JP2020079665A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2020079665A
JP2020079665A JP2018212385A JP2018212385A JP2020079665A JP 2020079665 A JP2020079665 A JP 2020079665A JP 2018212385 A JP2018212385 A JP 2018212385A JP 2018212385 A JP2018212385 A JP 2018212385A JP 2020079665 A JP2020079665 A JP 2020079665A
Authority
JP
Japan
Prior art keywords
air
air supply
supply
ventilation
conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018212385A
Other languages
Japanese (ja)
Other versions
JP7290936B2 (en
Inventor
佐竹 晃
Akira Satake
晃 佐竹
河原 博之
Hiroyuki Kawahara
博之 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP2018212385A priority Critical patent/JP7290936B2/en
Publication of JP2020079665A publication Critical patent/JP2020079665A/en
Application granted granted Critical
Publication of JP7290936B2 publication Critical patent/JP7290936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Central Air Conditioning (AREA)
  • Duct Arrangements (AREA)

Abstract

To provide a technique for actualizing superior planned ventilation in a whole-building air conditioning system independently of an operating condition of an air conditioner.SOLUTION: An air conditioning system includes a ventilating air supply device for delivering outside air into a ventilating air supply duct corresponding to each area to form ventilating supply air, the air conditioner for delivering sucked air as air-conditioner supply air to an air-conditioner air supply duct corresponding to each area, an airflow control damper for individually controlling an amount of the air-conditioner supply air to be delivered to the air-conditioner air supply duct, and a combination part for combining the ventilating supply air with the air-conditioner supply air and supplying it as air-conditioning supply air via the air-conditioning air supply duct to a living space, the combination part having the ventilating air supply duct and the air-conditioner air supply duct connected at an upstream side and the air-conditioning air supply duct connected at a downstream side. With the flow of the air-conditioner supply air in the combination part as a main flow, a direction of the flow of the ventilating supply air is integrated with a direction of the main flow in the joint part from the rear.SELECTED DRAWING: Figure 1

Description

本発明は、空調システムに関する。   The present invention relates to an air conditioning system.

住宅や建物の空調において、全館空調システムを実現するために様々な構成が考案されている。全館空調システムを用いることで、計画換気、冷暖房や空気清浄等の様々な処理を統合的に運用し、24時間快適な環境を維持することが期待されている。   In air conditioning of houses and buildings, various configurations have been devised to realize an air conditioning system for the entire building. It is expected that by using the whole building air conditioning system, various processes such as planned ventilation, heating and cooling, and air cleaning will be integrated to maintain a comfortable environment for 24 hours.

図8に、全館空調システムの一例を示す。全館空調システム1は、換気給気ファン212により外気501を建物内に取り込み、エアコン240によって温度や湿度等を調整してエアコン給気503とし、空調給気ダクト245に送り込む。空調給気ダクト245のエアコン給気503は、各室に分岐した分岐空調給気ダクト245a〜245cを介して居住空間30のうち空調が行われる部屋(個室31a、LD31c)に送り込まれ、吹出口310a〜310cから空調給気506a〜506cとして吹き出す。各部屋の空気はアンダーカット36a、36bやパスガラリ等を介して移動し、部屋(廊下31b)にあるエアコンの吸込口320からエアコン240に吸い込まれて循環し、再利用される。   FIG. 8 shows an example of the entire building air conditioning system. In the whole building air conditioning system 1, the outside air 501 is taken into the building by the ventilation air supply fan 212, the temperature and humidity are adjusted by the air conditioner 240, and the air conditioner air supply 503 is sent to the air conditioning air supply duct 245. The air-conditioning air supply 503 of the air-conditioning air supply duct 245 is sent to the room (private room 31a, LD31c) of the living space 30 in which air conditioning is performed via the branch air-conditioning air supply ducts 245a to 245c that branch into each room, and the air outlet. Air-conditioning air supply 506a to 506c is blown out from 310a to 310c. The air in each room moves through the undercuts 36a and 36b and the pavilion, and is sucked into the air conditioner 240 from the air conditioner suction port 320 in the room (corridor 31b) to be circulated and reused.

このような構成における部屋毎の空調制御は、例えば、吹出口310の内部に配置された風量制御ダンパーにより実施できる。また、空調給気用の分岐空調給気ダクト245a〜245cの根元等に同様の風量制御ダンパーを配置してもよい。そして、ユーザが風量制御ダンパーの開度やエアコンの風量を調整したり、各室に設けられた温度検出器の出力に応じてダンパー開度やエアコン風量を自動的に制御したりすることで、環境を部屋毎に調節できる。
図8の構成においては、全館空調システムを運用できると共に、空調装置に係る機器やダクトなどの構成物が主として天井空間に配置されており、インテリア性が向上するといった効果が得られる。
Air-conditioning control for each room in such a configuration can be performed by, for example, an air volume control damper arranged inside the outlet 310. Further, a similar air volume control damper may be arranged at the root of the branch air conditioning air supply ducts 245a to 245c for air conditioning air supply. Then, the user adjusts the opening of the air volume control damper and the air volume of the air conditioner, or automatically controls the damper opening and the air volume of the air conditioner according to the output of the temperature detector provided in each room. The environment can be adjusted for each room.
In the configuration of FIG. 8, the entire building air conditioning system can be operated, and the components such as the air conditioner and the ducts are mainly arranged in the ceiling space, so that the effect of improving the interior can be obtained.

また、特許文献1(特許第2734280号公報)にも、吸気ファンにより吸い込んだ外気をエアコンユニットにより調整して室内に供給するタイプの空調装置が開示されている。   Further, Patent Document 1 (Japanese Patent No. 2734280) also discloses an air conditioner of a type in which the outside air sucked by an intake fan is adjusted by an air conditioner unit and supplied into the room.

一方、上記のような換気給気をエアコン吸込側に供給する方式ではなく、換気給気をエアコン吹出側に供給する方法が考案されている。
例えば、特許文献2(特開平11−294839号公報)に記載の全館空調システムでは、各部屋へ繋がる部屋数の分の換気空調サブダクトに室内空調用と換気用のメインダクトを接続する構成を採っている。また、接続部には流量調整機構を設けている。その結果、空調装置で調整された空気と換気用空気がサブダクト内で所望の割合で混合して各部屋に供給される。
On the other hand, a method of supplying ventilation air supply to the air conditioner outlet side has been devised instead of the method of supplying ventilation air supply to the air conditioner intake side.
For example, in the entire building air conditioning system described in Patent Document 2 (Japanese Patent Laid-Open No. 11-294839), a configuration is adopted in which main ventilation and indoor ventilation ducts are connected to ventilation ventilation sub-ducts for the number of rooms connected to each room. ing. Further, a flow rate adjusting mechanism is provided at the connecting portion. As a result, the air conditioned by the air conditioner and the ventilation air are mixed in the sub-duct at a desired ratio and supplied to each room.

また、特許文献3(特許第5762317号公報)にも、室外から吸い込まれて室内側に送り出される換気給気と、室内から取り込まれてエアコンにより調整されたのち室内に循環する給気とが合流する、風路合流部を備える空調装置が開示されている。特許文献3では、風路合流部に各風路のダクトが接続される部分に、非電動式で重力利用型のシャッターを用いることで、エアコンの特殊な風量制御や中間期ファン運転を不要としている。   In addition, in Patent Document 3 (Japanese Patent No. 5762317), a ventilation air supply that is sucked from the outside and sent to the inside of the room and a supply air that is taken in from the room and adjusted by an air conditioner and then circulates in the room merge. There is disclosed an air conditioner including an air passage merging section. In Patent Document 3, by using a non-electric type gravity-use shutter in a portion where ducts of each air passage are connected to an air passage merging portion, special air volume control of an air conditioner and interim fan operation are unnecessary. There is.

なお、全館空調システムは、二重床構造を持つ建物に好適に利用できる。例えば特許文献4(特許第5137599号公報)は、二重床の床下空間を給気経路とし、各部屋の床
に設けられた床吹出口から室内に給気が吹き出す床吹出し方式の空調システムを開示している。このように床下空間をエアコンの給気経路として利用することで、一般的な床暖房よりエネルギー効率を向上させつつ、床からの輻射熱により上下の温度差が少ない快適性を生むことができる。とりわけ、天井空間が狭くまた梁によりダクト敷設に制約が多い集合住宅では、床下空間を活用することで各室への空調給気ダクトを省略できる点で効果が大きい。
The entire building air conditioning system can be suitably used for a building having a double floor structure. For example, Patent Document 4 (Japanese Patent No. 5137599) discloses a floor blow-out type air conditioning system in which an underfloor space of a double floor is used as an air supply path and air is blown into the room from a floor air outlet provided on the floor of each room. Disclosure. By using the underfloor space as the air supply path of the air conditioner in this way, it is possible to improve energy efficiency compared to general floor heating and to produce comfort with a small temperature difference due to radiant heat from the floor. Especially, in an apartment house where the ceiling space is narrow and the installation of ducts is often restricted by beams, the use of the underfloor space is advantageous in that the air-conditioning air supply duct to each room can be omitted.

特許第2734280号公報Japanese Patent No. 2734280 特開平11−294839号公報JP-A-11-294839 特許第5762317号公報Japanese Patent No. 5762317 特許第5137599号公報Japanese Patent No. 5137599

従来の、特許文献1や図8に示すような、換気給気をエアコン吸込側に供給する方式で全館空調システムを構成した場合、いくつかの問題点が指摘されていた。まず、冷暖房が不要な中間期の計画換気のために、エアコン内のファンの風量を換気給気ファンの風量以上となるようにする特殊な制御が必要である。また、冷暖房を行う時には、風量制御ダンパーの開度に応じエアコン内のファンを調節する特殊な制御が必要である。
これらの要因により、全館空調システムの構成要素として、専用の装置や部品を用いる必要が生じる(例えば、換気給気ファン、エアコン、メインリモコン、温度調節器、風量制御ダンパーなど)。その結果、設計自由度の低下や、コストの上昇を招くという問題があった。また、エアコン内のファンを年中運転する必要があるため、余分な空気搬送エネルギーを消費する問題があった。
特に図8のような構成の場合、各部屋の吹出口が天井付近にあるため、暖房時に足元が寒いことや、気流のみによる空調であるため体にあたる風が不快といった課題があった。さらに、上述したように、図8の構成では各部屋の空調給気ダクトを天井内に設置するため、天井空間が狭くまた梁によりダクト敷設に制約が多い集合住宅への適用が困難という問題があった。
Some problems have been pointed out in the case where the whole building air conditioning system is configured by the conventional method of supplying ventilation air to the air conditioner intake side as shown in Patent Document 1 and FIG. First, for the purpose of planned ventilation in the middle period where air conditioning is not required, special control is required to make the air volume of the fan in the air conditioner equal to or higher than the air volume of the ventilation air supply fan. In addition, when performing air conditioning, special control is required to adjust the fan in the air conditioner according to the opening of the air volume control damper.
Due to these factors, it becomes necessary to use a dedicated device or part as a component of the air conditioning system for the whole building (for example, ventilation air supply fan, air conditioner, main remote controller, temperature controller, air volume control damper, etc.). As a result, there are problems that the degree of freedom in design is lowered and the cost is increased. In addition, since it is necessary to operate the fan in the air conditioner all year round, there is a problem that extra air carrying energy is consumed.
In particular, in the case of the configuration as shown in FIG. 8, there is a problem that the air outlet in each room is near the ceiling, so that it is cold at the time of heating and that the air that hits the body is uncomfortable due to air conditioning using only the air flow. Further, as described above, in the configuration of FIG. 8, since the air-conditioning air supply duct of each room is installed in the ceiling, there is a problem that it is difficult to apply to an apartment house where the ceiling space is narrow and the installation of ducts is often restricted by beams. there were.

また、換気給気をエアコン吹出側に供給するタイプの技術についても、問題点が指摘されている。
例えば、特許文献2に示すように、部屋数分の換気空調サブダクトにメインダクトを接続し、流量調整機構を設ける場合、給気ダクト量が相当に増加する。また、「部屋数×2個」の流量調整機構が必要となる。また、流量調整機構の調整度合に応じてファン風量を増減する特殊な自動制御機能を付した専用エアコンもしくは制御ユニットが必要となる。
そのため、部材数の増加や専用部品の製造に起因してコストの上昇を招いてしまう。また、天井内スペースを圧迫するという課題が解決されず、特に集合住宅への適用において問題となる。
Problems have also been pointed out regarding the type of technology that supplies ventilation air to the air conditioner outlet side.
For example, as shown in Patent Document 2, when a main duct is connected to ventilation/air-conditioning sub-ducts for the number of rooms and a flow rate adjusting mechanism is provided, the amount of air supply duct increases considerably. In addition, a flow rate adjustment mechanism of "the number of rooms x 2" is required. In addition, a dedicated air conditioner or control unit with a special automatic control function to increase or decrease the fan air volume according to the adjustment degree of the flow rate adjusting mechanism is required.
Therefore, the cost is increased due to the increase in the number of members and the manufacture of dedicated parts. In addition, the problem of squeezing the space in the ceiling is not solved, and it becomes a problem particularly when applied to an apartment house.

また、特許文献3に示す、換気給気とエアコン給気が合流する風路合流部を備える空調装置においては、合流部分に風力により開閉する可動式のシャッターを用いているため、故障の懸念がある。また、かかる部品を保守や修理、交換する際に、部品の設置位置までアクセスして作業することを可能とするために、天井点検口を設置したり、天井内等に点検空間を確保したりする措置が必要である。その結果、天井内スペースが圧迫されることや、天井点検口が天井照明計画を制約することが問題となる。
また、重力利用型のシャッターには天地設置の制約があることから、施工時の器具取付けミスを誘発する可能性がある。また、特に集合住宅における狭い天井内スペースでは、
風路合流管とこれに取付けるダクトのダクト設計が困難になったり、ダクトの曲がりが増えて圧損が増えたり、施工時のダクト取付けミスを起こしたりする可能性がある。また、計画換気やエアコンの風量は住宅毎に異なることが想定されるので、メーカーは、接続ダクト径の組合せが多様な風路合流管を製造する必要があり、コスト上昇を招く。
また特許文献3の方式は、部屋別やエリア別の空調能力の調節に対応していない。
Further, in the air conditioner shown in Patent Document 3, which includes the air passage merging portion where the ventilation air supply and the air conditioner supply air merge, a movable shutter that opens and closes by wind force is used at the merging portion, and thus there is a risk of failure. is there. In addition, when maintaining, repairing, or replacing such parts, install a ceiling inspection port or secure an inspection space in the ceiling, etc., in order to access the installation position of the parts and work. Action is necessary. As a result, there are problems that the space inside the ceiling is compressed and that the ceiling inspection port restricts the ceiling lighting plan.
In addition, the gravity type shutter has a restriction on the vertical installation, which may cause a mistake in mounting the equipment during construction. In addition, especially in narrow ceiling spaces in apartments,
There is a possibility that it becomes difficult to design the duct for the air duct confluence pipe and the duct to be attached to it, the bending of the duct increases, the pressure loss increases, and a mistake in duct installation during construction occurs. Further, since it is assumed that the planned ventilation and the air volume of the air conditioner are different for each house, the manufacturer needs to manufacture the air passage merging pipes having various combinations of the connecting duct diameters, which causes an increase in cost.
Further, the method of Patent Document 3 does not support adjustment of the air conditioning capacity for each room or each area.

本発明は上記の課題に鑑みてなされたものであり、その目的は、全館空調システムにおいて、エアコンの動作状態を問わず、良好な計画換気を行う技術を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a technology for performing good planned ventilation in an entire building air conditioning system regardless of the operating state of the air conditioner.

上記の目的を達成するため、本発明は以下のような構成を採用する。すなわち、
居住空間に含まれる複数のエリアのそれぞれに、換気給気とエアコン給気が合流した空調給気を供給する空調システムであって、
取り込んだ外気を前記複数のエリアのそれぞれに対応する複数の換気給気ダクトに送り出して前記換気給気とする換気給気装置と、
前記居住空間から吸い込んだ空気を調整して前記エアコン給気とするエアコンであって、前記エアコン給気を、前記複数のエリアのそれぞれに対応する複数のエアコン給気ダクトに送り出すエアコンと、
前記複数のエアコン給気ダクトに送り出される前記エアコン給気の風量を個別に制御する複数の風量制御ダンパーと、
前記換気給気と前記エアコン給気を合流させて前記空調給気とし、空調給気ダクトを介して前記空調給気を前記居住空間に供給する、前記複数のエリアのそれぞれに対応する複数の合流部であって、
上流側には、対応する前記エリアが前記合流部と同じである前記換気給気ダクトおよび前記エアコン給気ダクトが接続され、
下流側には、対応する前記エリアが前記合流部と同じである、前記空調給気を前記居住空間に供給する空調給気ダクトが接続される、合流部と、
を備えており、
前記エアコン給気ダクトから前記空調給気ダクトへ向かう前記合流部における前記エアコン給気の流れを主流れとしたとき、前記合流部において、前記主流れの向きに対して前記換気給気の流れの向きが後方から合流している
ことを特徴とする空調システムである。
In order to achieve the above object, the present invention employs the following configurations. That is,
An air conditioning system for supplying air conditioning air supply in which ventilation air supply and air conditioner air supply are combined to each of a plurality of areas included in a living space,
A ventilation air supply device that sends the outside air taken in to a plurality of ventilation air supply ducts corresponding to each of the plurality of areas, and makes the ventilation air supply.
An air conditioner that adjusts the air sucked from the living space to supply air to the air conditioner, and sends the air conditioner air supply to a plurality of air conditioner air supply ducts corresponding to each of the plurality of areas,
A plurality of air volume control dampers that individually control the air volume of the air conditioner supply air sent to the plurality of air conditioner air supply ducts;
A plurality of confluences corresponding to each of the plurality of areas, in which the ventilation air supply and the air conditioner air supply are combined to form the air conditioning air supply, and the air conditioning supply air is supplied to the living space through an air conditioning air supply duct. Part,
On the upstream side, the ventilation air supply duct and the air conditioner air supply duct in which the corresponding area is the same as the merging portion are connected,
On the downstream side, the corresponding area is the same as the confluence section, an air conditioning air supply duct for supplying the air conditioning air supply to the living space is connected, a confluence section,
Is equipped with
When the flow of the air conditioner supply air from the air conditioner air supply duct toward the air conditioner air supply duct is the main flow, the flow of the ventilation air supply in the direction of the main flow is It is an air-conditioning system characterized by the fact that the directions are merged from the rear.

このような構成によれば、全館空調システムの計画換気と空気調和をエリア毎に好適に行えるとともに、エアコン停止時でも十分な計画換気が可能になる。
なお上記構成において、前記合流部において、前記主流れの向きと前記換気給気の流れの向きが鋭角で合流していてもよい。
With such a configuration, the planned ventilation and air conditioning of the entire building air conditioning system can be suitably performed for each area, and sufficient planned ventilation can be performed even when the air conditioner is stopped.
In the above configuration, in the confluence portion, the main flow direction and the ventilation/supply air flow direction may meet at an acute angle.

本発明は、また、以下のような構成を採用する。すなわち、
居住空間に含まれる複数のエリアのそれぞれに、換気給気とエアコン給気が合流した空調給気を供給する空調システムであって、
取り込んだ外気を前記複数のエリアのそれぞれに対応する複数の換気給気ダクトに送り出して前記換気給気とする換気給気装置と、
前記居住空間から吸い込んだ空気を調整して前記エアコン給気とするエアコンであって、前記エアコン給気を、前記複数のエリアのそれぞれに対応する複数のエアコン給気ダクトに送り出すエアコンと、
前記複数のエアコン給気ダクトに送り出される前記エアコン給気の風量を個別に制御する複数の風量制御ダンパーと、
前記換気給気と前記エアコン給気を合流させて前記空調給気とし、空調給気ダクトを介して前記空調給気を前記居住空間に供給する、前記複数のエリアのそれぞれに対応する複
数の合流部であって、
上流側には、対応する前記エリアが前記合流部と同じである前記換気給気ダクトおよび前記エアコン給気ダクトが接続され、
下流側には、対応する前記エリアが前記合流部と同じである、前記空調給気を前記居住空間に供給する空調給気ダクトが接続される、合流部と、
を備えており、
前記換気給気ダクトは、前記エアコンが停止しており、かつ、前記換気給気装置が動作している場合に、前記換気給気の略全量が前記空調給気ダクトの側に送り出されるように、前記合流部に接続される
ことを特徴とする空調システムである。
The present invention also employs the following configurations. That is,
An air conditioning system for supplying air conditioning air supply in which ventilation air supply and air conditioner air supply are combined to each of a plurality of areas included in a living space,
A ventilation air supply device that sends the outside air taken in to a plurality of ventilation air supply ducts corresponding to each of the plurality of areas, and makes the ventilation air supply.
An air conditioner that adjusts the air sucked from the living space to supply air to the air conditioner, and sends the air conditioner air supply to a plurality of air conditioner air supply ducts corresponding to each of the plurality of areas,
A plurality of air volume control dampers that individually control the air volume of the air conditioner supply air sent to the plurality of air conditioner air supply ducts;
A plurality of confluences corresponding to each of the plurality of areas, in which the ventilation air supply and the air conditioner air supply are combined to form the air conditioning air supply, and the air conditioning supply air is supplied to the living space through an air conditioning air supply duct. Part,
On the upstream side, the ventilation air supply duct and the air conditioner air supply duct in which the corresponding area is the same as the merging portion are connected,
On the downstream side, the corresponding area is the same as the confluence section, an air conditioning air supply duct for supplying the air conditioning air supply to the living space is connected, a confluence section,
Is equipped with
The ventilation air supply duct is configured such that, when the air conditioner is stopped and the ventilation air supply device is operating, substantially the entire amount of the ventilation air supply is delivered to the air conditioning air supply duct side. The air conditioning system is characterized by being connected to the merging portion.

かかる構成によっても、全館空調システムの計画換気と空気調和をエリア毎に好適に行えるとともに、エアコン停止時でも十分な換気が可能になる。   With such a configuration, planned ventilation and air conditioning of the entire building air conditioning system can be suitably performed for each area, and sufficient ventilation can be performed even when the air conditioner is stopped.

さらに、前記風量制御ダンパーは、全閉防止機構を備えるような構成を採用してもよい。これにより、汎用のエアコンを利用してコストを低減することができる。
また、遠隔指示器をさらに備え、前記遠隔指示器からの指示情報に基づいて、前記風量制御ダンパーを個別に制御する構成を採用してもよい。これにより、エリア毎や部屋毎の制御を良好に行うことができる。あるいは、風量調整ダンパーの開度を調節する手動の遠隔操作器を備えていてもよい。
また、前記換気給気装置、前記エアコンおよび前記合流部は、天井空間に配置され、前記空調給気ダクトは、前記天井空間から床下空間に前記空調給気を送り出すような構成を採用してもよい。これにより、床吹出し方式による空調システムの様々な利点を享受できる。
また、差圧ダンパーをさらに備え、前記差圧ダンパーの一方は、前記エアコン給気ダクトにおいて前記風量制御ダンパーよりも前記エアコン寄りの位置に接続され、前記差圧ダンパーのもう一方は前記エアコンの吸込み側に接続されているような構成を採用してもよい。これにより、空調システムをより安定的に継続運転できるようになる。
Further, the air flow control damper may be configured to include a fully closed prevention mechanism. As a result, the cost can be reduced by using a general-purpose air conditioner.
Further, a configuration may be adopted in which a remote indicator is further provided, and the air volume control dampers are individually controlled based on instruction information from the remote indicator. As a result, good control can be performed for each area and each room. Alternatively, a manual remote controller for adjusting the opening of the air volume adjustment damper may be provided.
Further, the ventilation air supply device, the air conditioner and the merging portion are arranged in a ceiling space, and the air conditioning air supply duct may be configured to send the air conditioning air supply from the ceiling space to the underfloor space. Good. As a result, it is possible to enjoy various advantages of the air conditioning system using the floor blowing method.
Further, a differential pressure damper is further provided, one of the differential pressure dampers is connected to a position closer to the air conditioner in the air conditioner air supply duct than the air volume control damper, and the other of the differential pressure dampers is the suction of the air conditioner. You may employ|adopt the structure connected to the side. As a result, the air conditioning system can be operated more stably and continuously.

本発明によれば、全館空調システムにおいて、エアコンの動作状態を問わず、良好な計画換気を行う技術を提供することができる。   According to the present invention, it is possible to provide a technique for performing good planned ventilation in an entire air conditioning system regardless of the operating state of the air conditioner.

空調システムを備える建物の構成を示す図である。It is a figure which shows the structure of the building provided with an air conditioning system. 換気給気の合流について説明する図である。It is a figure explaining the joining of ventilation supply air. 換気給気合流管で空気が合流する様子を示す模式図である。It is a schematic diagram which shows a mode that air joins with a ventilation supply air joining pipe. 換気給気合流管で空気が合流する様子を示す模式図である。It is a schematic diagram which shows a mode that air joins with a ventilation supply air joining pipe. 換気給気合流管で空気が合流する様子を示す模式図である。It is a schematic diagram which shows a mode that air joins with a ventilation supply air joining pipe. 換気給気合流管での空気の合流の比較例を示す模式図である。It is a schematic diagram which shows the comparative example of the joining of the air in a ventilation supply air joining pipe. 換気給気合流管への換気給気の合流角度と空調給気率の関係を示すグラフである。It is a graph which shows the relationship of the merging angle of the ventilation air supply to a ventilation air supply merging pipe, and an air-conditioning air supply rate. 実施形態2における制御を説明するブロック図である。6 is a block diagram illustrating control in the second embodiment. FIG. 実施形態3の空調システムの部分拡大図である。It is a partially enlarged view of the air conditioning system of Embodiment 3. 背景技術にかかる空調システムを備える建物の構成を示す図である。It is a figure which shows the structure of the building provided with the air conditioning system concerning background art.

以下に図面を参照しつつ、本発明の好適な実施の形態を説明する。ただし、以下に記載されている構成ブロックやそれらの相対配置などは、発明が適用されるシステムの各種条件により適宜変更されるべきものであり、この発明の範囲を以下の記載に限定する趣旨の
ものではない。
Preferred embodiments of the present invention will be described below with reference to the drawings. However, the constituent blocks and their relative arrangements described below should be appropriately changed according to various conditions of the system to which the invention is applied, and the scope of the invention is limited to the following description. Not a thing.

本発明は、空調装置および空調システム、それらを備える建物、ならびに、それらの制御方法に好ましく適用できる。本発明はまた、情報処理装置の演算資源を利用して動作し、制御方法の各工程を情報処理装置に実行させるプログラムや、かかるプログラムが格納されたコンピュータにより読み取り可能な記憶媒体としても捉えられる。記憶媒体は、非一時的な記憶媒体であっても良い。   INDUSTRIAL APPLICABILITY The present invention can be preferably applied to an air conditioner and an air conditioning system, a building including them, and a control method thereof. The present invention can also be regarded as a program that operates using the computing resources of the information processing apparatus and causes the information processing apparatus to execute each step of the control method, and a computer-readable storage medium that stores the program. .. The storage medium may be a non-transitory storage medium.

[実施形態1]
図1は、本実施形態の構成と配置の一例を説明するための模式図であり、建物の1つの階層にある、集合住宅の一住戸を想定した一区画の断面を示す。なお本実施形態の技術は、集合住宅だけでなく、オフィスや公共施設、戸建住宅など様々な建物に適用できる。
[Embodiment 1]
FIG. 1 is a schematic diagram for explaining an example of the configuration and arrangement of the present embodiment, and shows a cross section of one section assuming one dwelling unit of an apartment house in one floor of a building. The technique of the present embodiment can be applied to various buildings such as offices, public facilities, and detached houses, as well as apartment houses.

(全体構造)
図1において、空調対象の区画は概略、下の階層との境界である下部境界面21、上の階層との境界である上部境界面11、隣の部屋または建物外との境界である壁面33によって区切られた領域である。下部境界面21は、床スラブなどの構造体の上面や、その上に敷設された断熱材等である。上部境界面11は、天井スラブなどの構造体の下面や、その下に設置された断熱材等である。壁面33は壁材などの構造体からなり、該壁材は隣接する部屋の壁面や建物の外壁を兼ねていてもよい。
(Overall structure)
In FIG. 1, the sections to be air-conditioned are roughly: a lower boundary surface 21 that is a boundary with a lower floor, an upper boundary surface 11 that is a boundary with an upper floor, a wall surface 33 that is a boundary with an adjacent room or outside the building. It is the area separated by. The lower boundary surface 21 is an upper surface of a structure such as a floor slab, a heat insulating material laid on the upper surface, or the like. The upper boundary surface 11 is a lower surface of a structure such as a ceiling slab, a heat insulating material installed below the lower surface. The wall surface 33 is made of a structure such as a wall material, and the wall material may double as a wall surface of an adjacent room or an outer wall of a building.

部屋の内部は、高さ方向において、天井12より上部の天井空間10、二重床22より下部の床下空間20、天井12と二重床22の間の居住空間30に区画されている。居住空間30は居住者が活動する領域であり、温度等の環境を調整する対象空間である。天井空間10には、全館空調システム1の様々な構成要素が配置される。
天井12、二重床22および壁面33は、水平または垂直でなくてもよい。例えば居住者が主に活動する個室31aやLD31cの天井を比較的高くし、廊下31bの天井を比較的低くしてもよい。これにより、廊下の天井裏に空調装置やダクトを配置するスペースを広く確保できる。また天井12、二重床22および壁面33は、一部に段差や出っ張り、引っ込み等があってもよい。例えば天井空間10から床下空間20に空調給気ダクト249を配する場合、ダクトを隠すような覆いを設けてもよい。
The interior of the room is divided into a ceiling space 10 above the ceiling 12, an underfloor space 20 below the double floor 22, and a living space 30 between the ceiling 12 and the double floor 22 in the height direction. The living space 30 is an area in which a resident is active, and is a target space for adjusting the environment such as temperature. Various components of the entire building air conditioning system 1 are arranged in the ceiling space 10.
Ceiling 12, double floor 22, and wall 33 need not be horizontal or vertical. For example, the ceiling of the private room 31a or the LD 31c in which the resident is mainly active may be relatively high, and the ceiling of the corridor 31b may be relatively low. As a result, it is possible to secure a large space for arranging the air conditioner and the duct in the ceiling above the corridor. Further, the ceiling 12, the double floor 22, and the wall surface 33 may have a step, a protrusion, a recess, or the like in part. For example, when arranging the air-conditioning air supply duct 249 from the ceiling space 10 to the underfloor space 20, a cover may be provided to hide the duct.

本実施形態では床吹出し方式の空調システムを利用している。そのため、天井空間10内のエアコン240他で調整された空気は、ダクトを介して床下空間20に移動したのち、床吹出口340から各部屋に送り出される。床下空間20は、下部境界面21と、その上部に支持脚などを用いて設置された二重床22の間に形成される。床下空間20の下部境界面21や壁面33には断熱材を敷設するとよい。
本実施形態では、仕切り20cを設けて床下空間を2つのエリアに分割している(床下空間20a、20b)。これにより、各部屋や各エリアを個別に空調能力が制御可能になる。
本実施形態のように床吹出し方式の空調システムを用いることで、床下空間20を移動する空調給気の熱が二重床22に伝わることによる床面からの放射空調(輻射空調)が可能になる。放射空調を用いることで、例えば暖房時の足元の寒さを軽減したり、温度むらの少ない空調環境を作れたり、気流が体に当たる不快感を低減したりできる。
また、床吹出口の開口面積を調節可能とすることも好ましい。これにより空調給気の量を調節できるため、部屋毎やエリア毎、もしくは部屋内やエリア内で異なる冷暖房需要に柔軟に対応できる。特に、室内に吹出口が複数ある場合のパーソナル空調を実現できる。
ただし、床吹出し方式の空調システムの利用や部屋毎の制御は、必ずしも必須ではない。
In this embodiment, a floor blow-out type air conditioning system is used. Therefore, the air conditioned by the air conditioner 240 and the like in the ceiling space 10 moves to the underfloor space 20 through the duct, and then is sent out to each room from the floor outlet 340. The underfloor space 20 is formed between a lower boundary surface 21 and a double floor 22 installed above the lower boundary surface 21 using support legs or the like. A heat insulating material may be laid on the lower boundary surface 21 and the wall surface 33 of the underfloor space 20.
In the present embodiment, the partition 20c is provided to divide the underfloor space into two areas (underfloor spaces 20a and 20b). As a result, the air conditioning capacity can be controlled individually for each room and each area.
By using the floor blowing type air conditioning system as in the present embodiment, radiant air conditioning (radiation air conditioning) from the floor surface is possible by the heat of the air conditioning air supply moving in the underfloor space 20 being transferred to the double floor 22. Become. By using radiant air conditioning, for example, it is possible to reduce the cold at the feet when heating, create an air-conditioned environment with little temperature unevenness, and reduce the discomfort that the airflow hits the body.
It is also preferable that the opening area of the floor outlet can be adjusted. As a result, the amount of air-conditioning air supply can be adjusted, so that it is possible to flexibly meet different heating and cooling demands for each room or area, or for each room or area. In particular, it is possible to realize personal air conditioning when there are a plurality of outlets in the room.
However, the use of the floor blowing type air conditioning system and the control for each room are not always essential.

(換気および空調)
全館空調システム1は計画換気に関して、外気501を建物内に取り込み、換気給気装置210の換気給気ファン212により換気給気ダクト243に送り出し、図2における換気給気502とする。本実施形態では、下流において換気給気ダクト243が分岐して、換気給気ダクト243a、243bとなる。分岐したそれぞれの換気給気ダクト243a、243bは、床下空間20a、20bの各エリアに対応している。なお、図1の分岐構成は一例であり、空調エリアの数に応じて適切な分割数を採用できる。また、空調エリアを区分する必要がない場合は、分岐を設けなくてもよい。さらに、換気給気ファンは、同一ユニット内に換気排気ファンを備え一体化した同時給排気型の換気ユニットであっても、さらにこれに熱交換構造を備え一体化した熱交換型換気ユニットであっても良く、熱交換構造としては静止型の熱交換素子や回転型の熱交換ローターに加え、ヒートパイプ、ヒートポンプ、吸放湿素材を用いた熱交換方式でも良い。
(Ventilation and air conditioning)
Regarding the planned ventilation, the whole building air conditioning system 1 takes in the outside air 501 into the building, and sends it out to the ventilation air supply duct 243 by the ventilation air supply fan 212 of the ventilation air supply device 210 to obtain the ventilation air supply 502 in FIG. In the present embodiment, the ventilation air supply duct 243 is branched downstream to become the ventilation air supply ducts 243a and 243b. The respective branched ventilation air supply ducts 243a and 243b correspond to the respective areas of the underfloor spaces 20a and 20b. The branch configuration of FIG. 1 is an example, and an appropriate number of divisions can be adopted according to the number of air-conditioned areas. Further, if it is not necessary to divide the air-conditioned area, the branch may not be provided. Furthermore, even if the ventilation air supply fan is a simultaneous air supply/exhaust type ventilation unit in which a ventilation exhaust fan is integrated in the same unit, it is a heat exchange type ventilation unit in which a heat exchange structure is further integrated. Alternatively, the heat exchange structure may be a heat exchange system using a heat pipe, a heat pump, or a moisture absorbing/releasing material in addition to the static heat exchange element or the rotary heat exchange rotor.

全館空調システム1はエアコン240を用いて空調を行う。エアコン240は通常はエアコン室内機と呼ばれ、典型的には、エアコン240内に図示したエアコンファン242や熱交換器のほか、図示していない制御装置等を備える。さらに、エアコン240に接続するダクトの他に、圧縮機、膨張弁、熱交換器などを内包する室外機と、該室外機とエアコン240を結ぶ冷媒管を備え、建物内の温度や湿度の環境を調整する空調装置である。エアコン240はさらに、除塵や空気浄化等の空気の状態を調整する機能も持ち得る。エアコン240は、廊下31bにある吸込口320から空気を吸い込み、温度等を調整してエアコン給気503とし、エアコンファン242によって後続のエアコン給気ダクト247に送り出し循環させる。エアコン給気ダクト247に関しても、床下空間20のエリア数や部屋数に応じて下流側で分岐させて、エアコン給気ダクト247a、247bとする。   The entire building air conditioning system 1 uses the air conditioner 240 to perform air conditioning. The air conditioner 240 is usually called an air conditioner indoor unit, and typically includes an air conditioner fan 242 and a heat exchanger illustrated in the air conditioner 240, and a control device and the like not illustrated. Further, in addition to the duct connected to the air conditioner 240, an outdoor unit including a compressor, an expansion valve, a heat exchanger, and the like, and a refrigerant pipe connecting the outdoor unit and the air conditioner 240 are provided. Is an air conditioner that adjusts. The air conditioner 240 may further have a function of adjusting the air condition such as dust removal and air purification. The air conditioner 240 sucks air from the suction port 320 in the corridor 31b, adjusts the temperature and the like to make air conditioner air supply 503, and sends it out to the subsequent air conditioner air supply duct 247 for circulation by the air conditioner fan 242. Regarding the air conditioner air supply duct 247, the air conditioner air supply ducts 247a and 247b are branched at the downstream side according to the number of areas and the number of rooms in the underfloor space 20.

それぞれのエアコン給気ダクト247a、247bには、開度に応じて風量が変化する風量制御ダンパー350a、350bが設けられている。風量制御ダンパー350は、コントローラからの制御信号に従って、あるいは手動制御によって開度を変化させる。風量制御ダンパーの開度に応じて、各分岐ダクトに送られるエアコン給気の量を調整できる。そして、風量制御済みのエアコン給気が換気給気と合流した後に、各エリアに送り出される。すなわち本実施形態では、エアコンファンの細かな制御を行わなくてもエリア毎のエアコン給気の風量の割合が変えられ、エリア毎の環境調整が実行される。なお、ダンパーの開度制御と共にエアコンファンの風量を調節しても構わない。風量制御ダンパーはエアコン給気ダクトの何れかの位置に、例えば端部(換気給気合流管に近い位置)や中間部に配置される。   Each of the air conditioner air supply ducts 247a and 247b is provided with air volume control dampers 350a and 350b whose air volume changes according to the opening degree. The air volume control damper 350 changes the opening degree according to a control signal from the controller or by manual control. It is possible to adjust the amount of air supply supplied to each branch duct according to the opening degree of the air volume control damper. Then, the air-conditioner supply air whose air volume has been controlled merges with the ventilation supply air, and then is sent to each area. That is, in the present embodiment, the air conditioner air supply rate for each area is changed without performing detailed control of the air conditioner fan, and environmental adjustment for each area is executed. The air volume of the air conditioner fan may be adjusted together with the damper opening control. The air volume control damper is arranged at any position of the air conditioner air supply duct, for example, at an end portion (position close to the ventilation air supply/merging pipe) or an intermediate portion.

好ましくは、風量制御ダンパー350は、ストッパー等を用いた全閉防止機能を備えるとよい。これにより、エアコン給気の出口が詰まってエアコンの安定的な運転にとって最低限必要な風量を確保できない状態を防止できる。その結果、エアコンの冷暖房運転時にエアコン出口が閉塞することがなくなり、エアコン240として汎用的な空調装置を利用できるので、コストの低減につながる。   Preferably, the air volume control damper 350 may have a function of preventing the total closure using a stopper or the like. As a result, it is possible to prevent a situation where the air conditioner air supply outlet is blocked and the minimum air volume required for stable operation of the air conditioner cannot be secured. As a result, the outlet of the air conditioner will not be blocked during the air conditioning operation of the air conditioner, and a general-purpose air conditioner can be used as the air conditioner 240, leading to cost reduction.

そして、換気給気およびエアコン給気の下流側に、換気給気合流管248a、248bが配置される。換気給気ダクト243aとエアコン給気ダクト247a、換気給気ダクト243bと分岐エアコン給気ダクト247bがそれぞれ、換気給気合流管248a、248bに接続され、該換気給気合流管内において各々の給気が合流する。換気給気合流管248a、248bで換気給気502とエアコン給気503が合流し、空調給気506a、506bとなる。空調給気506a、506bは、エリア毎に設けられた空調給気ダクト249a、249bを通って床下空間20の各エリアに到達し、床吹出口340a〜340cから室内に送り込まれる。このとき、床下空間20aを仕切り20cにより床下空間
20a、20bの2つのエリアに分割する方法以外に、空調給気ダクト249a、249bそれぞれの空調給気の過半がそれぞれが対象とするエリアの床吹出口340a、340b+340cに送り込まれるように、空調給気ダクト249の出口部分に風向き調整板を設けてもよい。また、複数の空調給気ダクト249a、249bを束ねて壁沿いに配置し、全体を覆うカバーを設けてもよい。換気給気合流管は、本発明の合流部に相当する。
Then, the ventilation/air supply confluence pipes 248a and 248b are arranged on the downstream side of the ventilation/air supply and the air-conditioner air supply. The ventilation air supply duct 243a and the air conditioner air supply duct 247a, and the ventilation air supply duct 243b and the branch air conditioner air supply duct 247b are respectively connected to the ventilation air supply air confluence pipes 248a and 248b, and the respective air supply air is supplied in the ventilation air supply air confluence pipes. Will join. The ventilation air supply air 502 and the air conditioner air supply 503 join together in the ventilation air supply air merging pipes 248a and 248b to become air conditioning air supply airs 506a and 506b. The air-conditioning air supply 506a, 506b reaches each area of the underfloor space 20 through the air-conditioning air supply ducts 249a, 249b provided for each area, and is sent into the room from the floor outlets 340a to 340c. At this time, in addition to the method of dividing the underfloor space 20a into the two areas of the underfloor spaces 20a and 20b by the partition 20c, a majority of the air conditioning and air supply air ducts 249a and 249b are under the floor blowing of the target area. An air flow direction adjusting plate may be provided at the exit portion of the air conditioning/air supply duct 249 so as to be fed into the exits 340a, 340b+340c. Further, a plurality of air-conditioning air supply ducts 249a and 249b may be bundled and arranged along the wall, and a cover that covers the whole may be provided. The ventilation/air supply merging pipe corresponds to the merging portion of the present invention.

各部屋に吹き出した空調給気は、アンダーカット36a、36bやパスガラリ等を介して移動し、吸込口320からエアコン240に吸い込まれる。   The air-conditioning supply air blown into each room moves through the undercuts 36a and 36b, the path gallery, and the like, and is sucked into the air conditioner 240 from the suction port 320.

このように本実施形態では、空調装置のエアコン給気ダクト247には、エアコン240の側(エアコン給気の上流側)から順に、風量制御ダンパー350と換気給気合流管248が設けられる。また、換気給気ファン212の側から見ると、換気給気ダクト243の下流側(換気給気が進行する方向)に、換気給気合流管248が設置されている。また、換気給気合流管248の下流側(エアコン給気と換気給気が合流した空調給気が進行する方向)には、空調給気ダクト249が接続される。   Thus, in the present embodiment, the air conditioner air supply duct 247 of the air conditioner is provided with the air volume control damper 350 and the ventilation air supply/merging pipe 248 in order from the air conditioner 240 side (the upstream side of the air conditioner air supply). Further, when viewed from the side of the ventilation/air supply fan 212, the ventilation/air supply confluence pipe 248 is installed on the downstream side of the ventilation/air supply duct 243 (the direction in which the ventilation/air supply advances). Further, an air conditioning air supply duct 249 is connected to the downstream side of the ventilation air supply confluence pipe 248 (the direction in which the air conditioning air supply in which the air conditioning air supply and the ventilation air supply are combined advances).

(エアコン給気と換気給気の合流方法)
続いて、エアコン240が停止している場合でも十分な計画換気が行われるような、エアコン給気と換気給気の合流方法について述べる。
エアコン240から送り出されて下流側(空調給気側)に向かうエアコン給気の換気給気合流管248内における流れを「主流れ」とする。すなわち主流れとは、エアコン給気ダクト247から換気給気合流管248を経て空調給気ダクト249に向かう、換気給気合流管内のエアコン給気流れである。換気給気合流管248内におけるエアコン給気流れの向きが、主流れの向きに当たる。
以下に詳述するように、本発明では、換気給気合流管内で換気給気がエアコン給気に合流する際に、換気給気流れを主流れに対して後方から合流させる。ここで、「後方からの合流」とは、主流れと換気給気流れが合流する角度が直角より小さいことを指す。すなわち、主流れの向きと換気給気合流管に入る換気給気流れの向きに3次元的に正負逆向きの成分が無く、換気給気合流管内で二つの流れが合流する第1の場合か、主流れと換気給気流れがなす合流角度が鋭角である第2の場合のいずれかを指す。このような合流角度となるように換気給気合流管のダクト接続部を構成することで、エアコン停止時でも換気給気合流管に入った換気給気がエアコン給気流れの上流側に逆流せず、換気給気の大部分(好ましくは略全量)を空調給気側に送ることができる。
(Method of joining air-conditioner air supply and ventilation air supply)
Next, a method for joining the air conditioner air supply and the ventilation air supply so that sufficient planned ventilation is performed even when the air conditioner 240 is stopped will be described.
The flow of the air-conditioning air sent from the air-conditioner 240 toward the downstream side (air-conditioning air supply side) in the ventilation air supply confluence pipe 248 is referred to as a “main flow”. That is, the main flow is an air conditioner air supply flow in the ventilation air supply/merging pipe from the air conditioner air supply duct 247 to the air conditioning/air supply duct 249 through the ventilation/air supply/merging pipe 248. The direction of the air-conditioner air supply flow in the ventilation air supply/merging pipe 248 corresponds to the direction of the main flow.
As will be described in detail below, in the present invention, when the ventilation supply air merges with the air conditioning supply air in the ventilation supply air confluence pipe, the ventilation supply air flow merges with the main flow from the rear. Here, the “merge from the rear” means that the angle at which the main flow and the ventilation/supply air flow merge is smaller than a right angle. That is, in the case of the first case where there are no three-dimensionally opposite components in the direction of the main flow and the direction of the ventilation/supply air flow entering the ventilation/supply air confluence pipe, and the two flows merge in the ventilation/supply air confluence pipe. , The main flow and the ventilation/air supply flow form a converging angle of an acute angle. By configuring the duct connection part of the ventilation/air supply confluence pipe to have such a confluence angle, the ventilation/air supply entering the ventilation/air supply confluence pipe can flow back to the upstream side of the air conditioning air supply flow even when the air conditioner is stopped. Instead, most (preferably substantially all) of the ventilation air supply can be sent to the air conditioning air supply side.

図2に、上記のような気流の合流を実現するための換気給気合流管248の構成例を示す。なお、本図では換気給気が合流位置に達する前に、換気給気ダクト243から換気給気合流管248に入っているが、換気給気ダクト243が合流位置まで延びていても構わない。
図2(a)は、主流れ532が略直線状の場合である。換気給気ダクト243が換気給気合流管248に接続される向きが鋭角であるために、換気給気が鋭角で主流れに合流できている。
FIG. 2 shows a configuration example of the ventilation/air supply/merging pipe 248 for realizing the above-described airflow confluence. In this figure, the ventilation/air supply duct 243 enters the ventilation/air supply/merging pipe 248 before the ventilation/air supply reaches the merging position, but the ventilation/air supply duct 243 may extend to the merging position.
FIG. 2A shows a case where the main flow 532 is substantially linear. Since the ventilation air supply duct 243 is connected to the ventilation air supply confluence pipe 248 at an acute angle, the ventilation air supply can join the main flow at an acute angle.

図2(b)は別のダクト配管の例を示しており、換気給気合流管が屈曲しているために、エアコン給気ダクト247から空調給気ダクト249に向かう主流れ532も曲がっている。この場合でも、合流位置におけるエアコン給気流れの向きと換気給気流れの向きは、鋭角で合流している。   FIG. 2B shows an example of another duct pipe, and the main flow 532 flowing from the air conditioner air supply duct 247 to the air conditioning air supply duct 249 is also bent because the ventilation air supply/merging pipe is bent. . Even in this case, the directions of the air-conditioner supply air flow and the ventilation air-supply flow flow at the merging position meet at an acute angle.

続いて、図2(c)〜図2(e)を参照して、様々なダクト形状を題材として、気流の合流角度の条件について述べる。
図2(c)は、図2(a)と同様に、エアコン給気から空調給気への向きが略直線の場
合である。図中、符号252aは、換気給気合流管における換気給気の合流位置を示す。すなわち、換気給気502は、合流位置252aにおいて主流れ532と合流する。符号502aで示される向きで換気給気502が主流れに合流する場合、後方からの合流に該当するため、エアコン停止時でも空調換気対象の部屋に換気給気の大部分を送れ、空調換気対象の部屋は十分な計画換気が行われる(以後、換気に問題がないことを、符号の上の「○」で示す)。符号502bの向きで合流する場合も、合流角度が鋭角となるため、エアコン停止時でも十分な計画換気が行われる。一方、符号502cの向きで合流する場合、エアコン停止時にある程度の換気給気が上流側(エアコン給気ダクト側)に逆流し(以後、換気に問題があることを、符号の上の「×」で示す)、十分な計画換気が行われない。
Subsequently, with reference to FIGS. 2C to 2E, conditions of the merging angle of the airflows will be described with various duct shapes as materials.
Similar to FIG. 2A, FIG. 2C shows a case where the direction from the air-conditioning air supply to the air-conditioning air supply is substantially linear. In the figure, reference numeral 252a indicates a confluence position of ventilation/air supply in the ventilation/air supply confluence pipe. That is, the ventilation air supply 502 joins the main flow 532 at the joining position 252a. When the ventilation air supply 502 merges with the main flow in the direction indicated by reference numeral 502a, it corresponds to the merging from the rear, so most of the ventilation air supply can be sent to the room of the air conditioning ventilation target even when the air conditioner is stopped. The room is fully planned and ventilated (hereinafter, there is no problem in ventilation is indicated by "○" above the code). Even when the vehicle merges in the direction of reference numeral 502b, the merge angle becomes an acute angle, so that sufficient planned ventilation is performed even when the air conditioner is stopped. On the other hand, in the case of merging in the direction of the reference numeral 502c, when the air conditioner is stopped, a certain amount of ventilation air flows back to the upstream side (air conditioner air supply duct side). Indicated) does not provide sufficient planned ventilation.

したがって図2(c)の場合、好ましい合流の向きは符号502aから符号502bの間である。このように、後方から合流した場合または鋭角で合流した場合、言い換えると直角よりも小さい角度で合流した場合、エアコン停止時でも十分な計画換気が行われる。なお、本図の場合、換気給気合流管の下流側の空調給気ダクトの接続部の管断面を想定したとき、その鉛直面よりも上流側から換気給気が合流することで、エアコン停止時の十分な換気を実現できる。   Therefore, in the case of FIG. 2C, the preferred direction of merging is between the reference numeral 502a and the reference numeral 502b. In this way, when the vehicles join from the rear or join at an acute angle, in other words, when they join at an angle smaller than a right angle, sufficient planned ventilation is performed even when the air conditioner is stopped. Note that in the case of this figure, when the pipe cross section of the connection part of the air conditioning air supply duct on the downstream side of the ventilation air supply confluence pipe is assumed, the ventilation air supply merges from the upstream side of the vertical plane, and the air conditioner stops. Sufficient ventilation at times can be realized.

図2(d)の場合、換気給気合流管248が屈曲しており、その角度は直角よりも小さい。換気給気合流管内の主流れ532の進路は、近似的に直線的であると考える。
図中、符号252bは一つの合流位置を示し、符号502d〜502fは、合流位置252bにおける換気給気502の向きの例を示す。また、符号252cは別の合流位置を示し、符号502g〜502iは、合流位置252cにおける換気給気502の向きの例を示す。
合流位置252bに関しては、好ましい合流の向きは、符号502dから符号502eの間である。また合流位置252cに関しては、好ましい合流の向きは、符号502gから符号502hの間である。一方、向きが符号502fや符号502iの場合は、エアコン停止時に換気給気の逆流が起きるおそれがある。
In the case of FIG. 2D, the ventilation/air supply confluence pipe 248 is bent, and its angle is smaller than a right angle. The path of the main flow 532 in the ventilation-air confluence pipe is considered to be approximately linear.
In the figure, reference numeral 252b indicates one confluence position, and reference numerals 502d to 502f indicate examples of the direction of the ventilation air supply 502 at the confluence position 252b. Further, reference numeral 252c indicates another confluence position, and reference numerals 502g to 502i indicate examples of the direction of the ventilation air supply 502 at the confluence position 252c.
With respect to the merging position 252b, the preferred merging direction is between reference numeral 502d and reference numeral 502e. Further, regarding the merge position 252c, the preferable direction of the merge is between the reference numeral 502g and the reference numeral 502h. On the other hand, when the direction is 502f or 502i, the backflow of ventilation air may occur when the air conditioner is stopped.

図2(e)の場合、換気給気合流管248が略直角で屈曲している。換気給気合流管内の主流れ532は、屈曲に沿って進行する。
図中、符号252dは一つの合流位置を示し、符号502j〜502lは、合流位置252dにおける換気給気502の向きの例を示す。また、符号252eは別の合流位置を示し、符号502m〜502oは、合流位置252eにおける換気給気502の向きの例を示す。
合流位置252dに関しては、好ましい合流の向きは、符号502jから符号502kの間である。また合流位置252eに関しては、好ましい合流の向きは、符号502mから符号502nの間である。一方、向きが符号502lや符号502oの場合は、エアコン停止時に換気給気の逆流が起きるおそれがある。
In the case of FIG. 2( e ), the ventilation/air supply confluence pipe 248 is bent at a substantially right angle. The main flow 532 in the ventilation/air supply/merging pipe proceeds along the bend.
In the figure, reference numeral 252d indicates one confluence position, and reference numerals 502j to 502l indicate examples of directions of the ventilation air supply 502 at the confluence position 252d. Further, reference numeral 252e indicates another merging position, and reference numerals 502m to 502o indicate examples of the direction of the ventilation air supply 502 at the merging position 252e.
With respect to the merging position 252d, the preferred merging direction is between the reference numeral 502j and the reference numeral 502k. Further, regarding the merge position 252e, the preferred direction of the merge is between the reference numeral 502m and the reference numeral 502n. On the other hand, if the orientation is reference numeral 5021 or reference numeral 502o, backflow of ventilation air may occur when the air conditioner is stopped.

(換気給気合流管における気流の模式図)
換気給気合流管248における空気の流れについて、図3A〜図3Cの模式図を参照してさらに述べる。図3A〜図3Cにおいて、換気給気のエアコン給気に対する合流角度は45°であり、後方からまたは鋭角で合流していると言える。図3A〜図3Cはそれぞれ、換気給気ファン212とエアコン240それぞれの運転状態を変えたときの、換気給気合流管回りの管中央断面流れを数値流体解析した結果を示す模式図であり、空気の流量を矢印の太さと長さで表している。
(Schematic diagram of the air flow in the ventilation/air supply confluence pipe)
The flow of air in the ventilation/air supply confluence pipe 248 will be further described with reference to the schematic diagrams of FIGS. 3A to 3C. In FIGS. 3A to 3C, the confluence angle of the ventilation air supply with the air supply of the air conditioner is 45°, and it can be said that they are confluent from behind or at an acute angle. 3A to 3C are schematic diagrams showing the results of numerical fluid analysis of the pipe central cross-section flow around the ventilation/air supply confluence pipe when the operating states of the ventilation/air supply fan 212 and the air conditioner 240 are changed. The air flow rate is represented by the thickness and length of the arrow.

図3Aは、エアコンファン242および換気給気ファン212の両機が運転している状態であり、冷暖房を運転する時期の運用に該当する。このとき、エアコン給気ダクト24
7と換気給気ダクト243は共に機械給気であり、両者の合計が空調給気ダクト風量となっている。例えばこのシミュレーションにおける各々の流れの風量比は、換気給気の1に対し、エアコン給気が6.25であり、空調給気が7.25となる。したがって、両機運転時においては給気合流管に入った気流の全ては下流側(空調給気ダクト側)から出るため、計画換気とエアコンによる空気調和を行った空調給気が居住空間に適切に供給される。
FIG. 3A shows a state in which both the air conditioner fan 242 and the ventilation air supply fan 212 are operating, and corresponds to the operation at the time of operating the cooling and heating. At this time, the air conditioning air supply duct 24
7 and the ventilation air supply duct 243 are both mechanical air supply, and the total of both is the air-conditioning air supply duct air volume. For example, the air flow rate ratio of each flow in this simulation is 6.25 for the air-conditioning air supply and 7.25 for the air-conditioning air supply with respect to 1 for the ventilation air supply. Therefore, when both units are in operation, all of the airflow entering the air supply confluence pipe exits from the downstream side (air conditioning air supply duct side), so that the air conditioning air supply that performs the air conditioning by the planned ventilation and the air conditioner is appropriate for the living space. Supplied.

図3Bは、エアコンファン242が停止し、換気給気ファン212のみが運転している状態であり、中間期等で冷暖房が不要でありエアコンファン242が停止した時に相当する。合流角度が鋭角であるため、換気給気502は、合流位置で吹き出したときに下流側(空調給気ダクト側)に進む。その結果、換気給気の略全量が空調給気ダクト側に進行する。
このとき、エアコン給気ダクト内には換気給気合流管内の換気給気の流れに誘引されて順流が発生する。例えばこのシミュレーションにおける各々の流れの風量比は、換気給気の1に対し、エアコン給気は順流で0.66であり、空調給気は下流側に1.66となる。誘引による順流は、量が少なく、かつ居住空間内のエアコン吸込空気が部屋に供給されるものであるため、換気空調上の問題は殆ど無い。したがって、計画換気を適切に実施できる。
FIG. 3B shows a state in which the air conditioner fan 242 is stopped and only the ventilation air supply fan 212 is operating, which corresponds to a case where the air conditioner fan 242 is stopped because cooling/heating is unnecessary in the middle period or the like. Since the merging angle is an acute angle, the ventilation air supply 502 advances to the downstream side (air conditioning air supply duct side) when blown out at the merging position. As a result, almost all of the ventilation air supply proceeds to the air conditioning air supply duct side.
At this time, a forward flow is generated in the air-conditioner air supply duct by being attracted by the flow of the ventilation/air supply in the ventilation/air supply merging pipe. For example, the air flow rate ratio of each flow in this simulation is 0.66 in the forward flow of the air-conditioning air supply to 1 of the ventilation air supply, and 1.66 in the air-conditioning supply air on the downstream side. Since there is a small amount of the forward flow due to the attraction, and the intake air of the air conditioner in the living space is supplied to the room, there is almost no problem in ventilation and air conditioning. Therefore, planned ventilation can be appropriately implemented.

図3Cは、換気給気ファン212が停止し、エアコンファン242が運転している状態である。通常はこのような運用はなされないが、一時的に行われる可能性はある。接続角度が鋭角となっているため、エアコン給気の略全量が空調給気ダクト側に順流する。そのため、居住空間を適切に冷暖房できる。なお、エアコン給気のごく一部が換気給気ダクト243を逆流して漏れ出すものの、全館空調の機能上の問題は殆ど無く、空調後の給気が屋外側に出る無駄は起こらない。例えばこのシミュレーションにおける各々の流れの風量比は、エアコン給気の1に対し、略全量の0.988が空調給気ダクト内側に進む。換気給気ダクトに逆流する量は僅か−0.012である。   FIG. 3C shows a state in which the ventilation air supply fan 212 is stopped and the air conditioner fan 242 is operating. Normally, this kind of operation is not done, but it may be done temporarily. Since the connection angle is an acute angle, almost all the air-conditioner air supply flows to the air-conditioning air supply duct side. Therefore, the living space can be appropriately cooled and heated. Although a small part of the air supply to the air conditioner flows back through the ventilation air supply duct 243 and leaks out, there is almost no functional problem in the air conditioning of the entire building, and there is no waste of the air supply after air conditioning to the outside. For example, the air flow rate ratio of each flow in this simulation is 0.988, which is almost the total amount of air conditioning air supply to 1 inside the air conditioning air supply duct. The backflow into the ventilation air supply duct is only -0.012.

図4に、合流角度が異なる比較例を示す。図4での換気給気ダクト243と換気給気合流管の主流れ方向との接続の角度は略直角である。したがって、一定量のエアコン給気ある場合のエアコン給気の流れが、換気合流管内で空調給気側に向かう主流れの向きと、換気給気の合流出口での換気給気の流れの向きも、90°で合流している。図4は、図3Bと同様、エアコンファン242が停止し換気給気ファン212のみが運転している状態である。本図の場合、図3Bとは異なり、換気給気のうち多くがエアコン給気ダクト側に逆流して漏れ出す。このシミュレーションにおける各々の流れの風量比は、換気給気の1に対し、空調給気ダクト側への順流は0.40であり、エアコン給気ダクト側への逆流は−0.60である。したがって、図4の接続方法ではエアコン停止時の計画換気が上手く機能しない。   FIG. 4 shows a comparative example with different merging angles. The angle of connection between the ventilation/air supply duct 243 and the main flow direction of the ventilation/air supply confluence pipe in FIG. 4 is substantially a right angle. Therefore, when there is a certain amount of air-conditioner air supply, the flow of air-conditioner air supply is the main flow direction toward the air-conditioning air supply side in the ventilation confluence pipe and the direction of the ventilation air supply air at the ventilation air supply confluence outlet. , Join at 90°. Similar to FIG. 3B, FIG. 4 shows a state in which the air conditioner fan 242 is stopped and only the ventilation/air supply fan 212 is operating. In the case of this figure, unlike FIG. 3B, most of the ventilation air supply flows back to the air-conditioner air supply duct side and leaks out. Regarding the air flow rate ratio of each flow in this simulation, the forward flow to the air conditioning air supply duct side is 0.40, and the backflow to the air conditioner air supply duct side is -0.60, for ventilation air supply of 1. Therefore, in the connection method of FIG. 4, planned ventilation when the air conditioner is stopped does not work well.

図5(a)は、換気給気合流管における換気給気の様々な合流角度における「空調給気率(対換気給気)」を示すグラフである。「空調給気率(対換気給気)」とは、換気給気ファンのみが動作してエアコンファンが停止している場合の、換気給気の風量に対する合流後の空調給気の風量の比である。すなわち、空調給気率(対換気給気)が1を超える場合は、空調給気風量が換気給気風量より多く、計画換気が順調に機能することを示している。また、図5(a)は中間期等のエアコン停止状態を想定しており、角度が45°の場合は図3Bに、90°の場合は図4に対応する。
空調給気率(対換気給気)は、以下の式(1)で表される。
空調給気率(対換気給気)=空調給気ダクト風量/換気給気ダクト風量 …(1)
図5(a)より、合流角度が直角より小さい鋭角であれば、計画換気が十分に機能することが分かった。
FIG. 5A is a graph showing the "air conditioning air supply rate (vs. ventilation air supply)" at various confluence angles of the ventilation air supply in the ventilation air supply confluence pipe. "Air-conditioning air supply ratio (vs. ventilation air supply)" is the ratio of the air-conditioning air supply volume after merging to the ventilation air-supply air volume when only the ventilation air-supply fan is operating and the air-conditioning fan is stopped. Is. That is, when the air conditioning air supply rate (vs. ventilation air supply) exceeds 1, it indicates that the air conditioning air supply air volume is larger than the ventilation air supply air volume, and the planned ventilation functions smoothly. Further, FIG. 5(a) assumes an air conditioner stop state such as an intermediate period, and corresponds to FIG. 3B when the angle is 45° and to FIG. 4 when the angle is 90°.
The air-conditioning air supply rate (vs. ventilation air supply) is expressed by the following equation (1).
Air-conditioning air supply rate (against ventilation air supply) = Air-conditioning air supply duct air volume/Ventilation air supply duct air volume... (1)
From FIG. 5A, it was found that the planned ventilation functioned sufficiently if the confluence angle was an acute angle smaller than a right angle.

図5(b)は、換気給気合流管における換気給気の様々な合流角度における「空調給気率(対エアコン給気)」を示すグラフである。「空調給気率(対エアコン給気)」とは、エアコンファンのみが動作して換気給気ファンが停止している場合の、エアコン給気の風量に対する合流後の空調給気の風量の比である。したがって、角度が45°の場合は図3Cに対応する。空調給気率(対エアコン給気)は、以下の式(2)で表される。
空調給気率(対エアコン給気)=空調給気ダクト風量/エアコン給気ダクト風量 …(2)
FIG. 5B is a graph showing the “air conditioning air supply rate (vs. air conditioning air supply)” at various merging angles of the ventilation air supply merging pipe. "Air-conditioning air supply rate (vs. air-conditioning air supply)" is the ratio of the air-conditioning air supply after merging to the air-conditioning air supply when only the air-conditioning fan is operating and the ventilation air supply fan is stopped. Is. Therefore, the case where the angle is 45° corresponds to FIG. 3C. The air-conditioning air supply rate (air conditioner air supply) is expressed by the following equation (2).
Air conditioning air supply rate (air conditioner air supply) = air conditioning air supply duct air volume/air conditioner air supply duct air volume (2)

図5(b)より、合流角度を問わず、エアコン給気の略全量が空調給気ダクト側に順流し、空調対象の冷暖房を十分な機能で行えることが分かる。なお、エアコン給気のごく一部は換気給気ダクト側に逆流するものの、計画換気や冷暖房に影響を与える程ではない。   From FIG. 5B, it can be seen that regardless of the merging angle, almost all the air-conditioner air supply flows to the air-conditioning air supply duct side, and the air-conditioning target can be cooled and heated with a sufficient function. It should be noted that although a small part of the air supply to the air conditioner flows back to the ventilation air supply duct side, it does not affect the planned ventilation and cooling and heating.

これらのシミュレーションにより、換気給気ダクトから換気給気合流管への接続管内の空気の流れ方向が、換気給気合流管内においてエアコン給気が空調給気に向かう主流れの方向に順流方向であれば、換気給気ファンとエアコンファンの運転または停止状態を問わず、計画通りまたは計画以上の換気給気風量やエアコン給気風量を空調給気ダクトに送り込める。その結果、計画換気と冷暖房が適切に行われる。   From these simulations, it is confirmed that the air flow direction in the connecting pipe from the ventilation air supply duct to the ventilation air supply confluence pipe is in the forward flow direction in the ventilation air supply air confluence pipe to the main flow direction in which the air conditioner air supply flows toward the air conditioning air supply. For example, it is possible to send the ventilation air supply air volume or the air conditioning air supply air volume as planned or above the plan to the air conditioning air supply duct regardless of whether the ventilation air supply fan and the air conditioner fan are operating or stopped. As a result, planned ventilation and cooling and heating are performed appropriately.

(効果)
本実施形態の構成によれば、冷暖房を行わない中間期においては、エアコンファンの運転を必要とせずに計画換気を実現できる。そのため運用コストの低減や故障防止が期待できる。また冷暖房を行う時期においても、エアコン給気側に設けた風量制御ダンパーを操作することにより、エアコン用ファンの複雑な制御なしでも、計画換気とエアコン処理とを統合した空調給気を居住空間に送り出し、空調能力を調節して好適な環境を居住者に提供できる。
さらに、エアコン給気ダクト、換気給気ダクトおよび空調給気ダクトをエリア毎に設けることで、複数のエリアへの空調給気を個別に容易に制御できる。
さらに、風量制御ダンパーが全閉防止機能を備える構成であれば、エアコン給気を閉塞することなく、エアコンの安定的な運転にとって最低限必要な風量を確保できるため、全館空調システムに汎用的なエアコンを利用できるので、コストの低減につながる。
(effect)
According to the configuration of the present embodiment, planned ventilation can be realized without the need to operate the air conditioner fan in the intermediate period when air conditioning is not performed. Therefore, reduction of operating cost and prevention of failure can be expected. In addition, even during the time of heating and cooling, by operating the air volume control damper installed on the air supply side of the air conditioner, the air conditioning air supply that integrates planned ventilation and air conditioning processing can be integrated into the living space without complicated control of the air conditioning fan. The occupants can be provided with a suitable environment by adjusting the sending and air conditioning capacity.
Further, by providing the air conditioner air supply duct, the ventilation air supply duct, and the air conditioning air supply duct for each area, the air conditioning air supply to a plurality of areas can be easily controlled individually.
Furthermore, if the air volume control damper is equipped with a fully closed prevention function, it is possible to secure the minimum air volume necessary for stable operation of the air conditioner without blocking the air supply of the air conditioner. Air conditioners can be used, which leads to cost reduction.

さらに、本実施形態の構成では換気給気合流管に可動部がない。そのため、自重式のシャッターを用いる場合とは異なり、故障が発生することが無い上、部品の点検、保守または交換のための天井点検口や天井内外の保守点検スペースを必要としない。その結果、特に集合住宅など天井空間内のスペースが限られる状況でも施工が可能もしくは容易になる上、ダクト配置の自由度が高まる。また、合流部分の構成部材が異径のダクトのみにできるので、製造が容易である。   Further, in the configuration of this embodiment, the ventilation/air supply confluence pipe has no movable portion. Therefore, unlike the case where the self-weight type shutter is used, no failure occurs, and there is no need for a ceiling inspection port for inspection, maintenance or replacement of parts and a maintenance inspection space inside and outside the ceiling. As a result, in particular, even in a situation where the space inside the ceiling space is limited, such as in an apartment house, construction is possible or easy, and the degree of freedom in duct arrangement is increased. Further, since the constituent members of the merging portion can be only ducts having different diameters, manufacturing is easy.

さらに、本実施形態のように二重床構造を設け、天井空間内のエアコン240他で生成した空調給気を床下空間経由で床吹出口から室内に供給することで、床輻射と気流を併用した温熱快適性が優れる全館空調を実現できる。   Further, by providing a double floor structure as in the present embodiment and supplying the air-conditioning air supply generated by the air conditioner 240 and the like in the ceiling space to the room from the floor outlet through the underfloor space, floor radiation and airflow are used together. It is possible to realize air conditioning throughout the building with excellent thermal comfort.

[実施形態2]
本実施形態では、全館空調システムの制御に関する構成例を説明する。実施形態1と同じ部分については説明を簡略化する。
[Embodiment 2]
In this embodiment, a configuration example regarding control of the entire building air conditioning system will be described. The description of the same parts as those in the first embodiment will be simplified.

図1に示すように、個室31aとLD31cには、風量調整ダンパー350a、350bのダンパー開度を制御するための、遠隔指示器601a、601bがそれぞれ配置されている。遠隔指示器601は、制御線を介して、または無線通信によって、コントローラ
605と通信可能である。遠隔指示器601として例えば、壁に埋め込み式の操作パネルや、赤外線等を用いて室内に配置された受信部と通信可能なリモコン操作器が利用される。
As shown in FIG. 1, remote indicators 601a and 601b for controlling the damper opening of the air volume adjustment dampers 350a and 350b are arranged in the private room 31a and the LD 31c, respectively. The remote indicator 601 can communicate with the controller 605 via a control line or by wireless communication. As the remote indicator 601, for example, an operation panel embedded in a wall, or a remote controller capable of communicating with a receiving unit arranged indoors using infrared rays or the like is used.

図6は、本実施形態の制御を説明するための機能ブロック図である。かかる構成において、居住者5は遠隔指示器601を操作して所望の環境を設定する。設定項目は例えば室内の温度や風量である。遠隔指示器601は、指示内容に基づいて温度や風量に関する指示情報を生成し、コントローラ605に送信する。また各部屋には、温度センサ608が配置されている。コントローラ605は、温度センサとの通信によって温度検出値を取得する。なお、部屋の温度などの環境を測定する方法はこれに限られず、例えば熱画像認識処理等を行ってもよい。また、コントローラ605は、居住者5からの指示を受けて動作するのではなく、予めプログラムされた温度や風量を維持するように動作してもよい。   FIG. 6 is a functional block diagram for explaining the control of this embodiment. In such a configuration, the resident 5 operates the remote indicator 601 to set a desired environment. The setting items are, for example, indoor temperature and air volume. The remote indicator 601 generates instruction information relating to temperature and air volume based on the instruction content, and sends it to the controller 605. A temperature sensor 608 is arranged in each room. The controller 605 acquires the detected temperature value by communicating with the temperature sensor. The method of measuring the environment such as the temperature of the room is not limited to this, and for example, thermal image recognition processing may be performed. Further, the controller 605 may operate not to receive an instruction from the occupant 5 but to maintain a preprogrammed temperature or air volume.

コントローラ605としては、CPUやメモリ等の演算資源を有し、メモリ上に展開されたプログラムの指令に従って動作する情報処理装置、例えばコンピュータ、ワークステーションや、ホームオートメーション用ゲートウェイ等が考えられる。また、遠隔指示器と温度センサは一体化していると好適であり、さらにはコントローラもこれに一体化していると好適である。建物が集合住宅やビルディングである場合、その建物の集中管理システムを用いてもよい。
コントローラ605は、温度や風量に関する指示情報と、温度検出値を取得する。またコントローラ605は、風量制御ダンパー350から現在の開度情報を、エアコン240から現在のエアコン動作情報を取得する。そしてコントローラ605は、居住者5の指示を実現させるためのダンパー開度およびエアコン動作の制御情報を算出し、風量制御ダンパー350に対して開度の制御情報を、エアコン240に対して動作の制御情報を送信する。
As the controller 605, an information processing device having a computing resource such as a CPU and a memory and operating according to a command of a program expanded on the memory, for example, a computer, a workstation, a home automation gateway, or the like can be considered. Further, it is preferable that the remote indicator and the temperature sensor are integrated, and further that the controller is also integrated therein. If the building is a condominium or building, a centralized management system for that building may be used.
The controller 605 acquires instruction information regarding the temperature and the air volume, and the detected temperature value. The controller 605 also obtains current opening information from the air volume control damper 350 and current air conditioner operation information from the air conditioner 240. Then, the controller 605 calculates the control information of the damper opening and the air conditioner operation for realizing the instruction of the occupant 5, and the control information of the opening for the air volume control damper 350 and the operation control for the air conditioner 240. Send information.

本実施形態によれば、エリア毎や部屋毎の制御を好適に実現できる。
なお、上記の説明においては、コントローラ605が風量制御ダンパー350とエアコン240の二つの装置を制御した。しかし、居住者5からの指示内容や現在の温度にもよるが、少なくとも風量制御ダンパー350の開度制御を行うことで、計画換気を含む全館空調を実行可能である。また逆にコントローラ605は、エアコン240と風量制御ダンパー350だけでなく、換気給気ファンの動作を制御してもよい。
また、遠隔指示器601は、回転ダイヤル等からの電気信号で電動の風量制御ダンパーの開度を直接調節する方式でもよい。
According to the present embodiment, it is possible to preferably realize control for each area and each room.
In the above description, the controller 605 controls the two devices, the air volume control damper 350 and the air conditioner 240. However, depending on the content of the instruction from the occupant 5 and the current temperature, at least the opening control of the air volume control damper 350 can be performed to execute the entire building air conditioning including the planned ventilation. On the contrary, the controller 605 may control the operations of the ventilation air supply fan as well as the air conditioner 240 and the air volume control damper 350.
Further, the remote indicator 601 may be of a system that directly adjusts the opening degree of the electrically driven air volume control damper by an electric signal from a rotary dial or the like.

[実施形態3]
本実施形態では、全館空調システムの制御に関する別の構成例を説明する。実施形態1、2と同じ部分については説明を簡略化する。
[Third Embodiment]
In the present embodiment, another configuration example regarding control of the entire building air conditioning system will be described. The description of the same parts as in the first and second embodiments will be simplified.

図7は、差圧ダンパー701を備える本実施形態の全館空調システムにおける、エアコン240周辺の構成を示す部分拡大図である。差圧ダンパー701の一方は、エアコン給気ダクト247において、風量制御ダンパー350の設置箇所よりもエアコン寄りの位置に、第1ダクト703によって接続されている。エアコン給気ダクト247以外にも、エアコン出口側に設けたチャンバーボックスに第1ダクト703を設けても良い。差圧ダンパー701の他方は、エアコン吸込み部分に配置された吸込み側チャンバー720に、第2ダクト705によって接続されている。差圧ダンパー701には、接続先の空間それぞれの圧力差が設定値を超えると開口が大きくなるような、既往の圧力逃しダンパーを始めとする圧力調整ダンパーを利用できる。   FIG. 7 is a partially enlarged view showing the configuration around the air conditioner 240 in the overall air conditioning system of the present embodiment including the differential pressure damper 701. One of the differential pressure dampers 701 is connected by a first duct 703 to a position closer to the air conditioner than the installation location of the air volume control damper 350 in the air conditioner air supply duct 247. Besides the air conditioner air supply duct 247, the first duct 703 may be provided in the chamber box provided on the air conditioner outlet side. The other side of the differential pressure damper 701 is connected by a second duct 705 to a suction side chamber 720 arranged in the air conditioner suction portion. As the differential pressure damper 701, a pressure adjustment damper including an existing pressure relief damper, which has a large opening when the pressure difference between the connected spaces exceeds a set value, can be used.

このような構成を持つ全館空調システムにおいて、風量制御ダンパー350が閉塞した
場合、または風量制御ダンパー350の閉塞度合いが高まった場合、差圧ダンパー701前後の差圧が大きくなり、差圧ダンパー701が開く。その結果、エアコン240からのエアコン給気503がエアコン吸込み側に流れていき、エアコン吸込温度がエアコン給気温度に近づく。すると、汎用エアコンが通常備える自動制御により、エアコンの冷暖房出力や風量が抑制されるため、エアコンに過度な負荷をかけてしまうことを回避できる。したがって、全館空調システムを安定的に継続運転できる。
In the entire building air conditioning system having such a configuration, when the air volume control damper 350 is closed, or when the air volume control damper 350 is closed to a higher degree, the differential pressure before and after the differential pressure damper 701 increases, and the differential pressure damper 701 becomes open. As a result, the air conditioner air supply 503 from the air conditioner 240 flows toward the air conditioner intake side, and the air conditioner intake temperature approaches the air conditioner supply air temperature. Then, since the cooling/heating output and the air volume of the air conditioner are suppressed by the automatic control that a general-purpose air conditioner normally has, it is possible to avoid applying an excessive load to the air conditioner. Therefore, the entire building air conditioning system can be stably and continuously operated.

1:全館空調システム、210:換気給気装置、243:換気給気ダクト、240:エアコン、247:エアコン給気ダクト、350:風量制御ダンパー、248:換気給気合流管、249:空調給気ダクト   1: Whole building air conditioning system, 210: Ventilation and air supply device, 243: Ventilation and air supply duct, 240: Air conditioner, 247: Air conditioning air supply duct, 350: Air volume control damper, 248: Ventilation and air supply confluence pipe, 249: Air conditioning and air supply duct

Claims (7)

居住空間に含まれる複数のエリアのそれぞれに、換気給気とエアコン給気が合流した空調給気を供給する空調システムであって、
取り込んだ外気を前記複数のエリアのそれぞれに対応する複数の換気給気ダクトに送り出して前記換気給気とする換気給気装置と、
前記居住空間から吸い込んだ空気を調整して前記エアコン給気とするエアコンであって、前記エアコン給気を、前記複数のエリアのそれぞれに対応する複数のエアコン給気ダクトに送り出すエアコンと、
前記複数のエアコン給気ダクトに送り出される前記エアコン給気の風量を個別に制御する複数の風量制御ダンパーと、
前記換気給気と前記エアコン給気を合流させて前記空調給気とし、空調給気ダクトを介して前記空調給気を前記居住空間に供給する、前記複数のエリアのそれぞれに対応する複数の合流部であって、
上流側には、対応する前記エリアが前記合流部と同じである前記換気給気ダクトおよび前記エアコン給気ダクトが接続され、
下流側には、対応する前記エリアが前記合流部と同じである、前記空調給気を前記居住空間に供給する空調給気ダクトが接続される、合流部と、
を備えており、
前記エアコン給気ダクトから前記空調給気ダクトへ向かう前記合流部における前記エアコン給気の流れを主流れとしたとき、前記合流部において、前記主流れの向きに対して前記換気給気の流れの向きが後方から合流している
ことを特徴とする空調システム。
An air conditioning system for supplying air conditioning air supply in which ventilation air supply and air conditioner air supply are combined to each of a plurality of areas included in a living space,
A ventilation air supply device that sends the outside air taken in to a plurality of ventilation air supply ducts corresponding to each of the plurality of areas, and makes the ventilation air supply.
An air conditioner that adjusts the air sucked from the living space to supply air to the air conditioner, and sends the air conditioner air supply to a plurality of air conditioner air supply ducts corresponding to each of the plurality of areas,
A plurality of air volume control dampers that individually control the air volume of the air conditioner supply air sent to the plurality of air conditioner air supply ducts;
A plurality of confluences corresponding to each of the plurality of areas, in which the ventilation air supply and the air conditioner air supply are combined to form the air conditioning air supply, and the air conditioning supply air is supplied to the living space through an air conditioning air supply duct. Part,
On the upstream side, the ventilation air supply duct and the air conditioner air supply duct in which the corresponding area is the same as the merging portion are connected,
On the downstream side, the corresponding area is the same as the confluence section, an air conditioning air supply duct for supplying the air conditioning air supply to the living space is connected, a confluence section,
Is equipped with
When the flow of the air conditioner supply air from the air conditioner air supply duct toward the air conditioner air supply duct is the main flow, the flow of the ventilation air supply in the direction of the main flow is An air-conditioning system characterized by the fact that the directions merge from the rear.
前記合流部において、前記主流れの向きと前記換気給気の流れの向きが鋭角で合流している
ことを特徴とする請求項1に記載の空調システム。
The air-conditioning system according to claim 1, wherein, in the merging portion, the main flow direction and the ventilation/supply air flow direction meet at an acute angle.
居住空間に含まれる複数のエリアのそれぞれに、換気給気とエアコン給気が合流した空調給気を供給する空調システムであって、
取り込んだ外気を前記複数のエリアのそれぞれに対応する複数の換気給気ダクトに送り出して前記換気給気とする換気給気装置と、
前記居住空間から吸い込んだ空気を調整して前記エアコン給気とするエアコンであって、前記エアコン給気を、前記複数のエリアのそれぞれに対応する複数のエアコン給気ダクトに送り出すエアコンと、
前記複数のエアコン給気ダクトに送り出される前記エアコン給気の風量を個別に制御する複数の風量制御ダンパーと、
前記換気給気と前記エアコン給気を合流させて前記空調給気とし、空調給気ダクトを介して前記空調給気を前記居住空間に供給する、前記複数のエリアのそれぞれに対応する複数の合流部であって、
上流側には、対応する前記エリアが前記合流部と同じである前記換気給気ダクトおよび前記エアコン給気ダクトが接続され、
下流側には、対応する前記エリアが前記合流部と同じである、前記空調給気を前記居住空間に供給する空調給気ダクトが接続される、合流部と、
を備えており、
前記換気給気ダクトは、前記エアコンが停止しており、かつ、前記換気給気装置が動作している場合に、前記換気給気の略全量が前記空調給気ダクトの側に送り出されるように、前記合流部に接続される
ことを特徴とする空調システム。
An air conditioning system for supplying air conditioning air supply in which ventilation air supply and air conditioner air supply are combined to each of a plurality of areas included in a living space,
A ventilation air supply device that sends the outside air taken in to a plurality of ventilation air supply ducts corresponding to each of the plurality of areas, and makes the ventilation air supply.
An air conditioner that adjusts the air sucked from the living space to supply air to the air conditioner, and sends the air conditioner air supply to a plurality of air conditioner air supply ducts corresponding to each of the plurality of areas,
A plurality of air volume control dampers that individually control the air volume of the air conditioner supply air sent to the plurality of air conditioner air supply ducts;
A plurality of confluences corresponding to each of the plurality of areas, in which the ventilation air supply and the air conditioner air supply are combined to form the air conditioning air supply, and the air conditioning supply air is supplied to the living space through an air conditioning air supply duct. Part,
On the upstream side, the ventilation air supply duct and the air conditioner air supply duct in which the corresponding area is the same as the merging portion are connected,
On the downstream side, the corresponding area is the same as the confluence section, an air conditioning air supply duct for supplying the air conditioning air supply to the living space is connected, a confluence section,
Is equipped with
The ventilation air supply duct is configured such that, when the air conditioner is stopped and the ventilation air supply device is operating, substantially the entire amount of the ventilation air supply is delivered to the side of the air conditioning air supply duct. An air conditioning system connected to the merging portion.
前記風量制御ダンパーは、全閉防止機構を備える
ことを特徴とする請求項1から3のいずれか1項に記載の空調システム。
The air conditioning system according to any one of claims 1 to 3, wherein the air volume control damper includes a fully closed prevention mechanism.
前記複数のエリアの環境を個別に調整するための遠隔指示器をさらに備え、
前記遠隔指示器からの指示情報に基づいて、前記風量制御ダンパーを個別に制御する
ことを特徴とする請求項1から4のいずれか1項に記載の空調システム。
Further comprising a remote indicator for individually adjusting the environment of the plurality of areas,
The air conditioning system according to any one of claims 1 to 4, wherein the air volume control damper is individually controlled based on instruction information from the remote indicator.
前記換気給気装置、前記エアコン、前記複数の風量制御ダンパー、および前記複数の合流部は、天井空間に配置され、
前記複数の空調給気ダクトはそれぞれ、前記天井空間から床下空間の複数のエリアに前記空調給気を送り出し、
前記床下空間を経て床吹出口から前記居住空間に空調給気が送り出される、
ことを特徴とする請求項1から5のいずれか1項に記載の空調システム。
The ventilation air supply device, the air conditioner, the plurality of air volume control dampers, and the plurality of merging portions are arranged in a ceiling space,
Each of the plurality of air-conditioning air supply ducts sends out the air-conditioning air supply from the ceiling space to a plurality of areas of the underfloor space,
Air-conditioning air supply is sent to the living space from the floor outlet through the underfloor space,
The air conditioning system according to any one of claims 1 to 5, characterized in that
差圧ダンパーをさらに備え、
前記差圧ダンパーの一方は、前記エアコン給気ダクトにおいて前記風量制御ダンパーよりも前記エアコン寄りの位置に接続され、前記差圧ダンパーのもう一方は前記エアコンの吸込み側に接続されている
ことを特徴とする請求項1から6のいずれか1項に記載の空調システム。
Further equipped with a differential pressure damper,
One of the differential pressure dampers is connected to a position closer to the air conditioner than the air volume control damper in the air conditioner air supply duct, and the other of the differential pressure dampers is connected to a suction side of the air conditioner. The air conditioning system according to any one of claims 1 to 6.
JP2018212385A 2018-11-12 2018-11-12 air conditioning system Active JP7290936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018212385A JP7290936B2 (en) 2018-11-12 2018-11-12 air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018212385A JP7290936B2 (en) 2018-11-12 2018-11-12 air conditioning system

Publications (2)

Publication Number Publication Date
JP2020079665A true JP2020079665A (en) 2020-05-28
JP7290936B2 JP7290936B2 (en) 2023-06-14

Family

ID=70801592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018212385A Active JP7290936B2 (en) 2018-11-12 2018-11-12 air conditioning system

Country Status (1)

Country Link
JP (1) JP7290936B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113442963A (en) * 2021-08-11 2021-09-28 玉环县兴发动力有限公司 Air outlet of air conditioner in train carriage
CN113460103A (en) * 2021-08-11 2021-10-01 玉环县兴发动力有限公司 Adjustable air outlet for train air conditioner
JP7478586B2 (en) 2020-05-11 2024-05-07 前田建設工業株式会社 Air supply control device and air conditioning system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300135A (en) * 1988-05-25 1989-12-04 Matsushita Electric Works Ltd Ventilation and circulating type air cooling and heating facility
JPH05264092A (en) * 1992-03-19 1993-10-12 Daikin Ind Ltd Air conditioning apparatus
JPH06257787A (en) * 1993-03-09 1994-09-16 Tokyo Gas Co Ltd Branch chamber for duct type air conditioner system
JPH0875225A (en) * 1994-09-06 1996-03-19 Misawa Homes Co Ltd Control method of duct type whole building summarized air-conditioning system
JPH11294839A (en) * 1998-04-14 1999-10-29 Toshiba Corp Whole building air conditioning and ventilating system
JP2001165494A (en) * 1999-12-08 2001-06-22 Ishikawajima Harima Heavy Ind Co Ltd System and method for ventilating and air conditioning
JP2002106941A (en) * 2000-09-29 2002-04-10 Kajima Corp Branching/joining header duct unit
JP2009052860A (en) * 2007-08-29 2009-03-12 Toray Ind Inc Gas supply duct
JP2009174809A (en) * 2008-01-25 2009-08-06 Tokyo Electric Power Co Inc:The Air-conditioning system
JP2013148300A (en) * 2012-01-20 2013-08-01 Mitsubishi Electric Corp Air conditioning device
JP2014029241A (en) * 2012-07-31 2014-02-13 Matsumi Housing Inc Cooling/warming ventilation system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300135A (en) * 1988-05-25 1989-12-04 Matsushita Electric Works Ltd Ventilation and circulating type air cooling and heating facility
JPH05264092A (en) * 1992-03-19 1993-10-12 Daikin Ind Ltd Air conditioning apparatus
JPH06257787A (en) * 1993-03-09 1994-09-16 Tokyo Gas Co Ltd Branch chamber for duct type air conditioner system
JPH0875225A (en) * 1994-09-06 1996-03-19 Misawa Homes Co Ltd Control method of duct type whole building summarized air-conditioning system
JPH11294839A (en) * 1998-04-14 1999-10-29 Toshiba Corp Whole building air conditioning and ventilating system
JP2001165494A (en) * 1999-12-08 2001-06-22 Ishikawajima Harima Heavy Ind Co Ltd System and method for ventilating and air conditioning
JP2002106941A (en) * 2000-09-29 2002-04-10 Kajima Corp Branching/joining header duct unit
JP2009052860A (en) * 2007-08-29 2009-03-12 Toray Ind Inc Gas supply duct
JP2009174809A (en) * 2008-01-25 2009-08-06 Tokyo Electric Power Co Inc:The Air-conditioning system
JP2013148300A (en) * 2012-01-20 2013-08-01 Mitsubishi Electric Corp Air conditioning device
JP2014029241A (en) * 2012-07-31 2014-02-13 Matsumi Housing Inc Cooling/warming ventilation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478586B2 (en) 2020-05-11 2024-05-07 前田建設工業株式会社 Air supply control device and air conditioning system
CN113442963A (en) * 2021-08-11 2021-09-28 玉环县兴发动力有限公司 Air outlet of air conditioner in train carriage
CN113460103A (en) * 2021-08-11 2021-10-01 玉环县兴发动力有限公司 Adjustable air outlet for train air conditioner
CN113460103B (en) * 2021-08-11 2023-04-18 江苏荣邦机械制造有限公司 Adjustable air outlet for train air conditioner
CN113442963B (en) * 2021-08-11 2023-05-12 江苏荣邦机械制造有限公司 Air conditioner air outlet of train carriage

Also Published As

Publication number Publication date
JP7290936B2 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
US11906198B2 (en) Air-conditioning system
JP2020079665A (en) Air conditioning system
US6725914B2 (en) Double duct changeover HVAC system
JP7228371B2 (en) air conditioning system
JP2010032099A (en) Ventilation system
JPS6111535A (en) Air-conditioning system
JP2018084110A (en) Whole-building air-conditioning system
JP2016151377A (en) Air-supply box and air conditioning system for habitable room using the air-supply box
CN213872960U (en) Super-silent non-wind-sense healthy and comfortable household central air-conditioning heating system
JP2003269767A (en) Ventilating and air-conditioning system and building
JPH09210421A (en) Ventilating and air-conditioning system
JP2017142009A (en) Ventilation system and ventilation method
JP2010243075A (en) Ventilation air-conditioning system and building
JP7191557B2 (en) Whole building air conditioning system
JP4531201B2 (en) Air conditioning method and air conditioning system
JP2015007335A (en) Air conditioning equipment
JP3232152U (en) Air circulation device
JP7387255B2 (en) Whole building air conditioning system
JP7330673B2 (en) Whole building air conditioning system
JP2019066123A (en) Air conditioning system and facility
JP2023096246A (en) ventilation system
JP3290007B2 (en) Air conditioning system
JP4429678B2 (en) Air conditioning system
JP2021127866A (en) Air conditioning system
JP2024044666A (en) Air conditioning systems and buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230421

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230602

R150 Certificate of patent or registration of utility model

Ref document number: 7290936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150