JP2020073942A - 電子機器、電子機器の制御方法、及び電子機器の制御プログラム - Google Patents

電子機器、電子機器の制御方法、及び電子機器の制御プログラム Download PDF

Info

Publication number
JP2020073942A
JP2020073942A JP2020028671A JP2020028671A JP2020073942A JP 2020073942 A JP2020073942 A JP 2020073942A JP 2020028671 A JP2020028671 A JP 2020028671A JP 2020028671 A JP2020028671 A JP 2020028671A JP 2020073942 A JP2020073942 A JP 2020073942A
Authority
JP
Japan
Prior art keywords
mode
unit
transmission
vehicle
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020028671A
Other languages
English (en)
Other versions
JP6948421B2 (ja
Inventor
徹 佐原
Toru Sawara
徹 佐原
正光 錦戸
Masamitsu Nishikido
正光 錦戸
大槻 豊
Yutaka Otsuki
豊 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019234839A external-priority patent/JP6667046B1/ja
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2020028671A priority Critical patent/JP6948421B2/ja
Publication of JP2020073942A publication Critical patent/JP2020073942A/ja
Application granted granted Critical
Publication of JP6948421B2 publication Critical patent/JP6948421B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】距離測定を行う際の利便性を高めた電子機器、電子機器の制御方法、及び電子機器の制御プログラムを提供する。【解決手段】電子機器は、送信波を送信する送信部と、送信波のうち対象物によって反射された反射波を受信する受信部と、送信部の送信信号及び受信部の受信信号に基づいて対象物を測定する際の消費電力を第1の消費電力とする第1モードと、消費電力を第1の消費電力よりも多い第2の消費電力とする第2モードと、を切り替え可能に制御する制御部と、を備える。制御部は、第1モードにおいて、対象物が所定の距離内に検出されたら、第2モードに切り換えるように制御する。【選択図】図5

Description

本開示は、電子機器、電子機器の制御方法、及び電子機器の制御プログラムに関する。
例えば自動車産業のような自動車部品に関連する産業などの分野において、自車両と対象物との間の距離を測定する技術が重要視されている。近年、運転者の運転をアシストする技術、及び、運転の一部又は全部を自動化する自動運転に関連する技術の発展に伴い、このような距離を測定する技術の重要性は、ますます高まることが予想される。このような距離を測定する技術として、例えば特許文献1は、ミリ波レーダを用いて、自車両と周辺車両との間の距離を測定する運転支援システムを開示している。距離の測定と同様に、例えば自車両から他の車両などの対象物に対する方位角を測定する技術も重要視されている。また、例えば、特許文献2は、アンテナ設置の際の向きを設定する方法を開示している。
特開2009−59200号公報 特開平11−133144号公報
上述のような方位角測定の技術において、望ましい測定の精度を低下させることなく、測定の効率を向上させることができれば、利便性を高めることができる。
本開示の目的は、方位角測定を行う際の利便性を高めた電子機器、電子機器の制御方法、及び電子機器の制御プログラムを提供することにある。
一実施形態に係る電子機器は、送信部と、受信部と、制御部とを備える。
前記送信部は、送信波を送信する。
前記受信部は、前記送信波のうち対象物によって反射された反射波を受信する。
前記制御部は、前記送信部の送信信号及び前記受信部の受信信号に基づいて前記対象物を測定する際の消費電力を第1の消費電力とする第1モードと、前記消費電力を前記第1の消費電力よりも多い第2の消費電力とする第2モードと、を切り替え可能に制御する。
また、前記制御部は、前記第1モードにおいて、前記対象物が所定の距離内に検出されたら、前記第2モードに切り換えるように制御する。
一実施形態に係る電子機器の制御方法は、送信ステップと、受信ステップと、制御ステップとを含む。
前記送信ステップは、送信波を送信する。
前記受信ステップは、前記送信波のうち対象物によって反射された反射波を受信する。
前記制御ステップは、前記送信ステップにおいて送信する送信信号及び前記受信ステップにおいて受信する受信信号に基づいて前記対象物を測定する際の消費電力を第1の消費電力とする第1モードと、前記消費電力を前記第1の消費電力よりも多い第2の消費電力とする第2モードと、を切り替え可能に制御する。
また、前記制御ステップは、前記第1モードにおいて、前記対象物が所定の距離内に検出されたら、前記第2モードに切り換えるように制御する。
一実施形態に係る電子機器の制御プログラムは、コンピュータに、送信ステップと、受信ステップと、制御ステップとを実行させる。
前記送信ステップは、送信波を送信する。
前記受信ステップは、前記送信波のうち対象物によって反射された反射波を受信する。
前記制御ステップは、前記送信ステップにおいて送信する送信信号及び前記受信ステップにおいて受信する受信信号に基づいて前記対象物を測定する際の消費電力を第1の消費電力とする第1モードと、前記消費電力を前記第1の消費電力よりも多い第2の消費電力とする第2モードと、を切り替え可能に制御する。
また、前記制御ステップは、前記第1モードにおいて、前記対象物が所定の距離内に検出されたら、前記第2モードに切り換えるように制御する。
一実施形態によれば、方位角測定を行う際の利便性を高めた電子機器、電子機器の制御方法、及び電子機器の制御プログラムを提供することができる。
一実施形態に係る電子機器の使用態様を説明する図である。 一実施形態に係るセンサ部及び送信波を示す図である。 一実施形態に係る電子機器の構成を概略的に示す機能ブロック図である。 一実施形態に係るセンサ部の構成を概略的に示す機能ブロック図である。 一実施形態に係るセンサ部により構成される仮想アレイアンテナを説明する図である。 一実施形態に係る電子機器の動作を説明するフローチャートである。
以下、一実施形態について、図面を参照して詳細に説明する。
一実施形態に係る電子機器は、例えば自動車などの乗り物に設置したセンサ部により、センサ部の周囲に存在する対象物に対するセンサ部からの方位角を測定する。センサ部は、検出波として例えば電波などの送信波を送信する。また、センサ部は、送信波のうち対象物によって反射された反射波を受信する。一実施形態に係る電子機器は、センサ部が送信する送信波及びセンサ部が受信する受信波に基づいて、センサ部からの対象物に対する方位角を測定する。
以下、典型的な例として、一実施形態に係る電子機器が、乗用車のような自動車に搭載される構成について説明する。しかしながら、一実施形態に係る電子機器が搭載されるのは、自動車などに限定されない。一実施形態に係る電子機器は、バス、トラック、オートバイ、自転車、船舶、航空機、及び歩行者など、種々の移動体に搭載されてよい。また、一実施形態に係る電子機器が搭載されるのは、必ずしも自ら移動する移動体にも限定されない。一実施形態に係る電子機器は、センサ部及び対象物の少なくとも一方が移動し得るような状況において、センサ部からの対象物に対する方位角を測定することができる。また、一実施形態に係る電子機器は、センサ部及び対象物の双方が静止していても、センサ部からの対象物に対する方位角を測定することは当然できる。
図1は、一実施形態に係る電子機器の使用態様を説明する図である。図1は、一実施形態に係るセンサ部を自動車の車両に設置した例を示している。
図1に示す車両100及び車両200は、それぞれ一実施形態に係るセンサ部を設置してある。図1に示す車両100及び車両200は、乗用車のような自動車の車両としてよいが、それぞれ任意のタイプの車両としてよい。図1において、車両100及び車両200は、矢印で示す進行方向に移動していてもよいし、移動せずに静止していてもよい。
図1に示すように、車両100及び車両200は、それぞれ、センサ部10A、センサ部10B、センサ部10C、及びセンサ部10Dを設置してある。センサ部10Aは、車両100及び車両200のそれぞれ前方に設置してある。センサ部10Bは、車両100及び車両200のそれぞれ左側に設置してある。センサ部10Cは、車両100及び車両200のそれぞれ右側に設置してある。センサ部10Dは、車両100及び車両200のそれぞれ後方に設置してある。以下の説明において、センサ部10A、センサ部10B、センサ部10C、及びセンサ部10Dのそれぞれを区別しない場合、単に「センサ部10」と総称する。なお、センサ部10が車両に設置される位置は、図1に示す位置に限定されるものではなく、適宜、他の位置としてもよい。
車両100及び車両200は、それぞれ、センサ部10A、センサ部10B、センサ部10C、及びセンサ部10Dを設置することで、自車両の周囲360度において、所定の距離内に存在する対象物を検出することができる。例えば、車両100は、図1に示すように、いずれかのセンサ部10によって、車両200を対象物として検出することができる。具体的には、車両100に設置されたセンサ部10は、車両100の周囲に対象物である車両200が存在することを検出する。また、車両100に設置されたセンサ部10によって、自車両である車両100と、対象物である車両200との間の距離が測定される。さらに、車両100に設置されたセンサ部10によって、自車両である車両100から、対象物である車両200に対する方位角も測定される。また、車両100は、いずれかのセンサ部10によって、車両100の周囲に存在する歩行者及び障害物なども、対象物として検出することができる。
同様に、車両200は、図1に示すように、いずれかのセンサ部10によって、車両100を対象物として検出することができる。また、車両200は、いずれかのセンサ部10によって、車両200の周囲に存在する歩行者及び障害物なども、対象物として検出することができる。
図2は、一実施形態に係るセンサ部、及び当該センサ部が送信する送信波を示す図である。
図2は、車両100に設置されたセンサ部10A、センサ部10B、センサ部10C、及びセンサ部10Dが、それぞれ送信波のビームを形成している様子を模式的に示している。センサ部10は、典型的には、電波を送受信するレーダ(RADAR(Radio Detecting and Ranging))センサとしてよい。しかしながら、センサ部10は、レーダセンサに限定されない。一実施形態に係るセンサ部10は、例えば光波によるLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)の技術に基づくセンサとしてもよい。また、一実施形態に係るセンサ部10は、例えば音波によるSONAR(Sound Navigation and Ranging)の技術に基づくセンサとしてもよい。センサ部10は、例えばパッチアンテナなどを含んで構成することができる。センサ部10の構成については、さらに後述する。
図2に示すように、車両100の前方に設置されたセンサ部10Aは、車両100の前方に送信波のビームBaを形成する。ビームBaの送信波の周波数は、例えばAとする。車両100の左側に設置されたセンサ部10Bは、車両100の左側に送信波のビームBbを形成する。ビームBbの送信波の周波数は、例えばBとする。車両100の右側に設置されたセンサ部10Cは、車両100の右側に送信波のビームBcを形成する。ビームBcの送信波の周波数は、例えばCとする。車両100の後方に設置されたセンサ部10Dは、車両100の後方に送信波のビームBdを形成する。ビームBdの送信波の周波数は、例えばDとする。
図2に示すように、センサ部10は、それぞれ、放射角が180度に近いビームを形成するように、送信波を送信してよい。このようなセンサ部10を4つ用いることで、図2に示すように、車両100の周囲全てが、センサ部10の送信波のビームによって囲まれる。一方、センサ部10の設置個所、及びセンサ部10の放射角は、図2に示すような態様に限定されない。例えば、放射角が180度よりも狭いセンサ部10を、車両100に設置してもよい。この場合、4つより多くのセンサ部10を車両100に設置することで、車両100の周囲全てがセンサ部10の送信波のビームによって囲まれるようにしてもよい。また、車両100の周囲の全てがセンサ部10の送信波のビームによって囲まれる必要がない場合、適宜、センサ部10によるビームの放射角を狭くしたり、センサ部10の設置数を少なくしたりしてもよい。
図3は、一実施形態に係る電子機器の構成を概略的に示す機能ブロック図である。以下、一実施形態に係る電子機器の構成について説明する。
図3に示すように、一実施形態に係る電子機器1は、少なくとも制御部3を備えている。上述したセンサ部10A、センサ部10B、センサ部10C、及びセンサ部10Dは、それぞれ、制御部3に接続される。さらに、制御部3には、方位検出部5、及び報知部7が接続される。
制御部3は、種々の機能を実行するための制御及び処理能力を提供するために、例えばCPU(Central Processing Unit)のような、少なくとも1つのプロセッサを含んでよい。制御部3は、まとめて1つのプロセッサで実現してもよいし、いくつかのプロセッサで実現してもよいし、それぞれ個別のプロセッサで実現してもよい。プロセッサは、単一の集積回路として実現されてよい。集積回路は、IC(Integrated Circuit)ともいう。プロセッサは、複数の通信可能に接続された集積回路及びディスクリート回路として実現されてよい。プロセッサは、他の種々の既知の技術に基づいて実現されてよい。一実施形態において、制御部3は、例えばCPU及び当該CPUで実行されるプログラムとして構成してよい。制御部3は、制御部3の動作に必要なメモリのような記憶部を適宜含んでもよい。この記憶部は、制御部3において実行されるプログラム、及び、制御部3において実行された処理の結果などを記憶してよい。また、この記憶部は、制御部3のワークメモリとして機能してよい。一実施形態に係る制御部3の動作は、さらに後述する。
方位検出部5は、例えば電子機器1が搭載された車両の方位を検出する。方位検出部5は、地磁気を検出する電子コンパスなどとしてよい。また、方位検出部5は、GNSS(Global Navigation Satellite System)技術等に基づいて、電子機器1の位置情報を取得してもよい。GNSS技術は、例えばGPS(Global Positioning System)、GLONASS、Galileo、及び準天頂衛星(QZSS)等のいずれか衛星測位システムを含んでよい。例えば、方位検出部5は、GPSモジュールなどの位置情報所得デバイスを内蔵してよい。このような場合、方位検出部5は、電子機器1の位置情報を取得することにより、当該位置情報の時間変化に基づいて、電子機器1が搭載された車両の方位を検出してもよい。また、方位検出部5は、GPSモジュールなどの位置情報所得デバイスに代えて、又は当該デバイスとともに、ジャイロスコープのようなセンサを含んでもよい。また、例えば電子機器1が搭載された車両にカーナビゲーションシステムも搭載されている場合、このカーナビゲーションシステムから、車両の方位を検出してもよい。
一実施形態において、方位検出部5は、例えば電子機器1を搭載した車両100が東西南北いずれの方位に向いているか検出してよい。これにより、制御部3は、方位検出部5が検出した方位(の情報)を取得することができる。
報知部7は、電子機器1が距離の測定及び/又は方位角の測定を行った結果などを、電子機器1のユーザなどに報知する。報知部7は、ユーザに報知する情報に応じて、種々の構成を想定することができる。例えば、電子機器1が距離及び/又は方位角の測定を行った結果などを、文字及び/又は画像などの視覚的な情報によって報知する場合、報知部7は、液晶ディスプレイ(LCD)、有機ELディスプレイ、又は無機ELディスプレイ等のような表示デバイスとしてよい。また、例えば、電子機器1が距離及び/又は方位角の測定を行った結果などを、より簡潔な視覚情報によって報知する場合、報知部7は、発光ダイオード(LED)等のような発光デバイスとしてよい。また、例えば、電子機器1が距離及び/又は方位角の測定を行った結果などを、音又は音声などの聴覚的な情報によって報知する場合、報知部7は、任意のスピーカ又はブザーなどとしてよい。報知部7は、上述したような機能部を少なくとも1つ含んで構成してよい。
一実施形態において、報知部7は、例えば車両100の周囲において、所定の対象物が所定の距離内及び/又は所定の角度内に検出されたら、その旨を文字及び/又は画像などによって報知してもよい。また、報知部7は、所定の対象物が所定の距離内及び/又は所定の角度内に検出されたら、車両100の運転者に注意喚起する表示などを行ってもよい。また、報知部7は、所定の対象物が所定の距離内及び/又は所定の角度内に検出されたら、車両100の周囲において所定の対象物が検出された位置及び/又は角度を、文字及び/又は画像などによって報知してもよい。さらに、報知部7は、所定の対象物が所定の距離内及び/又は所定の角度に検出されたら、所定の対象物と車両100との間の距離を、数値又はイメージ図などによって表示してもよい。
また、一実施形態において、報知部7は、例えば車両100の周囲において、所定の対象物が所定の距離内及び/又は所定の角度内に検出されたら、所定の警告灯を点灯させるのみでもよい。さらに、一実施形態において、報知部7は、例えば車両100の周囲において、所定の対象物が所定の距離内及び/又は所定の角度内に検出されたら、所定の警告及び/又は各種情報を、音声情報によって報知してもよい。
一実施形態に係る電子機器1は、最小の構成としては、制御部3のみを備えるものとしてよい。一方、一実施形態に係る電子機器1は、制御部3の他に、図3に示すような、少なくとも1つのセンサ部10、方位検出部5、及び報知部7の少なくともいずれかを含んで構成してもよい。このように、一実施形態に係る電子機器1は、種々の構成態様とすることができる。また、一実施形態に係る電子機器1が車両100に搭載される場合、制御部3、方位検出部5、及び報知部7は、車両100内部などの適当な場所に設置されてよい。一方、一実施形態においては、制御部3、方位検出部5、及び報知部7の少なくともいずれかは、車両100の外部に設置されてもよい。
次に、一実施形態に係るセンサ部10について説明する。以下、一実施形態に係るセンサ部10が、電波を送受信するレーダセンサである場合について説明する。
図4は、一実施形態に係るセンサ部10の構成を概略的に示す機能ブロック図である。以下、図4を参照して、一実施形態に係るセンサ部10について説明する。図4においては、図1〜図3に示したセンサ部10A、センサ部10B、センサ部10C、及びセンサ部10Dのうち、代表例として、1つのセンサ部10を示す。
図4に示すように、一実施形態に係るセンサ部10は、大まかに、送信部20及び受信部30を含んで構成される。一実施形態に係るセンサ部10の送信部20は、図4に示すように、2つの送信アンテナ26A及び26Bを備えている。以下の説明において、送信アンテナ26A及び送信アンテナ26Bを区別しない場合、単に「送信アンテナ26」と総称する。また、一実施形態に係るセンサ部10は、図4に示すように、4つの受信部30A、30B、30C、及び30Dを備えている。以下の説明において4つの受信部30A、受信部30B、受信部30C、及び受信部30Dのそれぞれを区別しない場合、単に「受信部30」と総称する。
図4は、送信部20の送信アンテナ26が送信波Tを送信する様子を模式的に示している。図4においては、送信波Tのうち、対象物50によって反射された波動を、反射波Rとして示してある。ここで、対象物50は、車両200のような、車両100以外の他の車両としてもよいし、歩行者又は障害物など、車両100以外の任意の物体としてもよい。また、図4は、受信部30の受信アンテナ31が反射波Rを受信する様子も模式的に示している。図4に示す記憶部12及びシンセサイザ14は、それぞれ、送信部20に含めてもよいし、受信部30に含めてもよいし、送信部20又は受信部30とは別に設けてもよい。
シンセサイザ14は、電子的な高周波合成を用いた発振回路であり、レーダの信号源となる。シンセサイザ14は、例えば周波数シンセサイザIC又は周波数シンセサイザ回路などで構成してよい。
記憶部12は、半導体メモリ又は磁気メモリ等で構成されてよい。記憶部12は、制御部3に接続されてよい。記憶部12は、各種情報及び制御部3で実行されるプログラム等を記憶してよい。記憶部12は、制御部3のワークメモリとして機能してよい。また、記憶部12は、制御部3に含まれてもよい。
送信部20及び受信部30は、記憶部12及びシンセサイザ14を含めて、既知のレーダセンサと同様の構成することができ、既知のレーダセンサと同様の機能部を採用することができる。したがって、以下、既知のレーダセンサと同様になる説明は、適宜、簡略化又は省略する。
図4に示すように、送信部20は、例えば、クロック発生部21、信号生成部22、直交変調部23、ミキサ24、送信増幅器25、送信アンテナ26、及び切替部27を含んで構成することができる。
送信部20において、クロック発生部21は、制御部3の制御により、クロック信号CLKを発生する。クロック発生部21によって発生されたクロック信号は、信号生成部22に供給される。また、記憶部12には、制御部3の制御により、方位検出部5が検出した方位情報に基づいて生成された送信信号列が記憶されているものとする。
信号生成部22は、クロック発生部21によって発生されたクロック信号、及び、記憶部12から読み出された送信信号列に基づいて、送信信号を生成する。信号生成部22が生成する信号は、例えば周波数変調連続波(FM−CW(Frequency Modulated Continuous Wave))方式のレーダ信号とすることができる。一方、信号生成部22が生成する信号はFM−CW方式の信号に限定されない。信号生成部22が生成する信号は、例えば、パルス方式、パルス圧縮方式(スペクトラム拡散方式)、又は周波CW(Continuous Wave)方式など、各種の方式の信号としてもよい。
また、信号生成部22は、送信信号を生成する際に、例えば制御部3の制御により、送信信号の周波数を割り当てる。一実施形態において、信号生成部22が送信信号の周波数を割り当てる際に使用する帯域は、以下のようにして決定する。
例えば、79GHz帯のミリ波レーダを使用する場合、帯域幅4GHzのミリ波、すなわち、77GHzから81GHzまでの帯域に割り当てられた4GHz帯域を使用することが規定されている。この場合、77GHzから81GHzまでの帯域に割り当てられた4GHz帯域を使用してもよい。また、この場合、77GHzから81GHzまでの帯域に割り当てられた4GHz帯域の一部として、例えば1GHz帯域を使用してもよい。信号生成部22によって生成された送信信号は、直交変調部23に供給される。なお、以下の説明では、xを任意の数として、帯域幅xGHzのミリ波のことをxGHz帯域のミリ波ともいう。また、以下の説明では、xを任意の数として、帯域幅xGHzのことをxGHz帯域ともいう。
直交変調部23は、信号生成部22から供給された送信信号の直交変調を行う。直交変調部23によって直交変調された信号は、送信部20のミキサ24及び受信部30のミキサ34に供給される。
ミキサ24は、切替部27を介して、送信増幅器25A又は送信増幅器25Bに接続される。ミキサ24は、直交変調部23によって直交変調された信号を、シンセサイザ14から供給される信号と混合して周波数変換を行い、送信信号の周波数をミリ波の中心周波数まで上昇させる。ミキサ24によって周波数変換された送信信号は、送信増幅器25A又は送信増幅器25Bに供給される。
送信増幅器25Aは、送信アンテナ26Aに接続される。また、送信増幅器25Bは、送信アンテナ26Bに接続される。以下の説明において送信増幅器25A及び送信増幅器25Bを区別しない場合、単に「送信増幅器25」と総称する。送信増幅器25は、ミキサ24によって周波数変換された送信信号の送信電力を増大させる。送信増幅器25によって送信電力が増大した送信信号は、送信アンテナ26から送信波Tとして送信される。一実施形態において、送信波Tは、送信アンテナ26A及び送信アンテナ26Bの少なくとも一方から送信される。
切替部27は、送信波Tが送信されるアンテナを、送信アンテナ26Aと、送信アンテナ26Bとで切り替える。切替部27は、例えば制御部3からの制御によって、送信波Tが送信される送信アンテナ26を切り替えてよい。
図4に示すように、送信アンテナ26から送信された送信波Tが届く範囲に対象物50が存在する場合、送信波Tの一部は、対象物50によって反射されて、反射波Rとなる。
図4は、受信アンテナ31Aを備える受信部30Aと、受信アンテナ31Bを備える受信部30Bと、受信アンテナ31Cを備える受信部30Cと、受信アンテナ31Dを備える受信部30Dとを、まとめて示している。以下、図4に示す受信部30A、受信部30B、受信部30C、及び受信部30Dのうち、代表例として、1つの受信部30について説明する。受信部30A、受信部30B、受信部30C、及び受信部30Dは、それぞれ同様の構成とすることができる。
図4に示すように、受信部30は、例えば、受信アンテナ31、受信増幅器32、ミキサ33、ミキサ34、ローパスフィルタ35、AD変換部36、及びFFT処理部37を含んで構成することができる。
受信部30において、受信アンテナ31は、反射波Rを受信する。より詳細には、一実施形態において、反射波Rは、受信アンテナ31A、受信アンテナ31B、受信アンテナ31C、及び受信アンテナ31Dの少なくともいずれかによって受信される。受信アンテナ31によって受信された反射波Rに基づく受信信号は、受信増幅器32に供給される。受信増幅器32は、低雑音増幅器としてよく、受信アンテナ31から供給された受信信号を低雑音で増幅する。受信増幅器32によって増幅された受信信号は、ミキサ33に供給される。
ミキサ33は、受信増幅器32から供給されるRF周波数の受信信号を、シンセサイザ14から供給される信号と混合して周波数変換を行い、受信信号の周波数をIF周波数まで低下させる。ミキサ33によって周波数変換された送信信号は、ミキサ34に供給される。
ミキサ34は、ミキサ33によって周波数変換された送信信号を、直交変調部23によって直交変調された信号と掛け合わせることにより、ビート信号を生成する。ミキサ34によって生成されたビート信号は、ローパスフィルタ35に供給される。
ローパスフィルタ35は、ミキサ34から供給されるビート信号のノイズを除去する。ローパスフィルタ35によってノイズ除去されたビート信号は、AD変換部36に供給される。
AD変換部36は、任意のアナログ−デジタル変換回路(Analog to Digital Converter(ADC))で構成してよい。AD変換部36は、ローパスフィルタ35によってノイズ除去されたアナログのビート信号をデジタル化する。AD変換部36によってデジタル化されたビート信号は、FFT処理部37に供給される。
FFT処理部37は、高速フーリエ変換(Fast Fourier Transform(FFT))処理を行う任意の回路又はチップなどで構成してよい。FFT処理部37は、AD変換部36によってデジタル化されたビート信号に対してFFT処理を行う。FFT処理部37によってFFT処理された結果は、制御部3に供給される。
FFT処理部37によってビート信号をFFT処理した結果として、周波数スペクトルが得られる。この周波数スペクトルから、制御部3は、センサ部10が発するビームの範囲内に所定の対象物50が存在するか否かを判定することができる。すなわち、制御部3は、FFT処理されたビート信号に基づいて、センサ部10が発するビームの範囲内に所定の対象物50が存在するか否かを判定することができる。また、制御部3は、FFT処理されたビート信号に基づいて、所定の対象物50が存在する場合に、センサ部10と対象物50との距離を測定することもできる。さらに、制御部3は、FFT処理されたビート信号に基づいて、所定の対象物50が存在する場合に、センサ部10と対象物50との位置関係も判定することもできる。このように、一実施形態において、送信波Tとして送信される信号、及び反射波Rとして受信される信号から得られるビート信号に基づいて、対象物50との間の距離を測定してよい。例えば79GHz帯などのミリ波レーダを利用して取得したビート信号に基づいて、距離を測定する測距技術そのものは公知であるため、より詳細な説明は省略する。
また、制御部3は、FFT処理されたビート信号に基づいて、所定の対象物50が存在する場合に、センサ部10からの対象物50に対する方位角も判定することもできる。このように、一実施形態において、送信波Tとして送信される信号、及び反射波Rとして受信される信号から得られるビート信号に基づいて、対象物50に対する方位角を測定してよい。この場合、制御部3は、方位検出部5が検出する電子機器1の方位と対比することにより、対象物50に対する方位角を測定してもよい。また、電子機器1が測定するのは、対象物50に対する方位角に限定されない。一実施形態において、電子機器1が測定するのは、電子機器1のセンサ部10から対象物50に向く方向又は方角などとしてもよい。例えば79GHz帯などのミリ波レーダを利用して取得したビート信号に基づいて、所定の対象物に対する方位角などを測定する測角技術そのものも公知であるため、より詳細な説明は省略する。
次に、一実施形態に係るセンサ部10により構成される仮想アレイアンテナについて説明する。
一実施形態において、1つのセンサ部10は、複数のアンテナを有してよい。また、一実施形態において、1つのセンサ部10は、送信アンテナ26及び受信アンテナ31の少なくとも一方を複数備えることにより、これらのアンテナによって構成される仮想アレイアンテナとして機能させることができる。以下、このようなアンテナの構成について説明する。
図5は、一実施形態に係るセンサ部10により構成される仮想アレイアンテナを模式的に示す図である。図5は、図4に示したセンサ部10が備える2つの送信アンテナ26及び4つの受信アンテナ31により構成される、仮想アレイアンテナを示す図である。
図5に示すように、センサ部10は、2つの送信アンテナ26A及び26B、並びに4つの受信アンテナ31A、31B、31C、及び31Dを備えている。一実施形態において、これらのアンテナを所定の間隔で並べて配置することにより、最大で2×4=8本のアンテナとして機能する仮想アレイアンテナが構成される。
以上の例を一般化して、例えば、ミリ波レーダの電波を送受信するに際し、送信アンテナ26をM本、受信アンテナ31をN本配置する場合を想定する。ここで、図5に示すように、M本の送信アンテナ26を、(λ/2)×N=2λの間隔で配置する。このように
設置したM本の送信アンテナ26が複数ある場合、複数の送信アンテナ26から時間的に順番に送信波Tを送信する。
また、図5に示すように、N本の受信アンテナ31を、λ/2の間隔で配置する。このように設置したN本の受信アンテナ31が複数ある場合、複数の受信アンテナ31から時間的に順番に反射波Rを受信する。このようにして受信した受信信号は、N×M本のアンテナを用いて送受信した場合の受信信号と見立てることができる。このように、一実施形態において、仮想アレイアンテナとして機能するアンテナの数は、送信波Tを送信するアンテナの数をMとして、反射波Rを受信するアンテナの数をNとする場合、M×Nとしてもよい。
このようにして、N×M本の仮想アレイアンテナとして機能する送信アンテナ26及び受信アンテナ31によって送受信した信号から、既知のアルゴリズムを用いることにより、反射波Rの到来方向を推定することができる。到来方向を推定するアルゴリズムとしては、例えば、ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)、及びMUSIC(MUltiple SIgnal Classification)などが知られている。一般的に、到来方向の推定において、送受信に用いるアンテナの数が増えるほど、角度分解能が向上し、同時に測角できる物体も増加する。
一実施形態に係る電子機器1は、送信波Tの送信及び反射波Rの受信に用いるアンテナの数を可変にして動作する。具体的には、電子機器1は、送信波Tの送信及び反射波Rの受信に用いるアンテナの数を第1の所定数とする動作モード(以下、適宜「第1モード」と略記する)で動作することができる。また、電子機器1は、送信波Tの送信及び反射波Rの受信に用いるアンテナの数を、第1の所定数よりも多い第2の所定数とする動作モード(以下、適宜「第2モード」と略記する)で動作することもできる。ここで、送信波Tの送信及び反射波Rの受信に用いるアンテナの数は、上述した仮想アレイアンテナとして機能するアンテナの数としてもよいし、実際に設置されているアンテナの数としてもよい。例えば、第2モードは、図5において説明した仮想アレイアンテナが最大の8本のアンテナとして機能する動作モードとしてもよい。この場合、第1モードは、8本よりも少ない任意の数のアンテナを用いる動作モードとしてよい。例えば、第1モードは、8本のアンテナの半分である4本のアンテナとしてもよい。また、例えば、第1モードは、8本のアンテナのうち、最小の構成である1本のアンテナとしてもよい。
一実施形態に係る電子機器1において、制御部3は、第1モード及び第2モードのそれぞれの動作において使用するように設定された数のアンテナを用いて、信号の送受信を行うように制御する。例えば、制御部3は、第1モード及び第2モードのそれぞれにおいて、実際に設置されているアンテナの数のうち、最大数から最小数までの任意の数のアンテナを用いて信号の送受信を行うように設定してもよい。また、例えば、制御部3は、第1モード及び第2モードのそれぞれにおいて、仮想アレイアンテナとして機能するアンテナの数のうち、最大数から最小数までの任意の数のアンテナを用いて信号の送受信を行うように設定してもよい。
このように、一実施形態において、第1モードにおいて送信波Tの送信及び反射波Rの受信に用いるアンテナの数は、送信アンテナ26及び受信アンテナ31によって構成される仮想アレイアンテナとして機能するアンテナの数としてもよい。この場合、第1モードにおいて送信波Tの送信及び反射波Rの受信に用いるアンテナの数は、仮想アレイアンテナとして機能するアンテナの数のうち、例えば最小の数としてもよい。同様に、第2モードにおいて送信波Tの送信及び反射波Rの受信に用いるアンテナの数は、送信アンテナ26及び受信アンテナ31によって構成される仮想アレイアンテナとして機能するアンテナの数としてもよい。この場合、第2モードにおいて送信波Tの送信及び反射波Rの受信に用いるアンテナの数は、仮想アレイアンテナとして機能するアンテナの数のうち、例えば最大の数としてもよい。
次に、一実施形態に係る電子機器1の動作について説明する。
上述のように、電子機器1は、送信波Tとして送信される信号と、送信波Tのうち対象物50によって反射された反射波Rとして受信される信号とに基づいて、対象物50に対する方位角を測定する。また、電子機器1は、上述の第1モードと、上述の第2モードとで、動作可能である。ここで、第1モードにおいては、第2モードで用いるアンテナの数よりも少ない数のアンテナを用いて方位角の測定を行う。したがって、第1モードの測定は、測定に係る消費電力が比較的小さいものの、測定の角度分解能が比較的低い。一方、第2モードにおいては、第1モードで用いるアンテナの数よりも多い数のアンテナを用いて方位角の測定を行う。したがって、第2モードの測定は、測定の角度分解能が比較的高いものの、測定に係る消費電力が比較的大きい。そこで、一実施形態において、制御部3は、第1モードと、第2モードとを、切り替え可能に制御する。以下、一実施形態に係る電子機器1の動作について、さらに説明する。
図5は、一実施形態に係る電子機器1の動作を説明するフローチャートである。
図5に示す処理は、例えば電子機器1によって所定の対象物に対する方位角を測定する際に開始してよい。
図5に示す処理が開始すると、まず、制御部3は、電子機器1の動作モードを第1モードに設定するように制御する(ステップS1)。すなわち、ステップS1において、制御部3は、例えば1本のアンテナのような、第2モードよりも少ない数のアンテナを用いて信号の送受信を行う動作モードに設定される。上述したように、第1モードの動作においては、測定の角度分解能が比較的低くなるが、測定に係る消費電力は比較的小さくなる。したがって、電子機器1は、通常時の動作に係る消費電力を抑制することができる。
ステップS1において第1モードに設定されると、制御部3は、センサ部10から送信する送信信号を生成するように制御する(ステップS2)。ステップS2においては、主として、図4で説明した送信部20のクロック発生部21による動作から、送信増幅器25による動作までを行うことにより、送信信号を生成する。以下、図4においてすでに説明した内容については、さらなる説明を省略する。
ステップS2において送信信号が生成されると、制御部3は、送信アンテナ26から送信信号を電波で送信するように制御する(ステップS3)。ステップS3においては、主として、図4で説明した送信増幅器25による動作から、送信アンテナ26による動作までを行うことにより、電波を送信する。ステップS3において、送信アンテナ26は、例えば1本のアンテナのような、第2モードよりも少ない数のアンテナを用いて信号の送信を行う。この第2モードよりも少ないアンテナの数は、1本に限定されるものではなく、1本以上の任意の数でよい。
電子機器1が複数のセンサ部10から信号を送信する場合、ステップS2及びステップS3において、制御部3は、複数のセンサ部10が信号を同時ではなく順次送信するように制御してよい。
ステップS3において電波が送信されると、制御部3は、受信アンテナ31から反射波を受信するように制御する(ステップS4)。ステップS4においては、主として、図4で説明した受信部30の受信アンテナ31による動作から、受信増幅器32による動作までを行うことにより、反射波を受信する。ここで、受信アンテナ31は、上述のように、送信アンテナ26から送信された送信波のうち、対象物50によって反射された反射波を受信する。ステップS4において、受信アンテナ31は、例えば1本のアンテナのような、第2モードよりも少ない数のアンテナを用いて信号の受信を行う。この第2モードよりも少ないアンテナの数は、1本に限定されるものではなく、1本以上の任意の数でよい。
ステップS4において反射波が受信されたら、制御部3は、受信した反射波に基づく受信信号を処理するように制御する(ステップS5)。ステップS5においては、主として、図4で説明した受信増幅器32による動作から、FFT処理部37による動作までを行うことにより、受信信号を処理する。ステップS5における動作によって、制御部3は、センサ部10から所定の距離内において、所定の対象物50が存在するか否かを認識することができる。また、ステップS5における動作によって、制御部3は、センサ部10から所定の距離内に所定の対象物50が存在する場合に、センサ部10から所定の対象物50までの距離も認識することができる。ここで、所定の対象物50は、上述のように、周囲の車両(同じ車線の前後の車両又は対向車)、歩行者、及び障害物など、各種の物体としてよい。
ステップS5において受信信号が処理されたら、制御部3は、対象物50が所定の距離内に検出されたか否かを判定する(ステップS6)。ステップS6において、所定の距離は、例えば電子機器1を搭載した車両100が対象物50に衝突せずに安全に停止できる距離を考慮して定めてもよい。また、この所定の距離は、規定値としてもよいし、可変値としてもよい。一般的に、車両100が自動車などである場合、走行する速度が速くなるにつれて、制動距離は長くなる。したがって、例えば、制御部3は、電子機器1を搭載した車両100の移動速度が速くなるに従って、所定の距離が長くなるように制御してもよい。ステップS6において、対象物50が所定の距離内に検出されたか否かを判定する具体的な技法の例は、さらに後述する。
ステップS6において所定の距離内に対象物50が検出されていないと判定された場合、制御部3は、ステップS1に戻って第1モードの動作(角度の測定)を続行する。一方、ステップS6において所定の距離内に対象物50が検出されたと判定された場合、制御部3は、電子機器1の動作を第2モードに設定するように制御する(ステップS7)。すなわち、ステップS7において、制御部3は、例えば8本のアンテナのような、第1モードよりも多い数のアンテナを用いて信号の送受信を行う動作モードに設定される。上述したように、第2モードの動作においては、測定に係る消費電力は比較的大きくなるが、測定の角度分解能が比較的高くなる。したがって、この場合、電子機器1は、方位角の測定における測定精度を向上させることができる。第2モードで利用するアンテナの数は、8本に限定されるものではなく、第1モードよりも多い数のアンテナである2本以上の任意の数でよい。
ステップS7において第2モードに設定されると、制御部3は、ステップS2〜ステップS5の動作を行うことにより、送信信号を送信波として送信し、受信した反射波に基づく受信信号を処理する。これにより、電子機器1は、方位角の測定における測定精度を向上させることができる。また、第2モードにおいて、電子機器1は、角度分解能が向上することにより、複数物体を同時に測角することも可能になる。
このように、一実施形態において、制御部3は、第1モードと、第2モードとを、切り替え可能に制御する。また、一実施形態において、制御部3は、第1モードにおいて、対象物50が所定の距離内に検出されたら、第2モードに切り換えるように制御する。
以上説明したように、一実施形態に係る電子機器1によれば、比較的多くのアンテナを用いた信号の送受信を常時行うことはなくなるため、消費電力を低減することができる。また、一実施形態に係る電子機器1は、所定の対象物50が所定の距離内に検出されないうちは、角度分解能が比較的低いラフな測角を行う。一方、一実施形態に係る電子機器1は、所定の対象物50が所定の距離内に検出されると、角度分解能が高い精緻な測角を行う。したがって、一実施形態に係る電子機器1によれば、望ましい測定の精度を低下させることなく、測定の効率を向上させることができるため、利便性を高めることができる。
次に、図5のステップS6に関連して、対象物50が所定の距離内に検出されたか否かの判定について、さらに説明する。
一般的に、レーダ信号処理において目標の自動検出を行うための技法として、CFAR(Constant False Alarm Rate)処理が知られている。また、受信信号が、目標信号と受信機雑音等の白色雑音とを含む場合においては、CA(Cell Averaging)CFAR処理が有効であることも知られている。
上述のように、一実施形態に係る電子機器1において、図4に示すミキサ34の処理の結果得られるビート信号に、FFT処理部37がFFT処理を施すと、周波数スペクトルが得られる。そこで、一実施形態において、制御部3は、このようにして取得された周波数スペクトルにおいて、ピークと、該ピーク及びその隣接を除く周辺の平均雑音電力との比が閾値を超える場合に、対象物50が所定の距離内に検出されたと判定してもよい。ここで、周波数スペクトルにおける該平均雑音電力は、時間に従って変動する。したがって、該ピークと該平均雑音電力との比の閾値も、時間に従って変動する可変の閾値としてもよい。
このように、一実施形態において、制御部3は、ビート信号に基づいて得られる周波数スペクトルにおけるピークと、当該周波数スペクトルにおけるピーク及びその隣接を除く周辺の平均雑音強度との比が、所定の閾値を超える場合、対象物50が所定の距離内に検出されたと判定してもよい。
本開示を諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。したがって、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各機能部に含まれる機能などは論理的に矛盾しないように再配置可能である。複数の機能部等は、1つに組み合わせられたり、分割されたりしてよい。上述した本開示に係る各実施形態は、それぞれ説明した各実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせたり、一部を省略したりして実施され得る。つまり、本開示の内容は、当業者であれば本開示に基づき種々の変形および修正を行うことができる。したがって、これらの変形および修正は本開示の範囲に含まれる。例えば、各実施形態において、各機能部、各手段、各ステップなどは論理的に矛盾しないように他の実施形態に追加し、若しくは、他の実施形態の各機能部、各手段、各ステップなどと置き換えることが可能である。また、各実施形態において、複数の各機能部、各手段、各ステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。また、上述した本開示の各実施形態は、それぞれ説明した各実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせたり、一部を省略したりして実施することもできる。
上述した実施形態は、電子機器1としての実施のみに限定されるものではない。例えば、上述した実施形態は、電子機器1のような機器の制御方法として実施してもよい。さらに、例えば、上述した実施形態は、電子機器1のような機器の制御プログラムとして実施してもよい。
また、例えば、上述の実施形態において、電波の送受信に基づいて方位角を測定する例について説明した。しかしながら、上述のように、一実施形態において、光波の送受信に基づいて方位角を測定してもよいし、音波の送受信に基づいて方位角を測定してもよい。
1 電子機器
3 制御部
5 方位検出部
7 報知部
10 センサ部
12 記憶部
14 シンセサイザ
20 送信部
21 クロック発生部
22 信号生成部
23 直交変調部
24,33,34 ミキサ
25 送信増幅器
26 送信アンテナ
27 切替部
30 受信部
31 受信アンテナ
32 受信増幅器
35 ローパスフィルタ
36 AD変換部
37 FFT処理部
50 対象物
100,200 車両

Claims (3)

  1. 送信波を送信する送信部と、
    前記送信波のうち対象物によって反射された反射波を受信する受信部と、
    前記送信部の送信信号及び前記受信部の受信信号に基づいて前記対象物を測定する際の消費電力を第1の消費電力とする第1モードと、前記消費電力を前記第1の消費電力よりも多い第2の消費電力とする第2モードと、を切り替え可能に制御する制御部と、を備え、
    前記制御部は、前記第1モードにおいて、前記対象物が所定の距離内に検出されたら、前記第2モードに切り換えるように制御する、電子機器。
  2. 送信波を送信する送信ステップと、
    前記送信波のうち対象物によって反射された反射波を受信する受信ステップと、
    前記送信ステップにおいて送信する送信信号及び前記受信ステップにおいて受信する受信信号に基づいて前記対象物を測定する際の消費電力を第1の消費電力とする第1モードと、前記消費電力を前記第1の消費電力よりも多い第2の消費電力とする第2モードと、を切り替え可能に制御する制御ステップと、を備え、
    前記制御ステップは、前記第1モードにおいて、前記対象物が所定の距離内に検出されたら、前記第2モードに切り換えるように制御する、制御方法。
  3. コンピュータに、
    送信波を送信する送信ステップと、
    前記送信波のうち対象物によって反射された反射波を受信する受信ステップと、
    前記送信ステップにおいて送信する送信信号及び前記受信ステップにおいて受信する受信信号に基づいて前記対象物を測定する際の消費電力を第1の消費電力とする第1モードと、前記消費電力を前記第1の消費電力よりも多い第2の消費電力とする第2モードと、を切り替え可能に制御する制御ステップと、を実行させ、
    前記制御ステップは、前記第1モードにおいて、前記対象物が所定の距離内に検出されたら、前記第2モードに切り換えるように制御する、電子機器の制御プログラム。

JP2020028671A 2019-12-25 2020-02-21 電子機器、電子機器の制御方法、及び電子機器の制御プログラム Active JP6948421B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020028671A JP6948421B2 (ja) 2019-12-25 2020-02-21 電子機器、電子機器の制御方法、及び電子機器の制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019234839A JP6667046B1 (ja) 2019-12-25 2019-12-25 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
JP2020028671A JP6948421B2 (ja) 2019-12-25 2020-02-21 電子機器、電子機器の制御方法、及び電子機器の制御プログラム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019234839A Division JP6667046B1 (ja) 2019-12-25 2019-12-25 電子機器、電子機器の制御方法、及び電子機器の制御プログラム

Publications (2)

Publication Number Publication Date
JP2020073942A true JP2020073942A (ja) 2020-05-14
JP6948421B2 JP6948421B2 (ja) 2021-10-13

Family

ID=70610092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020028671A Active JP6948421B2 (ja) 2019-12-25 2020-02-21 電子機器、電子機器の制御方法、及び電子機器の制御プログラム

Country Status (1)

Country Link
JP (1) JP6948421B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266849A (ja) * 1999-03-17 2000-09-29 Nippon Soken Inc 距離検出装置
JP2004309190A (ja) * 2003-04-03 2004-11-04 Hitachi Ltd レーダ装置
US20110273323A1 (en) * 2008-12-23 2011-11-10 Dzotech Sa Electrically self-contained radar device
JP2011253241A (ja) * 2010-05-31 2011-12-15 Toyota Motor Corp 物体検出装置
DE102013019222A1 (de) * 2013-11-15 2015-05-21 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Ultraschallsensorsystems und Ultraschallsensorsystem für ein Kraftfahrzeug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266849A (ja) * 1999-03-17 2000-09-29 Nippon Soken Inc 距離検出装置
JP2004309190A (ja) * 2003-04-03 2004-11-04 Hitachi Ltd レーダ装置
US20110273323A1 (en) * 2008-12-23 2011-11-10 Dzotech Sa Electrically self-contained radar device
JP2011253241A (ja) * 2010-05-31 2011-12-15 Toyota Motor Corp 物体検出装置
DE102013019222A1 (de) * 2013-11-15 2015-05-21 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Ultraschallsensorsystems und Ultraschallsensorsystem für ein Kraftfahrzeug

Also Published As

Publication number Publication date
JP6948421B2 (ja) 2021-10-13

Similar Documents

Publication Publication Date Title
WO2019202801A1 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
WO2019202803A1 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
WO2020217921A1 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
JP2022140716A (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
US12044795B2 (en) Electronic device, control method of electronic device, and control program of electronic device
JP6953490B2 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
JP6640269B2 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
US20220208005A1 (en) Electronic device, method for controlling electronic device, and program
JP6948421B2 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
JP6667046B1 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
US20110156945A1 (en) Observation signal processing apparatus
JP7313525B2 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
JP6948366B2 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
JP2021193397A (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
JP2023126370A (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
WO2020075686A1 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
EP4043910A1 (en) Electronic apparatus, control method for electronic apparatus, and control program for electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210401

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210401

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210917

R150 Certificate of patent or registration of utility model

Ref document number: 6948421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150