JP2015080811A - FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELD ARC WELDING - Google Patents

FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELD ARC WELDING Download PDF

Info

Publication number
JP2015080811A
JP2015080811A JP2013221202A JP2013221202A JP2015080811A JP 2015080811 A JP2015080811 A JP 2015080811A JP 2013221202 A JP2013221202 A JP 2013221202A JP 2013221202 A JP2013221202 A JP 2013221202A JP 2015080811 A JP2015080811 A JP 2015080811A
Authority
JP
Japan
Prior art keywords
flux
total
wire
mass
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013221202A
Other languages
Japanese (ja)
Other versions
JP6033755B2 (en
Inventor
正明 鳥谷部
Masaaki Toriyabe
正明 鳥谷部
笹木 聖人
Masahito Sasaki
聖人 笹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2013221202A priority Critical patent/JP6033755B2/en
Publication of JP2015080811A publication Critical patent/JP2015080811A/en
Application granted granted Critical
Publication of JP6033755B2 publication Critical patent/JP6033755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flux-cored wire for Ar-COmixed gas shield arc welding, which provides preferable welding workability in all-position welding and welded metal excellent in low-temperature cracking resistance, low-temperature toughness and CTOD characteristic (fracture toughness).SOLUTION: A flux-cored wire for Ar-COmixed gas shield arc welding, includes, by mass% with respect to the whole wire mass, 0.03 to 0.08% of C, 0.2 to 0.6% of Si, 1 to 2.5% of Mn, 0.1 to 0.5% of Cu, 1.6 to 3.5% of Ni, 0.01 to 0.2% of Ti, 0.002 to 0.015% of B, 3 to 8% in terms of TiO, 0.1 to 0.9% in terms of AlO, 0.1 to 1% in terms of SiO, 0.01 to 0.8% in terms of ZrO, 0.1 to 0.8% in terms of Mg, 0.05 to 0.2% of a sum of a content in terms of NaO and a content in terms of KO, and 0.01 to 0.3% of a sum of contents in terms of F, wherein a mass ratio of the whole hydrogen amount in the wire to the whole wire mass is 20 ppm or less.

Description

本発明は、鋼構造物等に使用される鋼を溶接するにあたって全姿勢溶接での溶接作業性が良好であり、かつ耐低温割れ性、低温靭性及び破壊靱性(以下、CTODという。)等の特性に優れた溶接金属を得る上で好適なAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤに関する。 The present invention has good welding workability in all-position welding when welding steel used for steel structures and the like, and has low-temperature crack resistance, low-temperature toughness and fracture toughness (hereinafter referred to as CTOD). The present invention relates to a flux-cored wire for Ar—CO 2 mixed gas shielded arc welding suitable for obtaining a weld metal having excellent characteristics.

鋼を被溶接材とするガスシールドアーク溶接に用いられるフラックス入りワイヤとしては、例えば、ルチール系フラックス入りワイヤや塩基性系フラックスワイヤが知られている。   As a flux cored wire used for gas shielded arc welding using steel as a material to be welded, for example, a rutile flux cored wire or a basic flux wire is known.

ルチール系フラックス入りワイヤを用いたガスシールドアーク溶接は、溶接能率、全姿勢溶接での溶接作業性において非常に優れた能力を発揮するため、造船、橋梁、海洋構造物、鉄骨等の広い分野で適用されている。   Gas shielded arc welding using rutile flux-cored wire exhibits excellent performance in welding efficiency and welding workability in all-position welding, so it can be used in a wide range of fields such as shipbuilding, bridges, offshore structures, and steel frames. Has been applied.

しかし、ルチール系フラックス入りワイヤは、TiO2をはじめとする金属酸化物主体のフラックスが鋼製外皮中に充填されているために、溶接金属中の酸素量が多く、低温靭性が得にくい。 However, the rutile flux-cored wire has a large amount of oxygen in the weld metal and is difficult to obtain low-temperature toughness because a flux mainly composed of metal oxide such as TiO 2 is filled in the steel outer shell.

一方、塩基性系フラックス入りワイヤは、溶接金属中の酸素量が低く、低温靭性及びCTOD特性に優れる溶接金属が得られるが、全姿勢溶接での溶接作業性がルチール系フラックス入りワイヤに比べて劣り、実用化が困難である。   On the other hand, a basic flux-cored wire has a low oxygen content in the weld metal, and a weld metal with excellent low-temperature toughness and CTOD characteristics can be obtained, but the welding workability in all-position welding is better than that of a rutile flux-cored wire. Inferior and difficult to put into practical use.

また、これらフラックス入りワイヤは、フラックス原料に含有される水分やワイヤ保管時の吸湿により、拡散性水素量がソリッドワイヤに比べ高くなる。このため、溶接金属の低温割れが懸念され、板厚の厚い鋼板の溶接時には100℃程度の予熱をする必要があり、作業能率を低下させる原因となっている。低温用鋼のルチール系フラックス入りワイヤについては、これまで種々の開発が進められている。   In addition, these flux-cored wires have a higher amount of diffusible hydrogen than solid wires due to moisture contained in the flux material and moisture absorption during wire storage. For this reason, there is concern about cold cracking of the weld metal, and it is necessary to preheat to about 100 ° C. when welding a thick steel plate, which causes a reduction in work efficiency. Various developments have been made on rutile flux cored wire for low temperature steel.

例えば、特許文献1には、溶接中にスラグ成分に変わる合金成分を添加して、溶接作業性に作用するスラグ量を維持しながら、溶接金属の酸素量を低減して低温靭性に優れる溶接金属を得る技術が開示されている。しかし、引用文献1に記載の技術では、シールドガスがCO2であるので溶接金属の酸素量が多くなってしまい、十分な低温靭性及びCTOD値が得られず、耐高温割れ性は確保されているものの耐低温割れ性については考慮されていない。 For example, in Patent Document 1, an alloy component that changes to a slag component during welding is added to maintain a slag amount that affects welding workability, while reducing the oxygen amount of the weld metal and having excellent low-temperature toughness. A technique for obtaining the above is disclosed. However, in the technique described in Cited Document 1, since the shielding gas is CO 2 , the amount of oxygen in the weld metal is increased, and sufficient low temperature toughness and CTOD value cannot be obtained, and high temperature crack resistance is ensured. However, the cold cracking resistance is not considered.

また、特許文献2にも、充填フラックスの主たる酸素源であるTiO2 、SiO2 添加量に対し、Ca、Al等の脱酸剤の添加量を適切に保つことで、低温靭性に優れる溶接金属を得る技術が開示されている。しかし、溶接金属の酸素量を低減するために強脱酸剤として添加されているCaは、溶接時にアークを不安定にして多量のスパッタを発生させて溶接作業性が不良となる。また、この特許文献2の開示技術では、耐低温割れ性については考慮されていない。 Patent Document 2 also discloses a weld metal having excellent low-temperature toughness by keeping the addition amount of a deoxidizer such as Ca and Al appropriately with respect to the addition amount of TiO 2 and SiO 2 which are the main oxygen sources of the filling flux. A technique for obtaining the above is disclosed. However, Ca added as a strong deoxidizer to reduce the oxygen content of the weld metal makes the arc unstable during welding and generates a large amount of spatter, resulting in poor welding workability. Further, the disclosed technology disclosed in Patent Document 2 does not consider cold crack resistance.

特許文献3には、鋼製外皮成分を規制し充填フラックスにCu、Ni、Ti、Bを添加して溶接金属の耐海水腐食性を大幅に向上させ、かつ良好な低温靭性及びCTOD特性を得る技術が開示されている。しかし、特許文献3の開示技術では、金属弗化物が多く添加されているので溶接時にアークが不安定になり、多量のスパッタが発生するため、良好な溶接作業性が得られない。また特許文献3の開示技術では、耐低温割れ性については考慮されていない。   In Patent Document 3, the steel outer skin component is regulated, Cu, Ni, Ti, and B are added to the filling flux to greatly improve the seawater corrosion resistance of the weld metal, and good low temperature toughness and CTOD characteristics are obtained. Technology is disclosed. However, in the technique disclosed in Patent Document 3, since a large amount of metal fluoride is added, the arc becomes unstable during welding and a large amount of spatter is generated, so that good welding workability cannot be obtained. In addition, the disclosed technology disclosed in Patent Document 3 does not consider cold crack resistance.

さらに、特許文献4には、ワイヤ中のNb、V及びPの量を制限して、溶接のまま及び溶接後熱処理のいずれにおいても低温靭性に優れた溶接金属を得るための技術が開示されている。しかし、引用文献4に記載の技術においても、全姿勢溶接時の作業性及びCTOD値は十分ではないという問題があった。   Furthermore, Patent Document 4 discloses a technique for limiting the amounts of Nb, V, and P in a wire and obtaining a weld metal that is excellent in low-temperature toughness as it is in welding and in heat treatment after welding. Yes. However, the technique described in the cited document 4 also has a problem that workability and CTOD value at the time of all-position welding are not sufficient.

特開2009−61474号公報JP 2009-61474 A 特開平6−238483号公報JP-A-6-238383 特開平4−224094号公報Japanese Patent Laid-Open No. 4-224094 特開平9−277087号公報Japanese Patent Laid-Open No. 9-277087

そこで本発明は、上述した問題点に鑑みて案出されたものであり、鋼構造物等に使用される鋼を溶接するにあたって全姿勢溶接での溶接作業性が良好であり、かつ耐低温割れ性、低温靭性及びCTOD特性に優れる溶接金属を得ることができるAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。 Therefore, the present invention has been devised in view of the above-mentioned problems, and has good welding workability in all-position welding when welding steel used for steel structures and the like, and is resistant to cold cracking. An object of the present invention is to provide a flux-cored wire for Ar—CO 2 mixed gas shielded arc welding capable of obtaining a weld metal having excellent properties, low temperature toughness and CTOD characteristics.

本発明者らは、シールドガスとしてAr−CO2混合を用いたルチール系のガスシールドアーク溶接用フラックス入りワイヤについて、全姿勢溶接での溶接作業性が良好であり、−60℃における低温靭性及び−30℃におけるCTOD値が良好で、耐低温割れ性に優れた溶接金属を得るべく、種々検討を行った。 The inventors of the present invention have good welding workability in all-position welding with respect to a flux cored wire for gas shielded arc welding using Ar—CO 2 mixture as a shielding gas, and low temperature toughness at −60 ° C. and Various studies were conducted to obtain a weld metal having a good CTOD value at -30 ° C and excellent cold cracking resistance.

その結果、TiO2を主成分とした金属酸化物及び金属弗化物からなるスラグ成分と最適な合金成分及び脱酸剤を含む化学成分とすることによって、全姿勢における溶接作業性、低温靭性及びCTOD値が良好な溶接金属が得られ、さらに、ワイヤ中の全水素量をワイヤ全質量に対する質量比で20ppm以下にすることにより、溶接金属の耐低温割れ性を改善できることを見出した。 As a result, a slag component composed of a metal oxide and a metal fluoride containing TiO 2 as a main component and a chemical component including an optimum alloy component and a deoxidizing agent, welding workability in all positions, low temperature toughness and CTOD. It has been found that a weld metal having a good value can be obtained, and that the cold cracking resistance of the weld metal can be improved by setting the total hydrogen content in the wire to 20 ppm or less by mass ratio to the total mass of the wire.

すなわち、本発明の要旨は、
(1)鋼製外皮にフラックスを充填してなるAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスとの合計で、C:0.03〜0.08%、Si:0.2〜0.6%、Mn:1〜2.5%、Cu:0.1〜0.5%、Ni:1.6〜3.5%、Ti:0.01〜0.2%、B:0.002〜0.015%、さらに、ワイヤ全質量に対する質量%で、フラックス中に、Ti酸化物:TiO2換算値の合計で3〜8%、Al酸化物:Al23換算値の合計で0.1〜0.9%、Si酸化物:SiO2換算値の合計で0.1〜1%、Zr酸化物:ZrO2換算値の合計で0.01〜0.8%、Mg:0.1〜0.8%、Na及びK化合物:Na2O換算値とK2O換算値との合計で0.05〜0.2%、弗素化合物:F換算値の合計で0.01〜0.3%を含有し、残部が鋼製外皮のFe、鉄粉、鉄合金粉のFe分及び不可避不純物からなり、ワイヤ中の全水素量が、ワイヤ全質量に対する質量比で20ppm以下であることを特徴とするAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤ。
That is, the gist of the present invention is as follows.
(1) In a flux-cored wire for Ar—CO 2 mixed gas shielded arc welding, in which a steel outer shell is filled with a flux, the total of the steel outer shell and the flux in mass% with respect to the total mass of the wire, C = 0. 03 to 0.08%, Si: 0.2 to 0.6%, Mn: 1 to 2.5%, Cu: 0.1 to 0.5%, Ni: 1.6 to 3.5%, Ti : 0.01 to 0.2%, B: 0.002 to 0.015%, and mass% with respect to the total mass of the wire. In the flux, 3 to 8% in total of Ti oxide: TiO 2 conversion value Al oxide: 0.1 to 0.9% in total of Al 2 O 3 converted value, Si oxide: 0.1 to 1% in total of SiO 2 converted value, Zr oxide: ZrO 2 converted value 0.01 to 0.8% in total, Mg: 0.1 to 0.8%, Na and K compounds: Na 2 O converted value and K 2 O converted value And 0.05 to 0.2% in total, and fluorine compound: 0.01 to 0.3% in total in terms of F, with the balance being Fe of steel hull, iron powder, Fe of iron alloy powder A flux-cored wire for Ar—CO 2 mixed gas shielded arc welding, characterized in that the total hydrogen content in the wire is 20 ppm or less in terms of mass ratio to the total mass of the wire.

(2)ワイヤ全質量に対する質量%で、鋼製外皮とフラックスとの合計で、Al:0.3%以下、N:0.008%以下、V:0.03%以下、Nb:0.03%以下で、かつ、[V]+2×[Nb]:0.07%以下、を更に含有することを特徴とする請求項1に記載のAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤ。但し、[V]、[Nb]は、V、Nbのそれぞれのワイヤ全質量に対する質量%で、鋼製外皮とフラックスとの合計を示す。 (2) Mass% with respect to the total mass of the wire, the total of the steel outer sheath and the flux, Al: 0.3% or less, N: 0.008% or less, V: 0.03% or less, Nb: 0.03 The flux-cored wire for Ar—CO 2 mixed gas shielded arc welding according to claim 1, further comprising: [V] + 2 × [Nb]: 0.07% or less. . However, [V] and [Nb] are mass% with respect to the total mass of each wire of V and Nb, and indicate the total of the steel outer sheath and the flux.

(3)ワイヤ全質量に対する質量%で、フラックス中に、Bi及びBi酸化物:Bi換算値で0.003〜0.01%を更に含有することを特徴とする(1)または(2)に記載のAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤ。 (3) According to (1) or (2), the flux further contains 0.003 to 0.01% of Bi and Bi oxides in terms of Bi in terms of mass% relative to the total mass of the wire. Ar-CO 2 mixed gas shielded arc welding flux cored wire according.

(4)成形した鋼製外皮の合わせ目を溶接することで鋼製外皮に継目を無くしたことを特徴とする(1)乃至(3)の何れかに記載のAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤにある。 (4) The Ar—CO 2 mixed gas shielded arc according to any one of (1) to (3), wherein a seam is eliminated from the steel outer shell by welding a seam of the formed steel outer shell. Flux-cored wire for welding.

本発明を適用したAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤによれば、全姿勢溶接での溶接作業性が良好であり、また、−60℃における低温靭性及び−30℃におけるCTOD値が良好で、耐低温割れ性が優れた溶接金属が得られるので、溶接能率及び溶接部の品質の向上を図ることが可能である。 According to the flux-cored wire for Ar—CO 2 mixed gas shielded arc welding to which the present invention is applied, welding workability in all positions welding is good, low temperature toughness at −60 ° C., and CTOD value at −30 ° C. Therefore, it is possible to improve the welding efficiency and the quality of the welded portion because a weld metal having good cold cracking resistance is obtained.

本発明の実施例に用いた継手試験の開先形状を示す図である。It is a figure which shows the groove shape of the joint test used for the Example of this invention.

以下、本発明を適用したAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤの成分と、その組成の限定理由とについて説明する。なお、各成分の含有量は、ワイヤ全質量に対する質量%で表すこととし、その質量%を表すときには単に%と記載して表すこととする。 Hereinafter, the components of the flux-cored wire for Ar—CO 2 mixed gas shielded arc welding to which the present invention is applied and the reasons for limiting the composition will be described. The content of each component is expressed by mass% with respect to the total mass of the wire, and when expressing the mass%, it is simply expressed as%.

[鋼製外皮とフラックスとの合計でC:0.03〜0.08%]
Cは、溶接時にアークの安定化に寄与するとともに溶接金属の強度向上の効果がある。しかし、Cが0.03%未満では、この効果が十分に得られない。一方、Cが0.08%超では、Cが溶接金属中に過剰に歩留まることにより、溶接金属の強度が高くなり低温靱性が低下する。従って、鋼製外皮とフラックスとの合計でCは0.03〜0.08%とする。なお、Cは、鋼製外皮に含まれる成分の他、フラックスから金属粉及び合金粉等から添加できる。
[C: 0.03 to 0.08% in total of steel outer shell and flux]
C contributes to the stabilization of the arc during welding and has the effect of improving the strength of the weld metal. However, if C is less than 0.03%, this effect cannot be sufficiently obtained. On the other hand, if C exceeds 0.08%, C is excessively yielded in the weld metal, so that the strength of the weld metal increases and the low-temperature toughness decreases. Therefore, C is 0.03 to 0.08% in total of the steel outer shell and the flux. C can be added from a flux, a metal powder, an alloy powder, or the like, in addition to the components contained in the steel shell.

[鋼製外皮とフラックスとの合計でSi:0.2〜0.6%]
Siは、溶接時に一部が溶接スラグとなることにより溶接ビードの外観や形状を良好にし、溶接作業性の向上に寄与する。しかし、Siが0.2%未満では、溶接ビードの外観や形状を良好にする効果が十分に得られない。一方、Siが0.6%超では、Siが溶接金属中に過剰に歩留まることにより、溶接金属の低温靱性が低下する。従って、鋼製外皮とフラックスとの合計でSiは0.2〜0.6%とする。なお、Siは、鋼製外皮に含まれる成分の他、フラックスから金属Si、Fe−Si、Fe−Si−Mn等の合金粉末から添加できる。
[Si: 0.2 to 0.6% in total of steel outer shell and flux]
Si partially improves the appearance and shape of the weld bead by being partly weld slag during welding, and contributes to improvement in welding workability. However, if Si is less than 0.2%, the effect of improving the appearance and shape of the weld bead cannot be obtained sufficiently. On the other hand, if Si exceeds 0.6%, Si is excessively yielded in the weld metal, so that the low temperature toughness of the weld metal is lowered. Therefore, Si is 0.2 to 0.6% in total of the steel outer shell and the flux. Si can be added from an alloy powder such as metal Si, Fe—Si, or Fe—Si—Mn from a flux in addition to components contained in the steel outer sheath.

[鋼製外皮とフラックスとの合計でMn:1〜2.5%]
Mnは、Siと同様、溶接時に一部が溶接スラグとなることにより溶接ビードの外観や形状を良好にし、溶接作業性の向上に寄与する。また、Mnは、溶接金属に歩留まることにより、溶接金属の強度と低温靱性及びCTOD値を高める効果がある。しかし、Mnが1%未満では、これらの効果が十分に得られない。一方、Mnが2.5%超では、Mnが溶接金属中に過剰に歩留まり、溶接金属の強度が過剰になることにより、かえって溶接金属の低温靱性及びCTOD値が低下する。従って、鋼製外皮とフラックスとの合計でMnは1〜2.5%とする。なお、Mnは、鋼製外皮に含まれる成分の他、フラックスから金属Mn、Fe−Mn、Fe−Si−Mn等の合金粉末から添加できる。
[Mn in total of steel outer shell and flux: 1 to 2.5%]
Mn, like Si, partially becomes weld slag during welding, thereby improving the appearance and shape of the weld bead and contributing to the improvement of welding workability. Further, Mn has an effect of increasing the strength, low temperature toughness and CTOD value of the weld metal by yielding on the weld metal. However, if Mn is less than 1%, these effects cannot be obtained sufficiently. On the other hand, if Mn exceeds 2.5%, Mn is excessively yielded in the weld metal and the strength of the weld metal becomes excessive, so that the low temperature toughness and CTOD value of the weld metal are lowered. Therefore, Mn is 1 to 2.5% in total of the steel outer shell and the flux. Mn can be added from an alloy powder such as metal Mn, Fe—Mn, and Fe—Si—Mn from a flux in addition to components contained in the steel outer sheath.

〔鋼製外皮とフラックスとの合計でCu:0.1〜0.5%〕
Cuは、溶接金属の組織を微細化し、低温靭性及び強度を高める効果がある。しかし、Cuが0.1%未満では、これらの効果が十分に得られない。一方、Cuが0.5%超では、溶接金属の強度が過剰になり低温靭性が低下する。従って、鋼製外皮とフラックスとの合計でCuは0.1〜0.5%とする。なお、Cuは、鋼製外皮及び鋼製外皮表面に施したCuめっき分の他、フラックスから金属Cu、Cu−Zr、Fe−Si−Cu等の合金粉末から添加できる。
[Cu: 0.1 to 0.5% in total of steel outer shell and flux]
Cu has the effect of reducing the microstructure of the weld metal and increasing the low temperature toughness and strength. However, if Cu is less than 0.1%, these effects cannot be obtained sufficiently. On the other hand, if Cu exceeds 0.5%, the strength of the weld metal becomes excessive and the low-temperature toughness decreases. Therefore, Cu is 0.1 to 0.5% in total of the steel outer shell and the flux. Cu can be added from an alloy powder such as a metal Cu, Cu-Zr, Fe-Si-Cu, etc. from a flux in addition to the steel outer skin and the Cu plating applied to the surface of the steel outer skin.

[鋼製外皮とフラックスとの合計でNi:1.6〜3.5%]
Niは、溶接金属の低温靱性及びCTOD値を向上させる効果がある。しかし、Niが1.6%未満では、この効果が十分に得られない。一方、Niが3.5%超では、溶接金属に高温割れが発生し易くなる。従って、鋼製外皮とフラックスとの合計でNiは1.6〜3.5%とする。なお、Niは、鋼製外皮に含まれる成分の他、フラックスからの金属Ni、Fe−Ni等の合金粉末から添加できる。
[Ni: 1.6 to 3.5% in total of steel outer shell and flux]
Ni has the effect of improving the low temperature toughness and CTOD value of the weld metal. However, if Ni is less than 1.6%, this effect cannot be sufficiently obtained. On the other hand, if Ni exceeds 3.5%, hot cracking tends to occur in the weld metal. Therefore, Ni is 1.6 to 3.5% in total of the steel outer shell and the flux. Ni can be added from alloy powders such as metal Ni and Fe-Ni from the flux in addition to components contained in the steel outer sheath.

[鋼製外皮とフラックスとの合計でTi:0.01〜0.2%]
Tiは、溶接金属の組織を微細化して低温靭性及びCTOD値を向上させる効果がある。しかし、Tiが0.01%未満では、この効果が十分に得られない。一方、Tiが0.2%超では、靭性を阻害する上部ベイナイト組織を生成し、靭性及びCTOD値が低くなる。従って、鋼製外皮とフラックスとの合計でTiは0.01〜0.2%とする。なお、Tiは、鋼製外皮に含まれる成分の他、フラックスからの金属Ti、Fe−Ti等の合金粉末から添加できる。
[Ti in total of steel outer shell and flux: 0.01-0.2%]
Ti has the effect of reducing the microstructure of the weld metal and improving the low temperature toughness and CTOD value. However, if Ti is less than 0.01%, this effect cannot be obtained sufficiently. On the other hand, if Ti exceeds 0.2%, an upper bainite structure that inhibits toughness is generated, and the toughness and the CTOD value are lowered. Therefore, Ti is 0.01 to 0.2% in total of the steel outer shell and the flux. Ti can be added from an alloy powder such as metal Ti or Fe—Ti from a flux in addition to components contained in the steel outer shell.

[鋼製外皮とフラックスとの合計でB:0.002〜0.015%]
Bは、微量の添加により溶接金属のミクロ組織を微細化し、溶接金属の低温靱性及びCTOD値を向上させる効果がある。しかし、Bが0.002%未満では、この効果が十分に得られない。一方、Bが0.015%超では、溶接金属が過度に硬化することにより低温靱性及びCTOD値が低下するとともに、溶接金属に高温割れが発生し易くなる。従って、Bは0.002〜0.015%とする。なお、Bは、鋼製外皮に含まれる成分の他、フラックスからの金属B、Fe−B、Fe−Mn−B等合金粉末及び硼砂から添加できる。
[B: 0.002 to 0.015% in total of steel outer shell and flux]
B has the effect of refining the microstructure of the weld metal by adding a small amount and improving the low temperature toughness and CTOD value of the weld metal. However, if B is less than 0.002%, this effect cannot be obtained sufficiently. On the other hand, if B exceeds 0.015%, the weld metal is excessively hardened, so that the low temperature toughness and the CTOD value are lowered, and high temperature cracks are likely to occur in the weld metal. Therefore, B is 0.002 to 0.015%. In addition to the components contained in the steel outer shell, B can be added from metal powders such as flux B, Fe-B, Fe-Mn-B, etc., and borax.

[フラックス中に含有するTi酸化物:TiO2換算値の合計で3〜8%]
Ti酸化物は、溶接時にアークの安定化に寄与するとともに、溶接ビードの形状を良好にし、溶接作業性の向上に寄与する効果がある。また、Ti酸化物は、立向上進溶接において、溶接スラグにTi酸化物として含まれることによって溶融スラグの粘性や融点を調整し、溶融メタルが垂れるのを防ぐ効果がある。しかし、Ti酸化物のTiO2換算値の合計が3%未満では、これらの効果が十分に得られず、アークが不安定でスパッタ発生量が多く、溶接ビード形状が劣化する。また、立向上進溶接において溶融メタルが垂れやすくなる。一方、Ti酸化物のTiO2換算値の合計が8%超では、アークが安定してスパッタ発生量も少ないが、溶接金属にTi酸化物が過剰に残存することにより、低温靱性が低下する。従って、Ti酸化物のTiO2換算値の合計は3〜8%とする。なお、Ti酸化物は、フラックスからのルチール、酸化チタン、チタンスラグ、イルメナイト等から添加される。
[Ti oxide contained in flux: 3 to 8% in total of TiO 2 conversion value]
Ti oxide contributes to the stabilization of the arc during welding, and also has the effect of improving the welding workability by improving the shape of the weld bead. Further, Ti oxide has an effect of preventing the molten metal from dripping by adjusting the viscosity and melting point of the molten slag by being contained in the weld slag as Ti oxide in the vertical welding. However, if the total TiO 2 conversion value of Ti oxide is less than 3%, these effects cannot be obtained sufficiently, the arc is unstable, the amount of spatter generated is large, and the weld bead shape is deteriorated. In addition, the molten metal tends to sag in the vertical improvement welding. On the other hand, if the total TiO 2 conversion value of the Ti oxide exceeds 8%, the arc is stable and the amount of spatter generated is small, but the Ti oxide excessively remains in the weld metal, so that the low-temperature toughness decreases. Therefore, the total of TiO 2 converted values of Ti oxide is 3 to 8%. The Ti oxide is added from rutile, titanium oxide, titanium slag, ilmenite, etc. from the flux.

[フラックス中に含有するAl酸化物:Al23換算値の合計で0.1〜0.9%]
Al酸化物は、溶接時に溶接スラグの粘性や融点を調整し、特に立向上進溶接における溶融メタルが垂れるのを防ぐ効果がある。しかし、Al酸化物のAl23換算値の合計が0.1%未満では、この効果が十分に得られない。一方、Al酸化物のAl23換算値の合計が0.9%を超えると、溶接金属中にAl酸化物が過剰に残存することにより、低温靱性が低下する。従って、Al酸化物のAl23換算値の合計は0.1〜0.9%とする。なお、Al酸化物は、フラックス中からアルミナ等から添加できる。
[Al oxide contained in flux: 0.1 to 0.9% in total of Al 2 O 3 conversion value]
Al oxide has an effect of adjusting the viscosity and melting point of the welding slag during welding, and preventing the molten metal from dripping particularly in vertical improvement welding. However, when the total of Al 2 O 3 conversion values of Al oxides is less than 0.1%, this effect cannot be obtained sufficiently. On the other hand, if the total Al 2 O 3 conversion value of the Al oxide exceeds 0.9%, the Al oxide remains excessively in the weld metal, thereby lowering the low temperature toughness. Therefore, the total of Al 2 O 3 converted values of Al oxide is 0.1 to 0.9%. The Al oxide can be added from alumina or the like from the flux.

[フラックス中に含有するSi酸化物:SiO2換算値の合計で0.1〜1%]
Si酸化物は、溶融スラグの粘性や融点を調整してスラグ被包性を向上させる効果がある。しかし、Si酸化物のSiO2換算値の合計が0.1%未満では、この効果が十分に得られない。一方、Si酸化物のSiO2換算値の合計が1%超では、溶融スラグの塩基度が低下することにより、溶接金属の酸素量が増加して低温靭性が低下する。従って、Si酸化物のSiO2換算値の合計は0.1〜1%とする。なお、Si酸化物は、フラックスから珪砂、ジルコンサンド、珪酸ソーダ等から添加できる。
[Si oxide contained in flux: 0.1 to 1% in total of SiO 2 conversion value]
Si oxide has the effect of improving the slag encapsulation by adjusting the viscosity and melting point of the molten slag. However, this effect cannot be sufficiently obtained when the total of SiO 2 conversion values of the Si oxide is less than 0.1%. On the other hand, when the total of SiO 2 conversion values of Si oxide exceeds 1%, the basicity of the molten slag decreases, so that the oxygen content of the weld metal increases and the low temperature toughness decreases. Therefore, the total of SiO 2 conversion values of Si oxide is 0.1 to 1%. In addition, Si oxide can be added from a flux from silica sand, zircon sand, sodium silicate, or the like.

[フラックス中に含有するZr酸化物:ZrO2換算値の合計で0.01〜0.8%]
Zr酸化物は、溶接スラグの粘性や融点を調整し、特に立向上進溶接における溶融メタルが垂れるのを防ぐ効果がある。しかし、Zr酸化物のZrO2換算値の合計が0.01%未満では、この効果が十分に得られない。一方、Zr酸化物のZrO2換算値の合計が0.8%超では、スラグ剥離性が悪くなる。従って、Zr酸化物のZrO2換算値の合計は0.01〜0.8%とする。なお、Zr酸化物は、フラックスからジルコンサンド、酸化ジルコニウム等から添加できる。
[Zr oxide contained in flux: 0.01 to 0.8% in terms of ZrO 2 conversion value]
Zr oxide adjusts the viscosity and melting point of the welding slag, and has an effect of preventing the molten metal from dripping particularly in the vertical improvement welding. However, if the total of ZrO 2 converted values of the Zr oxide is less than 0.01%, this effect cannot be obtained sufficiently. On the other hand, when the total of ZrO 2 converted values of the Zr oxide exceeds 0.8%, the slag peelability is deteriorated. Therefore, the total of ZrO 2 converted values of the Zr oxide is set to 0.01 to 0.8%. In addition, Zr oxide can be added from a flux from zircon sand, zirconium oxide, or the like.

[フラックス中に含有するMg:0.1〜0.8%]
Mgは、強脱酸剤として機能することにより溶接金属中の酸素を低減し、溶接金属の低温靱性及びCTOD値を高める効果がある。しかし、Mgが0.1%未満では、この効果が十分に得られない。一方、Mgが0.8%超では、溶接時にアーク中で激しく酸素と反応してスパッタやヒュームの発生量が多くなる。従って、Mgは0.1〜0.8%とする。なお、Mgは、フラックスから金属Mg、Al−Mg等の合金粉末から添加できる。
[Mg contained in flux: 0.1 to 0.8%]
Mg functions as a strong deoxidizer, thereby reducing oxygen in the weld metal and increasing the low temperature toughness and CTOD value of the weld metal. However, if Mg is less than 0.1%, this effect cannot be sufficiently obtained. On the other hand, if Mg exceeds 0.8%, it reacts violently with oxygen in the arc during welding, and the amount of spatter and fumes generated increases. Therefore, Mg is 0.1 to 0.8%. In addition, Mg can be added from alloy powders, such as metal Mg and Al-Mg, from a flux.

[フラックス中に含有するNa及びK化合物:Na2O換算値とK2O換算値との合計で0.05〜0.2%]
Na及びK化合物は、アーク安定剤及びスラグ形成剤としてとして作用する。Na及びK化合物のNa2O換算値及びK2O換算値の合計が0.05%未満であると、アークが不安定となりスパッタ発生量が多くなる。また、ビード外観も不良になる。一方、Na及びK化合物のNa2O換算値及びK2O換算値の合計が0.2%を超えると、スラグ剥離性が不良となる。また、立向上進溶接ではメタルが垂れやすくなる。従って、Na及びK化合物のNa2O換算値とK2O換算値の合計は0.05〜0.2%とする。なお、Na及びK化合物は、カリ長石、珪酸ソーダ及び珪酸カリからなる水ガラスの固質成分、弗化ソーダ、珪弗化カリウム等の粉末から添加できる。
[Na and K compounds contained in flux: 0.05 to 0.2% in total of Na 2 O converted value and K 2 O converted value]
Na and K compounds act as arc stabilizers and slag formers. When the total of Na 2 O converted values and K 2 O converted values of Na and K compounds is less than 0.05%, the arc becomes unstable and the amount of spatter generated increases. Also, the bead appearance is poor. On the other hand, when the total of Na 2 O converted values and K 2 O converted values of Na and K compounds exceeds 0.2%, the slag peelability becomes poor. In addition, the metal tends to sag in the vertical improvement welding. Accordingly, the total of Na 2 O converted values and K 2 O converted values of Na and K compounds is 0.05 to 0.2%. The Na and K compounds can be added from a solid component of water glass made of potassium feldspar, sodium silicate and potassium silicate, sodium fluoride, potassium silicofluoride and the like.

[フラックス中に含有する弗素化合物:F換算値の合計で0.01〜0.3%]
弗素化合物は、アークを安定させる効果がある。しかし、弗素化合物のF換算値の合計が0.01%未満では、この効果が十分に得られない。一方、弗素化合物のF換算値の合計が0.3%を超えると、アークが不安定になり、スパッタ発生量が多くなる。さらに、立向上進溶接では溶融メタル垂れが発生しやすくなる。従って、弗素化合物のF換算値の合計は0.01〜0.3%とする。なお、弗素化合物は、CaF2、NaF、KF、LiF、MgF2、K2SiF6、AlF3等から添加でき、F換算値はそれらに含有されるF量の合計である。
[Fluorine compounds contained in flux: 0.01 to 0.3% in total in terms of F]
The fluorine compound has an effect of stabilizing the arc. However, when the total F converted value of the fluorine compound is less than 0.01%, this effect cannot be sufficiently obtained. On the other hand, if the total F converted value of the fluorine compound exceeds 0.3%, the arc becomes unstable and the amount of spatter generated increases. Furthermore, molten metal sag tends to occur in the vertical improvement welding. Therefore, the total F converted value of the fluorine compound is set to 0.01 to 0.3%. The fluorine compound can be added from CaF 2 , NaF, KF, LiF, MgF 2 , K 2 SiF 6 , AlF 3, etc., and the F conversion value is the total amount of F contained in them.

[ワイヤ中の全水素量:ワイヤ全質量に対する質量比で20ppm以下]
ワイヤの水素は、溶接金属の拡散性水素源となるので、可能な限り低減する必要がある。ワイヤ全質量に対する質量比でワイヤの全水素量が20ppmを超えると、拡散性水素量(JIS Z 3118)が4ml/100gを超えるので、多層盛溶接をした場合に、低温割れ感受性が高まる。従って、ワイヤ中の全水素量は、ワイヤ全質量に対する質量比で20ppm以下とする。なお、ワイヤ中の全水素量は、不活性ガス熱伝導度法などにより測定することができる。
[Total hydrogen content in the wire: 20 ppm or less by mass ratio to the total mass of the wire]
Since the hydrogen of the wire serves as a diffusible hydrogen source for the weld metal, it must be reduced as much as possible. If the total hydrogen content of the wire exceeds 20 ppm by mass ratio to the total mass of the wire, the amount of diffusible hydrogen (JIS Z 3118) exceeds 4 ml / 100 g. Therefore, the total hydrogen amount in the wire is 20 ppm or less in terms of a mass ratio with respect to the total mass of the wire. The total amount of hydrogen in the wire can be measured by an inert gas thermal conductivity method or the like.

[鋼製外皮とフラックスとの合計でAl:0.3%以下]
Alは、溶接時に溶接スラグにAl酸化物として溶接スラグに含まれることによって溶接スラグの粘性や融点を調整し、特に立向上進溶接における溶融メタルが垂れ落ちるのを防ぐ効果がある。しかし、Alが0.3%を超えると、Alは、酸化物として過度に溶接金属に残留して溶接金属の靭性が低下する。従って、Alは0.3%以下とする。なお、Alは、鋼製外皮に含まれる成分の他、フラックスからの金属Al、Fe−Al、Al−Mg等の合金粉末から添加できる。
[Total of steel outer shell and flux: Al: 0.3% or less]
Al is included in the weld slag as an Al oxide in the weld slag during welding, thereby adjusting the viscosity and melting point of the weld slag, and in particular, has an effect of preventing the molten metal from dripping in the vertical improvement welding. However, when Al exceeds 0.3%, Al remains excessively in the weld metal as an oxide, and the toughness of the weld metal decreases. Therefore, Al is made 0.3% or less. Al can be added from alloy powders such as metal Al, Fe-Al, Al-Mg, etc. from the flux in addition to the components contained in the steel outer shell.

[鋼製外皮とフラックスとの合計でN:0.008%以下]
Nは、微量の添加で介在物の組成を核生成促進に効果的なTiNの生成により、溶接金属の凝固組織が微細になり、耐高温割れ性が改善される。しかし、Nが0.008%を超えると、溶接部へのNの溶解度が小さい軟鋼または高張力鋼からなる鋼板を溶接する場合、溶接部の溶解度を超えるため、溶接金属中にブローホールが発生する。またNが0.008%を超えると、却って靭性が低下する。従って、Nは0.008%以下とする。なお、N源は、鋼製外皮に含まれる成分の他、脱酸剤や合金粉に金属窒化物として含まれる。
[N: 0.008% or less in total of steel outer shell and flux]
When N is added in a small amount, the composition of the inclusions is effectively produced to promote nucleation, so that the solidification structure of the weld metal becomes fine and the hot cracking resistance is improved. However, when N exceeds 0.008%, when welding a steel plate made of mild steel or high-tensile steel with a low solubility of N in the weld zone, the weld zone exceeds the solubility of the weld zone, resulting in blowholes in the weld metal. To do. On the other hand, if N exceeds 0.008%, the toughness decreases. Therefore, N is set to 0.008% or less. In addition, N source | sauce is contained as a metal nitride in a deoxidizer and alloy powder other than the component contained in steel outer shells.

[鋼製外皮とフラックスとの合計でV:0.03%以下]
Vは、微細な窒炭化物を析出し、溶接金属の強度を向上させる。しかし、Vが0.03%を超えると、強度が過多となり靭性が低下する。従って、Vは0.03%以下とする。
[Total of steel outer shell and flux: V: 0.03% or less]
V precipitates fine nitrocarbides and improves the strength of the weld metal. However, if V exceeds 0.03%, the strength is excessive and the toughness is lowered. Therefore, V is set to 0.03% or less.

[鋼製外皮とフラックスとの合計でNb:0.03%以下]
Nbは、微細な窒炭化物を析出し、溶接金属の強度を向上させる。しかし、Nbが0.03%を超えると、強度が過多となり靭性が低下する。従って、Nbは0.03%以下とする。
[Nb: 0.03% or less in total of steel outer shell and flux]
Nb precipitates fine nitrocarbides and improves the strength of the weld metal. However, when Nb exceeds 0.03%, the strength becomes excessive and the toughness is lowered. Therefore, Nb is made 0.03% or less.

[ [V]+2×[Nb]:0.07%以下]
[V]、[Nb]は、V、Nbのそれぞれのワイヤ全質量に対する質量%で、鋼製外皮とフラックスとの合計を示す。VおよびNbは、ともに微細な窒炭化物を析出し、溶接金属の強度を向上させるが、[V]+2×[Nb]が0.07%を超えると、強度が過多となり靭性が低下する。従って、[V]+2×[Nb]は0.07%以下とする。
[[V] + 2 × [Nb]: 0.07% or less]
[V] and [Nb] are mass% with respect to the total mass of each wire of V and Nb, and indicate the total of the steel outer sheath and the flux. V and Nb both precipitate fine nitrogen carbides and improve the strength of the weld metal. However, if [V] + 2 × [Nb] exceeds 0.07%, the strength becomes excessive and the toughness decreases. Therefore, [V] + 2 × [Nb] is set to 0.07% or less.

[フラックス中に含有するBi及びBi酸化物:Bi換算値で0.003〜0.01%]
Biは、多層盛溶接において溶接スラグの溶接金属からの剥離を促進させて、スラグ剥離性を良好にする。Bi及びBi酸化物に含まれるBi換算値が0.003%未満であると、その効果が不十分である。一方、Bi及びBi酸化物に含まれるBi換算値が0.01%を超えると、溶接金属に割れが生じる場合があり、また靭性が低下する。従って、Bi及びBi酸化物に含まれるBi換算値は0.003〜0.01%とする。
[Bi and Bi oxide contained in flux: 0.003 to 0.01% in terms of Bi]
Bi promotes the peeling of the weld slag from the weld metal in the multi-layer welding, thereby improving the slag peelability. If the Bi conversion value contained in Bi and Bi oxide is less than 0.003%, the effect is insufficient. On the other hand, if the Bi-converted value contained in Bi and Bi oxide exceeds 0.01%, the weld metal may be cracked and the toughness is reduced. Therefore, the Bi equivalent value contained in Bi and Bi oxide is made 0.003 to 0.01%.

[成形した鋼製外皮の合わせ目を溶接することで鋼製外皮に継目を無くす]
本発明のAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤは、鋼製外皮をパイプ状に成形し、その内部にフラックスを充填した構造である。ワイヤの種類としては、成形した鋼製外皮の合わせ目を溶接して得られる鋼製外皮に継目の無いワイヤと、鋼製外皮の合わせ目の溶接を行わないままとした鋼製外皮に継目を有するワイヤとに大別できる。本発明においては、何れの断面構造のワイヤを採用することができるが、鋼製外皮に継目が無いワイヤは、ワイヤ中の全水素量を低減することを目的とした熱処理が可能であり、また製造後のフラックスの吸湿が無いため、溶接金属の拡散性水素量を低減し、耐低温割れ性の向上を図ることができるので、より好ましい。
[Welding the seam of the molded steel skin eliminates the seam of the steel skin]
The flux-cored wire for Ar—CO 2 mixed gas shielded arc welding of the present invention has a structure in which a steel outer shell is formed into a pipe shape and the inside thereof is filled with flux. There are two types of wire: a seamless wire in the steel skin obtained by welding the seam of the formed steel skin, and a seam in the steel skin that is left unwelded in the steel skin. It can be roughly divided into wires. In the present invention, a wire having any cross-sectional structure can be used, but a wire without a seamless steel outer sheath can be heat-treated for the purpose of reducing the total amount of hydrogen in the wire. Since there is no moisture absorption of the flux after manufacture, the amount of diffusible hydrogen in the weld metal can be reduced and the cold cracking resistance can be improved, which is more preferable.

本発明のAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤの残部は、鋼製外皮のFe、成分調整のために添加する鉄粉、Fe−Mn、Fe−Si合金等の鉄合金粉のFe分及び不可避不純物である。また、フラックス充填率は特に制限はしないが、生産性の観点から、ワイヤ全質量に対して8〜20%とするのが好ましい。 The remainder of the flux-cored wire for Ar—CO 2 mixed gas shielded arc welding of the present invention is made of Fe of steel outer shell, iron powder added for component adjustment, iron alloy powder such as Fe—Mn, Fe—Si alloy, etc. Fe content and inevitable impurities. The flux filling rate is not particularly limited, but is preferably 8 to 20% with respect to the total mass of the wire from the viewpoint of productivity.

溶接時のシールドガスは、溶接金属の酸素量を低減するためにAr−5〜25%CO2の混合ガスとする。 The shielding gas during welding is a mixed gas of Ar-5 to 25% CO 2 in order to reduce the oxygen content of the weld metal.

以下、上述した構成からなる本発明を適用したAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤの実施例について詳細に説明する。 It will be described in detail for the embodiment of the applied Ar-CO 2 mixed gas shielded arc welding flux cored wire of the present invention having the configuration described above.

JIS G 3141に規定されるSPCCを鋼製外皮として使用して、鋼製外皮を成形する工程でU型に成形した後、鋼製外皮の合わせ目を溶接した継目が無いワイヤと、溶接しない継目の有るワイヤとを造管、伸線して表1〜表4に示す各種成分のフラックス入りワイヤを試作した。ワイヤ径は1.2mmとした。   After using the SPCC specified in JIS G 3141 as a steel outer shell and forming it into a U shape in the process of forming the steel outer shell, a seamless wire welded with a seam of the steel outer shell and a seam that is not welded A wire with a wire was piped and drawn to produce flux-cored wires of various components shown in Tables 1 to 4. The wire diameter was 1.2 mm.

Figure 2015080811
Figure 2015080811

Figure 2015080811
Figure 2015080811

Figure 2015080811
Figure 2015080811

Figure 2015080811
Figure 2015080811

試作したワイヤは、株式会社堀場製作所製の水素分析装置:EMGA−621を用いて全水素量を測定した後、JIS Z G3218 SHY685に規定される鋼板を用いて立向上進すみ肉溶接による溶接作業性の評価、溶着金属試験として機械特性評価及び溶接割れ試験を実施した。さらに、一部の試作ワイヤを用いて図1に示すK形開先で立向上進溶接による継手溶接を行いCTOD試験を実施した。これらの溶接条件を表5に示す。   The prototype wire was measured by measuring the total amount of hydrogen using a hydrogen analyzer manufactured by HORIBA, Ltd .: EMGA-621, and then using a steel plate specified in JIS Z G3218 SHY685 to improve the welding process by fillet welding. Mechanical properties evaluation and weld cracking test were conducted as a property evaluation and weld metal test. Further, a joint welding was carried out by vertical improvement welding with a K-shaped groove shown in FIG. 1 using some prototype wires, and a CTOD test was conducted. These welding conditions are shown in Table 5.

Figure 2015080811
Figure 2015080811

立向上進溶接による溶接作業性の評価は、半自動MAG溶接をしたときのアークの安定性、スパッタ発生状態、ヒューム発生状態、ビード形状、ビード外観、溶融メタル垂れ状況及び高温割れの有無について調査した。   Evaluation of welding workability by vertical advance welding was conducted to investigate arc stability, spatter generation state, fume generation state, bead shape, bead appearance, molten metal sag, and hot cracking when semi-automatic MAG welding was performed. .

溶着金属試験は、JIS Z 3111に準じて溶接し、溶着金属の板厚方向中央部から引張試験片(A1号)及び衝撃試験片(Vノッチ試験片)を採取して、機械試験を実施した。靭性の評価は、−60℃におけるシャルピー衝撃試験により行い、各々繰返し3本の吸収エネルギーの平均が60J以上を良好とした。引張試験の評価は、引張強さが610MPa以上のものを良好とした。   The weld metal test was welded according to JIS Z 3111, and a tensile test piece (A1) and an impact test piece (V-notch test piece) were collected from the central part in the plate thickness direction of the weld metal, and a mechanical test was performed. . The toughness was evaluated by a Charpy impact test at −60 ° C., and the average of three absorbed energy was 60 J or more. The tensile test was evaluated as good when the tensile strength was 610 MPa or more.

溶接割れ試験は、U型溶接割れ試験方法(JIS Z 3157)に準拠し、試験体の予熱温度を75℃で実施し、溶接後58時間経過した試験体について、表面割れ及び断面割れ(5断面)の発生の有無を浸透探傷試験(JIS Z2343)により調査した。   The weld crack test is based on the U-type weld crack test method (JIS Z 3157), the test specimen is preheated at 75 ° C., and surface cracks and sectional cracks (5 sections) ) Was investigated by a penetrant flaw detection test (JIS Z2343).

継手試験は、図1に示す開先の裏面を溶接後、表面鋼板表面から44mm深さまで開先底部を半径6mm、開先角度45°の裏はつり加工をして表面側を溶接した。溶接継手試験によるCTOD値の評価は、BS(英国規格)5762に準じてCTOD試験片を採取し、試験温度―30℃で繰返し5本の試験を行いCTOD値の最低が0.5mm以上を良好とした。これらの結果を表6にまとめて示す。   In the joint test, after welding the back surface of the groove shown in FIG. 1, the bottom surface of the groove from the surface steel plate surface to a depth of 44 mm was 6 mm in radius and the back surface having a groove angle of 45 ° was suspended and welded on the surface side. Evaluation of CTOD value by welded joint test is based on BS (British Standard) 5762. Collect CTOD specimens and repeat 5 tests at -30 ℃. Test CTOD value is better than 0.5mm. It was. These results are summarized in Table 6.

Figure 2015080811
Figure 2015080811

表1、表2及び表6のワイヤ記号1〜15は本発明例、表3、表4及び表6のワイヤ記号16〜36は比較例である。本発明例であるワイヤ記号1〜15は、各成分の組成が本発明において規定した範囲内であるので、溶接作業性が良好であるとともに、U型割れ試験において割れが無く、溶着金属の引張強さ及び吸収エネルギーも良好な値が得られるなど極めて満足な結果であった。なお、Bi及びBi酸化物に含まれるBi換算値を含まないワイヤ記号1、10、14及びワイヤ記号15は、若干スラグ剥離性が不良であった。また、CTOD試験を実施したワイヤ記号1、3、5、6、10及びワイヤ記号15は、何れも良好なCTOD値が得られた。   Wire symbols 1 to 15 in Tables 1, 2 and 6 are examples of the present invention, and wire symbols 16 to 36 in Tables 3, 4 and 6 are comparative examples. In the wire symbols 1 to 15 as examples of the present invention, the composition of each component is within the range specified in the present invention, so that the welding workability is good and there is no crack in the U-shaped crack test, and the tensile strength of the weld metal The results were extremely satisfactory, with good values for strength and absorbed energy. It should be noted that the wire symbols 1, 10, 14 and the wire symbol 15 that do not include the Bi-converted values contained in Bi and Bi oxides have slightly poor slag peelability. Moreover, the wire symbols 1, 3, 5, 6, 10 and the wire symbol 15 subjected to the CTOD test all obtained good CTOD values.

比較例中ワイヤ記号16は、Cが少ないので、アークが不安定で、溶着金属の引張強さが低かった。また、Alが多いので、溶着金属の吸収エネルギーが低値であった。   In the comparative example, the wire symbol 16 had less C, so the arc was unstable and the tensile strength of the deposited metal was low. Moreover, since there is much Al, the absorbed energy of the weld metal was low.

ワイヤ記号17は、Cが多いので、引張強さが高くなり吸収エネルギーが低値であった。また、弗素化合物のF換算値が多いので、アークが不安定でスパッタの発生量が多く、メタル垂れも生じた。   Since the wire symbol 17 has a large amount of C, the tensile strength was high and the absorbed energy was low. In addition, since the F-converted value of the fluorine compound is large, the arc is unstable, the amount of spatter generated is large, and metal dripping also occurs.

ワイヤ記号18は、Siが少ないので、溶接ビードの外観及び形状が不良であった。また、弗素化合物のF換算値が少ないので、アークが不安定であった。さらに、Nbが多いので、溶着金属の引張強さが高くなり吸収エネルギーが低値であった。   Since the wire symbol 18 has little Si, the appearance and shape of the weld bead were poor. Further, since the F-converted value of the fluorine compound is small, the arc is unstable. Furthermore, since there is much Nb, the tensile strength of the weld metal became high and the absorbed energy was low.

ワイヤ記号19は、Siが多いので、溶着金属の吸収エネルギーが低値であった。   Since the wire symbol 19 has a large amount of Si, the absorbed energy of the deposited metal was low.

ワイヤ記号20は、Mnが少ないので、溶接ビードの外観及び形状が不良であるとともに、溶着金属の引張強さが低く吸収エネルギーも低値であった。   Since the wire symbol 20 had a small amount of Mn, the appearance and shape of the weld bead were poor, and the tensile strength of the weld metal was low and the absorbed energy was also low.

ワイヤ記号21は、Mnが多いので、溶着金属の引張強さが高くなり吸収エネルギーが低値であった。また、溶接継手試験のCTOD値が低値であった。さらに、Na及びK化合物のNa2O換算値とK2O換算値の合計が多いので、スラグ剥離性が不良で、メタル垂れが生じた。 Since the wire symbol 21 has a large amount of Mn, the tensile strength of the deposited metal was high and the absorbed energy was low. Moreover, the CTOD value of the weld joint test was low. Further, since the sum of the terms of Na 2 O values and K 2 O conversion value of Na and K compounds are often, slag removability is bad, metal dripping occurred.

ワイヤ記号22は、Cuが少ないので、溶着金属の引張強さが低く吸収エネルギーも低値であった。また、Na及びK化合物のNa2O換算値とK2O換算値の合計が少ないので、アークが不安定でスパッタ発生量が多く、ビード外観も不良であった。 Since the wire symbol 22 has a small amount of Cu, the tensile strength of the deposited metal was low and the absorbed energy was also low. Further, since the total of Na 2 O converted value and K 2 O converted value of Na and K compounds was small, the arc was unstable, the amount of spatter was large, and the bead appearance was also poor.

ワイヤ記号23は、Cuが多いので、溶着金属の引張強さが高くなり吸収エネルギーが低値であった。また、Zr酸化物のZrO2換算値の合計が多いので、スラグ剥離性が不良であった。 Since the wire symbol 23 has a large amount of Cu, the tensile strength of the deposited metal was high, and the absorbed energy was low. Further, since the sum of ZrO 2 conversion value of Zr oxide is large, the slag removability was poor.

ワイヤ記号24は、Niが少ないので、溶着金属の吸収エネルギーが低値であった。また、溶接継手試験のCTOD値が低値であった。さらに、Zr酸化物のZrO2換算値の合計が少ないので、メタル垂れが生じた。 Since the wire symbol 24 has a small amount of Ni, the absorbed energy of the weld metal was low. Moreover, the CTOD value of the weld joint test was low. Furthermore, since the total of ZrO 2 converted values of the Zr oxide is small, metal dripping occurred.

ワイヤ記号25は、Niが多いので、溶着金属試験でクレータ部に高温割れが生じた。また。Vが多いので、溶着金属の引張強さが高くなり吸収エネルギーが低値であった。   Since the wire symbol 25 has a large amount of Ni, hot cracking occurred in the crater portion in the weld metal test. Also. Since there is much V, the tensile strength of the weld metal became high and the absorbed energy was low.

ワイヤ記号26は、Tiが少ないので、溶着金属の吸収エネルギーが低値であった。また、溶接継手試験のCTOD値が低値であった。さらに、Si酸化物のSiO2換算値の合計が少ないので、スラグ被包性が悪くビード外観及び形状が不良であった。 Since the wire symbol 26 has a small amount of Ti, the absorbed energy of the weld metal was low. Moreover, the CTOD value of the weld joint test was low. Furthermore, since the total of SiO 2 conversion values of the Si oxide was small, the slag encapsulation was poor and the bead appearance and shape were poor.

ワイヤ記号27は、Tiが多いので、溶着金属試験でクレータ部に高温割れが生じた。また、溶着金属の吸収エネルギーが低値であった。さらに、溶接継手試験のCTOD値が低値であった。   Since the wire symbol 27 has a large amount of Ti, hot cracking occurred in the crater portion in the weld metal test. Also, the absorbed energy of the weld metal was low. Furthermore, the CTOD value of the weld joint test was low.

ワイヤ記号28は、Bが少ないので、溶着金属の吸収エネルギーが低値であった。また、溶接継手試験のCTOD値が低値であった。   Since the wire symbol 28 has a small amount of B, the absorbed energy of the weld metal was low. Moreover, the CTOD value of the weld joint test was low.

ワイヤ記号29は、Bが多いので、溶着金属試験でクレータ部に高温割れが生じ、溶着金属の吸収エネルギーが低値であった。また、溶接継手試験のCTOD値が低値であった。   Since the wire symbol 29 has a large amount of B, a high-temperature crack occurred in the crater portion in the weld metal test, and the absorbed energy of the weld metal was low. Moreover, the CTOD value of the weld joint test was low.

ワイヤ記号30は、Mgが少ないので、溶着金属の吸収エネルギーが低値で、溶接継手試験のCTOD値も低値であった。また、鋼製外皮に継目を有しワイヤの全水素量が多いので、U型割れ試験において溶接部に割れが生じた。さらに、Bi及びBi酸化物に含まれるBi換算値が少ないので、スラグ剥離性の改善効果が得られなかった。   Since the wire symbol 30 has a small amount of Mg, the absorbed energy of the weld metal was low, and the CTOD value of the weld joint test was also low. In addition, since there was a seam in the steel outer shell and the total amount of hydrogen in the wire was large, cracks occurred in the weld in the U-shaped crack test. Furthermore, since there are few Bi conversion values contained in Bi and Bi oxide, the improvement effect of slag peelability was not acquired.

ワイヤ記号31は、Mgが多いので、スパッタ及びヒュームの発生量が多かった。また、Si酸化物のSiO2換算値の合計が多いので、溶着金属の吸収エネルギーが低値であった。 Since the wire symbol 31 contains a large amount of Mg, the amount of spatter and fumes generated is large. Moreover, since the total of SiO 2 conversion values of the Si oxide was large, the absorbed energy of the deposited metal was low.

ワイヤ記号32は、Ti酸化物のTiO2換算値の合計が少ないので、アークが不安定でスパッタ発生量が多く、溶融メタルが垂れて溶接ビード形状が不良であった。また、[V]+2×[Nb]が多いので、溶着金属の引張強さが高くなり吸収エネルギーが低値であった。 In the wire symbol 32, since the total of TiO 2 converted values of Ti oxide is small, the arc is unstable, the amount of spatter generated is large, the molten metal droops, and the weld bead shape is poor. Moreover, since there are many [V] + 2x [Nb], the tensile strength of the weld metal became high and the absorbed energy was low.

ワイヤ記号33は、鋼製外皮に継目を有しワイヤの全水素量が多いので、U型割れ試験において溶接部に割れが生じた。また、Ti酸化物のTiO2換算値の合計が多いので溶着金属の吸収エネルギーが低値であった。 Since the wire symbol 33 has a seam in the steel outer shell and the total amount of hydrogen in the wire is large, a crack occurred in the weld in the U-shaped crack test. Moreover, since the total of TiO 2 conversion values of the Ti oxide is large, the absorbed energy of the deposited metal was low.

ワイヤ記号34は、Al酸化物のAl23換算値の合計が少ないので、溶融メタルが垂れた。また、Bi及びBi酸化物に含まれるBi換算値の合計が多いので、溶着金属試験でクレータ部に高温割れが生じ、溶着金属の吸収エネルギーが低値であった。 Since the wire symbol 34 had a small total of Al 2 O 3 converted values of Al oxide, molten metal dripped. Moreover, since there were many sum of Bi conversion value contained in Bi and Bi oxide, the hot crack occurred in the crater part by the weld metal test, and the absorbed energy of the weld metal was a low value.

ワイヤ記号35は、鋼製外皮に継目を有しワイヤの全水素量が多いので、U型割れ試験において溶接部に割れが生じた。また、Al酸化物のAl23換算値の合計が多いので、溶着金属の吸収エネルギーが低値であった。 Since the wire symbol 35 has a seam in the steel outer shell and the total hydrogen amount of the wire is large, a crack occurred in the weld in the U-shaped crack test. Moreover, since the total of Al 2 O 3 converted values of the Al oxide is large, the absorbed energy of the deposited metal was low.

ワイヤ記号36は、ワイヤの全水素量が多いので、U型割れ試験において溶接部に割れが生じた。また、Nが多いので、溶着試験でブローロールが発生し、溶着金属の吸収エネルギーが低値であった。   In the wire symbol 36, since the total hydrogen amount of the wire is large, the welded portion was cracked in the U-shaped crack test. Moreover, since there is much N, the blow roll generate | occur | produced in the welding test, and the absorbed energy of the welding metal was a low value.

Claims (4)

鋼製外皮にフラックスを充填してなるAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤにおいて、
ワイヤ全質量に対する質量%で、鋼製外皮とフラックスとの合計で、
C:0.03〜0.08%、
Si:0.2〜0.6%、
Mn:1〜2.5%、
Cu:0.1〜0.5%、
Ni:1.6〜3.5%、
Ti:0.01〜0.2%、
B:0.002〜0.015%、
さらに、ワイヤ全質量に対する質量%で、フラックス中に、
Ti酸化物:TiO2換算値の合計で3〜8%、
Al酸化物:Al23換算値の合計で0.1〜0.9%、
Si酸化物:SiO2換算値の合計で0.1〜1%、
Zr酸化物:ZrO2換算値の合計で0.01〜0.8%、
Mg:0.1〜0.8%、
Na及びK化合物:Na2O換算値とK2O換算値との合計で0.05〜0.2%、
弗素化合物:F換算値の合計で0.01〜0.3%を含有し、
残部が鋼製外皮のFe、鉄粉、鉄合金粉のFe分及び不可避不純物からなり、
ワイヤ中の全水素量が、ワイヤ全質量に対する質量比で20ppm以下であることを特徴とするAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤ。
In a flux cored wire for Ar—CO 2 mixed gas shielded arc welding formed by filling a steel sheath with flux,
It is the mass% with respect to the total mass of the wire.
C: 0.03-0.08%,
Si: 0.2-0.6%
Mn: 1 to 2.5%
Cu: 0.1 to 0.5%,
Ni: 1.6-3.5%,
Ti: 0.01-0.2%
B: 0.002 to 0.015%,
Furthermore, in the flux in mass% with respect to the total mass of the wire,
Ti oxide: 3 to 8% in total of TiO 2 conversion value,
Al oxide: 0.1 to 0.9% in total of Al 2 O 3 conversion value,
Si oxide: 0.1 to 1% in total of SiO 2 conversion value,
Zr oxide: 0.01 to 0.8% in total of ZrO 2 conversion value,
Mg: 0.1 to 0.8%
Na and K compound: 0.05 to 0.2% in total of Na 2 O converted value and K 2 O converted value,
Fluorine compound: Contains 0.01 to 0.3% in total in terms of F,
The balance consists of Fe of steel hull, iron powder, Fe content of iron alloy powder and inevitable impurities,
A flux-cored wire for Ar—CO 2 mixed gas shielded arc welding, wherein the total hydrogen content in the wire is 20 ppm or less in terms of a mass ratio to the total mass of the wire.
ワイヤ全質量に対する質量%で、鋼製外皮とフラックスとの合計で、
Al:0.3%以下、
N:0.008%以下、
V:0.03%以下、
Nb:0.03%以下で、
かつ、[V]+2×[Nb]:0.07%以下、
を更に含有することを特徴とする請求項1に記載のAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤ。
但し、[V]、[Nb]は、V、Nbのそれぞれのワイヤ全質量に対する質量%で、鋼製外皮とフラックスとの合計を示す。
It is the mass% with respect to the total mass of the wire.
Al: 0.3% or less,
N: 0.008% or less,
V: 0.03% or less,
Nb: 0.03% or less,
And [V] + 2 × [Nb]: 0.07% or less,
The flux-cored wire for Ar—CO 2 mixed gas shielded arc welding according to claim 1, further comprising:
However, [V] and [Nb] are mass% with respect to the total mass of each wire of V and Nb, and indicate the total of the steel outer sheath and the flux.
ワイヤ全質量に対する質量%で、フラックス中に、
Bi及びBi酸化物:Bi換算値で0.003〜0.01%を更に含有することを特徴とする請求項1または2に記載のAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤ。
In mass% with respect to the total mass of the wire,
The flux cored wire for Ar—CO 2 mixed gas shielded arc welding according to claim 1, further comprising Bi and Bi oxide: 0.003 to 0.01% in terms of Bi.
成形した鋼製外皮の合わせ目を溶接することで鋼製外皮に継目を無くしたことを特徴とする請求項1乃至3のうち何れか1項に記載のAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤ。 The Ar-CO 2 mixed gas shielded arc welding according to any one of claims 1 to 3, wherein a seam is eliminated from the steel outer shell by welding a seam of the formed steel outer shell. Flux-cored wire.
JP2013221202A 2013-10-24 2013-10-24 Flux-cored wire for Ar-CO2 mixed gas shielded arc welding Active JP6033755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013221202A JP6033755B2 (en) 2013-10-24 2013-10-24 Flux-cored wire for Ar-CO2 mixed gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013221202A JP6033755B2 (en) 2013-10-24 2013-10-24 Flux-cored wire for Ar-CO2 mixed gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2015080811A true JP2015080811A (en) 2015-04-27
JP6033755B2 JP6033755B2 (en) 2016-11-30

Family

ID=53011709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013221202A Active JP6033755B2 (en) 2013-10-24 2013-10-24 Flux-cored wire for Ar-CO2 mixed gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP6033755B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016209901A (en) * 2015-05-07 2016-12-15 日鐵住金溶接工業株式会社 FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELD ARC WELDING
JP2017094360A (en) * 2015-11-25 2017-06-01 日鐵住金溶接工業株式会社 Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture
JP2017170515A (en) * 2016-03-25 2017-09-28 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding
KR101783415B1 (en) 2016-01-06 2017-09-29 현대종합금속 주식회사 Flux cored wire for gas shielded arc welding
JP2017185521A (en) * 2016-04-05 2017-10-12 日鐵住金溶接工業株式会社 Gas shield arc welding flux-cored wire
JP2018153853A (en) * 2017-03-21 2018-10-04 日鐵住金溶接工業株式会社 Flux-cored wire for gas shield arc welding
JP2019025525A (en) * 2017-07-31 2019-02-21 新日鐵住金株式会社 Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint
JP2019171475A (en) * 2018-03-29 2019-10-10 株式会社神戸製鋼所 Flux-cored wire
JP2020203302A (en) * 2019-06-17 2020-12-24 日鉄溶接工業株式会社 FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELD ARC WELDING OF HIGH TENSILE STEEL
KR20230068153A (en) * 2021-11-10 2023-05-17 현대종합금속 주식회사 Gas shield flux cored wire having good weldability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813495A (en) * 1981-07-13 1983-01-25 Nippon Steel Corp Composite wire for gas shielded welding
JPH0810982A (en) * 1994-06-24 1996-01-16 Kobe Steel Ltd Flux cored wire for gas shielded arc welding
JPH10249583A (en) * 1997-03-05 1998-09-22 Nippon Steel Weld Prod & Eng Co Ltd Flux cored wire for gas shielded arc welding
JP2009255168A (en) * 2008-03-28 2009-11-05 Nippon Steel Corp Flux-cored wire for welding high-strength steel, and its manufacturing method
JP2010274304A (en) * 2009-05-28 2010-12-09 Nippon Steel Corp Flux-cored wire for high-tensile strength steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813495A (en) * 1981-07-13 1983-01-25 Nippon Steel Corp Composite wire for gas shielded welding
JPH0810982A (en) * 1994-06-24 1996-01-16 Kobe Steel Ltd Flux cored wire for gas shielded arc welding
JPH10249583A (en) * 1997-03-05 1998-09-22 Nippon Steel Weld Prod & Eng Co Ltd Flux cored wire for gas shielded arc welding
JP2009255168A (en) * 2008-03-28 2009-11-05 Nippon Steel Corp Flux-cored wire for welding high-strength steel, and its manufacturing method
JP2010274304A (en) * 2009-05-28 2010-12-09 Nippon Steel Corp Flux-cored wire for high-tensile strength steel

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016209901A (en) * 2015-05-07 2016-12-15 日鐵住金溶接工業株式会社 FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELD ARC WELDING
JP2017094360A (en) * 2015-11-25 2017-06-01 日鐵住金溶接工業株式会社 Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture
KR101783415B1 (en) 2016-01-06 2017-09-29 현대종합금속 주식회사 Flux cored wire for gas shielded arc welding
JP2017170515A (en) * 2016-03-25 2017-09-28 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding
JP2017185521A (en) * 2016-04-05 2017-10-12 日鐵住金溶接工業株式会社 Gas shield arc welding flux-cored wire
JP2018153853A (en) * 2017-03-21 2018-10-04 日鐵住金溶接工業株式会社 Flux-cored wire for gas shield arc welding
JP2019025525A (en) * 2017-07-31 2019-02-21 新日鐵住金株式会社 Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint
JP2019171475A (en) * 2018-03-29 2019-10-10 株式会社神戸製鋼所 Flux-cored wire
JP7219133B2 (en) 2018-03-29 2023-02-07 株式会社神戸製鋼所 flux cored wire
JP2020203302A (en) * 2019-06-17 2020-12-24 日鉄溶接工業株式会社 FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELD ARC WELDING OF HIGH TENSILE STEEL
JP7221812B2 (en) 2019-06-17 2023-02-14 日鉄溶接工業株式会社 Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel
KR20230068153A (en) * 2021-11-10 2023-05-17 현대종합금속 주식회사 Gas shield flux cored wire having good weldability
KR102664070B1 (en) 2021-11-10 2024-05-09 현대종합금속 주식회사 Gas shield flux cored wire having good weldability

Also Published As

Publication number Publication date
JP6033755B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6033755B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP6437327B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6382117B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP5768547B2 (en) High-strength steel flux cored wire for gas shielded arc welding
JP5359561B2 (en) Flux-cored wire for high-tensile steel
JP6786427B2 (en) Flux-filled wire for gas shielded arc welding
JP6188621B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP5356142B2 (en) Gas shield arc welding method
JP2008221231A (en) Flux cored wire for gas-shielded arc welding
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2017094360A (en) Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture
JP5459083B2 (en) Flux-cored wire for carbon dioxide shielded arc welding for high-tensile steel
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2018034170A (en) Flux-cored wire for gas shielded arc welding
JP2016203179A (en) Flux-cored wire for gas-shielded arc welding
KR20180138140A (en) Flux-cored wire for gas shielded arc welding of low temperature steel
JP7257189B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of weathering steel
JP5351641B2 (en) Flux cored wire
JP7247081B2 (en) Metallic flux-cored wire for gas-shielded arc welding
JP7175784B2 (en) Flux-cored wire for carbon dioxide shielded arc welding of high-strength steel
JP6951304B2 (en) Flux-cored wire for carbon dioxide shield arc welding
KR20150123483A (en) Flux cored wire for co2 gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161026

R150 Certificate of patent or registration of utility model

Ref document number: 6033755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250