JP2020078816A - Low-hydrogen type coated arc welding electrode - Google Patents

Low-hydrogen type coated arc welding electrode Download PDF

Info

Publication number
JP2020078816A
JP2020078816A JP2018213120A JP2018213120A JP2020078816A JP 2020078816 A JP2020078816 A JP 2020078816A JP 2018213120 A JP2018213120 A JP 2018213120A JP 2018213120 A JP2018213120 A JP 2018213120A JP 2020078816 A JP2020078816 A JP 2020078816A
Authority
JP
Japan
Prior art keywords
total
low
arc
welding
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018213120A
Other languages
Japanese (ja)
Other versions
JP7055731B2 (en
Inventor
雅大 渡部
Masahiro Watabe
雅大 渡部
高橋 将
Susumu Takahashi
将 高橋
岩立 健太郎
Kentaro Iwatate
健太郎 岩立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP2018213120A priority Critical patent/JP7055731B2/en
Publication of JP2020078816A publication Critical patent/JP2020078816A/en
Application granted granted Critical
Publication of JP7055731B2 publication Critical patent/JP7055731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

To provide a low-hydrogen type coated arc welding electrode which has suitable arc stability, can provide a preferable penetration bead, is free from a welding defect and provides excellent welded metal even when performing back-bead welding with all posture by using either power source of AC power source and DC power source.SOLUTION: A low-hydrogen type coated arc welding electrode contains, by mass % with respect to coating agent all mass, C of 0.01 to 0.15%, metal carbonates of 35 to 55%, metal fluorides of 4 to 12%, TiOconversion value of 3 to 9%, SiOconversion value of 10 to 20%, AlOconversion value of 0.5 to 3.0%, Si of 3 to 9%, Mn of 1.0 to 5.0%, Ti of 0.1 to 2.5% and the sum of NaO conversion value and KO conversion value of 1.5 to 5.0%.SELECTED DRAWING: None

Description

本発明は、低水素系被覆アーク溶接棒に関し、交流電源及び直流電源の何れの電源を用いて鋼パイプの円周溶接等の全姿勢で裏波溶接をする場合においても、好適なアーク安定性を示し、良好な裏波ビードが得られ、溶接欠陥が無く、強度及び低温靭性に優れた溶接金属が得られる低水素系被覆アーク溶接棒に関する。   The present invention relates to a low-hydrogen-based coated arc welding rod, and when using backside welding in all positions such as circumferential welding of a steel pipe using either AC power source or DC power source, suitable arc stability The present invention relates to a low hydrogen-based coated arc welding rod which can obtain a favorable back bead, has no welding defects, and can obtain a weld metal excellent in strength and low temperature toughness.

金属炭酸塩及び金属弗化物を主成分とする低水素系被覆アーク溶接棒は、イルミナイト系被覆アーク溶接棒やライムチタニヤ系被覆アーク溶接棒等の非低水素系被覆アーク溶接棒に比べて全姿勢における裏波溶接が容易で、かつガス発生剤による大気遮断により、機械的性質が優れ、溶着金属中の拡散性水素量が少なく、耐割れ性に優れることから鋼パイプの円周溶接等の全姿勢での裏波溶接に多く用いられている。   Low-hydrogen coated arc welding rods containing metal carbonates and metal fluorides as main components are in all positions compared to non-low-hydrogen coated arc welding rods such as illuminate type coated arc welding rods and lime titania type coated arc welding rods. Backside welding is easy, and because the atmosphere is shut off by a gas generating agent, it has excellent mechanical properties, a small amount of diffusible hydrogen in the deposited metal, and excellent crack resistance. It is often used for back seam welding in posture.

低水素系被覆アーク溶接棒は、一般的に交流電源を用いて溶接するように設計されている。しかし、鋼パイプなど屋外で円周溶接する場合には、直流電源を用いることが多く、磁気吹きが発生したり、アークが不安定となり、健全な裏波ビードが得られないという問題点がある。このため、交流電源及び直流電源の何れの電源にも適用できる低水素系被覆アーク溶接棒の開発要望が従前より高かった。   Low-hydrogen coated arc welding rods are generally designed for welding using an AC power source. However, when circumferentially welding steel pipes or the like outdoors, a DC power source is often used, and there is the problem that a magnetic back blow occurs or the arc becomes unstable, and a healthy back bead cannot be obtained. .. For this reason, there has been a strong demand for the development of a low-hydrogen-based coated arc welding rod that can be applied to both AC and DC power sources.

鋼パイプの円周溶接など、全姿勢での初層裏波溶接用の被覆アーク溶接棒は、特許文献1には、被覆剤中のカリ長石、ルチール及びアルミナの含有量を調整することによって、裏波溶接から最終層の溶接までの全層を効率よく溶接することができ、良好なアーク安定性及びビード形状を得ることができるという技術の開示がある。   A coated arc welding rod for first layer backside welding in all positions, such as circumferential welding of steel pipe, is disclosed in Patent Document 1 by adjusting the contents of potassium feldspar, rutile and alumina in the coating agent. There is a disclosure of a technique capable of efficiently welding all layers from the reverse side welding to the welding of the final layer and obtaining good arc stability and bead shape.

また、特許文献2には、SiO2の成分を90質量%以上の割合で含む鉱物(硅石等)、金属炭酸塩、金属弗化物、ルチールを含有し、鉱物中の粒度53μm未満の粒子の含有率を規定することによって、アーク切れの発生を抑制させる技術の開示がある。 Further, Patent Document 2 contains a mineral (silica stone, etc.) containing a SiO 2 component in a proportion of 90% by mass or more, a metal carbonate, a metal fluoride, and rutile, and contains particles having a particle size of less than 53 μm in the mineral. There is a disclosure of a technique for suppressing the occurrence of arc breakage by defining the rate.

さらに、特許文献3には、被覆剤中のヘマタイトの添加量を調整することにより、アークを安定させる技術の開示がある。   Further, Patent Document 3 discloses a technique of stabilizing the arc by adjusting the amount of hematite added in the coating material.

しかし、特許文献1及び特許文献2は双方とも交流電源を用いた場合における低水素系被覆アーク溶接棒の技術であるが、これらの低水素系被覆アーク溶接棒で直流電源を用いて溶接した場合、磁気吹きやアークが不安定となり、健全な裏波ビード及び良好な低温靭性が得られないという問題点があった。また、特許文献3は直流電源を用いた場合における低水素系被覆アーク溶接棒の技術であるが、このような低水素系被覆アーク溶接棒で交流電源を用いて溶接した場合、直流電源と同等のアーク安定性及び良好な裏波ビードは得られないという問題点があった。   However, both Patent Document 1 and Patent Document 2 are technologies of low-hydrogen coated arc welding rods when an AC power source is used, but when welding is performed using a DC power source with these low-hydrogen coated arc welding rods. However, there is a problem in that the magnetic blow and the arc become unstable and a sound back bead and good low temperature toughness cannot be obtained. Further, Patent Document 3 is a technology of a low hydrogen-based coated arc welding rod when a DC power source is used, but when welding is performed using an AC power source with such a low hydrogen-based coated arc welding rod, it is equivalent to a DC power source. There was a problem that the arc stability and good back bead could not be obtained.

特開2000−117487号公報JP 2000-117487 A 特開2018−114512号公報JP, 2018-114512, A 特開2015−85341号公報JP, 2005-85341, A

そこで本発明は、上述した問題点に鑑みて案出されたものであり、交流電源及び直流電源の何れを用いて鋼パイプの円周溶接等の全姿勢で裏波溶接をしても、好適なアーク安定性を有し、アーク切れが生じず、良好な裏波ビードが得られ、溶接欠陥が無く、強度及び低温靭性に優れた溶接金属が得られる低水素系被覆アーク溶接棒を提供することを目的とする。   Therefore, the present invention has been devised in view of the above-mentioned problems, and it is preferable to use any of an AC power source and a DC power source to perform backside welding in all positions such as circumferential welding of a steel pipe. Provided is a low-hydrogen coated arc welding rod which has excellent arc stability, does not cause arc breakage, can obtain a good backside bead, has no welding defects, and can obtain a weld metal excellent in strength and low temperature toughness. The purpose is to

本発明の要旨は、鋼心線に被覆剤が塗布されている低水素系被覆アーク溶接棒において、前記被覆剤は、当該被覆剤全質量に対する質量%で、C:0.01〜0.15%、金属炭酸塩の1種又は2種以上の合計:35〜55%、金属弗化物の1種又は2種以上の合計:4〜12%、Ti酸化物のTiO2換算値の合計:3〜9%、Si酸化物のSiO2換算値の合計:10〜20%、Al酸化物のAl23換算値の合計:0.5〜3.0%、Si:3〜9%、Mn:1.0〜5.0%、Ti:0.1〜2.5%、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計:1.5〜5.0%を含有し、残部は、塗布剤、鉄合金からのFe分及び不可避不純物からなることを特徴とする。 The gist of the present invention is a low hydrogen-based coated arc welding rod in which a coating material is applied to a steel core wire, wherein the coating material is C: 0.01 to 0.15 in mass% with respect to the total mass of the coating material. %, the total of one or two or more metal carbonates: 35 to 55%, the total of one or two or more metal fluorides: 4 to 12%, the total TiO 2 conversion value of Ti oxide: 3 ˜9%, total of SiO 2 converted values of Si oxide: 10 to 20%, total of Al 2 O 3 converted value of Al oxide: 0.5 to 3.0%, Si: 3 to 9%, Mn : 1.0 to 5.0%, Ti: 0.1 to 2.5%, Na 2 O converted value of Na compound and K compound and total of K 2 O converted value: 1.5 to 5.0% It is characterized in that it contains and the balance consists of coating agent, Fe content from iron alloy and inevitable impurities.

また、被覆剤全質量に対する質量%で、Al及びMgの1種又は2種の合計:0.2〜3.0%を含有することも特徴とする低水素系被覆アーク溶接棒にある。   Further, the low-hydrogen coated arc welding rod is characterized in that it contains one or two of Al and Mg in total of 0.2 to 3.0% by mass% based on the total mass of the coating material.

本発明の低水素系被覆アーク溶接棒によれば、交流電源及び直流電源の何れを用いて鋼パイプの円周溶接等の全姿勢で初層の裏波溶接した場合においても、好適なアーク安定性を有し、アーク切れが生じず、良好な裏波ビードが得られ、一般的な溶接作業性も良好であるので溶接能率が大幅に改善できるとともに、溶接欠陥が無く、強度及び低温靭性に優れた溶接金属が得られるので、溶接部の品質向上を図ることができる。   According to the low-hydrogen coated arc welding rod of the present invention, suitable arc stability is obtained even when the first layer is back-wave welded in all positions such as circumferential welding of a steel pipe using either an AC power source or a DC power source. Since it has good properties, arc breakage does not occur, good back bead is obtained, and general welding workability is also good, welding efficiency can be greatly improved, and there are no welding defects, strength and low temperature toughness. Since excellent weld metal can be obtained, the quality of the welded portion can be improved.

本発明者らは、低水素系被覆アーク溶接棒を用いて交流電源と直流電源を用いて溶接した場合の差異を詳細に調査した。   The present inventors have investigated in detail the difference between welding using an AC power supply and a DC power supply using a low-hydrogen coated arc welding rod.

その結果、直流電源を用いて裏波溶接した場合は、交流電源を用いて溶接した場合に比べて、アークが弱くなることに起因して磁気吹きやアーク切れが発生してアークが不安定で健全な裏波ビードが得られないことが判明した。また、交流電源と比較して溶接金属のC、Si、Mnが減少し、溶接金属の強度及び低温靭性が低下することも判明した。   As a result, when the backside welding is performed using a DC power supply, magnetic arcing and arc breakage occur due to the arc becoming weaker than when welding is performed using an AC power supply, and the arc is unstable. It turns out that you can't get a healthy Uranami bead. It was also found that C, Si, and Mn of the weld metal were reduced, and the strength and the low temperature toughness of the weld metal were reduced as compared with the AC power source.

一方、直流電源用に設計された低水素系被覆アーク溶接棒を用いて交流電源で裏波溶接した場合は、アークが強すぎて表ビード及び裏波ビード共にビード形状が不良となることが判明した。また、溶接金属のC、Si、Mnが増加し、溶接金属の強度が過剰となり、低温靭性が低下することも判明した。   On the other hand, when the backside welding was performed with an AC power supply using a low hydrogen type covered arc welding rod designed for a DC power supply, the arc was too strong and the bead shape was found to be bad for both the front bead and the backside bead. did. It was also found that C, Si, and Mn of the weld metal increased, the strength of the weld metal became excessive, and the low temperature toughness decreased.

そこで、交流電源と直流電源のどちらを用いて裏波溶接をした場合においても好適なアーク安定性を有し、アーク切れが生じず、かつ良好な裏波ビードが得られ、強度及び低温靭性に優れた溶接金属を得るために、低水素系被覆アーク溶接棒の成分組成について種々検討した。   Therefore, it has suitable arc stability when performing backside welding using either an AC power source or a DC power source, arc breakage does not occur, and a good backside bead is obtained, and strength and low-temperature toughness are obtained. In order to obtain an excellent weld metal, various compositions of low hydrogen system coated arc welding rods were investigated.

その結果、C、Ti酸化物、Si酸化物、Al酸化物、Ti、Na化合物及びK化合物の各含有量を適量とすることによって、これらの単独あるいは相乗効果で、交流電源及び直流電源のどちらの電源を用いて全姿勢で裏波溶接をした場合でもアークが安定して良好な裏波ビード及び表ビードの形状が得られ、金属炭酸塩及び金属弗化物の各含有量を適量とすることによって、拡散性水素量が低くなることを見出した。また、C、Si、Mn、Tiの各含有量を適量とすることによって、溶接金属の機械的性質を改善できることを見出した。また、Al又はMgを適量添加することにより、さらに低温靭性が向上することを見出した。   As a result, by adjusting the contents of C, Ti oxide, Si oxide, Al oxide, Ti, Na compound, and K compound to proper amounts, it is possible to use either one of AC power supply and DC power supply by their synergistic effect. Even when the backside welding is performed in all positions using the power source, the arc is stable and good backside bead and front bead shapes are obtained, and the metal carbonate and metal fluoride contents are set to appropriate amounts. It was found that the amount of diffusible hydrogen decreases. It was also found that the mechanical properties of the weld metal can be improved by making the respective contents of C, Si, Mn, and Ti appropriate amounts. It was also found that the low temperature toughness is further improved by adding an appropriate amount of Al or Mg.

以下、本発明の低水素系被覆アーク溶接棒について、被覆剤全質量に対する各成分組成と、その含有量の限定理由について詳細に説明する。以下、各成分組成の含有量は、被覆剤全質量に対する質量%で表すこととし、その質量%を表すときには単に%と記載する。   Hereinafter, the composition of each component with respect to the total mass of the coating material and the reason for limiting the content of the low-hydrogen coated arc welding rod of the present invention will be described in detail. Hereinafter, the content of each component composition will be represented by mass% with respect to the total mass of the coating material, and the mass% will be simply described as %.

[C:0.01〜0.15%]
Cは、被覆剤からの金属粉及び合金粉等から添加され、交流電源及び直流電源で溶接を行う場合においてアークの安定性を維持する効果がある。またCは、溶接金属の強度を確保するためにも極めて重要な成分である。Cの含有量が0.01%未満では、アークの吹付けが弱くなって、アークが不安定になり均一な裏波ビードが得られない。またCの含有量が0.01%未満では、溶接金属の強度が低くなる。一方、Cの含有量が0.15%を超えると、溶接金属の強度が過剰となり、低温靭性が低下する。したがって、Cは0.01〜0.15%とする。
[C: 0.01 to 0.15%]
C is added from metal powder and alloy powder from the coating agent, and has the effect of maintaining the stability of the arc when welding is performed with an AC power supply and a DC power supply. C is also an extremely important component for ensuring the strength of the weld metal. If the C content is less than 0.01%, the arc spraying becomes weak and the arc becomes unstable, so that a uniform back bead cannot be obtained. If the C content is less than 0.01%, the strength of the weld metal will be low. On the other hand, when the content of C exceeds 0.15%, the strength of the weld metal becomes excessive and the low temperature toughness decreases. Therefore, C is set to 0.01 to 0.15%.

[金属炭酸塩の1種又は2種以上の合計:35〜55%]
金属炭酸塩は、炭酸カルシウム、炭酸バリウム、炭酸マンガン、炭酸マグネシウム等から添加され、アーク中で分解してCO2ガスを発生して溶融金属を大気から遮断して保護するアーク雰囲気中の水素分圧を下げる効果がある。金属炭酸塩の1種又は2種以上の合計が35%未満であると、シールド効果が不足してブローホールが発生しやすくなり、拡散性水素量が多くなって耐割れ性が劣化する。一方、金属炭酸塩の1種又は2種以上の合計が55%を超えると、特に交流電源を用いた場合にアークの吹き付けが弱くなって低電流域のアークが不安定になり、良好な裏波ビードが形成され難くなる。したがって、金属炭酸塩の1種又は2種以上の合計は35〜55%とする。
[The total of one or more metal carbonates: 35 to 55%]
The metal carbonate is added from calcium carbonate, barium carbonate, manganese carbonate, magnesium carbonate, etc., decomposes in the arc to generate CO 2 gas, and shields the molten metal from the atmosphere to protect it from hydrogen. It has the effect of lowering the pressure. If the total amount of one or more metal carbonates is less than 35%, the shielding effect is insufficient and blowholes are easily generated, the amount of diffusible hydrogen increases, and the crack resistance deteriorates. On the other hand, if the total amount of one or more metal carbonates exceeds 55%, the arc spraying becomes weak and the arc in the low current region becomes unstable, especially when an AC power source is used, and good back It becomes difficult to form wave beads. Therefore, the total amount of one or more metal carbonates is 35 to 55%.

[金属弗化物の1種又は2種以上の合計:4〜12%]
金属弗化物は、蛍石、弗化バリウム、弗化マグネシウム、弗化アルミニウム等から添加され、溶融スラグの粘性を下げてスラグの流動性を調整してビード形状を良好にするとともに、アーク雰囲気中の水素分圧を下げて耐割れ性を向上させる。金属弗化物の1種又は2種以上の合計が4%未満であると、適当な溶融スラグの粘性が得られず表ビードの形状が不良となる。また金属弗化物の1種又は2種以上の合計が4%未満であると、拡散性水素量が多くなって耐割れ性が劣化する。一方、金属弗化物の1種又は2種以上の合計が12%を超えると、スラグ剥離性が劣化する。したがって、金属弗化物の1種又は2種以上の合計は4〜12%とする。
[The total of one or more metal fluorides: 4 to 12%]
Metal fluoride is added from fluorspar, barium fluoride, magnesium fluoride, aluminum fluoride, etc. to reduce the viscosity of the molten slag and adjust the fluidity of the slag to improve the bead shape, and in an arc atmosphere. The hydrogen partial pressure is reduced to improve crack resistance. If the total of one kind or two or more kinds of metal fluorides is less than 4%, an appropriate viscosity of the molten slag cannot be obtained and the shape of the surface bead becomes poor. Further, if the total of one kind or two or more kinds of metal fluorides is less than 4%, the amount of diffusible hydrogen increases and the crack resistance deteriorates. On the other hand, if the total of one or more metal fluorides exceeds 12%, the slag removability deteriorates. Therefore, the total of one kind or two or more kinds of metal fluorides is 4 to 12%.

[Ti酸化物のTiO2換算値の合計:3〜9%]
Ti酸化物は、ルチール、酸化チタン、チタンスラグ、イルメナイト等から添加され、アークを安定にする。Ti酸化物のTiO2換算値の合計が3%未満であると、アークが不安定となり良好な裏波ビードを得ることが困難となる。一方、Ti酸化物のTiO2換算値の合計が9%を超えると、スラグが緻密になりスラグ剥離性が劣化する。またTi酸化物のTiO2換算値の合計が9%を超えると、立向及び上向姿勢の溶接時に溶融スラグの粘性が高くなりスラグの流動性が低下するので、表ビードの形状が凸状となる。したがって、Ti酸化物のTiO2換算値の合計は3〜9%とする。
[Total of TiO 2 converted values of Ti oxide: 3 to 9%]
Ti oxide is added from rutile, titanium oxide, titanium slag, ilmenite, etc. to stabilize the arc. If the total of the TiO 2 converted values of the Ti oxide is less than 3%, the arc becomes unstable and it becomes difficult to obtain a good backside bead. On the other hand, when the sum of the TiO 2 conversion values of Ti oxide exceeds 9%, the slag becomes dense and the slag removability deteriorates. If the total TiO 2 conversion value of the Ti oxide exceeds 9%, the viscosity of the molten slag increases and the fluidity of the slag decreases during vertical and upward position welding, so the shape of the surface bead is convex. Becomes Therefore, the total of TiO 2 converted values of Ti oxide is 3 to 9%.

[Si酸化物のSiO2換算値の合計:10〜20%]
Si酸化物は、珪砂、珪酸カリウム、珪酸ナトリウム、カリ長石、珪灰石等から添加され、アークの吹付けを強くしてアークを安定にする。Si酸化物のSiO2換算値の合計が10%未満であると、特に直流電源を用いた場合にアークが弱くなり裏波ビードの形状が不良となる。一方、Si酸化物のSiO2換算値の合計が20%を超えると、特に交流電源を用いた場合にアークが強くなりすぎて裏波ビード及び表ビードともに形状が不良となる。したがって、Si酸化物のSiO2換算値の合計は10〜20%とする。
[Total SiO 2 converted value of Si oxide: 10 to 20%]
Si oxide is added from silica sand, potassium silicate, sodium silicate, potassium feldspar, wollastonite, etc. to strengthen the spraying of the arc and stabilize the arc. If the total of the SiO 2 converted values of the Si oxide is less than 10%, the arc becomes weak and the shape of the back bead becomes poor, especially when a DC power source is used. On the other hand, if the total of the SiO 2 converted values of Si oxide exceeds 20%, the arc becomes too strong, especially when an AC power source is used, and the shape of both the back bead and the front bead becomes defective. Therefore, the total SiO 2 conversion value of the Si oxide is set to 10 to 20%.

[Al酸化物のAl23換算値の合計:0.5〜3.0%]
Al酸化物は、アルミナ、長石、珪砂、マイカ等から添加され、溶融スラグの粘性を調整する。Al酸化物のAl23換算値の合計が0.5%未満であると、溶融スラグの粘性が低下して立向及び上向姿勢での溶接が困難になる。一方、Al酸化物のAl23換算値の合計が3.0%を超えると、アークの吹付けが強くなりスパッタ発生量が多くなる。したがって、Al酸化物のAl23換算値の合計は0.5〜3.0%とする。
[Total Al 2 O 3 conversion value of Al oxide: 0.5 to 3.0%]
Al oxide is added from alumina, feldspar, silica sand, mica, etc. to adjust the viscosity of the molten slag. If the total of Al 2 O 3 conversion values of Al oxides is less than 0.5%, the viscosity of the molten slag is reduced and it becomes difficult to perform welding in the vertical and upward postures. On the other hand, when the total of Al 2 O 3 conversion values of Al oxide exceeds 3.0%, the arc spraying becomes strong and the amount of spatter generation increases. Therefore, the total of Al 2 O 3 conversion values of Al oxides is 0.5 to 3.0%.

[Si:3〜9%]
Siは、Fe−Si、金属Si、Fe−Si−Mn等から添加され、溶接金属の脱酸を目的として添加されるが、溶接作業性確保のためにも必要である。Siの含有量が3%未満では、脱酸不足となって、溶接金属中にブローホールが発生しやすくなり、アークが不安定で表ビード及び裏波ビードともに形状が不良となる。一方、Siの含有量が9%を超えると、溶融金属中の粒界に低融点酸化物を析出させ低温靱性が低下する。したがって、Siの含有量は3〜9%とする。
[Si: 3-9%]
Si is added from Fe-Si, metallic Si, Fe-Si-Mn, and the like, and is added for the purpose of deoxidizing the weld metal, but it is also necessary for ensuring welding workability. If the Si content is less than 3%, deoxidation becomes insufficient, blowholes are easily generated in the weld metal, the arc becomes unstable, and the shape of both the front bead and the backside bead becomes poor. On the other hand, if the Si content exceeds 9%, low-melting-point oxides are precipitated at the grain boundaries in the molten metal, lowering the low temperature toughness. Therefore, the Si content is set to 3 to 9%.

[Mn:1.0〜5.0%]
Mnは、金属Mn、Fe−Mn、Fe−Si−Mn等から添加され、Siと同じく、脱酸剤として添加する他、溶接金属の強度及び低温靭性を向上させる効果がある。Mnの含有量が1.0%未満では、脱酸不足となって、溶接金属中にブローホールが発生しやすくなる。またMnの含有量が1.0%未満では、溶接金属の強度及び低温靭性が低下する。一方、Mnの含有量が5.0%を超えると、溶融スラグの粘性が低下し立向及び上向姿勢での溶接が困難となり、また溶接金属の強度が高くなり低温靭性が低下する。したがって、Mnの含有量は1.0〜5.0%とする。
[Mn: 1.0 to 5.0%]
Mn is added from metal Mn, Fe-Mn, Fe-Si-Mn, etc., and is added as a deoxidizing agent like Si, and has the effect of improving the strength and low temperature toughness of the weld metal. If the Mn content is less than 1.0%, deoxidation becomes insufficient, and blowholes are likely to occur in the weld metal. Further, if the Mn content is less than 1.0%, the strength and low temperature toughness of the weld metal decrease. On the other hand, when the content of Mn exceeds 5.0%, the viscosity of the molten slag decreases, making it difficult to perform welding in the upright and upright positions, and the strength of the weld metal increases and the low temperature toughness decreases. Therefore, the Mn content is set to 1.0 to 5.0%.

[Ti:0.1〜2.5%]
Tiは、金属Ti、Fe−Ti等から添加され、アークの電離頻度を低下させてアークを安定化させる効果がある。また、脱酸剤として作用するだけでなく、溶接金属のミクロ組織を微細化して低温靭性を向上させる効果も有する。Tiの含有量が0.1%未満であると、特に交流電源を用いた場合にアークが不安定となり、良好な裏波ビードが得られない。またTiの含有量が0.1%未満であると、脱酸不足となって、溶接金属中にブローホールが発生しやすくなり、さらに、溶接金属の低温靭性を向上させる効果が得られない。一方、Tiが2.5%を超えると、靭性を阻害する上部ベイナイト組織を生成し、溶接金属の低温靭性が低下する。したがって、Tiは0.1〜2.5%とする。
[Ti: 0.1-2.5%]
Ti is added from metallic Ti, Fe-Ti, etc., and has the effect of reducing the ionization frequency of the arc and stabilizing the arc. Further, it not only acts as a deoxidizer, but also has the effect of refining the microstructure of the weld metal to improve low temperature toughness. If the Ti content is less than 0.1%, the arc becomes unstable, especially when an AC power source is used, and a good backside bead cannot be obtained. Further, if the Ti content is less than 0.1%, deoxidation becomes insufficient, blowholes are easily generated in the weld metal, and the effect of improving the low temperature toughness of the weld metal cannot be obtained. On the other hand, when Ti exceeds 2.5%, an upper bainite structure that inhibits the toughness is generated, and the low temperature toughness of the weld metal decreases. Therefore, Ti is 0.1 to 2.5%.

[Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計:1.5〜5.0%]
Na化合物及びK化合物は、水ガラス中の珪酸ナトリウムや珪酸カリウム、カリ長石、カリガラス、ソーダ長石等から添加され、アークを安定にする効果を有する。Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が1.5%未満では、アークが不安定となり、安定した裏波ビード形状が得られない。一方、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が5.0%を超えると、特に交流電源を用いた場合にアークが強くなりすぎて表ビード及び裏波ビードともにビード形状が不良となる。したがってNa化合物及びK化合物のNa2O換算値及びK2O換算値の合計は1.5〜5.0%とする。
[Sum of Na 2 O converted value and K 2 O converted value of Na compound and K compound: 1.5 to 5.0%]
The Na compound and K compound are added from sodium silicate, potassium silicate, potassium feldspar, potassium glass, soda feldspar in water glass, and have the effect of stabilizing the arc. If the total of Na 2 O conversion value and K 2 O conversion value of Na compound and K compound is less than 1.5%, the arc becomes unstable and a stable backside bead shape cannot be obtained. On the other hand, when the total of Na 2 O conversion value and K 2 O conversion value of Na compound and K compound exceeds 5.0%, the arc becomes too strong especially when an AC power source is used, and the front bead and the back bead are formed. In both cases, the bead shape becomes defective. Therefore, the sum of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound is 1.5 to 5.0%.

[Al及びMgの1種又は2種の合計:0.2〜3.0%]
Alは、金属Al、Fe−Al、Al−Mg等から、Mgは、金属Mg、Al−Mg等から添加され、これらは強脱酸剤として作用し、溶接金属の酸素量を低減する効果を有する。Al及びMgの1種又は2種の合計が0.2%未満であると、溶接金属の低温靭性を向上効果及びブローホール発生を抑制する効果が得られない。一方、Al及びMgの1種又は2種の合計が3.0%を超えると、アークが不安定になり表ビード及び裏波ビードの形状が不良となり、またスパッタ発生量が多くなる。したがって、Al及びMgの1種又は2種の合計は0.2〜3.0%とする。
[The total of one or two of Al and Mg: 0.2 to 3.0%]
Al is added from metals Al, Fe-Al, Al-Mg, etc., and Mg is added from metals Mg, Al-Mg, etc., which act as strong deoxidizers and have the effect of reducing the oxygen content of the weld metal. Have. If the total of one kind or two kinds of Al and Mg is less than 0.2%, the effect of improving the low temperature toughness of the weld metal and the effect of suppressing blowhole generation cannot be obtained. On the other hand, if the total amount of one or two of Al and Mg exceeds 3.0%, the arc becomes unstable, the shapes of the front bead and the back bead become poor, and the amount of spatter generation increases. Therefore, the total of one or two of Al and Mg is set to 0.2 to 3.0%.

なお、本発明を適用した低水素系被覆アーク溶接棒の被覆剤の残部は、塗布剤として、マイカ、アルギン酸ソーダ等の1種以上を合計で被覆剤全質量に対する質量%で4%以下を含み、その他は鉄合金からのFe分及び不可避不純物である。   The balance of the coating material of the low hydrogen-based coated arc welding rod to which the present invention is applied includes, as a coating material, one or more kinds of mica, sodium alginate, etc. in a total amount of 4% or less by mass% based on the total mass of the coating material. , And others are Fe content and unavoidable impurities from the iron alloy.

また、使用する軟鋼心線は、JIS G3523 SWY11を用いることが好ましい。さらに、被覆剤の軟鋼心線への被覆率は、溶接棒全質量に対する被覆剤の質量%で25〜40%であることが好ましい。   Moreover, it is preferable to use JIS G3523 SWY11 as the mild steel core wire to be used. Further, the coating rate of the coating material on the mild steel core wire is preferably 25 to 40% by mass% of the coating material with respect to the total mass of the welding rod.

本発明の効果を実施例により具体的に説明する。   The effects of the present invention will be specifically described with reference to examples.

JIS G3523 SWY11に規定される外径3.2mm、長さ400mmの軟鋼心線(軟鋼心線全質量に対して、C:0.06質量%、Si:0.02質量%、Mn:0.51質量%、P:0.008質量%、S:0.003質量%)に、表1に示す各種被覆剤を用いて、被覆率20〜35%で鋼心線に塗布して低水素系被覆アーク溶接棒を試作した。   Mild steel core wire having an outer diameter of 3.2 mm and a length of 400 mm specified in JIS G3523 SWY11 (C: 0.06 mass%, Si: 0.02 mass%, Mn: 0. 51% by mass, P: 0.008% by mass, S: 0.003% by mass), using various coating agents shown in Table 1, a coating rate of 20 to 35% is applied to a steel core wire to form a low hydrogen system. A coated arc welding rod was prototyped.

Figure 2020078816
Figure 2020078816

表1に示す低水素系被覆アーク溶接棒を用いて、JIS Z3118に準じて拡散性水素量を測定した。   The diffusible hydrogen content was measured according to JIS Z3118 using the low-hydrogen coated arc welding rod shown in Table 1.

また、板厚9mmのJIS G3106 SM490A鋼を開先角度45°、ギャップ2mm、ルートフェイス1.5mmの開先形状とし、全姿勢溶接で溶接作業性が最も問題となる立向上進姿勢で、溶接電源を交流電源(以下、ACという。)と直流電源(以下、DCという。)を用い、溶接電流85Aで溶接長500mmを裏波溶接し、アークの安定性、裏波ビード形状、表ビード形状及びスラグ剥離性を目視で調査した。次いでJIS Z3104に準じてX線透過試験を実施して溶接欠陥の有無を調査した。   In addition, JIS G3106 SM490A steel with a plate thickness of 9 mm has a groove shape with a groove angle of 45°, a gap of 2 mm and a root face of 1.5 mm, and the welding workability is the most problematic in all position welding. AC power source (hereinafter referred to as AC) and DC power source (hereinafter referred to as DC) are used as the power source, and the back welding is performed with a welding current of 85 A for a welding length of 500 mm to achieve arc stability, back bead shape, and front bead shape. Also, the slag removability was visually examined. Then, an X-ray transmission test was carried out according to JIS Z3104 to investigate the presence or absence of welding defects.

さらに、板厚12mmのJIS G3106 SM490A鋼を用いて、JIS Z3211に準じてACで溶着金属試験を行い、引張試験(A2号)と衝撃試験片を採取して機械的性能を調査した。   Further, using a JIS G3106 SM490A steel having a plate thickness of 12 mm, a weld metal test was performed by AC in accordance with JIS Z3211, and a tensile test (No. A2) and an impact test piece were sampled to investigate the mechanical performance.

拡散性水素量は8ml/100g以下を良好とした。引張試験の引張強さは520〜620MPaを良好とし、衝撃試験は試験温度−40℃で繰り返し5本シャルピー衝撃試験を実施し、吸収エネルギーの平均値が30J以上を良好とした。これらの結果を表2にまとめて示す。   A diffusible hydrogen amount of 8 ml/100 g or less was regarded as good. The tensile strength of the tensile test was 520 to 620 MPa, and the impact test was carried out by repeating the five Charpy impact test at a test temperature of −40° C., and the average absorbed energy was 30 J or more. These results are summarized in Table 2.

Figure 2020078816
Figure 2020078816

表1及び表2中の溶接棒No.1〜12が本発明例、溶接棒No.13〜25は比較例である。本発明例である溶接棒No.1〜12は、被覆剤中のC、金属炭酸塩の合計、金属弗化物の合計、Ti酸化物のTiO2換算値の合計、Si酸化物のSiO2換算値の合計、Al酸化物のAl23換算値の合計、Si、Mn、Ti、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が適正であるので、拡散性水素量が低く、AC及びDCともにアークが安定してスパッタ発生量が少なく、裏波ビード形状、表ビード形状及びスラグ剥離性が良好で、ブローホール等の溶接欠陥も無いなど極めて満足な結果であった。また、溶着金属の引張強さ及び吸収エネルギーも良好な値であった。 Welding rod Nos. in Tables 1 and 2 1 to 12 are examples of the present invention, welding rod Nos. 13 to 25 are comparative examples. The welding rod No. which is an example of the present invention. 1 to 12 are C in the coating material, the total of metal carbonates, the total of metal fluorides, the total of TiO 2 conversion values of Ti oxide, the total of SiO 2 conversion values of Si oxide, and the Al oxide Al Since the sum of 2 O 3 conversion values and the sum of Si, Mn, Ti, Na compounds and K compounds Na 2 O conversion values and K 2 O conversion values are appropriate, the amount of diffusible hydrogen is low and both AC and DC are low. The arc was stable, the amount of spatter generated was small, the shape of the backside bead, the shape of the front bead, and the slag removability were good, and there were no welding defects such as blowholes. The tensile strength and absorbed energy of the deposited metal were also good values.

なお、溶接棒No.1、No.2、No.5、No.7、No.8、No.9及びNo.10は、Al及びMgの1種又は2種を適量含むので、溶着金属の吸収エネルギーが50J以上と極めて満足な値であった。   The welding rod No. 1, No. 2, No. 5, No. 7, No. 8, No. 9 and No. Since No. 10 contains an appropriate amount of one or two of Al and Mg, the absorbed energy of the deposited metal was 50 J or more, which was a very satisfactory value.

比較例中溶接棒No.13は、Ti酸化物のTiO2換算値の合計が少ないので、アークがAC、DCともに不安定で、裏波ビード形状がAC、DCともに不良であった。また、Mnが少ないので、溶着金属の引張強さ及び吸収エネルギーが低く、ブローホールも発生した。さらに、AlとMgの合計が少ないので、溶着金属の吸収エネルギー向上効果及びブローホール抑制効果が得られなかった。 The welding rod No. in the comparative example. In No. 13, since the total of TiO 2 converted values of Ti oxide was small, the arc was unstable in both AC and DC, and the backside bead shape was poor in both AC and DC. In addition, since Mn is small, the tensile strength and absorbed energy of the deposited metal are low, and blowholes are also generated. Furthermore, since the total amount of Al and Mg is small, the effect of improving the absorbed energy of the deposited metal and the effect of suppressing blowholes were not obtained.

溶接棒No.14は、Tiが少ないので、ACでアークが不安定で、裏波ビード形状が不良であった。また、ブローホールも発生し、溶着金属の吸収エネルギーも低かった。さらに、AlとMgの合計が少ないので、溶着金属の吸収エネルギー向上効果及びブローホール抑制効果が得られなかった。   Welding rod No. Since No. 14 had a small amount of Ti, the arc was unstable in AC and the backside bead shape was poor. Also, blowholes were generated and the absorbed energy of the deposited metal was low. Furthermore, since the total amount of Al and Mg is small, the effect of improving the absorbed energy of the deposited metal and the effect of suppressing blowholes were not obtained.

溶接棒No.15は、Cが多いので、溶着金属の引張強さが高く吸収エネルギーが低かった。また、金属炭酸塩の合計が多いので、ACでアークが弱く裏波ビード形状が不良であった。   Welding rod No. Since No. 15 had a large amount of C, the tensile strength of the deposited metal was high and the absorbed energy was low. Further, since the total amount of metal carbonate was large, the arc was weak in AC and the backside bead shape was poor.

溶接棒No.16は、Cが少ないので、AC、DCともにアークが弱く裏波ビード形状が不良で、溶着金属の引張強さも低かった。また、Ti酸化物のTiO2換算値の合計が多いので、AC、DCともに表ビード形状が凸状となり、スラグ剥離性も不良であった。 Welding rod No. In No. 16, since C was small, both AC and DC had weak arcs, the backside bead shape was poor, and the tensile strength of the deposited metal was also low. Further, since the total of TiO 2 converted values of Ti oxide was large, the surface bead shape was convex for both AC and DC, and the slag removability was also poor.

溶接棒No.17は、金属炭酸塩の合計が少ないので、拡散性水素量が多くブローホールも発生した。また、Si酸化物のSiO2換算値の合計が少ないので、DCでアークが弱くなり裏波ビード形状が不良であった。 Welding rod No. In No. 17, since the total amount of metal carbonate was small, the amount of diffusible hydrogen was large and blowholes were generated. Moreover, since the total of the SiO 2 converted values of the Si oxide was small, the arc weakened at DC and the backside bead shape was poor.

溶接棒No.18は、金属弗化物の合計が多いので、スラグ剥離性が不良であった。また、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が少ないので、AC、DCともにアークが不安定で裏波ビード形状が不良であった。 Welding rod No. In No. 18, the total amount of metal fluoride was large, so the slag removability was poor. In addition, since the total of Na 2 O conversion value and K 2 O conversion value of Na compound and K compound was small, both AC and DC arcs were unstable and the backside bead shape was poor.

溶接棒No.19は、Al酸化物のAl23換算値の合計が少ないので、スラグの粘性が低下しスラグ流動性が過剰となり立向上進姿勢溶接では持続困難となった。また、Siが多いので、溶着金属の吸収エネルギーが低下した。 Welding rod No. In No. 19, since the total of Al 2 O 3 conversion values of Al oxides was small, the viscosity of the slag decreased and the slag fluidity became excessive, which made sustaining difficult in upright posture welding. Further, since the amount of Si is large, the absorbed energy of the deposited metal is lowered.

溶接棒No.20は、Mnが多いので、スラグの粘性が低下しスラグ流動性が過剰となり立向上進姿勢溶接では持続困難となった。また、溶着金属の引張強さが高く、吸収エネルギーが低かった。   Welding rod No. Since No. 20 had a large amount of Mn, the viscosity of the slag decreased and the fluidity of the slag became excessive, making it difficult to sustain it in the upright posture welding. The tensile strength of the deposited metal was high and the absorbed energy was low.

溶接棒No.21は、金属弗化物の合計が少ないので、拡散性水素量が多く、AC、DCともに表ビード形状が不良であった。また、Al酸化物のAl23換算値の合計が多いので、AC、DCともにアークが強くスパッタ発生量が多かった。 Welding rod No. No. 21 had a large amount of diffusible hydrogen because the total amount of metal fluorides was small, and the surface bead shape was poor in both AC and DC. Further, since the total of Al 2 O 3 conversion values of Al oxides is large, both AC and DC have a strong arc and a large amount of spatter is generated.

溶接棒No.22は、Si酸化物のSiO2換算値の合計が多いので、ACでアークが強く裏波ビード形状及び表ビード形状が不良であった。 Welding rod No. In No. 22, since the total of the SiO 2 converted values of Si oxide was large, the arc was strong in AC and the backside bead shape and the front bead shape were poor.

溶接棒No.23は、Siが少ないので、AC、DCともにアークが不安定で裏波ビード形状及び表ビード形状が不良であり、またブローホールも発生した。   Welding rod No. In No. 23, since the amount of Si was small, the arc was unstable in both AC and DC, the shape of the backside bead and the shape of the front bead were poor, and blow holes were also generated.

溶接棒No.24は、Na化合物及びK化合物のNa2O換算値とK2O換算値の合計が多いので、ACでアークが強く裏波ビード及び表ビード形状が不良であった。 Welding rod No. In No. 24, since the total of Na 2 O conversion value and K 2 O conversion value of Na compound and K compound was large, the arc was strong in AC and the backside bead and front bead shape were poor.

溶接棒No.25は、Tiが多いので、溶着金属の吸収エネルギーが低かった。また、AlとMgの合計が多いので、AC、DCともにアークが不安定でスパッタ発生量が多く、裏波ビード形状及び表ビード形状が不良であった。   Welding rod No. Since No. 25 had a large amount of Ti, the absorbed energy of the deposited metal was low. Further, since the total amount of Al and Mg was large, the arc was unstable in both AC and DC, the amount of spatter was large, and the backside bead shape and the front bead shape were poor.

Claims (2)

鋼心線に被覆剤が塗布されている低水素系被覆アーク溶接棒において、
前記被覆剤は、当該被覆剤全質量に対する質量%で、
C:0.01〜0.15%、
金属炭酸塩の1種又は2種以上の合計:35〜55%、
金属弗化物の1種又は2種以上の合計:4〜12%、
Ti酸化物のTiO2換算値の合計:3〜9%、
Si酸化物のSiO2換算値の合計:10〜20%、
Al酸化物のAl23換算値の合計:0.5〜3.0%、
Si:3〜9%、
Mn:1.0〜5.0%、
Ti:0.1〜2.5%、
Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計:1.5〜5.0%を含有し、
残部は、塗布剤、鉄合金からのFe分及び不可避不純物からなることを特徴とする低水素系被覆アーク溶接棒。
In a low hydrogen type coated arc welding rod in which a coating agent is applied to the steel core wire,
The coating material is a mass% based on the total mass of the coating material,
C: 0.01 to 0.15%,
One or more total of metal carbonates: 35-55%,
Total of one kind or two or more kinds of metal fluorides: 4 to 12%,
Sum of TiO 2 converted values of Ti oxide: 3 to 9%,
Sum of SiO 2 converted values of Si oxide: 10 to 20%,
Sum of Al 2 O 3 conversion values of Al oxide: 0.5 to 3.0%,
Si: 3-9%,
Mn: 1.0 to 5.0%,
Ti: 0.1 to 2.5%,
Containing Na 2 O converted value and K 2 O converted value of Na compound and K compound: 1.5 to 5.0%,
The balance is a coating agent, Fe content from iron alloy, and unavoidable impurities, which is a low-hydrogen coated arc welding rod.
被覆剤全質量に対する質量%で、Al及びMgの1種又は2種の合計:0.2〜3.0%をさらに含有することを特徴とする請求項1に記載の低水素系被覆アーク溶接棒。   The low hydrogen system coated arc welding according to claim 1, further comprising: a total of one or two of Al and Mg: 0.2 to 3.0% by mass% based on the total mass of the coating agent. rod.
JP2018213120A 2018-11-13 2018-11-13 Low hydrogen coated arc welding rod Active JP7055731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018213120A JP7055731B2 (en) 2018-11-13 2018-11-13 Low hydrogen coated arc welding rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018213120A JP7055731B2 (en) 2018-11-13 2018-11-13 Low hydrogen coated arc welding rod

Publications (2)

Publication Number Publication Date
JP2020078816A true JP2020078816A (en) 2020-05-28
JP7055731B2 JP7055731B2 (en) 2022-04-18

Family

ID=70801226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018213120A Active JP7055731B2 (en) 2018-11-13 2018-11-13 Low hydrogen coated arc welding rod

Country Status (1)

Country Link
JP (1) JP7055731B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252696A (en) * 1986-04-23 1987-11-04 Kawasaki Steel Corp Coated electrode having excellent crack resistance
JPH03275294A (en) * 1990-03-22 1991-12-05 Nippon Steel Corp Low-hydrogen type coated arc welding electrode
JP2009269055A (en) * 2008-05-08 2009-11-19 Nippon Steel & Sumikin Welding Co Ltd Low-hydrogen type coated electrode
JP2015128779A (en) * 2014-01-07 2015-07-16 株式会社神戸製鋼所 Low hydrogen type covered electrode
JP2017217672A (en) * 2016-06-08 2017-12-14 日鐵住金溶接工業株式会社 Low-hydrogen type covered arc welding rod

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252696A (en) * 1986-04-23 1987-11-04 Kawasaki Steel Corp Coated electrode having excellent crack resistance
JPH03275294A (en) * 1990-03-22 1991-12-05 Nippon Steel Corp Low-hydrogen type coated arc welding electrode
JP2009269055A (en) * 2008-05-08 2009-11-19 Nippon Steel & Sumikin Welding Co Ltd Low-hydrogen type coated electrode
JP2015128779A (en) * 2014-01-07 2015-07-16 株式会社神戸製鋼所 Low hydrogen type covered electrode
JP2017217672A (en) * 2016-06-08 2017-12-14 日鐵住金溶接工業株式会社 Low-hydrogen type covered arc welding rod

Also Published As

Publication number Publication date
JP7055731B2 (en) 2022-04-18

Similar Documents

Publication Publication Date Title
JP6437327B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP6437471B2 (en) Low hydrogen coated arc welding rod
JP2018153853A (en) Flux-cored wire for gas shield arc welding
JP2015080811A (en) FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELD ARC WELDING
JP2016131985A (en) FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELD ARC WELDING
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2017064740A (en) Low-hydrogen type coated arc welding rod
JP2012218065A (en) Flux-cored wire for two-electrode horizontal fillet co2 gas-shielded arc welding
JP6688163B2 (en) Low-hydrogen coated arc welding rod
JP2017094360A (en) Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture
JP6051086B2 (en) Low hydrogen coated arc welding rod
JP5662086B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP6046022B2 (en) Low hydrogen coated arc welding rod
JP2020168651A (en) COATED ARC WELDING ELECTRODE FOR 9% Ni STEEL WELDING
JP7055731B2 (en) Low hydrogen coated arc welding rod
JP5596572B2 (en) Low hydrogen coated arc welding rod
JP6786431B2 (en) Carbon-based flux-cored wire for carbon dioxide shield arc welding
JP2010194571A (en) Flux-cored wire for two-electrode horizontal fillet gas shield arc welding
JP2021109200A (en) Iron powder low hydrogen type coated arc welding electrode
JP6999461B2 (en) High titanium oxide-based shielded metal arc welding rod
JP7244399B2 (en) Flux-cored wire for gas-shielded arc welding
JP7247081B2 (en) Metallic flux-cored wire for gas-shielded arc welding
JP7210410B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JP7221812B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220406

R150 Certificate of patent or registration of utility model

Ref document number: 7055731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150