JP2020073966A - Optical device and processor - Google Patents

Optical device and processor Download PDF

Info

Publication number
JP2020073966A
JP2020073966A JP2019173403A JP2019173403A JP2020073966A JP 2020073966 A JP2020073966 A JP 2020073966A JP 2019173403 A JP2019173403 A JP 2019173403A JP 2019173403 A JP2019173403 A JP 2019173403A JP 2020073966 A JP2020073966 A JP 2020073966A
Authority
JP
Japan
Prior art keywords
optical device
reflecting
reflecting surface
optical
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019173403A
Other languages
Japanese (ja)
Inventor
政治 久米
Seiji Kume
政治 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of JP2020073966A publication Critical patent/JP2020073966A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Engineering (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

To provide an optical device capable of facilitating adjustment of optical path.SOLUTION: The optical device includes: a rotatable reflection member; an optical system for guiding a beam of light which is reflected on a reflection plane of the reflection member to re-enter the reflection member after being sequentially reflected on reflection planes even times; and an adjustment section that changes rotation angle of the reflection member to adjust the optical path of the light beam re-entering the reflection member after being reflected on the reflection plane of the reflection member.SELECTED DRAWING: Figure 1

Description

本発明は、光学装置及び加工装置に関する。   The present invention relates to an optical device and a processing device.

従来のレーザ加工装置における光線平行シフト機構が、例えば特許文献1,2に開示されている。特許文献1では、透明部材を回転させて光線を平行シフトさせる。特許文献2では、2つの同期された角度可変ミラーを用いて光線を平行シフトさせる。   A beam parallel shift mechanism in a conventional laser processing apparatus is disclosed in Patent Documents 1 and 2, for example. In patent document 1, a transparent member is rotated and a light beam is parallel-shifted. In Patent Document 2, two synchronized angle variable mirrors are used to parallel shift the light rays.

特許第4386137号公報(段落0023、図2)Japanese Patent No. 4386137 (paragraph 0023, FIG. 2) 特開2011−121119号公報(段落0008、図8)JP, 2011-121119, A (paragraph 0008, Drawing 8).

しかし、特許文献1の光線シフト機構では、光線の平行シフト量が透明部材の回転角度と長さで決定されるため、回転時の慣性が大きくなり目的とする光線シフトを高速に行うことが困難である。一例として特許文献1の方式で、光線平行シフト量5.3mmを透明部材(石英ガラスn=1.45)の回転角±10度で行う場合を考える。この場合、透明部材の現実的な設計によるサイズは、95mm×16mm×13mm程度となる。この結果、イナーシャは33000 g・mm2 程度と大きくなり、高速に平行シフトを行うことは困難である。 However, in the light beam shift mechanism of Patent Document 1, since the parallel shift amount of the light beam is determined by the rotation angle and length of the transparent member, inertia during rotation becomes large, and it is difficult to perform the desired light beam shift at high speed. Is. As an example, consider the case of performing the light beam parallel shift amount of 5.3 mm with the rotation angle of ± 10 degrees of the transparent member (quartz glass n = 1.45) in the method of Patent Document 1. In this case, the realistic design size of the transparent member is about 95 mm × 16 mm × 13 mm. As a result, the inertia becomes large at about 33000 g · mm 2, and it is difficult to perform parallel shift at high speed.

また、特許文献2の技術では、回転体の慣性が大きくなる問題を解決してはいるが、2つのミラー回転機構の同期を高速動作時に正確に行うことが困難なため、出射光線の角度が一定とならず光線を平行にシフトすることが困難である。   Further, the technique of Patent Document 2 solves the problem that the inertia of the rotating body becomes large, but it is difficult to accurately synchronize the two mirror rotating mechanisms during high-speed operation, and therefore the angle of the emitted light beam is It is not constant and it is difficult to shift light rays in parallel.

本発明は、光路の調整の高速化に有利な装置を提供することを例示的目的とする。   It is an exemplary object of the present invention to provide a device that is advantageous for speeding up the adjustment of the optical path.

本発明の一側面によれば、回転可能な反射部材と、前記反射部材の反射面で反射された光を反射面で偶数回、順次反射して前記反射部材に再入射させる光学系と、前記反射部材の回転角度を変更することにより、前記再入射により前記反射部材の反射面で反射されて射出する光の光路を調整する調整部とを含むことを特徴とする光学装置が提供される。   According to one aspect of the present invention, a rotatable reflecting member, an optical system that sequentially reflects the light reflected by the reflecting surface of the reflecting member at the reflecting surface at an even number of times to re-enter the reflecting member, There is provided an optical device including: an adjusting unit that adjusts an optical path of light that is reflected by the reflection surface of the reflection member by the re-incidence and is emitted by changing the rotation angle of the reflection member.

本発明によれば、光路の調整の高速化に有利な装置が提供される。   According to the present invention, an apparatus that is advantageous for speeding up the adjustment of the optical path is provided.

第1実施形態に係る光学装置の構成を示す図。FIG. 3 is a diagram showing a configuration of an optical device according to the first embodiment. 第1実施形態におけるミラー部材の回転角度と光線シフト量との関係を示すグラフ。The graph which shows the relationship between the rotation angle of a mirror member in 1st Embodiment, and a light beam shift amount. 第1実施形態におけるミラー部材の厚さの光線シフト量への影響を示すグラフ。The graph which shows the influence to the light ray shift amount of the thickness of the mirror member in 1st Embodiment. 第2実施形態に係る光学装置の構成を示す図。The figure which shows the structure of the optical device which concerns on 2nd Embodiment. 第3実施形態に係る光学装置の構成を示す図。The figure which shows the structure of the optical device which concerns on 3rd Embodiment. 第4実施形態に係る光学装置の構成を示す図。The figure which shows the structure of the optical device which concerns on 4th Embodiment. 第5実施形態に係る加工装置の構成を示す図。The figure which shows the structure of the processing apparatus which concerns on 5th Embodiment. 実施形態におけるミラー部材の角度可変機構の例を説明する図。FIG. 6 is a diagram illustrating an example of a mirror member angle varying mechanism in the embodiment.

以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の実施に有利な具体例を示すにすぎない。また、以下の実施形態の中で説明されている特徴の組み合わせの全てが本発明の課題解決のために必須のものであるとは限らない。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, but merely shows specific examples advantageous for carrying out the present invention. In addition, not all combinations of features described in the following embodiments are essential for solving the problems of the present invention.

<第1実施形態>
図1は、第1実施形態に係る光学装置の構成を示す図である。本実施形態における光学装置は、出射する光の光路を制御可能であり、例えば光線の平行シフトが可能である。本実施形態の光線平行シフト機構(より一般的には、光路の調整、典型的には光路の並進または並進移動、を行う機構)は、光源50からの光線51を反射するミラー部材2(反射部材ともいう)を含む。なお、以下の説明では、各反射面が平面とみなせ、光路の並進または並進移動を行う場合について例示する。ミラー部材2は、例えばガラスで構成され、光源50からの光線51を受ける第1反射面2aと、その反対側の第2反射面2bとを有する。第1反射面2a及び第2反射面2bにはそれぞれ、高反射ミラーコーティングがされうる。なお、ミラー部材2はプリズム状に構成されてもよいし、第1反射面2aと第2反射面2bとがそれぞれ独立した構成であってもよい。ここで、第1反射面と第2反射面とが互いに反対を向いていたり、プリズム上の別々の面であったり、独立した面であったりする構成は、それらが同一の(平)面である場合に比して、入射する光から受ける熱の影響の軽減に有利である。
<First Embodiment>
FIG. 1 is a diagram showing the configuration of the optical device according to the first embodiment. The optical device according to the present embodiment can control the optical path of emitted light, and can perform parallel shift of light rays, for example. The light beam parallel shift mechanism (more generally, a mechanism for adjusting an optical path, typically a translation or a translational movement of the optical path) is a mirror member 2 (reflector) that reflects a light beam 51 from a light source 50. (Also referred to as a member). In the following description, the case where each reflecting surface can be regarded as a flat surface and the optical path is translated or translated is illustrated. The mirror member 2 is made of, for example, glass and has a first reflecting surface 2a that receives a light ray 51 from the light source 50 and a second reflecting surface 2b on the opposite side. Each of the first reflecting surface 2a and the second reflecting surface 2b may be coated with a high reflecting mirror. The mirror member 2 may be formed in a prism shape, or the first reflecting surface 2a and the second reflecting surface 2b may be independent of each other. Here, the configuration in which the first reflecting surface and the second reflecting surface are opposite to each other, different surfaces on the prism, or independent surfaces are the same (flat) surface. Compared to a certain case, it is advantageous in reducing the influence of heat from incident light.

また、ミラー部材2は、光学装置が出射する光の光路を制御するように角度可変に構成される。図8に、ミラー部材2の角度可変機構の例を示す。図示の如く、ミラー部材2は、ガルバノモータ1の出力軸1aに軸支される。制御部60(調整部)はガルバノモータ1に対して駆動信号を出力し、ガルバノモータ1内の不図示の回転駆動部は、入力した駆動信号に応じた駆動量で出力軸1aを介してミラー部材2を回転させる。このようにして、ミラー部材2は回転可能に構成される。ここでは、ミラー部材2は光源50からの光線51に対して略45度に傾斜される。   Further, the mirror member 2 is configured to be variable in angle so as to control the optical path of the light emitted from the optical device. FIG. 8 shows an example of the angle changing mechanism of the mirror member 2. As shown in the figure, the mirror member 2 is pivotally supported by the output shaft 1 a of the galvano motor 1. The control unit 60 (adjustment unit) outputs a drive signal to the galvano motor 1, and a rotation drive unit (not shown) in the galvano motor 1 mirrors the output shaft 1a with a drive amount corresponding to the input drive signal. The member 2 is rotated. In this way, the mirror member 2 is configured to be rotatable. Here, the mirror member 2 is tilted at about 45 degrees with respect to the light beam 51 from the light source 50.

本実施形態の光線平行シフト機構は、ミラー部材2に入射しこのミラー部材2によって反射された光を複数の反射面で偶数回、順次反射してミラー部材2に再入射させる光学系80を有する。本実施形態における光学系80は例えば、光線51に対して対称になるように固定配置された4個のミラー3,4,5,6を含む。ミラー部材2の第1反射面2aにより反射された光は、これらのミラー3,4,5,6により順次反射されて、ミラー部材2の第2反射面2bへと導かれる。最終的に第2反射面2bにより反射された光は、光線51と略同一の方向に出射される。   The light beam parallel shift mechanism of the present embodiment has an optical system 80 that sequentially reflects the light incident on the mirror member 2 and reflected by the mirror member 2 on a plurality of reflecting surfaces at an even number of times to re-enter the mirror member 2. .. The optical system 80 in the present embodiment includes, for example, four mirrors 3, 4, 5, 6 fixedly arranged so as to be symmetrical with respect to the light ray 51. The light reflected by the first reflecting surface 2a of the mirror member 2 is sequentially reflected by these mirrors 3, 4, 5, 6 and guided to the second reflecting surface 2b of the mirror member 2. The light finally reflected by the second reflecting surface 2b is emitted in substantially the same direction as the light ray 51.

この射出される光の角度はミラー部材2の回転角度を変更しても変化しない。そのため、制御部60によりミラー部材2の回転角度を調整することで、ミラー部材2の反射面で反射されて射出する光の光路を調整することができる。   The angle of the emitted light does not change even if the rotation angle of the mirror member 2 is changed. Therefore, by adjusting the rotation angle of the mirror member 2 by the control unit 60, the optical path of the light reflected by the reflecting surface of the mirror member 2 and emitted can be adjusted.

次に、平行光線シフト量とミラー部材2の角度変化との関係について説明する。まず、ミラー部材2の厚さを0と仮定した場合を考える。4個のミラー3,4,5,6で形成される四角形の外周距離Lを300mmにした場合と400mmにした場合の、ミラー部材2の角度変化と光線シフト量との関係を図2に示す。   Next, the relationship between the parallel light beam shift amount and the angle change of the mirror member 2 will be described. First, consider a case where the thickness of the mirror member 2 is assumed to be zero. FIG. 2 shows the relationship between the angle change and the light beam shift amount of the mirror member 2 when the outer peripheral distance L of the quadrangle formed by the four mirrors 3, 4, 5, 6 is set to 300 mm and 400 mm. ..

この光線平行シフト量ΔSは、次式で示される。   This ray parallel shift amount ΔS is expressed by the following equation.

ΔS=L×tan(2×Δθg) ・・・・・(式1)
ただし、Δθgは、ミラー部材2の角度変化量を表す。
ΔS = L × tan (2 × Δθg) (Equation 1)
However, Δθg represents the angle change amount of the mirror member 2.

式1は、Lを長くするほど、ミラー部材2のより小さな角度変化で大きな光線平行シフト量を実現できることを示しており、Lを長くすることで高速な可変光線シフトが可能になる。   Formula 1 shows that the longer L is, the larger the beam parallel shift amount can be realized with a smaller angle change of the mirror member 2, and the longer L enables a faster variable beam shift.

次に、ミラー部材2の実際の厚さを考慮した場合を考える。図3に、ミラー部材2の厚さを0と仮定した場合と実際の厚さを考慮した場合との光線平行シフト量の差分を示す。図3によれば、Lに対してミラー部材2の厚さが小さい場合、ミラー厚さを0とした場合のシフト量との差は微小となり、近似的に式1と一致する。また、ミラー部材2の反射面の必要幅Wは、次式で示される。   Next, consider a case where the actual thickness of the mirror member 2 is taken into consideration. FIG. 3 shows the difference in the light beam parallel shift amount when the thickness of the mirror member 2 is assumed to be 0 and when the actual thickness is taken into consideration. According to FIG. 3, when the thickness of the mirror member 2 is smaller than L, the difference from the shift amount when the mirror thickness is set to 0 is small, and approximately matches Equation 1. The required width W of the reflecting surface of the mirror member 2 is given by the following equation.

W=(D+Smax)/sin(45+θg)・・・・(式2)
ただし、Dは、シフト機構への入射光線幅、Smaxは、最大シフト量を表す。
W = (D + Smax) / sin (45 + θg) ... (Equation 2)
However, D represents the incident ray width to the shift mechanism, and Smax represents the maximum shift amount.

本実施形態の構成によれば、5.3mmの光線平行シフトを実現するための設計の結果、ミラー部材2の厚さを2mm(イナーシャ=89 g・mm2 )、L=300mmとした場合、±0.5度以内の制御で実現できるという結果が得られた。したがって、従来技術と比較して大幅な高速化が可能となる。 According to the configuration of the present embodiment, as a result of the design for realizing the light beam parallel shift of 5.3 mm, when the thickness of the mirror member 2 is 2 mm (inertia = 89 g · mm 2 ) and L = 300 mm, ± The result is that it can be realized by controlling within 0.5 degree. Therefore, the speed can be significantly increased as compared with the conventional technique.

以上のように、本実施形態によれば、光源50からの光を受ける角度可変のミラー部材2と、4個のミラー3,4,5,6を用いた構成で、高速な光線平行シフト機構を実現することができる。   As described above, according to the present embodiment, the high-speed beam parallel shift mechanism is configured by using the variable angle mirror member 2 that receives the light from the light source 50 and the four mirrors 3, 4, 5, and 6. Can be realized.

<第2実施形態>
図4は、第2実施形態に係る光学装置の構成を示す図である。図4に示すように、光源50からの光線51を反射するミラー部材7は、第1実施形態におけるミラー部材2と同様の構成でありうる。すなわち、ミラー部材7は、例えばガラスで構成され、光源50からの光線51を受ける第1反射面7aと、その反対側の第2反射面7bとを有する。第1反射面7a及び第2反射面7bにはそれぞれ、高反射ミラーコーティングがされうる。なお、ミラー部材7はプリズム状に構成されてもよいし、第1反射面7aと第2反射面7bとがそれぞれ独立した構成であってもよい。また、ミラー部材7は第1実施形態のミラー部材2と同様に角度可変に構成される。ここで、ミラー部材7は光源50からの光線51に対して略45度に傾斜される。
<Second Embodiment>
FIG. 4 is a diagram showing the configuration of the optical device according to the second embodiment. As shown in FIG. 4, the mirror member 7 that reflects the light ray 51 from the light source 50 may have the same configuration as the mirror member 2 in the first embodiment. That is, the mirror member 7 is made of, for example, glass and has a first reflecting surface 7a for receiving the light ray 51 from the light source 50 and a second reflecting surface 7b on the opposite side. Each of the first reflective surface 7a and the second reflective surface 7b may be coated with a highly reflective mirror. The mirror member 7 may be formed in a prism shape, or the first reflection surface 7a and the second reflection surface 7b may be independent of each other. Further, the mirror member 7 is configured so that the angle can be changed similarly to the mirror member 2 of the first embodiment. Here, the mirror member 7 is tilted at about 45 degrees with respect to the light ray 51 from the light source 50.

本実施形態における光学系90は、図4に示すように、光路が三角形を描くように固定配置された2個のミラー8,9を含む。ミラー部材7の第1反射面7aにより反射された光は、これらのミラー8,9で順次反射して、ミラー部材7の第2反射面7bへと導かれる。最終的に第2反射面7bにより反射された光は、光線51に対して側方、例えば直交する方向に、出射される。この構成において、ミラー部材7をガルバノモータでΔθg回転させることで式1に従った光線の平行シフトを実現できる。   As shown in FIG. 4, the optical system 90 in this embodiment includes two mirrors 8 and 9 fixedly arranged so that the optical path draws a triangle. The light reflected by the first reflecting surface 7a of the mirror member 7 is sequentially reflected by these mirrors 8 and 9 and guided to the second reflecting surface 7b of the mirror member 7. The light finally reflected by the second reflecting surface 7b is emitted laterally, for example, in a direction orthogonal to the light ray 51. In this configuration, by rotating the mirror member 7 by Δθg with a galvano motor, it is possible to realize the parallel shift of the light rays according to Expression 1.

以上のように、本実施形態によれば、光源50からの光を受ける角度可変のミラー部材7と、2個のミラー8,9を用いた構成で、高速な光線平行シフト機構を実現することができる。   As described above, according to the present embodiment, it is possible to realize a high-speed beam parallel shift mechanism with the configuration using the angle-adjustable mirror member 7 that receives light from the light source 50 and the two mirrors 8 and 9. You can

<第3実施形態>
図5は、第3実施形態に係る光学装置の構成を示す図である。光源50からの光線51を反射するミラー部材10は、第1実施形態のミラー部材2と同様に角度可変に構成される。ここで、ミラー部材10は光源50からの光線51に対して略45度に傾斜される。
<Third Embodiment>
FIG. 5 is a diagram showing the configuration of the optical device according to the third embodiment. The mirror member 10 that reflects the light ray 51 from the light source 50 is configured to have a variable angle, like the mirror member 2 of the first embodiment. Here, the mirror member 10 is inclined at about 45 degrees with respect to the light ray 51 from the light source 50.

本実施形態における光学系100は、図5に示すように、ミラー部材10の下方に固定配置された2個のミラー11,12を含む。ミラー部材10の、光源50側の面である第1の面10aにおける第1の反射領域10bにより反射された光は、これらのミラー11,12により順次反射されて、ミラー部材10の第1の面10aにおける第2の反射領域10cへと導かれる。その第2の反射領域10cにより反射された光は、光線51に対して例えば180度反転した方向に出射される。この構成において、ミラー部材10をガルバノモータでΔθg回転させることで式1に従った光線の平行シフトを実現できる。   As shown in FIG. 5, the optical system 100 in this embodiment includes two mirrors 11 and 12 fixedly arranged below the mirror member 10. The light reflected by the first reflection area 10b on the first surface 10a of the mirror member 10, which is the surface on the light source 50 side, is sequentially reflected by these mirrors 11 and 12, and the first light of the mirror member 10 is removed. It is guided to the second reflection area 10c on the surface 10a. The light reflected by the second reflection region 10c is emitted in a direction inverted by 180 degrees with respect to the light ray 51, for example. In this configuration, by rotating the mirror member 10 by Δθg with a galvano motor, it is possible to realize parallel shift of the light rays according to Expression 1.

以上のように、本実施形態によれば、光源50からの光を受ける角度可変のミラー部材10と、2個のミラー11,12を用いた構成で、高速な光線平行シフト機構を実現することができる。   As described above, according to the present embodiment, it is possible to realize a high-speed light beam parallel shift mechanism with a configuration that uses the variable angle mirror member 10 that receives light from the light source 50 and the two mirrors 11 and 12. You can

<第4実施形態>
図6は、第4実施形態に係る光学装置の構成を示す図である。本構成は、第1実施形態(図1)で示した構成を組み合わせたものであり、光源50からの光線51を受ける第1の光学装置61と、第1の光学装置61からの出射光を受ける第2の光学装置62とを含む。
<Fourth Embodiment>
FIG. 6 is a diagram showing the configuration of the optical device according to the fourth embodiment. This configuration is a combination of the configurations shown in the first embodiment (FIG. 1), and includes a first optical device 61 that receives a light beam 51 from a light source 50 and a light emitted from the first optical device 61. A second optical device 62 for receiving.

第1の光学装置61は、光源50からの光線51を反射する、角度可変のミラー部材13を有する。これは第1実施形態のミラー部材2に対応する。また、第1の光学装置61は、第1の実施形態のミラー3,4,5,6にそれぞれ対応するミラー14−1,14−2,14−3,14−4を有する。   The first optical device 61 has a variable angle mirror member 13 that reflects a light ray 51 from the light source 50. This corresponds to the mirror member 2 of the first embodiment. Further, the first optical device 61 has mirrors 14-1, 14-2, 14-3, 14-4 corresponding to the mirrors 3, 4, 5, 6 of the first embodiment, respectively.

第2の光学装置62は、光源50からの光線51を反射する、角度可変のミラー部材15を有する。これは第1実施形態のミラー部材2に対応する。また、第2の光学装置62は、第1の実施形態のミラー3,4,5,6にそれぞれ対応するミラー16−1,16−2,16−3,16−4を有する。   The second optical device 62 has a variable angle mirror member 15 that reflects the light ray 51 from the light source 50. This corresponds to the mirror member 2 of the first embodiment. Further, the second optical device 62 has mirrors 16-1, 16-2, 16-3, 16-4 corresponding to the mirrors 3, 4, 5, 6 of the first embodiment, respectively.

そして、第1の光学装置61のミラー部材13の回転軸と第2の光学装置62のミラー部材15の回転軸とは非平行であり、例えば直交するように配置される。   The rotation axis of the mirror member 13 of the first optical device 61 and the rotation axis of the mirror member 15 of the second optical device 62 are non-parallel to each other and are arranged, for example, orthogonally.

第1の光学装置61において、ミラー部材13の第1反射面により反射された入射光は、これらのミラー14−1,14−2,14−3,14−4により順次反射されて、ミラー部材13の第1反射面の反対側の第2反射面へと導かれる。第2反射面により反射された光は、第2の光学装置62のミラー部材15に入射する。第2の光学装置62において、ミラー部材15の第1反射面により反射された入射光は、ミラー16−1,16−2,16−3,16−4により順次反射されて、ミラー部材15の第1反射面の反対側の第2反射面へと導かれる。最終的にミラー部材15の第2反射面により反射された光は、光線51と略同一の方向に出射される。   In the first optical device 61, the incident light reflected by the first reflecting surface of the mirror member 13 is sequentially reflected by these mirrors 14-1, 14-2, 14-3, 14-4, and the mirror member The light is guided to the second reflecting surface of 13 opposite to the first reflecting surface. The light reflected by the second reflecting surface enters the mirror member 15 of the second optical device 62. In the second optical device 62, the incident light reflected by the first reflecting surface of the mirror member 15 is sequentially reflected by the mirrors 16-1, 16-2, 16-3, 16-4, and the incident light of the mirror member 15 is changed. It is guided to the second reflecting surface opposite to the first reflecting surface. The light finally reflected by the second reflecting surface of the mirror member 15 is emitted in substantially the same direction as the light ray 51.

また、図6に示すように、第1の光学装置61の各ミラーでの反射を伴う光路がなす平面と、第2の光学装置62の各ミラーでの反射を伴う光路がなす平面が交差するような配置を採用してもよい。このように、光線の平行シフト機構を交差するように配置することで、光学装置の小型化を実現できる。   Further, as shown in FIG. 6, a plane formed by an optical path involving reflection by each mirror of the first optical device 61 and a plane formed by an optical path involving reflection by each mirror of the second optical device 62 intersect. Such an arrangement may be adopted. In this way, by arranging the parallel shift mechanisms of the light beams so as to intersect with each other, the optical device can be downsized.

なお、上述の例では第1実施形態(図1)の光線平行シフト機構どうしをシフト方向が直交するように配置する例を示した。しかし、第1乃至第3実施形態のうちいずれかから選択される2つの光線平行シフト機構どうしを組み合わせても同様に光線平行シフトを2次元平面内で自在に行うことができる。   In the above example, an example in which the light beam parallel shift mechanisms of the first embodiment (FIG. 1) are arranged so that their shift directions are orthogonal to each other has been shown. However, even if two ray parallel shift mechanisms selected from any of the first to third embodiments are combined, the ray parallel shift can be freely performed in the two-dimensional plane in the same manner.

以上説明した種々の実施形態によれば、光学装置は、回転可能なミラー部材と、このミラー部材により反射された光を受けて所定方向へ出射する光学系を含む。光学系は、反射面で偶数回、順次反射させてミラー部材に再入射させる。その再入射した光は、ミラー部材により反射されることで光が所定方向に出射される。本発明者の検討によれば、この光学系において偶数回ではなく奇数回反射させる構成では本発明は成り立たない。   According to various embodiments described above, the optical device includes a rotatable mirror member and an optical system that receives light reflected by the mirror member and emits the light in a predetermined direction. The optical system sequentially reflects the light evenly on the reflection surface and re-enters the mirror member. The re-incident light is reflected by the mirror member to be emitted in a predetermined direction. According to a study made by the present inventor, the present invention does not hold true in a configuration in which this optical system reflects an odd number of times rather than an even number of times.

<第5実施形態>
以下、第4実施形態で示した光学装置から射出した光を対象物へ導く光学素子を含む加工装置の例を説明する。図7は、第5実施形態に係るレーザ加工装置の構成の図である。本実施形態におけるレーザ加工装置は、レーザ光源71の後段に第4実施形態で示した光線平行シフト機構17を含む。その後段には光線拡大系18,19が配置され、これにより光線シフト量・光線系を必要な量に拡大している。さらに、光線拡大系の後段には集光レンズ22が配置され、焦点面に配置した対象物23にレーザ光線が集光照射される。また、光線拡大系19と集光レンズ22との間に設けられたミラー20,21は、対象物23上の目的位置に光線を導くようにそれらの角度が調整されうる。
<Fifth Embodiment>
Hereinafter, an example of a processing device including an optical element that guides light emitted from the optical device shown in the fourth embodiment to an object will be described. FIG. 7 is a diagram of the configuration of the laser processing apparatus according to the fifth embodiment. The laser processing apparatus according to the present embodiment includes the beam parallel shift mechanism 17 shown in the fourth embodiment after the laser light source 71. The beam expanding systems 18 and 19 are arranged in the subsequent stage, whereby the beam shifting amount and the beam system are expanded to a necessary amount. Further, a condenser lens 22 is arranged in the latter stage of the beam expanding system, and a laser beam is condensed and irradiated onto the object 23 arranged on the focal plane. Further, the angles of the mirrors 20 and 21 provided between the light beam expanding system 19 and the condenser lens 22 can be adjusted so as to guide the light beam to a target position on the object 23.

この構成において、光線平行シフト機構17で光線を平行シフトさせることで、対象物23に照射されるレーザ光線の角度を自在に可変させることができる。その結果、テーパー穴加工や斜めの断面を持つ切断を行うことができる。   In this configuration, by parallel-shifting the light rays by the light-ray parallel shift mechanism 17, the angle of the laser light beam with which the object 23 is irradiated can be freely changed. As a result, it is possible to perform tapered hole processing and cutting having an oblique cross section.

<物品の製造方法に係る実施形態>
以上に説明した実施形態に係る加工装置は、物品の製造方法に使用しうる。当該物品の製造方法は、当該加工装置を用いて物体(対象物)の加工を行う工程と、当該工程で加工を行われた物体を処理する工程と、を含みうる。当該処理は、例えば、当該加工とは異なる加工、搬送、検査、選別、組立(組付)、および包装のうちの少なくともいずれか一つを含みうる。本実施形態の物品製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストのうちの少なくとも1つにおいて有利である。
<Embodiment of Manufacturing Method of Article>
The processing device according to the embodiment described above can be used in a method for manufacturing an article. The manufacturing method of the article may include a step of processing an object (object) using the processing device, and a step of processing the object processed in the step. The processing may include, for example, at least one of processing, transportation, inspection, sorting, assembly (assembly), and packaging different from the processing. The article manufacturing method of the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

1:ガルバノモータ、2:ミラー部材、2a:第1反射面、2b:第2反射面、3,4,5,6:ミラー、80:光学系 1: Galvano motor, 2: Mirror member, 2a: First reflecting surface, 2b: Second reflecting surface, 3, 4, 5, 6: Mirror, 80: Optical system

Claims (21)

回転可能な反射部材と、
前記反射部材の反射面で反射された光を反射面で偶数回、順次反射して前記反射部材に再入射させる光学系と、
前記反射部材の回転角度を変更することにより、前記再入射により前記反射部材の反射面で反射されて射出する光の光路を調整する調整部と、
を含むことを特徴とする光学装置。
A rotatable reflecting member,
An optical system in which the light reflected by the reflecting surface of the reflecting member is reflected at an even number of times on the reflecting surface and sequentially re-enters the reflecting member,
An adjusting unit that adjusts the optical path of the light reflected and reflected by the reflection surface of the reflection member by the re-incident by changing the rotation angle of the reflection member,
An optical device comprising:
前記反射部材における前記反射面および前記光学系における前記反射面は、平面であり、前記調整部は、前記光路を並進させることを特徴とする請求項1に記載の光学装置。   The optical device according to claim 1, wherein the reflecting surface of the reflecting member and the reflecting surface of the optical system are flat surfaces, and the adjusting unit translates the optical path. 前記偶数回の反射は、前記反射部材の第1反射面で反射された光を4つの反射面で順次反射して前記反射部材の前記第1反射面とは反対側の第2反射面に入射させることを特徴とする請求項1に記載の光学装置。   In the even-numbered reflection, the light reflected by the first reflecting surface of the reflecting member is sequentially reflected by the four reflecting surfaces and is incident on the second reflecting surface of the reflecting member opposite to the first reflecting surface. The optical device according to claim 1, wherein 前記偶数回の反射は、前記反射部材の第1反射面により反射された光を2つの反射面で順次反射して前記反射部材の前記第1反射面とは反対側の第2反射面に入射させることを特徴とする請求項1に記載の光学装置。   In the even-numbered reflection, the light reflected by the first reflecting surface of the reflecting member is sequentially reflected by the two reflecting surfaces and is incident on the second reflecting surface of the reflecting member opposite to the first reflecting surface. The optical device according to claim 1, wherein 前記偶数回の反射は、前記反射部材の反射面における第1領域により反射された光を2つの反射面で順次反射して前記反射部材の前記反射面における第2領域に入射させることを特徴とする請求項1に記載の光学装置。   In the even-numbered reflection, the light reflected by the first area on the reflection surface of the reflection member is sequentially reflected by the two reflection surfaces and is incident on the second area on the reflection surface of the reflection member. The optical device according to claim 1. 請求項1乃至請求項5のうちいずれか1項に記載の光学装置としての第1光学装置と、
請求項1乃至請求項5のうちいずれか1項に記載の光学装置としての第2光学装置であって、前記第1光学装置から射出した光がその前記反射部材に入射するように配置された第2光学装置と、
を含むことを特徴とする光学装置。
A first optical device as the optical device according to any one of claims 1 to 5,
A second optical device as the optical device according to any one of claims 1 to 5, wherein the light emitted from the first optical device is arranged to enter the reflecting member. A second optical device,
An optical device comprising:
前記第1光学装置の前記反射部材の回転軸と前記第2光学装置の前記反射部材の回転軸とが非平行であることを特徴とする請求項6に記載の光学装置。   The optical device according to claim 6, wherein a rotation axis of the reflection member of the first optical device and a rotation axis of the reflection member of the second optical device are not parallel to each other. 前記第1光学装置における前記偶数回の反射を伴う光路がなす平面と、前記第2光学装置における前記偶数回の反射を伴う光路がなす平面とが交差するように、前記第1光学装置及び第2光学装置が配置されていることを特徴とする請求項6または請求項7に記載の光学装置。   The first optical device and the first optical device are arranged so that a plane formed by the optical paths involving the even number of reflections in the first optical device and a plane formed by the optical paths involving the even number of reflections in the second optical device intersect. Optical device according to claim 6 or 7, characterized in that two optical devices are arranged. 請求項1乃至請求項8のうちいずれか1項に記載の光学装置を含むことを特徴とする加工装置。   A processing apparatus comprising the optical device according to any one of claims 1 to 8. 前記光学装置から射出した光を対象物へ導く光学素子を含むことを特徴とする請求項9に記載の加工装置。   The processing apparatus according to claim 9, further comprising an optical element that guides light emitted from the optical device to an object. 第1反射面と第2反射面とを含む回転可能な反射部材と、
前記第1反射面で反射された光を複数の反射面で順次反射して前記第2反射面に入射させる光学系と、
前記反射部材の回転角度を変更することにより、前記第2反射面で反射されて射出する光の光路を調整する調整部と、
を含むことを特徴とする光学装置。
A rotatable reflecting member including a first reflecting surface and a second reflecting surface;
An optical system in which the light reflected by the first reflecting surface is sequentially reflected by a plurality of reflecting surfaces and is incident on the second reflecting surface;
An adjusting unit that adjusts the optical path of the light reflected and emitted by the second reflecting surface by changing the rotation angle of the reflecting member;
An optical device comprising:
前記第1反射面と前記第2反射面とは、互いに反対を向いていることを特徴とする請求項11に記載の光学装置。   The optical device according to claim 11, wherein the first reflective surface and the second reflective surface are opposite to each other. 前記反射部材における前記第1および第2反射面ならびに前記光学系における前記複数の反射面は、平面であり、前記調整部は、前記光路を並進させることを特徴とする請求項11に記載の光学装置。   The optical device according to claim 11, wherein the first and second reflecting surfaces of the reflecting member and the plurality of reflecting surfaces of the optical system are flat surfaces, and the adjusting unit translates the optical path. apparatus. 前記複数の反射面は、4つの反射面であることを特徴とする請求項11に記載の光学装置。   The optical device according to claim 11, wherein the plurality of reflecting surfaces are four reflecting surfaces. 前記複数の反射面は、2つの反射面であることを特徴とする請求項11に記載の光学装置。   The optical device according to claim 11, wherein the plurality of reflecting surfaces are two reflecting surfaces. 前記第2反射面で反射されて射出した前記光が入射する回転可能な第2反射部材と、
前記第2反射部材の反射面で反射された光を複数の反射面で順次反射して前記第2反射部材の反射面に入射させる第2光学系と、
前記第2反射部材の回転角度を変更することにより、前記第2反射部材を射出する光の光路を調整する第2調整部と、
を含むことを特徴とする請求項11に記載の光学装置。
A rotatable second reflecting member on which the light reflected and emitted by the second reflecting surface is incident;
A second optical system that sequentially reflects the light reflected by the reflecting surface of the second reflecting member by a plurality of reflecting surfaces and makes the light incident on the reflecting surface of the second reflecting member;
A second adjusting unit that adjusts an optical path of light emitted from the second reflecting member by changing a rotation angle of the second reflecting member;
The optical device according to claim 11, comprising:
前記第1および第2反射面を含む前記反射部材の回転軸と前記第2反射部材の回転軸とが非平行であることを特徴とする請求項16に記載の光学装置。   The optical device according to claim 16, wherein a rotation axis of the reflection member including the first and second reflection surfaces and a rotation axis of the second reflection member are not parallel to each other. 前記第1反射面で反射された前記光を前記複数の反射面で順次反射して前記第2反射面に入射させる前記光学系における光路がなす平面と、前記第2光学系における光路がなす平面とが交差することを特徴とする請求項16に記載の光学装置。   A plane formed by an optical path in the optical system in which the light reflected by the first reflecting surface is sequentially reflected by the plurality of reflecting surfaces and is incident on the second reflecting surface, and a plane formed by an optical path in the second optical system. The optical device according to claim 16, wherein and intersect. 前記光学系は、前記第1反射面で反射された光を偶数回、順次反射して前記第2反射面に反射させることを特徴とする請求項11に記載の光学装置。   The optical device according to claim 11, wherein the optical system sequentially reflects the light reflected by the first reflecting surface an even number of times and reflects the light by the second reflecting surface. 光学装置を含む加工装置であって、
前記光学装置は、
第1反射面と第2反射面とを含む回転可能な反射部材と、
前記第1反射面で反射された光を複数の反射面で順次反射して前記第2反射面に入射させる光学系と、
前記反射部材の回転角度を変更することにより、前記第2反射面で反射されて射出する光の光路を調整する調整部と、
を含むことを特徴とする加工装置。
A processing device including an optical device,
The optical device is
A rotatable reflecting member including a first reflecting surface and a second reflecting surface;
An optical system in which the light reflected by the first reflecting surface is sequentially reflected by a plurality of reflecting surfaces and is incident on the second reflecting surface;
An adjusting unit that adjusts the optical path of the light reflected and emitted by the second reflecting surface by changing the rotation angle of the reflecting member;
A processing device comprising:
前記光学装置を射出した光を対象物へ導く光学素子を含むことを特徴とする請求項20に記載の加工装置。   The processing apparatus according to claim 20, further comprising an optical element that guides light emitted from the optical device to an object.
JP2019173403A 2014-11-13 2019-09-24 Optical device and processor Pending JP2020073966A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014231050 2014-11-13
JP2014231050 2014-11-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015207497A Division JP6595879B2 (en) 2014-11-13 2015-10-21 Optical apparatus, processing apparatus, and article manufacturing method

Publications (1)

Publication Number Publication Date
JP2020073966A true JP2020073966A (en) 2020-05-14

Family

ID=56089448

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015207497A Active JP6595879B2 (en) 2014-11-13 2015-10-21 Optical apparatus, processing apparatus, and article manufacturing method
JP2019173403A Pending JP2020073966A (en) 2014-11-13 2019-09-24 Optical device and processor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015207497A Active JP6595879B2 (en) 2014-11-13 2015-10-21 Optical apparatus, processing apparatus, and article manufacturing method

Country Status (4)

Country Link
JP (2) JP6595879B2 (en)
KR (1) KR101959775B1 (en)
ES (1) ES2705354T3 (en)
TW (1) TWI604220B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6851751B2 (en) * 2016-08-30 2021-03-31 キヤノン株式会社 Optical equipment, processing equipment, and article manufacturing methods
BE1026484B1 (en) * 2018-07-24 2020-02-25 Laser Eng Applications Optical method and device for providing two offset laser beams
JP7412925B2 (en) 2019-08-26 2024-01-15 キヤノン株式会社 Optical device and article manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647144A (en) * 1984-05-02 1987-03-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical scanner
JPH0232316A (en) * 1988-07-21 1990-02-02 Randamu Electron Design:Kk Optical axis moving optical system and optical shutter device
FR2662515B1 (en) * 1990-05-23 1993-10-08 Etat Francais Delegue Armement OPTICAL DEVICE FOR PRINTING A COLLIMATE LIGHT BEAM TRANSLATION MOVEMENT.
JPH11125783A (en) * 1997-10-21 1999-05-11 Canon Inc Optical scan system, optical molding device using the system laser marker and laser beam machine
WO2013074033A1 (en) * 2011-11-15 2013-05-23 Applied Presicion, Inc. Mode-switchable illumination system for a microscope

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105115A (en) * 1985-10-31 1987-05-15 Canon Inc Image shifting device
JPH04315488A (en) * 1991-04-15 1992-11-06 Nippon Telegr & Teleph Corp <Ntt> Laser array module
JPH11254172A (en) * 1998-03-16 1999-09-21 Hoya Shot Kk Laser beam machine
JP4386137B2 (en) * 2008-02-29 2009-12-16 トヨタ自動車株式会社 Laser processing apparatus and laser processing method
CN203817621U (en) * 2013-12-03 2014-09-10 张立国 Laser beam splitting and galvanometer scanning processing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647144A (en) * 1984-05-02 1987-03-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Optical scanner
JPH0232316A (en) * 1988-07-21 1990-02-02 Randamu Electron Design:Kk Optical axis moving optical system and optical shutter device
FR2662515B1 (en) * 1990-05-23 1993-10-08 Etat Francais Delegue Armement OPTICAL DEVICE FOR PRINTING A COLLIMATE LIGHT BEAM TRANSLATION MOVEMENT.
JPH11125783A (en) * 1997-10-21 1999-05-11 Canon Inc Optical scan system, optical molding device using the system laser marker and laser beam machine
WO2013074033A1 (en) * 2011-11-15 2013-05-23 Applied Presicion, Inc. Mode-switchable illumination system for a microscope

Also Published As

Publication number Publication date
JP6595879B2 (en) 2019-10-23
TWI604220B (en) 2017-11-01
ES2705354T3 (en) 2019-03-22
TW201617684A (en) 2016-05-16
JP2016103007A (en) 2016-06-02
KR101959775B1 (en) 2019-03-19
KR20160057341A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
US10663716B2 (en) Optical apparatus, processing apparatus, and article manufacturing method
JP2020073966A (en) Optical device and processor
US9863759B2 (en) Illumination apparatus, pattern irradiation device, and system
JP2012524295A5 (en) Optomechanical optical path delay enhancer for optical MEMS applications
KR101527482B1 (en) Manufacturing apparatus for micro component using laser
JP6045708B2 (en) Laser scanner
KR20140020776A (en) Laser machining device using fresnel zone plate and substrate cutting method using the device
JP5349406B2 (en) Polarization azimuth adjusting device and laser processing device
JP5921343B2 (en) Laser irradiation device
US20200088979A1 (en) Optical apparatus
JP5265695B2 (en) Equipment for processing workpieces using parallel laser light
JP2016103007A5 (en) Optical device, processing device, and method of manufacturing article
CN112496527B (en) Optical device and article manufacturing method
JP6345963B2 (en) Light irradiation apparatus and drawing apparatus
JP6853569B2 (en) Monochromator
JP5311682B2 (en) Laser processing equipment for die cutting production
EP3712687A1 (en) Optical pattern generation device
US9857673B2 (en) Projector
JPH05228673A (en) Laser beam machine
JP7193367B2 (en) Polygon mirror, light guiding device and optical scanning device
JPS6324215A (en) Reference shape projector
JP2012168036A (en) Optical path length varying apparatus, optical interferometer employing the same and fourier transform spectrometer
JP2013061536A (en) Optical device
JP2017227762A5 (en)
JP2011186330A (en) Laser beam scanning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210514