JP2020073912A - 反応処理装置 - Google Patents

反応処理装置 Download PDF

Info

Publication number
JP2020073912A
JP2020073912A JP2020006626A JP2020006626A JP2020073912A JP 2020073912 A JP2020073912 A JP 2020073912A JP 2020006626 A JP2020006626 A JP 2020006626A JP 2020006626 A JP2020006626 A JP 2020006626A JP 2020073912 A JP2020073912 A JP 2020073912A
Authority
JP
Japan
Prior art keywords
optical head
sample
excitation light
flow path
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020006626A
Other languages
English (en)
Other versions
JP7233385B2 (ja
JP2020073912A5 (ja
Inventor
小木 秀也
Hideya Ogi
秀也 小木
福澤 隆
Takashi Fukuzawa
隆 福澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2020006626A priority Critical patent/JP7233385B2/ja
Publication of JP2020073912A publication Critical patent/JP2020073912A/ja
Publication of JP2020073912A5 publication Critical patent/JP2020073912A5/ja
Application granted granted Critical
Publication of JP7233385B2 publication Critical patent/JP7233385B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】複数の蛍光検出装置を備える反応処理装置において、蛍光検出装置間の干渉を抑制する。【解決手段】反応処理装置は、反応処理容器10と、第1励起光を試料に照射するとともに、試料から生じた第1蛍光を集光する第1対物レンズOB1を備える第1光学ヘッド51と、第2励起光を試料に照射するとともに、試料から生じた第2蛍光を集光する第2対物レンズOB2を備える第2光学ヘッド55と、第1光学ヘッド51および第2光学ヘッド55を保持する保持部材61を備える。第1蛍光の波長範囲と第2励起光の波長範囲は、少なくとも一部が重複している。第1対物レンズOB1の光軸と第2対物レンズOB2の光軸との間の距離Pは、2・P0+2・P1+4・P2+4・P3<P、P0=L・NA/√(1−NA2)、P1=t1・NA/√(n12−NA2)、P2=t2・NA/√(1−NA2)、P3=t3・NA/√(n32−NA2)を満たす。【選択図】図5

Description

本発明は、ポリメラーゼ連鎖反応(PCR:Polymerase Chain Reaction)に使用される反応処理装置に関する。
遺伝子検査は、各種医学分野における検査、農作物や病原性微生物の同定、食品の安全性評価、さらには病原性ウィルスや各種感染症の検査にも広く活用されている。微小量のDNAを高感度に検出するために、DNAの一部を増幅して得られたものを分析する方法が知られている。中でもPCRを用いた方法は、生体等から採取されたごく微量のDNAのある部分を選択的に増幅する注目の技術である。
PCRは、DNAを含む生体サンプルと、プライマーや酵素などからなるPCR試薬とを混合した試料に、所定のサーマルサイクルを与え、変性、アニーリングおよび伸長反応を繰り返し起こさせて、DNAの特定の部分を選択的に増幅させるものである。
PCRにおいては、対象の試料をPCRチューブまたは複数の穴が形成されたマイクロプレート(マイクロウェル)などの反応処理容器に所定量入れて行うことが一般的であるが、近年、基板に形成された微細な流路を備える反応処理容器(チップとも呼ばれる)を用いて行うことが実用化されてきている(例えば特許文献1)。
特開2009−232700号公報
上記のような流路を備える反応処理容器を用いたPCRでは、試料の定量的な変化を検出するなどの目的のために蛍光検出装置が用いられる場合がある。試料に蛍光色素を添加し、PCRの間に蛍光検出装置を用いて試料に励起光を照射し、試料から発せられる蛍光を検出する。DNAの増幅が進むにつれ試料から発せられる蛍光の強度が増加するので、その蛍光の強度値をPCRの進捗や反応の終端の判定材料としての指標とすることができる。
PCRでは、増幅対象によっては複数の蛍光色素を混ぜた試薬をもちいることが多く、この場合は蛍光検出装置を複数設置する必要がある。特に板状の反応処理容器内に形成された流路中を移動させながら、試料からの蛍光を検出するような反応処理装置においては、断面積が例えば2mm以下の一本の流路を通過する試料からの蛍光を検出するために、流路の延長方向に複数の蛍光検出装置を配列する必要がある。
例えば、PCRでO−157を増幅する場合は、VT1,VT2を同時に測定することになり、例えば東洋紡株式会社の検査キット(FIK−362)は、蛍光色素にROX(略緑色光の照射により励起され、略赤色の蛍光を発する蛍光色素であり、以下このような蛍光の特性を「緑励起/赤蛍光」と称する)、Cy5(赤励起/赤外蛍光)を使用している。この場合、2つの蛍光検出装置が必要となる。
また、ノロウイルスを検出する場合にはG1,G2を同時に測定することになり、例えばタカラバイオ株式会社の検査キット(RR255A)および東洋紡株式会社の検査キット(FIK−253)は共に、蛍光色素にFAM(青励起/緑蛍光)、ROX(緑励起/赤蛍光)、Cy5(赤励起/赤外蛍光)を使用している。この場合は3つの蛍光検出装置が必要となる。
このように複数の蛍光検出装置を用いて流路を通過する試料に対して蛍光検出を行う場合、蛍光検出装置間で干渉が生じる可能性がある。以下、例を挙げて説明する。
蛍光色素として、FAMとROXを同時に試料に添加して使用する場合、ROXを励起するために照射する励起光の略緑色に相当する光の波長範囲と、FAMから発せられる蛍光の略緑色に相当する光の波長範囲が一部重なることがある。その場合、ROXを励起するために照射した励起光の一部が、FAMから発せられる蛍光を検出するための光電変換素子などの光検出器に入ると、ノイズになり、高感度の測定をすることができない虞がある。通常、励起光の光量は数十μWであり、一方、検出対象の蛍光の光量は数pW以下のオーダである。蛍光検出装置はこのような微弱な光量の蛍光を検出するように構成されているところ、励起光がほんの一部でも該光検出器に到達してしまうと、大きなノイズとなって現れるからである。
また、蛍光色素としてROXとCy5を同時に試料に添加して使用する場合、Cy5を励起するために照射する励起光の略赤色の光の波長範囲と、ROXから発せられる蛍光の略赤色に相当する光の波長範囲が一部重なることがある。この場合も、Cy5を励起するために照射した励起光の一部が、ROXから発せられる蛍光を検出するための光検出器に入ると、ノイズになり、高感度の蛍光測定を行うことができない虞がある。
本発明はこうした状況に鑑みてなされたものであり、その目的は、複数の蛍光検出装置を備える反応処理装置において、蛍光検出装置間の干渉を抑制できる技術を提供することにある。
上記課題を解決するために、本発明のある態様の反応処理装置は、試料が移動する流路が第1主面に形成された基板と、流路を封止するように第1主面上に設けられた流路封止フィルムとを備える反応処理容器と、第1励起光を流路中の試料に照射するとともに、第1励起光の照射により試料から生じた第1蛍光を集光する第1対物レンズを備える第1光学ヘッドと、第2励起光を流路中の試料に照射するとともに、第2励起光の照射により試料から生じた第2蛍光を集光する第2対物レンズを備える第2光学ヘッドと、第1光学ヘッドおよび第2光学ヘッドを保持する保持部材とを備える。第1光学ヘッドおよび第2光学ヘッドは、流路の長手方向に並んで配置され、第1蛍光の波長範囲と第2励起光の波長範囲は、少なくとも一部が重複しており、第1対物レンズの光軸と第2対物レンズの光軸との間の距離Pは、2・P+2・P+4・P+4・P<P、ここでP=L・NA/√(1−NA)、P=t・NA/√(n −NA)、P=t・NA/√(1−NA)、P=t・NA/√(n −NA)を満たす(ただし、Lは保持部材から流路封止フィルムまでの距離、tは流路封止フィルムの厚さ、tは流路の深さ、tは流路の底部から基板の第2主面までの厚さ、NAは第1対物レンズおよび第2対物レンズの開口数、nは流路封止フィルムの屈折率、nは基板の屈折率)。
距離Pは、さらに1.1×(2・P+2・P+4・P+4・P)≦Pを満たし、さらに好ましくは1.2×(2・P+2・P+4・P+4・P)≦Pを満たしてもよい。
距離Pは、P≦S−2×ΔS(ただし、Sは第1光学ヘッドおよび第2光学ヘッドが配置される流路の直線部分の長さ、ΔSは1mm)を満たしてもよい。
基板における流路の底部と第2主面との間に、励起光を吸収する光吸収層を備えてもよい。
本発明の別の態様もまた、反応処理装置である。この装置は、試料が移動する流路が第1主面に形成された基板と、流路を封止するように第1主面上に設けられた流路封止フィルムとを備える反応処理容器と、第1励起光を流路中の試料に照射するとともに、第1励起光の照射により試料から生じた第1蛍光を集光する第1対物レンズを備える第1光学ヘッドと、第2励起光を流路中の試料に照射するとともに、第2励起光の照射により試料から生じた第2蛍光を集光する第2対物レンズを備える第2光学ヘッドと、第1光学ヘッドおよび第2光学ヘッドを保持する保持部材と、を備える。第1光学ヘッドおよび第2光学ヘッドは、流路の長手方向に並んで配置され、第1蛍光の波長範囲と第2励起光の波長範囲は、少なくとも一部が重複しており、基板に励起光を吸収する光吸収層が設けられる。
光吸収層は、吸収係数αがα≧0.58/t’(ただしt’は光吸収層の厚さ)を満たすように形成されてもよい。
光吸収層は、吸収係数αがα≧0.75/t’(ただしt’は光吸収層の厚さ)を満たすように形成されてもよい。
光吸収層は、吸収係数αがα≧1.15/t’(ただしt’は光吸収層の厚さ)を満たすように形成されてもよい。
光吸収層は、流路の底部と基板の第2主面との間に設けられてもよい。光吸収層は、基板の第2主面上に設けられてもよい。
本発明によれば、複数の蛍光検出装置を備える反応処理装置において、蛍光検出装置間の干渉を抑制できる技術を提供できる。
図1(a)および図1(b)は、本発明の実施形態に係る反応処理装置で使用可能な反応処理容器を説明するための図である。 本発明の実施形態に係る反応処理装置を説明するための模式図である。 蛍光検出装置の構成を説明するための図である。 第1蛍光検出装置の第1光学ヘッドと第2蛍光検出装置の第2光学ヘッドが配置された状態を示す図である。 光学シミュレーションのモデルを示す図である。 2つの光学ヘッドの中心間距離の導出を説明するための図である。 本発明の実施例1において、2つの光学ヘッドの中心間距離を変えたときの相対ノイズ量の変化を示す図である。 本発明の実施例2において、2つの光学ヘッドの中心間距離を変えたときの相対ノイズ量の変化を示す図である。
以下、本発明の実施形態に係る反応処理装置について説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
図1(a)および図1(b)は、本発明の実施形態に係る反応処理装置で使用可能な反応処理容器10を説明するための図である。図1(a)は、反応処理容器10の平面図であり、図1(b)は、反応処理容器10の正面図である。
図1(a)および図1(b)に示すように、反応処理容器10は、基板14と、流路封止フィルム16とから成る。
基板14は、温度変化に対して安定で、使用される試料溶液に対して侵されにくい材質から形成されることが好ましい。さらに、基板14は、成形性がよく、透明性やバリア性が良好で、且つ、低い自己蛍光性を有する材質から形成されることが好ましい。このような材質としては、ガラス、シリコン(Si)等の無機材料をはじめ、アクリル、ポリプロピレン、ポリエステル、シリコーンなどの樹脂、中でもシクロオレフィンが好適である。基板14の寸法の一例は、長辺75mm、短辺25mm、厚み4mmである。
基板14の第1主面14aには溝状の流路12が形成されており、この流路12は、流路封止フィルム16により封止されている。基板14の第1主面14aに形成される流路12の寸法の一例は、幅0.7mm、深さ0.7mmである。基板14における流路12の一端の位置には、外部と連通する第1連通口17が形成されている。基板14における流路12の他端の位置には、第2連通口18が形成されている。流路12の両端に形成された一対の第1連通口17および第2連通口18は、基板14の第2主面14b(第1主面14aと反対側の面)に露出するように形成されている。このような基板は射出成形やNC加工機などによる切削加工によって作製することができる。
図1(b)に示すように、基板14の第1主面14a上には、流路封止フィルム16が貼られている。実施形態に係る反応処理容器10において、流路12の大部分は基板14の第1主面14aに露出した溝状に形成されている。金型等を用いた射出成形により容易に成形できるようにするためである。この溝を封止して流路として活用するために、基板14の第1主面14a上に流路封止フィルム16が貼られる。
流路封止フィルム16は、一方の主面が粘着性や接着性を備えていてもよいし、押圧や紫外線などのエネルギー照射、加熱等により粘着性や接着性を発揮する機能層が一方の主面に形成されていてもよく、容易に基板14の第1主面14aと密着して一体化できる機能を備える。流路封止フィルム16は、粘着剤も含めて低い自己蛍光性を有する材質から形成されることが望ましい。この点でシクロオレフィン、ポリエステル、ポリプロピレン、ポリエチレンまたはアクリルなどの樹脂からなる透明フィルムが適しているが、これらに限定されない。また、流路封止フィルム16は、板状のガラスや樹脂から形成されてもよい。この場合はリジッド性が期待できることから、反応処理容器10の反りや変形防止に役立つ。
流路12は、後述する反応処理装置により複数水準の温度の制御が可能な反応領域を備える。複数水準の温度が維持された反応領域を連続的に往復するように試料を移動させることにより、試料にサーマルサイクルを与えることができる。
図1(a)および図1(b)に示す流路12の反応領域は、曲線部と直線部とを組み合わせた連続的に折り返す蛇行状の流路を含んでいる。後述の反応処理装置に反応処理容器10が搭載された際に、流路12の紙面右側が比較的高温(約95℃)の領域(以下、「高温領域」と称する)となり、流路12の左側がそれより低温(約60℃)の領域(以下、「低温領域」と称する)となることが予定されている。また流路12の反応領域は、高温領域と低温領域の間に両者を接続する接続領域を含む。この接続領域は、直線状の流路であってよい。
本実施形態のように高温領域および低温領域を蛇行状の流路とした場合、後述の温度制御手段を構成するヒータ等の実効面積を有効に使うことができ、反応領域内での温度のばらつきを低減することが容易であるとともに、反応処理容器の実体的な大きさを小さくでき、反応処理装置を小さくできるという利点がある。
サーマルサイクルに供される試料は、第1連通口17および第2連通口18のいずれか一方から流路12に導入される。導入の方法はこれらに限られないが、例えばピペットやスポイト、シリンジ等で該連通口から適量の試料を直接導入してもよい。あるいは、多孔質のPTFEやポリエチレンからなるフィルタが内蔵してあるコーン形状のニードルチップを介してコンタミネーションを防止しながらの導入方法であってもよい。このようなニードルチップは一般的に数多くの種類のものが販売され容易に入手でき、ピペットやスポイト、シリンジ等の先端に取り付けて使用することが可能である。さらにピペットやスポイト、シリンジ等による試料の吐出、導入後、さらに加圧して推すことにより流路の所定の場所まで試料を移動させてもよい。
試料としては、例えば、一または二以上の種類のDNAを含む混合物に、PCR試薬として蛍光色素、耐熱性酵素および4種類のデオキシリボヌクレオシド三リン酸(dATP、dCTP、dGTP、dTTP)を添加したものがあげられる。さらに反応処理対象のDNAに特異的に反応するプライマー、さらに、場合によってはTaqMan等の蛍光プローブを混合する(TaqMan/タックマンはロシュ ダイアグノスティックスゲゼルシャフト ミット ベシュレンクテル ハフツングの登録商標)。市販されているリアルタイムPCR用試薬キット等も使用することができる。
図2は、本発明の実施形態に係る反応処理装置30を説明するための模式図である。
本実施形態に係る反応処理装置30は、反応処理容器10が載置される反応処理容器載置部(図示せず)と、温度制御システム32と、CPU36とを備える。温度制御システム32は、図2に示すように、反応処理容器載置部に載置される反応処理容器10に対して、反応処理容器10の流路12における紙面右側の領域を約95℃(高温領域)、紙面左側の領域を約60℃(低温領域)に精度よく維持、制御できるように構成されている。
温度制御システム32は、反応領域の各温度領域の温度を維持するものであって、具体的には、流路12の高温領域を加熱するための高温用ヒータ60と、流路12の低温領域を加熱するための低温用ヒータ62と、各温度領域の実温度を計測するための例えば熱電対等の温度センサ(図示せず)と、高温用ヒータ60の温度を制御する高温用ヒータドライバ33と、低温用ヒータ62の温度を制御する低温用ヒータドライバ35とを備える。温度センサによって計測された実温度情報は、CPU36に送られる。CPU36は、各温度領域の実温度情報に基づいて、各ヒータの温度が所定の温度となるよう各ヒータドライバを制御する。各ヒータは例えば抵抗加熱素子やペルチェ素子等であってよい。温度制御システム32はさらに、各温度領域の温度制御性を向上させるための他の要素部品を備えてもよい。
本実施形態に係る反応処理装置30は、さらに、反応処理容器10の流路12内に導入された試料20を流路12内で移動させるための送液システム37を備える。送液システム37は、第1ポンプ39と、第2ポンプ40と、第1ポンプ39を駆動するための第1ポンプドライバ41と、第2ポンプ40を駆動するための第2ポンプドライバ42と、第1チューブ43と、第2チューブ44とを備える。
反応処理容器10の第1連通口17には、第1チューブ43の一端が接続される。第1連通口17と第1チューブ43の一端の接続部には、気密性を確保するためのパッキン45やシールが配置されることが好ましい。第1チューブ43の他端は、第1ポンプ39の出力に接続される。同様に、反応処理容器10の第2連通口18には、第2チューブ44の一端が接続される。第2連通口18と第2チューブ44の一端の接続部には、気密性を確保するためのパッキン46やシールが配置されることが好ましい。第2チューブ44の他端は、第2ポンプ40の出力に接続される。
第1ポンプ39、第2ポンプ40は、例えばダイアフラムポンプからなるマイクロブロアポンプであってよい。第1ポンプ39、第2ポンプ40としては、例えば株式会社村田製作所製のマイクロブロアポンプ(型式MZB1001T02)などを使用することができる。このマイクロブロアポンプは、動作時に一次側より二次側の圧力を高めることができるが、停止した瞬間または停止時には一次側と二次側の圧力が等しくなる。
CPU36は、第1ポンプドライバ41、第2ポンプドライバ42を介して、第1ポンプ39、第2ポンプ40からの送風や加圧を制御する。第1ポンプ39、第2ポンプ40からの送風や加圧は、第1連通口17、第2連通口18を通じて流路内の試料20に作用し、推進力となって試料20を移動させる。より詳細には、第1ポンプ39、第2ポンプ40を交互に動作させることにより、試料20のいずれかの端面にかかる圧力が他端にかかる圧力より大きくなるため、試料20の移動に係る推進力が得られる。第1ポンプ39、第2ポンプ40を交互に動作させることによって、試料20を流路内で往復式に移動させて、反応処理容器10の流路12の各温度領域で停止させることができ、その結果、試料20にサーマルサイクルを与えることが可能となる。より具体的には、高温領域において変性、低温領域においてアニーリング・伸長の各工程を繰り返し与えることにより、試料20中の目的のDNAを選択的に増幅させる。言い換えれば高温領域は変性温度域、低温領域はアニーリング・伸長温度域とみなすことができる。また各温度領域に滞留する時間は、試料20が各温度領域の所定の位置で停止する時間を変えることによって適宜設定することができる。
本実施形態に係る反応処理装置30は、さらに、第1蛍光検出装置50および第2蛍光検出装置54を備える。上述したように、試料20には所定の蛍光色素が添加されている。DNAの増幅が進むにつれ試料20から発せられる蛍光信号の強度が増加するので、その蛍光信号の強度値をPCRの進捗や反応の終端の判定材料としての指標とすることができる。
第1蛍光検出装置50および第2蛍光検出装置54としては、非常にコンパクトな光学系で、迅速に測定でき、かつ明るい場所か暗い場所かにもかかわらず、蛍光を検出することができる日本板硝子株式会社製の光ファイバ型蛍光検出器FLE−510を使用することができる。この光ファイバ型蛍光検出器は、その励起光/蛍光の波長特性を試料20の発する蛍光特性に適するようにチューニングしておくことができ、様々な特性を有する試料について最適な光学・検出系を提供することが可能であり、さらに光ファイバ型蛍光検出器によってもたらされる光線の径の小ささから、流路などの小さいまたは細い領域に存在する試料からの蛍光を検出するのに適している。
第1蛍光検出装置50は、第1光学ヘッド51と、第1蛍光検出用励起光源/検出器モジュール52と、第1光学ヘッド51と第1蛍光検出用励起光源/検出器モジュール52とを接続する光ファイバF12とを備える。同様に、第2蛍光検出装置54は、第2光学ヘッド55と、第2蛍光検出用励起光源/検出器モジュール56と、第2光学ヘッド55と第2蛍光検出用励起光源/検出器モジュール56とを接続する光ファイバF22とを備える。
第1蛍光検出用励起光源/検出器モジュール52、第2蛍光検出用励起光源/検出器モジュール56にはそれぞれ、励起光用光源、波長合分波器、蛍光検出器、これらを制御するためのドライバ等が含まれている。第1光学ヘッド51、第2光学ヘッド55はそれぞれ、レンズ等の光学系からなり、励起光の試料への指向性照射と試料から発せられる蛍光の集光の機能を担う。第1光学ヘッド51、第2光学ヘッド55で集光された蛍光はそれぞれ、光ファイバF12、F22を通じて第1蛍光検出用励起光源/検出器モジュール52、第2蛍光検出用励起光源/検出器モジュール56内の波長合分波器により励起光と分けられ、蛍光検出器によって電気信号に変換される。蛍光検出装置の構成の詳細については後述する。
本実施形態に係る反応処理装置30においては、高温領域と低温領域とを接続する接続領域内の一部の領域12a(「第1蛍光検出領域12a」と称する)を通過する試料20から蛍光を検出することができるように第1光学ヘッド51が配置される。また、接続領域内の別の一部の領域12b(「第2蛍光検出領域12b」と称する)を通過する試料20から蛍光を検出することができるように第2光学ヘッド55が配置される。試料20は流路内を繰り返し往復移動させられることで反応が進み、試料20に含まれる所定のDNAが増幅するので、検出された蛍光の量の変動をモニタリングすることで、DNAの増幅の進度をリアルタイムで知ることができる。
図3は、蛍光検出装置の構成を説明するための図である。図3では、第1蛍光検出装置50の構成を説明するが、第2蛍光検出装置54もバンドパスフィルタの中心波長が異なる点を除き、同じ構成である。
図3に示すように、第1蛍光検出装置50は、第1光学ヘッド51と、第1蛍光検出用励起光源/検出器モジュール52と、第1光学ヘッド51と第1蛍光検出用励起光源/検出器モジュール52とを接続する光ファイバF12とを備える。第1蛍光検出用励起光源/検出器モジュール52は、第1励起光源64と、第1波長合分波器65と、第1蛍光検出器66とを備え、これらの機能性要素は光ファイバで接続されており、励起光および蛍光は光ファイバ内を伝搬する。
第1励起光源64の近傍には、第1励起光源64から出射された励起光が透過するようにバンドパスフィルタA1が配置される。第1波長合分波器65は、バンドパスフィルタB1を有している。第1蛍光検出器66の近傍には、第1蛍光検出器66に入射する蛍光が透過するようにバンドパスフィルタC1が配置される。これらのバンドパスフィルタの波長特性は、例えばFAMなどの蛍光色素の励起/蛍光に関わる波長特性に応じて設計される。それぞれのバンドパスフィルタは、特定の波長の範囲の光を高い効率で透過(例えば透過率75%以上)させ、それ以外の波長の光を高い効率で反射させる(例えば反射率が75%以上;望ましくは85%以上)分光機能を有する。
本実施形態において第1蛍光検出装置50は、FAMを蛍光色素として含有する試料からの蛍光を検出可能に構成される。
第1励起光源64は、後に目的の波長の光を分光することができる光源であれば特に限定されず、例えばLDやLED、白色光源などを用いることができる。第1励起光源64から出射した励起光は、バンドパスフィルタA1によって分光され、中心波長を約470nmとする所定の範囲の波長の光(以下「励起光OE1」と称する)のみが光ファイバF11内を伝搬する。
励起光OE1は、第1波長合分波器65に入射し、レンズL1によってコリメートされたのちにバンドパスフィルタB1に到達する。バンドパスフィルタB1は励起光OE1を反射するように設計されているので、励起光OE1はレンズL1によって再び集光され、光ファイバF12に入射する。励起光OE1は光ファイバF12内を伝搬し、第1光学ヘッド51に到達する。第1光学ヘッド51には第1対物レンズOB1が備えられており、励起光OE1は所定の作動距離で試料20に励起光として照射される。図3では、第1対物レンズOB1として、屈折率分布型レンズを用いた例を示している。
励起光OE1が試料20に照射されると、試料20内の蛍光色素が励起され、試料20から蛍光OF1が出射される。蛍光OF1は第1光学ヘッド51の第1対物レンズOB1によって集光され、光ファイバF12に入射し、光ファイバF12内を伝搬する。蛍光OF1は、第1波長合分波器65に入射し、レンズL1によってコリメートされたのちにバンドパスフィルタB1に到達する。
一般的に、励起光の照射により生じる蛍光の波長は、励起光の波長よりも長くなる。すなわち、励起光の中心波長をλeとし、蛍光の中心波長をλfとすると、λe<λfである。そこで、蛍光OF1のみを第1蛍光検出器66に導くために、バンドパスフィルタB1として、波長λeの光を反射し、波長λfの光を透過させるようなスペクトル特性を有するものを用いる。バンドパスフィルタB1は、蛍光OF1のうち励起光OE1の波長と重ならない範囲の波長の光を透過するように設計されている。バンドパスフィルタB1を通過した蛍光OF1は、レンズL2によって集光され光ファイバF13に入射する。また、バンドパスフィルタB1は、励起光を反射し蛍光を透過させる機能を有するので、それらの中心波長に対応して、λeを含む波長範囲の光を反射しλfを含む波長範囲の光を透過させることのできるエッジフィルタをバンドパスフィルタの代わりに使用することができる。
光ファイバF13内を伝搬した蛍光OF1は、第1蛍光検出器66に到達する。波長域を厳密に調整するために、蛍光OF1は第1蛍光検出器66に入射する前にバンドパスフィルタC1を通過してもよい。第1蛍光検出器66には、バンドパスフィルタB1とC1を通過した、中心波長を約530nmとする所定の範囲の波長の光のみが入射する。第1蛍光検出器66は、例えばPDやAPD、フォトマル(フォトマルチプライヤー)などの光電変換素子である。第1蛍光検出器66によって電気的信号に変換された信号は、後述の信号処理がなされる。
図3に示す第1蛍光検出装置50において、各要素は、光を効率よく伝送や結合をさせたり、バンドパスフィルタの利用効率を向上させるためのレンズを含んでもよい。レンズとしては屈折率分布レンズ、ボールレンズや非球面レンズなどを用いることができる。また、図3に示す第1蛍光検出装置50において、光ファイバF11、F12およびF13はシングルモードファイバまたはマルチモードファイバなどを用いることができる。
上記のように構成された第1蛍光検出装置50は、中心波長が470nmであり波長範囲が約450〜490nmの光を第1励起光OE1として試料に照射し、試料から発せられた、中心波長が530nmであり波長範囲が約510〜550nmである第1蛍光OF1を検出する。波長に関する特性は、上記のように各バンドパスフィルタの透過または反射特性の組み合わせによって決定され、それらの変更やカスタマイズも可能であることは当業者が理解できるところである。
一方、本実施形態において第2蛍光検出装置54は、ROXを蛍光色素として含有する試料からの蛍光を検出可能に構成される。第2蛍光検出装置54は、中心波長が530nmであり波長範囲が約510〜550nmの光を第2励起光OE2として試料に照射し、中心波長が610nmであり波長範囲が約580〜640nmである第2蛍光OF2を検出する。
図4は、第1蛍光検出装置50の第1光学ヘッド51と第2蛍光検出装置54の第2光学ヘッド55が配置された状態を示す。第1光学ヘッド51は、流路12の第1蛍光検出領域12aを通過する試料20から蛍光を検出できるように配置される。第2光学ヘッド55は、流路12の第2蛍光検出領域12bを通過する試料20から蛍光を検出できるように配置される。第1光学ヘッド51および第2光学ヘッド55は、保持部材(図4には図示せず、図5参照)により保持される。
図4に示すように、第1光学ヘッド51は、光ファイバF12内を伝搬した第1励起光OE1を第1対物レンズOB1で集光して第1蛍光検出領域12aを通過する試料20に照射し、試料20から発生した第1蛍光OF1を第1対物レンズOB1で集光して光ファイバF12に入射させる。同様に、第2光学ヘッド55は、光ファイバF22内を伝搬した第2励起光OE2を第2対物レンズOB2で集光して第2蛍光検出領域12bを通過する試料20に照射し、試料20から発生した第2蛍光OF2を第2対物レンズOB2で集光して光ファイバF22に入射させる。
第1対物レンズOB1、第2対物レンズOB2としては、パワーが正のレンズまたはレンズ群、例えば屈折率分布レンズであるセルフォック(登録商標)マイクロレンズを使用することができる。第1対物レンズOB1、第2対物レンズOB2は、例えば直径が1.8mm、開口数(NA)が0.23、作動距離(WD)が1mm〜3mmのものを使用できる。
本実施形態において、第1蛍光検出装置50の第1励起光源は、第1変調信号によって変調され、点滅発光する。同様に、第2蛍光検出装置54の第2励起光源は、第2変調信号によって変調され、点滅発光する。
本実施形態では、一本の流路12を通過する試料20を検出するために、第1光学ヘッド51および第2光学ヘッド55が流路12の長手方向に並んで配置される。上述したように、第1蛍光検出装置50は、中心波長が470nmであり波長範囲が約450〜490nmの第1励起光OE1を照射し、中心波長が530nmであり波長範囲が約510〜550nmである第1蛍光OF1を検出する。また、第2蛍光検出装置54は、中心波長が530nmであり波長範囲が約510〜550nmの第2励起光OE2を照射し、中心波長が610nmであり波長範囲が約580〜640nmである第2蛍光OF2を検出する。したがって、第2励起光OE2の波長範囲(約510〜550nm)と、第1蛍光OF1の波長範囲(約510〜550nm)は、重複している。この場合、第2光学ヘッド55から照射された第2励起光OE2の一部が第1光学ヘッド51で検出されると、この第2励起光OE2は第1光学ヘッド51の後段のバンドパスフィルタB1、C1では除去されず、第1蛍光検出器66に到達する虞がある。この第2励起光OE2は第1蛍光検出器66においてはノイズであり、本来検出すべき第1蛍光OF1を検出できない虞がある。
第1光学ヘッド51と第2光学ヘッド55を十分離間して配置すればこのような問題は生じないが、この場合は反応処理装置30のサイズが大型化する。本発明者は、このような背反する課題を解決すべく、2つの光学ヘッドを並べて配置した場合に一方の光学ヘッドから照射された励起光が他方の光学ヘッドにノイズとして回り込む現象を、光学シミュレーションにより解析した。
図5は、光学シミュレーションのモデルを示す図である。本光学シミュレーションでは、第1対物レンズOB1および第2対物レンズOB2は、直径1.8mm、中心屈折率1.616(@530nm)、√A(光学定数)0.346mm−1(@530nm)、レンズ長4.45mmの屈折率分布型レンズとした。光ファイバF12、F22は、コア径200μm、クラッド径220μm、NA0.3のマルチモードファイバとした。対物レンズとマルチモードファイバとの間の作動距離は1.8mmとした。
また図5に示すように、第1対物レンズOB1および第2対物レンズOB2は、ステンレス製の保持部材61により保持されるものとした。第1対物レンズOB1の光軸と第2対物レンズOB2の光軸との間の距離を「中心間距離P」と呼ぶ。第1対物レンズOB1、第2対物レンズOB2の側面は、厚さ10μmのエポキシ接着剤層を介して保持部材61に固定される。また、保持部材61の上面61aは、第1対物レンズOB1、第2対物レンズOB2の励起光出射側端面と面一となっている。
反応処理容器10に関しては、基板14として、厚み4mmのシクロオレフィンポリマ製基板(屈折率1.53)を用いた。基板14の下面には、幅0.7mm、深さ0.7mmの断面正方形状の流路12を形成し、流路12の下面を厚さ0.1mmの流路封止フィルム16(シクロオレフィンポリマ製、屈折率1.53)で封止した。本光学シミュレーションでは、流路12中に、流路が空の場合は屈折率1の物質(空気に対応)が存在し、流路に試料がある場合は屈折率1.333の物質(水に対応)が存在するモデルを採用した。
対物レンズと試料との間の距離は、等倍結像系となる作動距離1.8mm(対物レンズとマルチモードファイバとの間の作動距離と合わせる)を基準とし、光路中に流路封止フィルム16が存在することによる結像位置のずれ分だけ補正して(遠ざけて)、流路12の下面(流路封止フィルム16の上面)が結像位置となるようにした。
以上のようなモデルを構成して、光ファイバF22の第2対物レンズOB2と逆側の端面に光を入射させて第2対物レンズOB2から光を照射した場合について、光学シミュレーションを行った。光学シミュレーションの結果が図5に図示されている。
図5に示すように、第2光学ヘッド55の第2対物レンズOB2から発せられた光線(励起光に対応)は、流路12を透過して基板14の第2主面14bで反射され、その反射光が流路12を逆向きに透過する。その後、光線は2つの対物レンズ間の保持部材61の上面61aで反射され、再び流路12を透過して基板14の第2主面14bで反射される。その反射光が再度流路12を逆向きに透過して第1光学ヘッド51の第1対物レンズOB1で受光され、光ファイバF12を通って出射される。本光学シミュレーションから、このような光路により、一方の光学ヘッドから照射された励起光が他方の光学ヘッドにノイズとして回り込むことが分かった。
図6は、2つの光学ヘッドの中心間距離Pの導出を説明するための図である。図5で説明したように、第2光学ヘッド55の第2対物レンズOB2から出射して第1光学ヘッド51の第1対物レンズOB1で受光される光線について、第2対物レンズOB2から出射する光線が第2対物レンズOB2の光軸となす角(流路封止フィルム16に対する入射角)をθ、第2対物レンズOB2と流路封止フィルム16の間の空気層63と流路封止フィルム16との界面での屈折角をθ、流路封止フィルム16と流路12との界面での屈折角をθ、流路12と基板14との界面での屈折角をθ、流路封止フィルム16の屈折率をn、流路12の屈折率をn(流路12内に試料が存在する場合と存在しない場合(すなわち空気の場合)で異なる)、基板14の屈折率をnとすると、各界面に対してスネルの法則を適用することにより、以下の(1)式が成り立つ。
sinθ=n・sinθ=n・sinθ=n・sinθ ・・・(1)
また、幾何学的対称性を考慮して、2つの光学ヘッドの中心間距離Pは、光路の流路長手方向成分の和として以下の(2)式のように表すことができる。
P=(L・tanθ+t・tanθ+2・t・tanθ+2・t・tanθ)×2
=2・L・tanθ+2・t・tanθ+4・t・tanθ+4・t・tanθ・・・(2)
(2)式において、Lは保持部材61の上面61aから流路封止フィルム16までの距離(mm)、tは流路封止フィルム16の厚さ(mm)、tは流路12の深さ(mm)、tは流路12の底部から基板14の第2主面14bまでの厚さ(mm)である。
sinθとtanθとの間には、以下の(3)式の関係が成り立つ。
1/tanθ+1=1/sinθ ・・・(3)
(3)式を変形すると、以下の(4)式が得られる。
tanθ=sinθ/√(1−sinθ) ・・・(4)
(4)式の関係を(2)式に適用すると、以下の(5)式が得られる。
P=2・L・sinθ/√(1−sinθ)+2・t・sinθ/√(1−sinθ)+4・t・sinθ/√(1−sinθ)+4・t・sinθ/√(1−sinθ) ・・・(5)
(5)式に(1)式を代入すると、以下の(6)式が得られる。
P=2・L・sinθ/√(1−sinθ)+2・t・sinθ/(√(n −sinθ))+4・t・sinθ/√(n −sinθ)+4・t・sinθ/√(n −sinθ) ・・・(6)
(6)式において、右辺の第3項は、nが小さいとき(すなわち流路12に試料が入っておらず、空気のとき)に大きくなり、中心間距離Pは、θが最大値θmax(開き角)のとき、すなわち光学ヘッドの対物レンズのNAに対応するθのときに最大値Pmaxとなる。
以上より、θmaxに対応する開口数をNAとすると、Pmaxは、以下の(7)式のように表すことができる。
max=2・P+2・P+4・P+4・P ・・・(7)
ただし、P=L・NA/√(1−NA
=t・NA/√(n −NA
=t・NA/√(1−NA
=t・NA/√(n −NA
2つの光学ヘッドの中心間距離Pを(7)式で表されるPmaxよりも大きくすれば、一方の光学ヘッド(第2光学ヘッド55)から照射された励起光の他方の光学ヘッド(第1光学ヘッド51)への回り込みを回避できる。すなわち、本実施形態に係る反応処理装置30において、中心間距離Pは以下の(8)式を満たす。
max=2・P+2・P+4・P+4・P<P ・・・(8)
中心間距離Pが(8)式を満たすように光学ヘッドを配置することにより、一方の光学ヘッドから照射された励起光の他方の光学ヘッドへの回り込みを回避できるので、蛍光検出装置間の干渉を抑制できる。その結果、安定した蛍光信号が得られ、良好な測定精度を有する反応処理装置を実現することができる。
ここで、各パラメータの誤差等を考慮して、1.1×Pmax≦P(すなわち安全率1.1)とすることが好ましく、1.2×Pmax≦P(すなわち安全率1.2)とすることがさらに好ましい。
上記では、中心間距離Pの下限について説明したが、中心間距離Pの上限は、2つの光学ヘッドを配置する流路12の直線部分の長さS(mm)に応じて定めることができる。流路12の直線部分の長さSは、流路12における接続領域の長さである(図1参照)。第1光学ヘッド51および第2光学ヘッド55はそれぞれ、流路12の直線部分の端から所定長ΔS(mm)だけ内側に光軸が位置するように配置されることが好ましい。すなわち、2つの光学ヘッドは、中心間距離PがP≦S−2×ΔSを満たすように配置されることが好ましい。例えばΔSは1mmであってよい。このように光学ヘッドを配置することにより、安定した蛍光検出を行うことができる。
なお、上述の実施形態では、流路12を断面正方形状の流路としたが、流路12の断面形状は、例えば長方形、台形、半円形、その他の任意の形状であってよく、光学ヘッドの光軸と交わる点を流路12の底部として、上記と同様に扱うことができる。
上述の実施形態において、基板14における流路12の底部と第2主面14bとの間に、励起光を吸収する光吸収層を設けてもよい。図5に示すように、一方の光学ヘッド(第2光学ヘッド55)からノイズ光として他方の光学ヘッド(第1光学ヘッド51)に回り込む励起光は、基板14における流路12の底部と第2主面14bとの間を4回透過している。従って、基板14における流路12の底部と第2主面14bとの間に光吸収層を設けることにより、一方の光学ヘッドから他方の光学ヘッドに回り込むノイズ光を減衰させることができるので、より確実に蛍光検出装置間の干渉を抑制できる。
次に、本発明の実施例を説明する。
(実施例1)
実施例1では、図5に示す構成において、反射光を強調して評価するために2つの対物レンズ間の保持部材61の上面61aを鏡面(上面61aに到達した光がスネルの法則に従って反射する面)とし、第2光学ヘッド55の光ファイバF22の端面の近傍から、φ200μm(マルチモードファイバのコア径に対応)且つランバシャン17.5°(マルチモードファイバのNA(0.3)に対応)の条件で、光ファイバF22に向けて25000本の光線(波長530nm)を出射させ、第1光学ヘッド51の光ファイバF12の端面の近傍に配置した評価面に到達する光線の強度を光学シミュレーションにより求めた。2つの光学ヘッドの中心間距離Pを2.5mm〜8.0mmの範囲で変えたときの光線の相対強度の変化を図7に示す。
上記(7)式にL=1.735mm、NA=0.3、t=0.1mm、t=0.7mm、t=3.3mm、n=1.53、n=1.53の各パラメータを代入すると、Pmax=4.65mmと求められる。上記において、Pmax<Pとすることで一方の光学ヘッドからの励起光が他方の光学ヘッドに回り込むことを防止できることを説明したが、図7に示すシミュレーション結果から、Pmax=4.65mm<Pのときに、ノイズを十分小さく抑えられる(相対ノイズ量が約0.1以下)ことが確認できた。また、1.1×Pmax=5.12mm≦Pのときに、ノイズをより小さく抑えることができ(相対ノイズ量が約0.1未満)、1.2×Pmax=5.58mm≦Pのときに、確実にノイズの発生を抑えることができる(相対ノイズ量が0.05未満)ことが確認できた。
なお、実施例1では、対物レンズとしてNA=0.3のマルチモードファイバからの出射光を有効に取り込むことのできる仕様の屈折率分布型レンズを用いており、且つ、対物レンズの入射側・出射側の作動距離が等しくなるような構成(等倍結像系)にしている。したがって、流路封止フィルム16がない状態で光軸上の焦点位置から入射光線を見込む角度である開き角に対応するNAは、マルチモードファイバからの出射光のNAと概略等しいと見なすことができる。
(実施例2)
実施例2では、第2光学ヘッド55の第2対物レンズOB2の出射端面にφ0.8mmのピンホールを配置した。それ以外の条件は実施例1と同様とし、評価面に到達する光線の強度を光学シミュレーションにより求めた。2つの光学ヘッドの中心間距離Pを2.5mm〜6.0mmの範囲で変えたときの光線の相対強度の変化を図8に示す。
実施例2におけるNAは、流路封止フィルム16がない状態での光軸上の焦点位置からピンホールの開口を見込む角度の正弦として、NA=sinθ=sin(tan−1(0.4/1.8))=0.22と求められる。上記(7)式にL=1.735mm、NA=0.22、t=0.1mm、t=0.7mm、t=3.3mm、n=1.53、n=1.53の各パラメータを代入すると、Pmax=3.36mmと求められる。図8に示すシミュレーション結果から、Pmax=3.36mm<Pのときに、ノイズを十分小さく抑えられる(相対ノイズ量が約0.1以下)ことが確認できた。また、1.1×Pmax=3.70mm≦Pのときに、ノイズをより小さく抑えることができ(相対ノイズ量が約0.1未満)、1.2×Pmax=4.03mm≦Pのときに、確実にノイズの発生を抑えることができる(相対ノイズ量が0.05未満)ことが確認できた。
次に、本発明の別の実施形態について説明する。上述の実施形態では、励起光波長と蛍光波長とが互いに重なる2つの光学ヘッドを並べて配置する場合に、2つの光学ヘッドの中心間距離Pが(8)式を満たすように構成することで、一方の光学ヘッドから照射された励起光の他方の光学ヘッドへの回り込みを抑制している。しかしながら、図7、図8に示す光学シミュレーションの結果から、基板14に設けた光吸収層によりノイズ光の強度を一桁低減(すなわち10%に低減)することができれば、2つの光学ヘッドの中心間距離Pが(7)式に示すPmax以下の場合でも、ノイズ量を許容レベルにすることが期待できる。
一般に、入射光強度をI、出射光強度をIとすると、物質の吸光度は、−ln(I/I)で表すことができる。基板14の光吸収層を4回透過してノイズ光を10%とするためには、光吸収層の吸光度を−1/4・ln(0.1)≒0.58とすればよい。したがって、基板14の光吸収層の吸光度Aが、A≧0.58を満たしていれば、一方の光学ヘッドから他方の光学ヘッドに回り込むノイズ光の強度を10%以下に低減できることになる。実際の光線は、図6に示すように、基板14の光吸収層に対してθの角度で入射する。光吸収層の厚さをt’とすると、光吸収層を1回透過する際の光路長はt’/cosθとなるが、余裕をみて最小値t’を光路長として扱い、厚さt’で吸収係数α≧0.58/t’を満たすように光吸収層を設ければよい。このような光吸収層を基板14に設けることにより、一方の光学ヘッドから他方の光学ヘッドに回り込むノイズ光を減らすことができるので、蛍光検出装置間の干渉を抑制できる。
上記ではノイズ光を10%まで低減する光吸収層を説明したが、ノイズ光を5%まで低減できればより好ましく、1%まで低減できればさらに好ましい。ノイズ光を5%程度まで低減するためには、対象波長に対して吸収係数α≧−1/4・ln(0.05)/t’≒0.75/t’を満たすように光吸収層を設ければよい。また、ノイズ光を1%程度まで低減するためには、対象波長に対して吸収係数α≧−1/4・ln(0.01)/t’≒1.15/t’を満たすように光吸収層を設ければよい。
光吸収層は、基板14自体を光吸収性の材料で形成することにより、基板14における流路12の底部と第2主面14bとの間の全体に設けてもよいし、基板14の厚さ方向の一部に設けてもよい。あるいは、基板14の第2主面14b上に、基板14と屈折率のマッチングのとれた状態で別体として光吸収層が設けられてもよい。ここで、「屈折率のマッチングのとれた状態」とは、界面前後の屈折率差が0.025以下であることを意味する。
以下、上述した本発明の別の実施形態に関し、実施例を説明する。
(実施例3)
実施例3は、基板14における流路12の底部と第2主面14bとの間の全体に光吸収層を設けた実施例である。実施例3では、実施例1と同様に、L=1.735mm、NA=0.3、t=0.1mm、t=0.7mm、t=3.3mm、n=1.53、n=1.53とした。実施例3では、中心点間距離Pを3.5mmとし、実施例1で求めたPmax=4.65mmよりも小さい値とした。基板14における流路12の底部と第2主面14bとの間に、厚みt’=3.3mmで吸収係数α=0.58/0.33=1.76cm−1の光吸収層を設け、実施例1と同様に評価面に到達する光線の強度を光学シミュレーションにより求めた。
光学シミュレーションの結果、実施例3では、流路12内に試料が存在しない場合に相対ノイズ量が0.02となり、流路12内に試料が存在する場合に相対ノイズ量が0.03となった。図7から、実施例1においては、中心点間距離Pが3.5mmのとき、流路12内に試料が存在しない場合の相対ノイズ量が0.19であり、流路12内に試料が存在する場合の相対ノイズ量が0.31であるので、基板14に光吸収層を設けた実施例3は、実施例1と比較してノイズ量を約10%に低減できることが確認できた。
(実施例4)
実施例4は、基板14の第2主面14b上に光吸収層を設けた実施例である。実施例4では、実施例2と同様に、第2光学ヘッド55の第2対物レンズOB2の出射端面にφ0.8mmのピンホールを配置した構成とした。実施例4では、中心点間距離Pを2.75mmとし、実施例2で求めたPmax=3.36mmよりも小さい値とした。また、実施例4では、基板14の第2主面14b上に、屈折率1.53で厚さ0.1mmの実質的に吸収のない樹脂層を介して、屈折率1.53、厚さ1.0mmで吸収係数α=0.58/0.1=5.8cm−1の光吸収層を設け、流路12内に試料が存在する条件で上記実施例と同様に評価面に到達する光線の強度を光学シミュレーションで求めた。
光学シミュレーションの結果、実施例4では、相対ノイズ量が0.1となった。図8から、実施例2においては、中心点間距離Pが2.75mmのとき、流路12内に試料が存在する場合の相対ノイズ量が0.85であるので、基板14の第2主面14b上に光吸収層を設けた実施例4は、実施例2と比較してノイズ量を約12%に低減できることが確認できた。
(実施例5)
実施例5では、基板14の第2主面14b上に設ける光吸収層の吸収係数のみ実施例4から変更した。実施例5では、光吸収層の吸収係数αを、α=0.75/0.1=7.5cm−1とし、上記実施例と同様に評価面に到達する光線の強度を光学シミュレーションで求めた。
光学シミュレーションの結果、実施例5では、相対ノイズ量が0.05となった。実施例2(中心点間距離P=2.75mm)のときの相対ノイズ量(0.85)と比較すると、実施例5はノイズ量を約6%に低減できることが確認できた。
また、光吸収層の吸収係数αを7.5cm−1とした実施例5において、基板14と光吸収層との間に設けた樹脂層の屈折率を1.530〜1.505(屈折率差:0.025)の範囲で変化させて同様の光学シミュレーションを実施したところ、評価面に到達する光線の最大強度は、樹脂層の屈折率を1.530とした場合と比較して2%程度の増加に止まっていた。
(実施例6)
実施例6においても、基板14の第2主面14b上に設ける光吸収層の吸収係数のみ実施例4から変更した。実施例6では、光吸収層の吸収係数αを、α=1.15/0.1=11.5cm−1とし、上記実施例と同様に評価面に到達する光線の強度を光学シミュレーションで求めた。
光学シミュレーションの結果、実施例6では、相対ノイズ量が0.01となった。実施例2(中心点間距離P=2.75mm)のときの相対ノイズ量(0.85)と比較すると、実施例6はノイズ量を約1%に低減できることが確認できた。
以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
10 反応処理容器、 12 流路、 14 基板、 16 流路封止フィルム、 17 第1連通口、 18 第2連通口、 20 試料、 30 反応処理装置、 32 温度制御システム、 33 高温用ヒータドライバ、 35 低温用ヒータドライバ、 36 CPU、 37 送液システム、 39 第1ポンプ、 40 第2ポンプ、 41 第1ポンプドライバ、 42 第2ポンプドライバ、 43 第1チューブ、 44 第2チューブ、 45,46 パッキン、 50 第1蛍光検出装置、 51 第1光学ヘッド、 52 第1蛍光検出用励起光源/検出器モジュール、 54 第2蛍光検出装置、 55 第2光学ヘッド、 56 第2蛍光検出用励起光源/検出器モジュール、 60 高温用ヒータ、 61 保持部材、 62 低温用ヒータ、 64 第1励起光源、 65 第1波長合分波器。

Claims (10)

  1. 試料が移動する流路が第1主面に形成された基板と、前記流路を封止するように前記第1主面上に設けられた流路封止フィルムとを備える反応処理容器と、
    第1励起光を前記流路中の試料に照射するとともに、前記第1励起光の照射により試料から生じた第1蛍光を集光する第1対物レンズを備える第1光学ヘッドと、
    第2励起光を前記流路中の試料に照射するとともに、前記第2励起光の照射により試料から生じた第2蛍光を集光する第2対物レンズを備える第2光学ヘッドと、
    前記第1光学ヘッドおよび前記第2光学ヘッドを保持する保持部材と、
    を備える反応処理装置であって、
    前記第1光学ヘッドおよび前記第2光学ヘッドは、前記流路の長手方向に並んで配置され、
    前記第1蛍光の波長範囲と前記第2励起光の波長範囲は、少なくとも一部が重複しており、
    前記第1対物レンズの光軸と前記第2対物レンズの光軸との間の距離Pが、以下の式:
    2・P+2・P+4・P+4・P<P
    =L・NA/√(1−NA
    =t・NA/√(n −NA
    =t・NA/√(1−NA
    =t・NA/√(n −NA
    を満たす(ただし、Lは前記保持部材から前記流路封止フィルムまでの距離、tは前記流路封止フィルムの厚さ、tは前記流路の深さ、tは前記流路の底部から前記基板の第2主面までの厚さ、NAは前記第1対物レンズおよび前記第2対物レンズの開口数、nは前記流路封止フィルムの屈折率、nは前記基板の屈折率)ことを特徴とする反応処理装置。
  2. 前記距離Pが、さらに1.1×(2・P+2・P+4・P+4・P)≦Pを満たし、さらに好ましくは1.2×(2・P+2・P+4・P+4・P)≦Pを満たすことを特徴とする請求項1に記載の反応処理装置。
  3. 前記距離Pが、P≦S−2×ΔS(ただし、Sは前記第1光学ヘッドおよび前記第2光学ヘッドが配置される流路の直線部分の長さ、ΔSは1mm)を満たすことを特徴とする請求項1または2に記載の反応処理装置。
  4. 前記基板における前記流路の底部と前記第2主面との間に、励起光を吸収する光吸収層を備えることを特徴とする請求項1から3のいずれかに記載の反応処理装置。
  5. 試料が移動する流路が第1主面に形成された基板と、前記流路を封止するように前記第1主面上に設けられた流路封止フィルムとを備える反応処理容器と、
    第1励起光を前記流路中の試料に照射するとともに、前記第1励起光の照射により試料から生じた第1蛍光を集光する第1対物レンズを備える第1光学ヘッドと、
    第2励起光を前記流路中の試料に照射するとともに、前記第2励起光の照射により試料から生じた第2蛍光を集光する第2対物レンズを備える第2光学ヘッドと、
    前記第1光学ヘッドおよび前記第2光学ヘッドを保持する保持部材と、
    を備える反応処理装置であって、
    前記第1光学ヘッドおよび前記第2光学ヘッドは、前記流路の長手方向に並んで配置され、
    前記第1蛍光の波長範囲と前記第2励起光の波長範囲は、少なくとも一部が重複しており、
    前記基板に励起光を吸収する光吸収層が設けられることを特徴とする反応処理装置。
  6. 前記光吸収層は、吸収係数αがα≧0.58/t’(ただしt’は前記光吸収層の厚さ)を満たすように形成されることを特徴とする請求項5に記載の反応処理装置。
  7. 前記光吸収層は、吸収係数αがα≧0.75/t’(ただしt’は前記光吸収層の厚さ)を満たすように形成されることを特徴とする請求項5に記載の反応処理装置。
  8. 前記光吸収層は、吸収係数αがα≧1.15/t’(ただしt’は前記光吸収層の厚さ)を満たすように形成されることを特徴とする請求項5に記載の反応処理装置。
  9. 前記光吸収層は、前記流路の底部と前記基板の第2主面との間に設けられることを特徴とする請求項5から8のいずれかに記載の反応処理装置。
  10. 前記光吸収層は、前記基板の第2主面上に設けられることを特徴とする請求項5から8のいずれかに記載の反応処理装置。
JP2020006626A 2020-01-20 2020-01-20 反応処理装置 Active JP7233385B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020006626A JP7233385B2 (ja) 2020-01-20 2020-01-20 反応処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020006626A JP7233385B2 (ja) 2020-01-20 2020-01-20 反応処理装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018129123A Division JP6688342B2 (ja) 2018-07-06 2018-07-06 反応処理装置

Publications (3)

Publication Number Publication Date
JP2020073912A true JP2020073912A (ja) 2020-05-14
JP2020073912A5 JP2020073912A5 (ja) 2021-08-05
JP7233385B2 JP7233385B2 (ja) 2023-03-06

Family

ID=70610084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020006626A Active JP7233385B2 (ja) 2020-01-20 2020-01-20 反応処理装置

Country Status (1)

Country Link
JP (1) JP7233385B2 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091242A (ja) * 2003-09-19 2005-04-07 Hitachi High-Technologies Corp 電気泳動分析装置
JP2007071608A (ja) * 2005-09-05 2007-03-22 Sharp Corp 電気泳動装置および装置構成器具
JP2007285999A (ja) * 2006-04-20 2007-11-01 Furukawa Electric Co Ltd:The 光測定装置
JP2008157814A (ja) * 2006-12-25 2008-07-10 Sharp Corp 分析用基板および分析装置
JP2011027748A (ja) * 2001-08-28 2011-02-10 Baylor College Of Medicine カラーブラインド蛍光のためのパルスマルチライン励起法
JP2013524169A (ja) * 2010-03-25 2013-06-17 クァンタライフ・インコーポレーテッド 液滴によるアッセイ用の検出システム
JP2015064281A (ja) * 2013-09-25 2015-04-09 株式会社日立ハイテクノロジーズ 蛍光検出装置及び蛍光検出方法
JP2015514218A (ja) * 2012-04-03 2015-05-18 イラミーナ インコーポレーテッド 核酸シークエンシングに有用な統合化した読取りヘッド及び流体カートリッジ
JP2016095315A (ja) * 2009-01-08 2016-05-26 アイティ−アイエス インターナショナル リミテッドIt−Is International Ltd 化学および/または生化学反応のための光学システム
WO2016157270A1 (ja) * 2015-03-31 2016-10-06 日本電気株式会社 分光解析装置、分光解析方法、及び可読媒体
WO2017094188A1 (ja) * 2015-12-04 2017-06-08 株式会社日立製作所 皮膚糖化検査装置、皮膚糖化検査装置システム及び皮膚糖化検査方法
WO2017119382A1 (ja) * 2016-01-05 2017-07-13 日本板硝子株式会社 反応処理装置、反応処理容器および反応処理方法
WO2017145230A1 (ja) * 2016-02-22 2017-08-31 株式会社日立ハイテクノロジーズ 発光検出装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027748A (ja) * 2001-08-28 2011-02-10 Baylor College Of Medicine カラーブラインド蛍光のためのパルスマルチライン励起法
JP2005091242A (ja) * 2003-09-19 2005-04-07 Hitachi High-Technologies Corp 電気泳動分析装置
JP2007071608A (ja) * 2005-09-05 2007-03-22 Sharp Corp 電気泳動装置および装置構成器具
JP2007285999A (ja) * 2006-04-20 2007-11-01 Furukawa Electric Co Ltd:The 光測定装置
JP2008157814A (ja) * 2006-12-25 2008-07-10 Sharp Corp 分析用基板および分析装置
JP2016095315A (ja) * 2009-01-08 2016-05-26 アイティ−アイエス インターナショナル リミテッドIt−Is International Ltd 化学および/または生化学反応のための光学システム
JP2013524169A (ja) * 2010-03-25 2013-06-17 クァンタライフ・インコーポレーテッド 液滴によるアッセイ用の検出システム
JP2015514218A (ja) * 2012-04-03 2015-05-18 イラミーナ インコーポレーテッド 核酸シークエンシングに有用な統合化した読取りヘッド及び流体カートリッジ
JP2015064281A (ja) * 2013-09-25 2015-04-09 株式会社日立ハイテクノロジーズ 蛍光検出装置及び蛍光検出方法
WO2016157270A1 (ja) * 2015-03-31 2016-10-06 日本電気株式会社 分光解析装置、分光解析方法、及び可読媒体
WO2017094188A1 (ja) * 2015-12-04 2017-06-08 株式会社日立製作所 皮膚糖化検査装置、皮膚糖化検査装置システム及び皮膚糖化検査方法
WO2017119382A1 (ja) * 2016-01-05 2017-07-13 日本板硝子株式会社 反応処理装置、反応処理容器および反応処理方法
WO2017145230A1 (ja) * 2016-02-22 2017-08-31 株式会社日立ハイテクノロジーズ 発光検出装置

Also Published As

Publication number Publication date
JP7233385B2 (ja) 2023-03-06

Similar Documents

Publication Publication Date Title
EP2843392B1 (en) Apparatus for photometric measurement of biological liquids
JP2007285999A (ja) 光測定装置
CN106568746B (zh) 用于样本的检测装置
JP5202971B2 (ja) 測定装置及び測定方法
JP6688342B2 (ja) 反応処理装置
US20220146425A1 (en) Improvements in or relating to an optical element
JP2020073912A (ja) 反応処理装置
JP7369426B2 (ja) 反応処理装置および反応処理方法
JP2021514051A (ja) 分析装置
KR20190086104A (ko) 초소형 광학요소를 적용한 현장진단용 형광검출장치
JP6571303B1 (ja) 反応処理装置
JP6652673B1 (ja) 反応処理容器
CN111819276B (en) Reaction treatment device
US20120020840A1 (en) Detection system
JP6291278B2 (ja) 検出装置
JP2020058395A (ja) 反応処理装置、反応処理方法および分注方法
JP2012115174A (ja) 核酸分析デバイス及びそれを用いた核酸分析システム
JP2006308412A (ja) 蛍光共鳴検出装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230221

R150 Certificate of patent or registration of utility model

Ref document number: 7233385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350