, predetermined air conditions (temperature, humidity) can be achieved by mixing the air that has passed through the water vapor adsorption / desorption unit and the air that has bypassed the water vapor adsorption / desorption unit.

以上説明したとおり本発明によれば、紙または樹脂膜に吸湿性を有する微細粒子を担持させた吸湿平板と、該吸湿平板をコルゲート加工した吸湿波板を相互に接着させた後に、巻回あるいは積層して円筒または矩形形状の水蒸気吸脱着素子とし、これを円筒形状あるいは矩形状の水蒸気吸脱着モジュール内に通過空気の漏洩が発生しないように固定したのでハニカム状の開口部を有する水蒸気吸脱着素子が形成される。その上で、水蒸気吸脱着モジュールを水蒸気吸脱着ユニット内に1個または複数個を設置することで水蒸気吸脱着ユニットを形成するようにしたので除湿処理空気風量に応じて使用する吸湿剤の量を水蒸気吸脱着モジュールの個数を調整することで段階的ではあるが簡単に設定可能となる。   As described above, according to the present invention, a moisture absorbing flat plate supporting fine particles having moisture absorbing properties on paper or a resin film and a moisture absorbing corrugated plate obtained by corrugating the moisture absorbing flat plate are bonded to each other, and then wound or Stacked to form a cylindrical or rectangular water vapor adsorption / desorption element, and this was fixed so that no leakage of passing air occurred in the cylindrical or rectangular water vapor adsorption / desorption module. An element is formed. In addition, one or more water vapor adsorption / desorption modules are installed in the water vapor adsorption / desorption unit to form the water vapor adsorption / desorption unit. By adjusting the number of water vapor adsorption / desorption modules, it is possible to easily set in a stepwise manner.

このように、水蒸気吸脱着ユニットの構成を適用することで、水蒸気吸脱着モジュールの加工を最小限として、かつ摺動部位を排除し、モジュールを規格化することで量産効果が得られ、高い基本性能を維持したままでシステムの低価格化が達成される。   In this way, by applying the configuration of the water vapor adsorption / desorption unit, the processing of the water vapor adsorption / desorption module is minimized, the sliding part is eliminated, and the module is standardized, so that mass production effects can be obtained, and a high basic System price reduction is achieved while maintaining performance.

また運転モードに応じて、水蒸気吸脱着ユニットを通過する空気の切り替を最小で2つのダンパーにて行うようにし、大量の換気を行う場合であってもシステムの可動部を最小化したので、システムの信頼性や保守性が向上した。   In addition, depending on the operation mode, the air passing through the water vapor adsorption / desorption unit is switched with a minimum of two dampers, and even when a large amount of ventilation is performed, the moving parts of the system are minimized. Reliability and maintainability improved.

さらに、低温再生能力が高く、相対湿度が100%近い条件で高い吸着性能を示す高分子収着剤を吸湿剤として使用したので、40℃程度の熱源があれば十分な吸脱着性能が確保可能となった。   In addition, a polymer sorbent with high low-temperature regeneration capability and high adsorption performance under conditions where the relative humidity is close to 100% is used as a hygroscopic agent, so sufficient adsorption / desorption performance can be secured with a heat source of about 40 ° C. It became.

さらにまた、本発明では夜間の再生運転モードにて、吸湿剤の再生に水蓄熱装置や氷蓄熱装置が夜間に排出する冷凍機排熱(その温度は概ね40℃以上)を利用することから、追加的なエネルギー消費はファン動力程度であり、極めて省エネ性の高い状態で吸湿剤の再生が可能である。   Furthermore, in the present invention, in the nighttime regeneration operation mode, the water heat storage device or the ice heat storage device uses the exhaust heat of the refrigerator discharged at night (its temperature is approximately 40 ° C. or higher) to regenerate the moisture absorbent. The additional energy consumption is about fan power, and the hygroscopic agent can be regenerated with extremely high energy savings.

一方、昼間の除湿運転モードでは、建物(空調対象空間)への供給空気の温度と湿度を一定に保つため、冷却手段通過後の空気の温度と湿度を一定とした後に水蒸気吸脱着ユニットへ供給する制御を加えたので、水蒸気吸脱着ユニットを通過した後の空気状態を特定の条件に設定することが可能となる。   On the other hand, in the daytime dehumidifying operation mode, in order to keep the temperature and humidity of the air supplied to the building (the air-conditioning target space) constant, the air temperature and humidity after passing through the cooling means are made constant and then supplied to the water vapor adsorption / desorption unit. Therefore, the air state after passing through the water vapor adsorption / desorption unit can be set to a specific condition.

これらの効果から、高い普及性を有し、高性能で安価な蓄熱式除湿空調システムが実現される。   From these effects, a heat storage dehumidification air conditioning system having high spread and high performance and low cost is realized.

本発明による第一の実施例である蓄熱式調湿空調システムの構成を示す構成概要図The structure schematic diagram which shows the structure of the thermal storage type humidity control air-conditioning system which is a 1st Example by this invention 本発明による第一の実施例での除湿運転モード時の各部通過空気状態を説明する空気線図例Example of air line diagram for explaining each part passing air state at the time of dehumidifying operation mode in the first embodiment according to the present invention. 本発明による第一の実施例での再生運転モード時の各部通過空気状態を説明する空気線図例Example of an air line diagram for explaining the air passage state of each part in the regeneration operation mode in the first embodiment according to the present invention. 本発明で使用する高分子収着剤の20℃吸着等温線を他の吸湿剤(シリカゲルや活性炭など)との対比で示した特性図Characteristic diagram showing the 20 ° C adsorption isotherm of the polymer sorbent used in the present invention in comparison with other moisture absorbents (silica gel, activated carbon, etc.) 本発明による第二の実施例である蓄熱式調湿空調システムの構成を示す構成概要図The structure schematic diagram which shows the structure of the thermal storage type humidity control air conditioning system which is a 2nd Example by this invention.

以下、本発明の実施の形態について図面を参照しながら詳述する。図1は、本発明による第一の蓄熱式調湿空調システムの構成を示す構成概要図である。図2は、図1に示す本発明による第一の実施例による除湿運転モードにおける各部を通過する空気の状態を空気線図上に示したものである。図3は、同様に図1に示す本発明による第一の実施例による再生運転モードにおける各部を通過する空気の状態を空気線図上に示したものである。図4は、本発明に使用される吸湿剤である高分子収着剤の吸湿率を従来の吸湿剤との比較にて示した20℃吸着等温線を示した図である。図5は、本発明による第二の蓄熱式調湿空調システムの構成を示す構成概要図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a configuration of a first heat storage type humidity control air conditioning system according to the present invention. FIG. 2 is an air diagram showing the state of air passing through each part in the dehumidifying operation mode according to the first embodiment of the present invention shown in FIG. FIG. 3 shows the state of air passing through each part in the regeneration operation mode according to the first embodiment of the present invention shown in FIG. 1 on the air diagram. FIG. 4 is a graph showing a 20 ° C. adsorption isotherm showing the moisture absorption rate of the polymer sorbent, which is a moisture absorbent used in the present invention, in comparison with a conventional moisture absorbent. FIG. 5 is a schematic configuration diagram showing the configuration of the second regenerative humidity control air conditioning system according to the present invention.

〔蓄熱式調湿空調システムの構成〕
本発明による第一の実施例である蓄熱式調湿空調システムは図1に示すように、除湿運転モードにおいてはダクトを経由した外気を通気ファン(1)へ導き、その後に冷却手段(2)を経由して水蒸気吸脱着ユニット(4)へ導いた後に、ダンパー(6)を経由して空調対象の空間へ給気される構成である。
[Configuration of heat storage humidity control air conditioning system]
As shown in FIG. 1, the regenerative humidity control air conditioning system according to the first embodiment of the present invention guides the outside air through the duct to the ventilation fan (1) in the dehumidifying operation mode, and then cools the cooling means (2). After being led to the water vapor adsorption / desorption unit (4), the air is supplied to the air-conditioned space via the damper (6).

この時、冷却手段(2)はその内部に水蓄熱装置(7)の冷水蓄熱槽(8)からの冷水が通水されており、冷却手段(2)を経由した空気は所定の温度と相対湿度に調整される。   At this time, cold water from the cold water heat storage tank (8) of the water heat storage device (7) is passed through the cooling means (2), and the air passing through the cooling means (2) has a relative temperature to a predetermined temperature. Adjusted to humidity.

一方、再生運転モードにおいて、外気は同様にダクトを経由した後に通気ファン(1)へ導かれ、その後に加熱手段(3)を経由して水蒸気吸脱着ユニット(4)へ通過後、ダンパー(5)を経由して排気される構成である。   On the other hand, in the regeneration operation mode, the outside air is similarly led to the ventilation fan (1) after passing through the duct, and then passed to the water vapor adsorption / desorption unit (4) via the heating means (3), and then the damper (5 ).

この時、加熱手段(3)はその内部に水蓄熱装置(7)の温水蓄熱槽(9)からの温水が通水されており、加熱手段(3)を経由した空気は昇温され相対湿度を低下させた後に水蒸気吸脱着ユニット(4)へ供給される。   At this time, warm water from the hot water storage tank (9) of the water heat storage device (7) is passed through the heating means (3), and the temperature of the air passing through the heating means (3) is increased and the relative humidity is increased. Is supplied to the water vapor adsorption / desorption unit (4).

第一の実施例では冷却手段(2)と加熱手段(3)は同一の熱交換器であり、除湿運転モード時には冷水蓄熱槽(8)からの冷水を循環させ、再生運転モード時には温水蓄熱槽(9)からの温水を循環するようにしてある。   In the first embodiment, the cooling means (2) and the heating means (3) are the same heat exchanger, circulating cold water from the cold water heat storage tank (8) in the dehumidifying operation mode, and hot water heat storage tank in the regeneration operation mode. The hot water from (9) is circulated.

本発明による第一の実施例では、夜間電力による水蓄熱装置(7)運転時に排出される温熱を温水蓄熱槽(9)にて蓄え、同時に製造される冷熱を冷水蓄熱槽(8)にて蓄える構成としてあるので、除湿運転モードと再生運転モードの切り替えは比較的自由に行うことが可能である。   In the first embodiment according to the present invention, the warm heat discharged from the nighttime power storage device (7) is stored in the warm water storage tank (9), and the cold produced at the same time is stored in the cold water storage tank (8). Since it is configured to store, switching between the dehumidifying operation mode and the regeneration operation mode can be performed relatively freely.

勿論、除湿空調負荷の発生は主に昼間であるから、夜間は専ら再生運転モードを実施し、昼間に除湿運転モードを実施することも可能である。   Of course, the generation of the dehumidifying air-conditioning load is mainly during the daytime, so it is possible to carry out the regeneration operation mode exclusively at night and the dehumidification operation mode during the daytime.

この様な運転時にシステムを通過する空気の状態に付いて、図2および図3を用いて説明する。   The state of air passing through the system during such operation will be described with reference to FIGS.

図2は除湿運転モードにおける空気の状態変化を示した空気線図である。   FIG. 2 is an air diagram showing changes in the air state in the dehumidifying operation mode.

外気[A]は通気ファン(1)により冷却手段(2)にて、その状態を[B]を経由して[C]まで除湿冷却される。状態[C]は理論的に相対湿度100%であるが、冷却手段(2)通過後にダクトなどからの加熱のため若干昇温すると共に、冷却手段(C)の冷却効果が不十分な通過空気などとの混合のため、相対湿度が90%程度の状態[D]となる。その後、水蒸気吸脱着ユニット(4)にて吸湿剤の効果で乾燥されるが、原理的に等エンタルピー変化に近いために温度が上昇し状態[E]となる。   The outside air [A] is dehumidified and cooled by the cooling means (2) by the ventilation fan (1) to [C] via [B]. State [C] theoretically has a relative humidity of 100%, but after passing through the cooling means (2), the temperature rises slightly due to heating from the duct or the like, and the passing air has an insufficient cooling effect of the cooling means (C). Therefore, the relative humidity becomes a state [D] of about 90%. Thereafter, it is dried in the water vapor adsorption / desorption unit (4) by the effect of the hygroscopic agent. In principle, however, the temperature rises to a state [E] because it is close to an isoenthalpy change.

状態[E]は給気条件であることが望ましいが、水蒸気吸脱着ユニット(4)に貯蔵された水分量などの条件によっては、等エンタルピー線上を移動するので、給気条件に合致させるべく、冷却手段(2)を通過した後の状態[D]の空気をバイパスさせて混合するなどの追加的手段を用いて調整することになる。   The state [E] is preferably an air supply condition, but depending on conditions such as the amount of moisture stored in the water vapor adsorption / desorption unit (4), it moves on the isoenthalpy line. Adjustment is made using additional means such as bypassing and mixing the air in the state [D] after passing through the cooling means (2).

図3は再生運転モードにおける空気の状態変化を示した空気線図である。   FIG. 3 is an air diagram showing changes in the air state in the regeneration operation mode.

外気[F]は通気ファン(1)により加熱手段(3)を経て、水蒸気吸脱着ユニット(4)へ送気される。この時、加熱手段にて状態[G]まで昇温され相対湿度が低下する。状態[G]にて水蒸気吸脱着ユニット(4)へ流入した空気は、水蒸気吸脱着ユニット(4)からの水蒸気を取り込むと共に顕熱を水蒸気吸脱着ユニットへ与えて温度低下し状態[H]となり、外部へ排気される。   The outside air [F] is sent to the water vapor adsorption / desorption unit (4) through the heating means (3) by the ventilation fan (1). At this time, the temperature is raised to the state [G] by the heating means, and the relative humidity decreases. The air flowing into the water vapor adsorption / desorption unit (4) in the state [G] takes in the water vapor from the water vapor adsorption / desorption unit (4) and gives sensible heat to the water vapor adsorption / desorption unit, resulting in a temperature drop to the state [H]. Exhausted to the outside.

この様な運転により、除湿運転モードでは空調対象空間へ所定の温度と相対湿度に調整された空気が連続的に供給され、再生運転モードでは外気などを用いて水蒸気吸脱着ユニット(4)内の吸湿剤が再生され、次の除湿運転モードへの準備が整えられる。   By such an operation, in the dehumidifying operation mode, air adjusted to a predetermined temperature and relative humidity is continuously supplied to the air-conditioning target space, and in the regeneration operation mode, the inside of the water vapor adsorption / desorption unit (4) using outside air or the like. The hygroscopic agent is regenerated and ready for the next dehumidifying operation mode.

この様な運転を行う蓄熱式調湿空調システムにおいて、吸湿剤として高分子収着剤を利用することのメリットを図4にて説明する。   The merit of using a polymer sorbent as the hygroscopic agent in the regenerative humidity control air conditioning system that performs such operation will be described with reference to FIG.

図4は高分子収着剤、シリカゲル剤、活性炭の20℃吸着等温線を示したものである。図から判る様に高分子収着剤は全相対湿度領域(横軸)で高い吸湿率(縦軸)を示すと共に、特に相対湿度が90%を超える領域で吸湿率が急激に増大するという特性がある。   FIG. 4 shows the 20 ° C. adsorption isotherm of the polymer sorbent, silica gel, and activated carbon. As can be seen from the figure, the polymer sorbent exhibits a high moisture absorption rate (vertical axis) in the entire relative humidity region (horizontal axis) and a characteristic that the moisture absorption rate rapidly increases particularly in the region where the relative humidity exceeds 90%. There is.

本発明ではこの特性に着目している。   The present invention focuses on this characteristic.

すなわち、除湿運転モードで冷却手段(2)を通過した後の状態[C、D]の空気は相対湿度が90%以上であるため、この高分子収着剤を用いる水蒸気吸脱着ユニット(4)は大量の水分を吸湿することが可能となる。換言すれば、同一量の水分を吸湿するために使用する吸湿剤の重量が少なくて済むことになる。その結果、除湿運転モードにて必要となる吸湿剤の量から決定される水蒸気吸脱着ユニット(4)の重量、サイズなどが低減・小型化できる事となり、結果的に蓄熱式調湿空調システムの小型軽量化や低価格化が達成できる。   That is, since the relative humidity of the air in the state [C, D] after passing through the cooling means (2) in the dehumidifying operation mode is 90% or more, the water vapor adsorption / desorption unit (4) using this polymer sorbent. Can absorb a large amount of moisture. In other words, the weight of the hygroscopic agent used to absorb the same amount of moisture can be reduced. As a result, the weight and size of the water vapor adsorption / desorption unit (4) determined from the amount of the moisture absorbent required in the dehumidifying operation mode can be reduced and downsized. As a result, the regenerative humidity control air conditioning system Small size, light weight and low price can be achieved.

図5は本発明による第二の実施例の構成概略図である。   FIG. 5 is a schematic diagram of the configuration of the second embodiment according to the present invention.

この蓄熱式調湿空調システムでは、除湿運転モードは第一の実施例と同様に水蓄熱装置の冷水蓄熱槽からの冷水を用いるが、再生運転モードでは水蓄熱装置に使用される冷凍機が空冷ヒートポンプであることから、凝縮器冷却に使用された外気を直接導入する。すなわち第一の実施例における加熱手段(3)が空冷ヒートポンプの凝縮器(10)となる事例である。   In this heat storage type humidity control air conditioning system, the dehumidifying operation mode uses cold water from the cold water heat storage tank of the water heat storage device as in the first embodiment, but in the regeneration operation mode, the refrigerator used for the water heat storage device is air-cooled. Since it is a heat pump, the outside air used for cooling the condenser is directly introduced. That is, this is an example in which the heating means (3) in the first embodiment is a condenser (10) of an air-cooled heat pump.

この様な構成とすることで、蓄熱式調湿空調システムの設置条件や運用などに若干の制約が発生するが、システム全体の構成が単純化され、設備コストの大幅な削減が可能となる。   By adopting such a configuration, there are some restrictions on the installation conditions and operation of the regenerative humidity control air conditioning system, but the configuration of the entire system is simplified and the equipment cost can be greatly reduced.

1 通気ファン(A)
2 冷却手段
3 加熱手段
4 水蒸気吸脱着モジュール
5 ダンパー(I)
6 ダンパー(II)
7 水蓄熱装置(水冷ヒートポンプ型)
8 冷水蓄熱槽
9 温水蓄熱槽
10 空冷ヒートポンプの凝縮器
11 ダンパー
12 ダンパー
13 制御装置(図示されていない)
1 Ventilation fan (A)
2 Cooling means 3 Heating means 4 Water vapor adsorption / desorption module 5 Damper (I)
6 Damper (II)
7 Water heat storage device (water-cooled heat pump type)
8 Cold water heat storage tank 9 Hot water heat storage tank 10 Air-cooled heat pump condenser 11 Damper 12 Damper 13 Controller (not shown)

Claims (5)

水蒸気吸脱着ユニット、通気ファン及び熱交換器と、これら構成要素を連結する通風ダクトならびに通過空気の流れ方向を決める第一のダンパー及び第二のダンパーとを接続することによって構成され、
第一のダンパー、第二のダンパー及び通気ファンが制御手段にて一元管理された蓄熱式調湿空調システムであって、
冷水蓄熱槽と水冷ヒートポンプと温水蓄熱槽とで構成された水蓄熱装置又は氷蓄熱装置が設けられ、
熱交換器を温水蓄熱槽と接続して第一のダンパーを開くとともに第二のダンパーを閉じた状態とすることにより、通気ファンを経て熱交換器を通過することにより加熱された外気を、水蒸気吸脱着ユニットを通過させた後に外部へ排気することで、水蒸気吸脱着ユニットの再生を行う再生運転モードと、
熱交換器を冷水蓄熱槽と接続して第一のダンパーを閉じるとともに第二のダンパーを開いた状態とすることにより、通気ファンを経て熱交換器を通過することにより冷却された処理対象空気を、水蒸気吸脱着ユニットを通過させた後に調湿・調温対象の空間へ導くことで、処理対象空気の除湿を行う除湿運転モードと
が交互に繰り返されるようにするとともに、
夜間は専ら30分以上の再生運転モードで運転する一方、昼間は専ら30分以上の除湿運転モードで運転するように設定することにより、
除湿運転モードにおける処理対象空気の冷却には、夜間電力を利用して製造された冷熱よって冷却された冷水を利用する一方、再生運転モードにおける外気の加熱には、水蓄熱装置又は氷蓄熱装置に使用される冷凍機の温排熱を活用する構成とし、
さらに、水蒸気吸脱着ユニットは、その内部に1個又は複数個の水蒸気吸脱着モジュールが設置された構成とするとともに、該水蒸気吸脱着モジュールを、紙又は樹脂膜に吸湿性を有する微細粒子を担持させた吸湿平板と、該吸湿平板をコルゲート加工した吸湿波板とを相互に接着させた後に、巻回あるいは積層することで通気性を有する円筒または矩形形状とした水蒸気吸脱着素子を内包する構成としたことを特徴とする蓄熱式調湿空調システム。
It is configured by connecting a water vapor adsorption / desorption unit, a ventilation fan, and a heat exchanger, a ventilation duct that connects these components, and a first damper and a second damper that determine the flow direction of the passing air,
A heat storage humidity control air conditioning system in which the first damper, the second damper and the ventilation fan are centrally managed by the control means,
A water heat storage device or ice heat storage device composed of a cold water heat storage tank, a water cooling heat pump and a hot water heat storage tank is provided,
By connecting the heat exchanger to the hot water storage tank and opening the first damper and closing the second damper, the outside air heated by passing through the heat exchanger via the ventilation fan is converted into water vapor. A regeneration operation mode in which the water vapor adsorption / desorption unit is regenerated by exhausting it outside after passing through the adsorption / desorption unit;
By connecting the heat exchanger to the cold water storage tank and closing the first damper and opening the second damper, the air to be treated cooled by passing through the heat exchanger via the ventilation fan In addition, the dehumidifying operation mode for dehumidifying the air to be treated is alternately repeated by guiding the moisture absorption / desorption unit to the space for humidity control / temperature control after passing through the water vapor adsorption / desorption unit.
By setting it to operate exclusively in the regenerative operation mode of 30 minutes or more at night, while operating in the dehumidification operation mode of 30 minutes or more exclusively in the daytime,
For cooling the air to be treated in the dehumidifying operation mode, chilled water cooled by cold produced using nighttime power is used, while for heating the outside air in the regeneration operation mode, a water heat storage device or an ice heat storage device is used. It is configured to utilize the heat exhaust heat of the refrigerator used,
Further, the water vapor adsorption / desorption unit has a structure in which one or a plurality of water vapor adsorption / desorption modules are installed therein, and the water vapor adsorption / desorption module is loaded with fine particles having hygroscopicity on paper or a resin film. A structure that includes a moisture-absorbing flat plate and a water-absorbing and desorbing element having a breathable cylindrical or rectangular shape by winding or laminating the moisture-absorbing plate and a corrugated moisture-absorbing corrugated plate. A regenerative humidity control air conditioning system.
水蒸気吸脱着ユニット、通気ファン及び熱交換器と、これら構成要素を連結する通風ダクトならびに通過空気の流れ方向を決める第一のダンパー及び第二のダンパーとを接続することによって構成され、
第一のダンパー、第二のダンパー及び通気ファンが制御手段にて一元管理された蓄熱式調湿空調システムであって、
冷水蓄熱槽と空冷ヒートポンプとその凝縮器とで構成された水蓄熱装置又は氷蓄熱装置が設けられ、
外気を凝縮器に導入して第一のダンパーを開くとともに第二のダンパーを閉じた状態とすることにより、凝縮器を通過することにより加熱された外気を、水蒸気吸脱着ユニットを通過させた後に外部へ排気することで、水蒸気吸脱着ユニットの再生を行う再生運転モードと、
熱交換器を冷水蓄熱槽と接続して第一のダンパーを閉じるとともに第二のダンパーを開いた状態とすることにより、通気ファンを経て熱交換器を通過することにより冷却された処理対象空気を、水蒸気吸脱着ユニットを通過させた後に調湿・調温対象の空間へ導くことで、処理対象空気の除湿を行う除湿運転モードと
が交互に繰り返されるようにするとともに、
夜間は専ら30分以上の再生運転モードで運転する一方、昼間は専ら30分以上の除湿運転モードで運転するように設定することにより、
除湿運転モードにおける処理対象空気の冷却には、夜間電力を利用して製造された冷熱よって冷却された冷水を利用する一方、再生運転モードにおける外気の加熱には、水蓄熱装置又は氷蓄熱装置に使用される冷凍機の温排熱を活用する構成とし、
さらに、水蒸気吸脱着ユニットは、その内部に1個又は複数個の水蒸気吸脱着モジュールが設置された構成とするとともに、該水蒸気吸脱着モジュールを、紙又は樹脂膜に吸湿性を有する微細粒子を担持させた吸湿平板と、該吸湿平板をコルゲート加工した吸湿波板とを相互に接着させた後に、巻回あるいは積層することで通気性を有する円筒または矩形形状とした水蒸気吸脱着素子を内包する構成としたことを特徴とする蓄熱式調湿空調システム。
It is configured by connecting a water vapor adsorption / desorption unit, a ventilation fan, and a heat exchanger, a ventilation duct that connects these components, and a first damper and a second damper that determine the flow direction of the passing air,
A heat storage humidity control air conditioning system in which the first damper, the second damper and the ventilation fan are centrally managed by the control means,
A water heat storage device or ice heat storage device composed of a cold water heat storage tank, an air cooling heat pump and its condenser is provided,
After introducing the outside air into the condenser and opening the first damper and closing the second damper, the outside air heated by passing through the condenser passes through the water vapor adsorption / desorption unit. A regeneration operation mode for regenerating the water vapor adsorption / desorption unit by exhausting to the outside,
By connecting the heat exchanger to the cold water storage tank and closing the first damper and opening the second damper, the air to be treated cooled by passing through the heat exchanger via the ventilation fan In addition, the dehumidifying operation mode for dehumidifying the air to be treated is alternately repeated by guiding the moisture absorption / desorption unit to the space for humidity control / temperature control after passing through the water vapor adsorption / desorption unit.
By setting it to operate exclusively in the regenerative operation mode of 30 minutes or more at night, while operating in the dehumidification operation mode of 30 minutes or more exclusively in the daytime,
For cooling the air to be treated in the dehumidifying operation mode, chilled water cooled by cold produced using nighttime power is used, while for heating the outside air in the regeneration operation mode, a water heat storage device or an ice heat storage device is used. It is configured to utilize the heat exhaust heat of the refrigerator used,
Further, the water vapor adsorption / desorption unit has a structure in which one or a plurality of water vapor adsorption / desorption modules are installed therein, and the water vapor adsorption / desorption module is loaded with fine particles having hygroscopicity on paper or a resin film. A structure including a moisture-absorbing flat plate and a water-vapor absorbing / desorbing element having a breathable cylindrical or rectangular shape by adhering the moisture-absorbing plate and a corrugated moisture-absorbing corrugated plate to each other and then winding or laminating them. A regenerative humidity control air conditioning system.
除湿運転モードにおける熱交換器を通過した後の処理対象空気の温度が所定値となるように、熱交換器に供給される冷水の温度と流量を調整する請求項1又は2記載の蓄熱式調湿空調システム。   The heat storage type adjustment according to claim 1 or 2, wherein the temperature and flow rate of the cold water supplied to the heat exchanger are adjusted so that the temperature of the air to be treated after passing through the heat exchanger in the dehumidifying operation mode becomes a predetermined value. Humidity air conditioning system. 水蒸気吸脱着素子に使用される吸湿性を有する微細粒子が、高分子収着剤である請求項1〜3いずれか記載の蓄熱式調湿空調システム。   The regenerative humidity control air conditioning system according to any one of claims 1 to 3, wherein the fine particles having hygroscopicity used in the water vapor adsorption / desorption element are polymer sorbents. 水蒸気吸脱着ユニットをバイパスする空気流路を設置するとともに、当該バイパスを通過する空気流量を調整する個別のダンパーを通風ダクトに設置した請求項1〜いずれか記載の蓄熱式調湿空調システム。 The regenerative humidity control air conditioning system according to any one of claims 1 to 4 , wherein an air flow path that bypasses the water vapor adsorption / desorption unit is installed, and an individual damper that adjusts an air flow rate passing through the bypass is installed in the ventilation duct.
JP2009126418A 2009-05-26 2009-05-26 Regenerative humidity control air conditioning system Expired - Fee Related JP5473404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009126418A JP5473404B2 (en) 2009-05-26 2009-05-26 Regenerative humidity control air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009126418A JP5473404B2 (en) 2009-05-26 2009-05-26 Regenerative humidity control air conditioning system

Publications (2)

Publication Number Publication Date
JP2010276217A JP2010276217A (en) 2010-12-09
JP5473404B2 true JP5473404B2 (en) 2014-04-16

Family

ID=43423349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009126418A Expired - Fee Related JP5473404B2 (en) 2009-05-26 2009-05-26 Regenerative humidity control air conditioning system

Country Status (1)

Country Link
JP (1) JP5473404B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2593111T3 (en) * 2012-02-21 2016-12-05 Watergy Gmbh System for temperature regulation in closed spaces
JP6718871B2 (en) * 2014-11-21 2020-07-08 7エーシー テクノロジーズ,インコーポレイテッド Liquid desiccant air conditioning system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719761A (en) * 1986-05-30 1988-01-19 Cromer Charles J Cooling system
JPH09318127A (en) * 1996-05-24 1997-12-12 Ebara Corp Air-conditioning system
JPH09324938A (en) * 1996-06-06 1997-12-16 Sekisui House Ltd Dehumidifier in cooling/heating of heat storage type
JPH109633A (en) * 1996-06-20 1998-01-16 Ebara Corp Air-conditioning system
JP3037648B2 (en) * 1997-10-24 2000-04-24 株式会社荏原製作所 Dehumidification air conditioning system
US6557365B2 (en) * 2001-02-28 2003-05-06 Munters Corporation Desiccant refrigerant dehumidifier
JP2003014252A (en) * 2001-06-28 2003-01-15 Seibu Giken Co Ltd Dehumidifying air conditioner
WO2005090417A1 (en) * 2004-03-19 2005-09-29 Japan Exlan Company Limited Ultrafine particle capable of moisture absorption and desorption and product utilizing the ultrafine particle
JP2008304113A (en) * 2007-06-07 2008-12-18 Shin Nippon Air Technol Co Ltd Humidifying air-conditioning system
JP2009036414A (en) * 2007-07-31 2009-02-19 Kimura Kohki Co Ltd Heat pump-type dry air conditioning system

Also Published As

Publication number Publication date
JP2010276217A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP6383467B1 (en) Dehumidifying air conditioner
KR101434563B1 (en) Desiccant air conditioner
US8850840B2 (en) Desiccant air conditioner
JP2012026700A (en) Desiccant air-conditioning system
WO2009102910A1 (en) Energy recovery enhanced condenser reactivated desiccant refrigerant dehumidifier
JP5669587B2 (en) Low temperature regeneration desiccant air conditioner and operation method
WO2015045609A1 (en) Dehumidification system
JP4420463B2 (en) Desiccant ventilation system
JP2009097837A (en) Humidistat and temperature control desiccant rotor and desiccant ventilation system using the same
JP5497492B2 (en) Desiccant air conditioner
JP6018938B2 (en) Air conditioning system for outside air treatment
JP5473404B2 (en) Regenerative humidity control air conditioning system
JP2006341217A (en) Dehumidifier
JP4729409B2 (en) Desiccant ventilation system
JP2011033302A (en) Humidity control ventilator
JP5063745B2 (en) Air conditioner
JP2021159830A (en) Air quality regulating system
JP5844611B2 (en) Desiccant air conditioner
JP2008304113A (en) Humidifying air-conditioning system
JP2011043311A (en) Advanced humidity control system and method of operating the same
JP2010054184A5 (en)
JP6594227B2 (en) Air conditioning system
JP5978158B2 (en) Air conditioning system
JP6188438B2 (en) Air conditioner and operation method thereof
JP2000291980A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Ref document number: 5473404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees