JP2020073572A - 白血球浸潤促進剤および腫瘍免疫活性化剤 - Google Patents

白血球浸潤促進剤および腫瘍免疫活性化剤 Download PDF

Info

Publication number
JP2020073572A
JP2020073572A JP2020004902A JP2020004902A JP2020073572A JP 2020073572 A JP2020073572 A JP 2020073572A JP 2020004902 A JP2020004902 A JP 2020004902A JP 2020004902 A JP2020004902 A JP 2020004902A JP 2020073572 A JP2020073572 A JP 2020073572A
Authority
JP
Japan
Prior art keywords
tumor
cells
lpa
cancer
lysophospholipid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2020004902A
Other languages
English (en)
Inventor
伸幸 ▲高▼倉
伸幸 ▲高▼倉
Nobuyuki Takakura
尚道 内藤
Hisamichi Naito
尚道 内藤
和宏 高良
Kazuhiro Takara
和宏 高良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Publication of JP2020073572A publication Critical patent/JP2020073572A/ja
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/662Phosphorus acids or esters thereof having P—C bonds, e.g. foscarnet, trichlorfon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/683Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/683Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
    • A61K31/685Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols one of the hydroxy compounds having nitrogen atoms, e.g. phosphatidylserine, lecithin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/005Enzyme inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/05Immunological preparations stimulating the reticulo-endothelial system, e.g. against cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Oncology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

【課題】正常血管に影響を及ぼすことなく腫瘍内部の異常血管を正常化させる物質を見出し、当該物質の新規な用途を提供することを課題とする。【解決手段】リゾリン脂質受容体を活性化する物質を有効成分とし、腫瘍領域全体への白血球の浸潤を促進させる作用を有することを特徴とする白血球浸潤促進剤および腫瘍免疫活性化剤。【選択図】なし

Description

本発明は、白血球浸潤促進剤および腫瘍免疫活性化剤に関するものであり、詳細にはリゾリン脂質受容体を活性化する物質を有効成分とする白血球浸潤促進剤および腫瘍免疫活性化剤に関するものである。
正常組織の血管形成は、血管内皮細胞の発生、内皮細胞による管腔形成、壁細胞の内皮細胞への被覆化による血管の成熟化という、脈管形成の過程により循環網が構築されることから始まる。既存の血管が形成された後における炎症や低酸素の発生による新しい血管の形成は、血管新生(発芽的血管形成)の過程により誘導される。腫瘍内に形成される血管も、後者の血管新生の過程により誘導される。腫瘍における血管形成の誘導により腫瘍細胞に酸素や養分が供給されることから、腫瘍の血管新生を抑制することで、腫瘍の増大を抑制する治療法の開発がなされてきた。
1971年に、腫瘍から分泌される因子により既存の血管から腫瘍内に血管が誘導されるという発見がなされ(非特許文献1)、この血管新生因子として、血管内皮成長因子(VEGF;vascular endothelial growth factor)が同定された。VEGFは、血管内皮細胞に発現するVEGF受容体(VEGFR1、2、3)、特にVEGFR2を活性化して、血管内皮細胞の増殖や管腔形成に関わる。VEGFに関しては、まず中和抗体が開発され、血管新生阻害剤としていち早く臨床で用いられてきた(非特許文献2)。しかし、VEGF中和抗体や、その後開発されたVEGF受容体チロシンキナーゼ阻害剤は、単独では抗腫瘍効果が発揮されないことが明らかになる一方で、このような血管新生抑制剤と抗がん剤を併用すれば、抗がん剤単独よりも優れた効果を奏することが臨床的に明らかにされてきた。この血管新生抑制剤と抗がん剤の併用による治療効果が基礎医学的に解析された結果、この併用効果は、血管新生抑制剤による腫瘍内血管の一部正常化に起因して、抗がん剤の腫瘍内への送達が改善されることによることが示唆されるようになった(非特許文献3)。
正常血管の管腔は血管内皮細胞と壁細胞の接着により構造的に安定化している。血管内皮細胞間はVE−カドヘリン、クローディン5、インテグリン、コネキシンなどの種々の接着因子により密着し、血管内から容易に物質や細胞が血管外に漏出しないように制御されている。また内皮細胞と壁細胞の間には接着帯が形成され、内皮細胞と壁細胞の間の分子交換を介して、血管透過性を制御している。また、通常左右の血管はパラレルな走行性を示す。一方で、腫瘍の血管には様々な異常が観察される。腫瘍内血管は透過性が亢進し、蛇行や拡張が観察され、一部嚢状を呈し、血管分岐も無秩序である。血管内皮細胞そのものも異常な形態を呈し、裏打ちする壁細胞も腫瘍中心部では非常にまばらで内皮細胞との接着も弱く、多くの領域で壁細胞の裏打ちが欠損している。このような異常の多くは、腫瘍内のVEGF分泌が過剰になっていることに起因する。
VEGFは血管内皮細胞の強力な増殖因子であるとともに、血管内皮細胞同士の接着を抑制して、血管透過性を亢進させる。この状態が継続すると、腫瘍深部において血清成分や線維芽細胞の集積が生じ、腫瘍深部の間質圧は非常に高くなる。その結果、血管内圧と腫瘍深部の組織圧は差がなくなり、血管内から組織に薬剤等が送達されなくなる。そこで、VEGFからの細胞内シグナルを遮断すると、血管内皮細胞同士の接着が回復し、血管透過性の亢進状態が正常化することにより腫瘍深部の組織圧より血管内圧の方が高くなり、血管内から組織に抗がん剤が送達されるようになる。そのため、血管新生抑制剤と抗がん剤を併用すれば、抗がん剤単独よりも優れた効果を奏するものと考えられる。
それゆえ、腫瘍内の血管透過性を改善させ腫瘍内への薬剤の送達を誘導する手段が、がんの有効な治療法であると考えられるようになった。一方で、血管新生阻害薬は、血管内皮細胞の生存を抑制し、血管内皮細胞やそれと相互作用している血管壁細胞の細胞死を誘導して腫瘍内の虚血状態を促進することが示唆されている。腫瘍内の低酸素状態は、がん細胞の悪性化を誘導して、がんの浸潤や転移を促進する可能性があると指摘されている。また、血管新生阻害薬は正常組織の血管にも障害を与え、血圧の亢進や肺出血、腎障害等の重篤な副作用を引き起こすことが報告されている。したがって、腫瘍血管を退縮させず、正常血管に影響を及ぼさず、腫瘍血管の透過性を正常化させるような薬剤の開発が期待されている。
Folkman J, et al: Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133: 275-288, 1971 Gerber HP, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 65; 671-680, 2005 Jain RK: Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 307: 58-62, 2005
本発明は、正常血管に影響を及ぼすことなく腫瘍内部の異常血管を正常化させる物質を見出し、当該物質の新規な用途を提供することを課題とする。
本発明は、上記の課題を解決するために以下の各発明を包含する。
[1]リゾリン脂質受容体を活性化する物質を有効成分とし、腫瘍領域の一部または全体への白血球の浸潤を生じさせるまたは促進させる作用を有し、がん免疫療法と組み合わせて使用することを特徴とするがん免疫療法増強剤。
[2]リゾリン脂質受容体を活性化する物質がリゾリン脂質もしくはその前駆体、またはそれらの誘導体である前記[1]に記載のがん免疫療法増強剤。
[3]リゾリン脂質受容体がリゾホスファチジン酸受容体である前記[1]または[2]に記載のがん免疫療法増強剤。
[4]リゾリン脂質受容体を活性化する物質を有効成分とし、腫瘍領域の一部または全体への白血球の浸潤を生じさせるまたは促進させる作用を有することを特徴とする白血球浸潤促進剤。
[5]白血球がCD4陽性細胞および/またはCD8陽性細胞である前記[4]に記載の白血球浸潤促進剤。
[6]リゾリン脂質受容体を活性化する物質がリゾリン脂質もしくはその前駆体、またはそれらの誘導体である前記[4]または[5]に記載の白血球浸潤促進剤。
[7]リゾリン脂質受容体がリゾホスファチジン酸、リゾホスファチジルセリン、リゾホスファチジルコリン、リゾホスファチジルエタノールアミン、リゾホスファチジルイノシトール、リゾホスファチジルグリセロール、スフィンゴシン−1−リン酸、スフィンゴシルホスホリルコリンおよび血小板活性化因子(PAF)から選択されるリゾリン脂質の受容体である前記[4]〜[6]のいずれかに記載の白血球浸潤促進剤。
[8]リゾリン脂質受容体がリゾホスファチジン酸受容体である前記[7]に記載の白血球浸潤促進剤。
[9]がん免疫療法と組み合わせて使用する前記[4]〜[8]のいずれかに記載の白血球浸潤促進剤。
[10]がん免疫療法が、免疫抑制解除療法である前記[9]に記載の白血球浸潤促進剤。
[11]リゾリン脂質受容体を活性化する物質を有効成分とし、腫瘍領域の一部または全体への白血球の浸潤を生じさせるまたは促進させる作用を有することを特徴とする腫瘍免疫活性化剤。
[12]白血球がCD4陽性細胞および/またはCD8陽性細胞である前記[11]に記載の腫瘍免疫活性化剤。
[13]リゾリン脂質受容体を活性化する物質がリゾリン脂質もしくはその前駆体、またはそれらの誘導体である前記[11]または[12]に記載の腫瘍免疫活性化剤。
[14]リゾリン脂質受容体がリゾホスファチジン酸、リゾホスファチジルセリン、リゾホスファチジルコリン、リゾホスファチジルエタノールアミン、リゾホスファチジルイノシトール、リゾホスファチジルグリセロール、スフィンゴシン−1−リン酸、スフィンゴシルホスホリルコリンおよび血小板活性化因子(PAF)から選択されるリゾリン脂質の受容体である前記[11]〜[13]のいずれかに記載の腫瘍免疫活性化剤。
[15]リゾリン脂質受容体がリゾホスファチジン酸受容体である前記[14]に記載の腫瘍免疫活性化剤。
本発明のがん免疫療法増強剤、白血球浸潤促進剤および腫瘍免疫活性化剤の有効成分であるリゾリン脂質受容体を活性化する物質は、正常血管に影響を及ぼすことなくあるいは及ぼすことを最小限に抑えつつ、腫瘍内部の異常血管を正常化させあるいは正常化に近づけることできるので、腫瘍領域の一部または全体への白血球の浸潤を生じさせ、または促進し、腫瘍内部の腫瘍免疫を活性化させ、腫瘍の増大を抑制することができる。本発明のがん免疫療法増強剤、白血球浸潤促進剤および腫瘍免疫活性化剤は、腫瘍血管を破綻させずあるいはその破綻を抑制し、腫瘍内部の低酸素状態を誘導しないので、がん細胞の悪性化を誘導しないという優れた効果を奏する。本発明のがん免疫療法増強剤、白血球浸潤促進剤および腫瘍免疫活性化剤は、がんワクチン療法、免疫細胞輸注療法(キメラ抗原受容体T細胞療法等)、免疫抑制解除療法(免疫チェックポイント阻害療法等)などのがん免疫療法と組み合わせて使用することにより、がん免疫療法を増強し、抗腫瘍活性を亢進することができる。
LLC細胞の担がんマウスにリゾホスファチジン酸(LPA)またはリゾホスファチジン酸誘導体であるVPC31144Sを投与し、腫瘍血管の構造変化を評価した結果を示す図であり、(A)はコントロール群、(B)はLPA群の結果である。 LLC細胞の担がんマウスにスフィンゴシン−1−リン酸(S1P)を投与し、腫瘍血管の構造変化を評価した結果を示す図であり、(A)はコントロール群、(B)はS1P群の結果である。 LLC細胞の担がんマウスにリゾホスファチジン酸(LPA)を投与し、腫瘍血管内腔の構造的変化を観察した結果を示す図であり、(A)はコントロール群、(B)はLPA群の結果である。 LLC細胞の担がんマウスにリゾホスファチジン酸(LPA)およびドキソルビシンを投与し、腫瘍血管から腫瘍組織への薬剤送達を観察した結果を示す図であり、(A)はコントロール群、(B)はLPA群の結果である。 LLC細胞の担がんマウスにリゾホスファチジン酸(LPA)を投与し、腫瘍内の免疫細胞の変化を評価した結果を示す図である。 LLC細胞の担がんマウスにおける、リゾホスファチジン酸(LPA)の腫瘍増大抑制効果を検討した結果を示す図である。 B16−BL6細胞の担がんマウスにおける、リゾホスファチジン酸(LPA)の腫瘍増大抑制効果を検討した結果を示す図である。 LLC細胞の担がんマウスにおける、(A)リゾホスファチジン酸(LPA)単独投与、(B)抗PD−1抗体単独投与、(C)LPAと抗PD−1抗体併用投与した際の腫瘍増大抑制効果を検討した結果を示す図である。
リゾリン脂質は、アシル基を1本有するリン脂質である。リゾリン脂質は、グリセロール骨格とスフィンゴシン骨格を有するクラスに大別され、それぞれに結合する極性基とアシル基の組み合わせにより多数の分子種が存在する。リゾリン脂質は、特異的な受容体に結合することにより様々な生物活性を示す脂質メディエーターであることが知られている。しかし、リゾリン脂質の生体内での生理機能については未だ不明な点が多く、腫瘍内の血管に対する作用は全く知られていなかった。
本発明者らは、皮下にがん細胞を移植して腫瘍を形成させたマウスにリゾリン脂質の一種であるリゾホスファチジン酸(以下、「LPA」と記す。)を投与したところ、投与前は蛇行や無秩序な分岐が認められた腫瘍血管が、正常組織と同様の網状構造に変化することを見出した。本発明者らは、腫瘍血管の内腔の構造についても、LPA投与前は歪な構造であったが、投与後は平滑な構造に変化することを見出した。さらに、本発明者らは、腫瘍血管の透過性については、LPAは過剰な亢進状態を改善し、血管透過性を正常に誘導することを見出した。すなわち、本発明者らは、LPAが固形がんにおいて、血管のネットワーク構築を誘導し網状構造に正常化させる作用、血管内腔を平滑化する作用、血管透過性を正常化する作用を有することを見出した。そこで、本発明者らは、LPAにより正常化された血管を有する腫瘍内部における免疫細胞の局在を観察したところ、LPA非投与マウスの腫瘍組織と比較して、CD4陽性細胞およびCD8陽性細胞が腫瘍の中心部を含む腫瘍領域全体に多数存在していることが判明した。すなわち、本発明者らは、LPAが腫瘍領域全体への免疫細胞の浸潤を生じさせるまたは促進させる作用を有することを見出した。
腫瘍内へのCD8陽性の細胞障害性T細胞やCD4陽性のヘルパーT細胞の浸潤が亢進すれば腫瘍免疫が活性化され、細胞障害性T細胞による腫瘍細胞への攻撃により抗腫瘍効果が誘導されると考えられる。そこで、本発明者らは、皮下に腫瘍を形成させたマウス(担がんマウス)にLPAまたは公知の抗がん剤である5−FUを投与し、腫瘍の成長を観察した。その結果、LPAは5−FUと同様に、腫瘍の増大を抑制する効果を奏することが判明した。すなわち、本発明者らは、LPAが腫瘍領域全体への免疫細胞の浸潤を生じさせるまたは促進させることにより腫瘍内部の腫瘍免疫を活性化させる作用を有することを見出した。
LPA受容体(LPAR)は、現在までにLPAR1〜6の6種類が発見されている。がん細胞ではLPAR1〜3の発現が高いとされており、試験管内培養ではがん細胞の増殖がリゾホスファチジン酸で誘導される。本発明者らは、以前の研究でマウスを用いて腫瘍組織の血管内皮細胞に発現するLPARを解析したところ、LPAR1、LPAR4およびLPAR6が発現していることを見出した。さらに、本発明者らは、LPAR4をノックダウンした血管内皮細胞では、細胞同士の接着が歪になることを見出した。つまり、本発明者らは、腫瘍血管の正常化は少なくともLPAR4を介していることを見出した(PCT/JP2015/060666)。
したがって、がん細胞に高発現するLPAR1〜3を活性化せずに、腫瘍血管内皮細胞に特異的に発現し、血管の正常化に関与するLPARを特異的に活性化すれば、がん細胞の増殖や運動能の亢進を懸念することなく、がんを治療することができると考えられる。つまり、LPAR4特異的に活性化できる受容体アゴニストは、リゾリン脂質と同様に白血球浸潤促進剤および腫瘍免疫活性化剤の有効成分として有用であると考えられる。さらに、現時点で未だ同定されていないリゾリン脂質受容体を含め、血管の正常化を誘導できるリゾリン脂質受容体のアゴニストは白血球浸潤促進剤および腫瘍免疫活性化剤の有効成分として有用であると考えられる。なお、血管の正常化とは、血管透過性やネットワーク異常を有する血管が正常な状態に近づくことを意味し、完全に正常な状態になることを要するものではない。
本発明は、リゾリン脂質受容体を活性化する物質を有効成分とし、腫瘍領域の一部または全体への白血球の浸潤を生じさせるまたは促進させる作用を有することを特徴とする白血球浸潤促進剤を提供する。また、本発明は、リゾリン脂質受容体を活性化する物質を有効成分とし、腫瘍領域の一部または全体への白血球の浸潤を生じさせるまたは促進させる作用を有することを特徴とする腫瘍免疫活性化剤を提供する。さらにまた、本発明は、リゾリン脂質受容体を活性化する物質を有効成分とし、腫瘍領域の一部または全体への白血球の浸潤を生じさせるまたは促進させる作用を有することを特徴とするがん免疫療法増強剤を提供する。以下、これらの発明を合わせて「本発明の剤」と称する。
本発明の剤の有効成分が活性化するリゾリン脂質受容体は特に限定されず、公知のリゾリン脂質受容体および将来見出されるリゾリン脂質受容体であれば、いずれのリゾリン脂質受容体であってもよい。例えば、リゾホスファチジン酸(LPA)、リゾホスファチジルセリン(LPS)、リゾホスファチジルコリン(LPC)、リゾホスファチジルエタノールアミン(LPE)、リゾホスファチジルイノシトール(LPI)、リゾホスファチジルグリセロール(LPG)、スフィンゴシン−1−リン酸(S1P)、スフィンゴシルホスホリルコリン(SPC)および血小板活性化因子(PAF)から選択されるリゾリン脂質の受容体が挙げられる。いくつかの実施形態において、リゾリン脂質受容体は、リゾホスファチジン酸受容体(LPAR)、リゾホスファチジルコリン受容体(LPCR)およびスフィンゴシン−1−リン酸受容体(S1PR)であってもよい。いくつかの実施形態において、リゾリン脂質受容体は、リゾホスファチジン酸受容体(LPAR)であってもよい。いくつかの実施形態において、リゾリン脂質受容体は血管内皮細胞に発現しているリゾリン脂質受容体であってもよく、血管内皮細胞に特異的に発現しているリゾリン脂質受容体であってもよい。血管内皮細胞に特異的に発現しているリゾリン脂質受容体は、例えばマウスのLPAR4に対応するヒトのLPARであってもよい。
リゾリン脂質受容体を活性化する物質はリゾリン脂質に限定されるものではなく、リゾリン脂質の誘導体、リゾリン脂質の前駆体またはそれらの誘導体等も有効成分として用いることができる。さらに、これら以外のリゾリン脂質受容体アゴニスト(例えば、低分子化合物、核酸、ペプチド、蛋白質、抗体等)も有効成分として用いることができる。公知のリゾリン脂質受容体アゴニストとしては、例えばWongらの論文(Assay Drug Dev Technol. 2010 Aug;8(4):459-70. doi: 10.1089/adt.2009.0261.)に記載のLPA4受容体アゴニストなどが挙げられる。いくつかの実施形態において、リゾリン脂質受容体を活性化する物質は、リゾリン脂質もしくはその前駆体、またはそれらの誘導体であってもよい。
リゾリン脂質としては、例えば前記のLPA、LPS、LPC、LPE、LPI、LPG、S1P、SPC、PAF等が挙げられるが、これらに限定されず、他のリゾリン脂質もリゾリン脂質受容体を活性化する物質として用いることができきる。いくつかの実施形態において、リゾリン脂質は、LPA、LPC、S1Pであってもよい。いくつかの実施形態において、リゾリン脂質は、LPAであってもよい。本発明の剤の有効成分として、1種類のリゾリン脂質を用いてもよく、2種類以上を組み合わせて用いてもよい。リゾリン脂質のアシル基は特に限定されない。いくつかの実施形態において、脂質のアシル基は、炭素数16〜22で不飽和度0〜6のアシル基であってもよく、炭素数:不飽和度が16:1、18:1、18:2、18:3、20:1、20:2、20:3、20:4、20:5、22:1、22:2、22:3、22:4、22:5、22:6のアシル基であってもよい。リゾリン脂質は1-アシル型リゾリン脂質および2-アシル型リゾリン脂質のどちらでもよい。いくつかの実施形態において、リゾリン脂質は、1-アシル型リゾリン脂質であってもよい。
リゾリン脂質の前駆体としては、例えば、ホスファチジン酸、ホスファチジルセリン、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルイノシトール、ホスファチジルグリセロール、スフィンゴミエリン、スフィンゴ脂質などが挙げられる。これらのリン脂質が生体内で代謝されリゾリン脂質が生成されることは、当業者に周知である(例えば、E. J. Goetzl, S. An, FASEB J. 12, 1589 (1998)、Xie Y, Meier KE. Cell Signal. 2004 Sep;16(9):975-81参照)。
リゾリン脂質の誘導体としては、血中安定性向上の目的でポリエチレングリコール(PEG)誘導体で修飾されたリゾリン脂質(PEG化リゾリン脂質)、ポリグリセリン等の水溶性ポリマーで修飾されたリゾリン脂質、任意の置換基で修飾されたリゾリン脂質等が挙げられる。リゾリン脂質前駆体の誘導体としては、PEG誘導体で修飾された前駆体、水溶性ポリマーで修飾された前駆体、任意の置換基で修飾された前駆体等が挙げられる。リゾリン脂質もしくはその前駆体、またはそれらの誘導体は塩を形成していてもよく、その塩としては、生理学的に許容される塩であってもよい。生理学的に許容される塩としては、例えば、塩酸、硫酸、乳酸、酒石酸、マレイン酸、フマル酸、シュウ酸、リンゴ酸、クエン酸、オレイン酸、パルミチン酸、硝酸、リン酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸などの酸との塩;ナトリウム、カリウム、カルシウムなどのアルカリ金属もしくはアルカリ土類金属の、またはアルミニウムの水酸化物または炭酸塩との塩;トリエチルアミン、ベンジルアミン、ジエタノールアミン、t−ブチルアミン、ジシクロヘキシルアミン、アルギニンなどとの塩などが挙げられる。
リゾリン脂質もしくはその前駆体、またはそれらの誘導体は、例えば、(1)化学的に合成する;(2)生体サンプルから精製する;(3)酵素的に合成する;等の公知の方法によって取得することができる。リゾリン脂質もしくはその前駆体、またはそれらの誘導体は、市販品を購入して用いることができる。化学的に合成する場合は、例えば、コンプリヘンシヴ・オーガニック・トランスフォーメーションズ:ア・ガイド・トゥー・ファンクショナル・グループ・プレパレーションズ,セカンド・エディション(リチャードC.ラロック,ジョンワイリーアンドサンズInc,1999)[Comprehensive Organic Transformations : A Guide to Functional Group Preparations, 2nd Edition (Richard C. Larock, John Wiley & Sons Inc, 1999)]に記載された方法等を適宜改良し、組み合わせて用いることによって製造することができる。生体サンプルから精製する場合は、例えば、ゲル濾過等の方法によって得られたフラクションをシリカゲルカラムクロマトグラフィーもしくは逆相カラムクロマトグラフィー等の精製法に付すことによって製造することができる。酵素的に合成する場合は、例えば、ミエロペルオキシダーゼ、酸化酵素、12/15−リポキシゲナーゼ、P450代謝酵素等を用いることができる。
白血球にはリンパ球(T細胞、B細胞、NK細胞、NKT細胞)、単球(マクロファージ、樹状細胞)、顆粒球(好中球、好酸球、好塩基球)などが含まれる。本発明の剤により腫瘍領域への浸潤が生じるまたは促進される白血球は特に限定されず、白血球に含まれるいずれの細胞も浸潤が生じるまたは促進される。いくつかの実施形態において、血球は、であってもよい。腫瘍内において腫瘍免疫を活性化させる働きを有する細胞(腫瘍免疫担当細胞)であってもよい。このような細胞として、細胞障害性T細胞、NK細胞、NKT細胞、キラー細胞、マクロファージ、顆粒球、ヘルパーT細胞、LAK細胞などが挙げられる。いくつかの実施形態において、本発明の剤により腫瘍中心部への浸潤が促進される白血球は、CD4陽性細胞および/またはCD8陽性細胞であってもよい。CD4陽性細胞はヘルパーT細胞であってもよく、CD8陽性細胞は細胞傷害性T細胞であってもよい。腫瘍領域に浸潤している細胞の種類は、例えば、腫瘍の組織標本を作製し、各細胞に特異的な表面抗原に対する抗体を用いて免疫染色を行うことにより確認することができる。
腫瘍は細胞が異常増殖して塊を形成した状態を意味し、良性腫瘍および悪性腫瘍が含まれる。本発明の剤により白血球の浸潤を促進させる対象の腫瘍は良性腫瘍であってもよく、悪性腫瘍であってもよい。いくつかの実施形態において、腫瘍は固形がんであってもよい。固形がんは、その内部に蛇行や無秩序な分岐を有する血管が形成され、血管内腔の構造は歪であり、血管透過性は過剰に亢進している。固形がんは特に限定されず、例えば肺がん、大腸がん、前立腺がん、乳がん、膵臓がん、食道がん、胃がん、肝臓がん、胆道がん、脾臓がん、腎がん、膀胱がん、子宮がん、卵巣がん、精巣がん、甲状腺がん、脳腫瘍等が挙げられる。また、がん化した血液細胞が腫瘍を形成したものも固形がんに含まれる。
本発明の剤は、医薬の形態で実施することができる。すなわち、リゾリン脂質受容体を活性化する物質を有効成分とし、医薬製剤の公知の製造方法(例えば、日本薬局方に記載の方法等)に従って、薬学的に許容される担体または添加剤を適宜配合して製剤化することができる。具体的には、例えば錠剤(糖衣錠、フィルムコーティング錠、舌下錠、口腔内崩壊錠、バッカル錠等を含む)、丸剤、散剤、顆粒剤、カプセル剤(ソフトカプセル剤、マイクロカプセル剤を含む)、トローチ剤、シロップ剤、液剤、乳剤、懸濁剤、放出制御製剤(例えば速放性製剤、徐放性製剤、徐放性マイクロカプセル剤等)、エアゾール剤、フィルム剤(例えば口腔内崩壊フィルム、口腔粘膜貼付フィルム等)、注射剤(例えば皮下注射剤、静脈内注射剤、筋肉内注射剤、腹腔内注射剤等)、点滴剤、経皮吸収型製剤、軟膏剤、ローション剤、貼付剤、坐剤(例えば肛門坐剤、膣坐剤等)、ペレット、経鼻剤、経肺剤(吸入剤)、点眼剤等の経口剤または非経口剤が挙げられる。担体または添加剤の配合割合については、医薬分野において通常採用されている範囲に基づいて適宜設定することができる。配合できる担体または添加剤は特に制限されないが、例えば水、生理食塩水、その他の水性溶媒、水性または油性基剤等の各種担体;賦形剤、結合剤、pH調整剤、崩壊剤、吸収促進剤、滑沢剤、着色剤、矯味剤、香料等の各種添加剤が挙げられる。
錠剤、カプセル剤などに混和することができる添加剤としては、例えばゼラチン、コーンスターチ、トラガント、アラビアゴムのような結合剤、結晶性セルロースのような賦形剤、コーンスターチ、ゼラチン、アルギン酸などのような膨化剤、ステアリン酸マグネシウムのような潤滑剤、ショ糖、乳糖またはサッカリンのような甘味剤、ペパーミント、アカモノ油またはチェリーのような香味剤などが用いられる。調剤単位形態がカプセルである場合には、上記タイプの材料にさらに油脂のような液状担体を含有することができる。注射のための無菌組成物は通常の製剤化手順(例えば有効成分を注射用水、天然植物油等の溶媒に溶解または懸濁させる等)に従って調製することができる。注射用の水性液としては、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えばD−ソルビトール、D−マンニトール、塩化ナトリウムなど)などが用いられ、適当な溶解補助剤、例えばアルコール(エタノール等)、ポリアルコール(プロピレングリコール、ポリエチレングリコール等)、非イオン性界面活性剤(ポリソルベート80TM、HCO−50等)などと併用してもよい。油性液として、例えば、ゴマ油、大豆油などが用いられてもよい。油性液は、溶解補助剤である安息香酸ベンジル、ベンジルアルコールなどと併用してもよい。油性液、緩衝剤(例えばリン酸塩緩衝液、酢酸ナトリウム緩衝液等)、無痛化剤(例えば塩化ベンザルコニウム、塩酸プロカイン等)、安定剤(例えばヒト血清アルブミン、ポリエチレングリコール等)、保存剤(例えばベンジルアルコール、フェノール等)、酸化防止剤などと配合してもよい。
本発明の剤の有効成分であるリゾリン脂質またはその前駆体は、生体に存在する成分であるので、ヒトや他の哺乳動物(例えば、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して毒性が低く、安全に投与することができる。
製剤中の有効成分の含量は、剤型、投与方法、担体等により適宜設定されるが、有効成分がリゾリン脂質またはその誘導体である場合、有効成分を製剤全量に対して通常0.01〜100%(w/w)の割合で添加することができる。有効成分の製剤全量に対する割合は、0.1〜95%(w/w)の割合であってもよい。
有効成分の投与量は、投与対象、症状、投与ルートなどにより差異はあるが、経口投与の場合、一般的に例えば、体重約60kgのヒトにおいては、1日当たり約0.01〜1000mgであってもよく、約0.1〜100mgであってもよく、約0.5〜50mgであってもよい。非経口投与の合は、その1回投与量は患者の状態、症状、投与方法などによっても異なるが、例えば注射剤を静脈内登用する場合では、通常例えば体重1kg当たり約0.01〜100mgであってもよく、約0.01〜50mgであってもよく、約0.01〜20mgであってもよい。1日当たりの総投与量は、単一投与量であっても分割投与量であってもよい。
本発明の剤は、投与後数時間で腫瘍内部の血管を正常化でき、腫瘍領域の一部または全体への白血球の浸潤を生じさせまたは促進させて腫瘍免疫を活性化させることができるので、がん免疫療法と組み合わせて使用すれば、がん免疫療法を増強し、腫瘍細胞障害性を亢進させることができる。本発明の剤をがん免疫療法と組み合わせて使用するとは、本発明の剤の投与対象ががん免疫療法を受けているがん患者であること、または、本発明の剤をがん免疫療法に使用する薬剤と併用することを意味する。本発明の剤をがん免疫療法と組み合わせて使用することにより、がん免疫療法に使用する薬剤の使用量を減らすことができ、副作用を低減できると考えられる。さらにがん免疫療法に使用する薬剤の使用量低減は医療費削減等の社会的要請にも適うものである。
がん免疫療法には、がんワクチン療法、免疫細胞輸注療法、免疫抑制解除療法、制御性T細胞の除去を誘導する方法などが含まれる。いくつかの実施形態において、がん免疫療法は、免疫抑制解除療法であってもよい。免疫抑制解除療法に用いる免疫チェックポイント阻害剤としては、例えば抗CTLA−4抗体、PD−1遮断薬、抗PD−1抗体、PD−L1遮断薬、抗PD−L1抗体などが挙げられる。免疫細胞輸注療法としては、キメラ抗原受容体T細胞療法などが挙げられる。制御性T細胞は免疫寛容に働くので、制御性T細胞除去後に本発明の剤を投与すれば、本発明の剤と免疫チェックポイント阻害剤とを併用した場合と同様の効果を奏すると考えられる。制御性T細胞の除去を誘導する薬剤としては、例えば、アルキル化剤、IL−2−ジフテリア毒素、抗CD25抗体、抗KIR抗体、IDO阻害剤、BRAF阻害剤などが挙げられる。
がん免疫療法に用いる薬剤としては、例えばピシバニール、クレスチン、シゾフィラン、レンチナン、ウベニメクス、インターフェロン、インターロイキン、マクロファージコロニー刺激因子、顆粒球コロニー刺激因子、エリスロポイエチン、リンホトキシン、BCGワクチン、コリネバクテリウムパルブム、レバミゾール、ポリサッカライドK、プロコダゾール、イピリムマブ、ニボルマブ、ラムシルマブ、オファツムマブ、パニツムマブ、ペンブロリズマブ、オビヌツズマブ、トラスツズマブ エムタンシン、トシリズマブ、ベバシズマブ、トラスツズマブ、シルツキシマブ、セツキシマブ、インフリキシマブ、リツキシマブ、メトフォルミンなどが挙げられる。
本発明の剤の有効成分であるリゾリン脂質またはその前駆体は、がんワクチンと併用することで、がんワクチンによって活性化したT細胞を腫瘍内に効率よく浸潤させることができる。また、患者あるいは非患者由来のT細胞などの免疫細胞を用いた免疫細胞輸注療法においても、本発明の剤はこれらの治療の有効性を高めることができる。
このように、本発明の剤をがん免疫療法と組み合わせて使用することにより、がん免疫療法を増強し、腫瘍細胞障害性を亢進させることができるので、がん免疫療法と組み合わせる態様で使用する本発明の剤は、がん免疫療法増強剤と称することができる。したがって、本発明には、「リゾリン脂質受容体を活性化する物質を有効成分とし、腫瘍領域の一部または全体への白血球の浸潤を生じさせるまたは促進させる作用を有し、がん免疫療法と組み合わせて使用することを特徴とするがん免疫療法増強剤」が含まれる。
本発明の剤は、上記以外のがん治療薬と組み合わせて使用することができる。本発明の剤による腫瘍免疫活性化作用を組み合わせることにより、がん治療薬本来の抗がん作用を増強できると考えられる。また、がん治療薬の使用量を減らすことにより、副作用を低減できると考えられる。さらに、がん治療薬の使用量低減は医療費削減等の社会的要請にも適うものである。
がん治療薬は特に限定されないが、例えば化学療法剤、ホルモン療法剤であってもよい。これらのがん治療薬はリポソーム製剤であってもよい。また、これらのがん治療薬は核酸医薬、抗体医薬であってもよい。
化学療法剤としては、特に限定されないが、例えばナイトロジェンマスタード、塩酸ナイトロジェンマスタード−N−オキシド、クロラムブチル、シクロフォスファミド、イホスファミド、チオテパ、カルボコン、トシル酸インプロスルファン、ブスルファン、塩酸ニムスチン、ミトブロニトール、メルファラン、ダカルバジン、ラニムスチン、リン酸エストラムスチンナトリウム、トリエチレンメラミン、カルムスチン、ロムスチン、ストレプトゾシン、ピポブロマン、エトグルシド、カルボプラチン、シスプラチン、ミボプラチン、ネダプラチン、オキサリプラチン、アルトレタミン、アンバムスチン、塩酸ジブロスピジウム、フォテムスチン、プレドニムスチン、プミテパ、リボムスチン、テモゾロミド、トレオスルファン、トロフォスファミド、ジノスタチンスチマラマー、アドゼレシン、システムスチン、ビゼレシン等のアルキル化剤;例えば、メルカプトプリン、6−メルカプトプリンリボシド、チオイノシン、メトトレキサート、ペメトレキセド、エノシタビン、シタラビン、シタラビンオクフォスファート、塩酸アンシタビン、5−FU系薬剤(例、フルオロウラシル、テガフール、UFT、ドキシフルリジン、カルモフール、ガロシタビン、エミテフール、カペシタビン等)、アミノプテリン、ネルザラビン、ロイコボリンカルシウム、タブロイド、ブトシン、フォリネイトカルシウム、レボフォリネイトカルシウム、クラドリビン、エミテフール、フルダラビン、ゲムシタビン、ヒドロキシカルバミド、ペントスタチン、ピリトレキシム、イドキシウリジン、ミトグアゾン、チアゾフリン、アンバムスチン、ベンダムスチン等の代謝拮抗剤;例えば、アクチノマイシンD、アクチノマイシンC、マイトマイシンC、クロモマイシンA3、塩酸ブレオマイシン、硫酸ブレオマイシン、硫酸ペプロマイシン、塩酸ダウノルビシン、塩酸ドキソルビシン、塩酸アクラルビシン、塩酸ピラルビシン、塩酸エピルビシン、ネオカルチノスタチン、ミスラマイシン、ザルコマイシン、カルチノフィリン、ミトタン、塩酸ゾルビシン、塩酸ミトキサントロン、塩酸イダルビシン等の抗がん性抗生物質;例えば、エトポシド、リン酸エトポシド、硫酸ビンブラスチン、硫酸ビンクリスチン、硫酸ビンデシン、テニポシド、パクリタキセル、ドセタクセル、ビノレルビン、イリノテカン、塩酸イリノテカン等の植物由来抗がん剤などが挙げられる。
ホルモン療法剤としては、特に限定されないが、例えばホスフェストロール、ジエチルスチルベストロール、クロロトリアニセン、酢酸メドロキシプロゲステロン、酢酸メゲストロール、酢酸クロルマジノン、酢酸シプロテロン、ダナゾール、アリルエストレノール、ゲストリノン、メパルトリシン、ラロキシフェン、オルメロキシフェン、レボルメロキシフェン、抗エストロゲン(例えばクエン酸タモキシフェン、クエン酸トレミフェン等)、ピル製剤、メピチオスタン、テストロラクトン、アミノグルテチイミド、LH−RHアゴニスト(例えば酢酸ゴセレリン、ブセレリン、リュープロレリン等)、ドロロキシフェン、エピチオスタノール、スルホン酸エチニルエストラジオール、アロマターゼ阻害薬(例えば塩酸ファドロゾール、アナストロゾール、レトロゾール、エキセメスタン、ボロゾール、フォルメスタン等)、抗アンドロゲン(例えばフルタミド、ビカルタミド、ニルタミド等)、5α−レダクターゼ阻害薬(例えばフィナステリド、エプリステリド等)、副腎皮質ホルモン系薬剤(例えばデキサメタゾン、プレドニゾロン、ベタメタゾン、トリアムシノロン等)、アンドロゲン合成阻害薬(例えばアビラテロン等)などが挙げられる。
本発明の剤と、がん免疫療法に用いる薬剤またはその他のがん治療薬とを組み合わせて使用する場合、これらを投与対象に対して同時に投与してもよいし、時間差をおいて投与してもよい。本明細書において「組み合わせて使用する」とは、2以上の薬剤の適用時期が重複していることを意味し、同時に投与することを要するものではない。組み合わせ方は特に限定されず、一種または複数の本発明の剤と、一種または複数のがん免疫療法に用いる薬剤またはその他のがん治療薬をどのように組み合わせて使用してもよい。がん免疫療法に用いる薬剤またはその他のがん治療薬の投与量は、臨床上用いられている投与量に準ずればよく、投与対象、投与対象の年齢および体重、症状、投与時間、剤形、投与方法、組み合わせ等により適宜選択することができる。
本発明には、以下の各発明も含まれる。
哺乳動物に対してリゾリン脂質受容体を活性化する物質を投与することを特徴とする腫瘍領域全体への白血球の浸潤を促進させる方法。
腫瘍領域全体への白血球浸潤促進に使用するためのリゾリン脂質受容体を活性化する物質。
腫瘍領域全体への白血球の浸潤を促進させる白血球浸潤促進剤を製造するためのリゾリン脂質受容体を活性化する物質の使用。
哺乳動物に対してリゾリン脂質受容体を活性化する物質を投与することを特徴とする腫瘍免疫活性化方法。
腫瘍免疫活性化に使用するためのリゾリン脂質受容体を活性化する物質。
腫瘍免疫活性化剤を製造するためのリゾリン脂質受容体を活性化する物質の使用。
リゾリン脂質受容体を活性化する物質を有効成分とするがん治療薬。
哺乳動物に対してリゾリン脂質受容体を活性化する物質を投与することを特徴とするがん治療方法。
がん治療に使用するためのリゾリン脂質受容体を活性化する物質。
がん治療薬を製造するためのリゾリン脂質受容体を活性化する物質の使用。
がん免疫療法を受けているがん患者に対して、リゾリン脂質受容体を活性化する物質を投与することを特徴とするがん免疫療法を増強する方法。
がん免疫療法の増強に使用するためのリゾリン脂質受容体を活性化する物質。
がん免疫療法増強剤を製造するためのリゾリン脂質受容体を活性化する物質の使用。
以下、参考例および実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。なお、特に断りのない限り、%は質量%を意味する。
〔参考例1:LPA投与による腫瘍血管の構造変化〕
マウスがん細胞株をマウス皮下に移植して腫瘍を形成させた後にLPAまたはLPA誘導体を投与し、これらが血管に対してどのような構造的変化を誘導するかを観察した。
(1)実験方法
マウスがん細胞株としてLewis肺癌細胞株(以下、「LLC細胞」という。)を用いた。8週齢のC57BL/6NCrSlcマウス(♀、SLC社)の皮下に、LLC細胞(1×10個/100μL・PBS/匹)を注射した。
LPAとして18:1LPA(Avanti POLAR LIPIDS社)を使用した。LPA誘導体としてVPC31144S(N-{(1S)-2-Hydroxy-1-[(Phosphonooxy) Methyl]Ethyl}(9Z) Octadec-9-enamide)を使用した。LPAおよびVPC31144Sは、それぞれ50%エタノールを用いて10mMのストック溶液を調製し、−30℃で保存した。凍結保存ストック溶液を使用時に解凍し、超音波洗浄機(エスエヌディ社)で1分間細分化した後、PBSで3mg/kg/100μLとなるように投与用溶液を用時調製した。
LLC細胞移植後9日目に、腫瘍体積(長径×短径×高さ×0.5)が60〜80mmになったマウスを選択し、試験に供した。コントロール群、LPA群およびVPC31144S群の3群を設け、1群あたり3匹のマウスを用いた。群分け後、LPA群およびVPC31144S群のマウスにLPAまたはVPC31144Sを3mg/kg/100μLの用量で腹腔内投与した。コントロール群のマウスにはPBS100μLを腹腔内投与した。投与は1日1回5日間連続で行った。投与開始6日後にマウスから腫瘍を摘出した。摘出した腫瘍を4%パラホルムアルデヒド(PFA)/PBSに浸漬し、4℃で一晩振盪して固定した。固定終了後、冷PBS(4℃)で腫瘍を洗浄した。洗浄は6時間行い、30分毎に新しいPBSに交換した。その後、腫瘍を15%スクロース/PBSに浸漬し、4℃で3時間振盪した。次に、腫瘍を30%スクロース/PBSに浸漬し、4℃で3時間振盪した。続いて、腫瘍をO.C.T.コンパウンド(Tissue−Tek社)に包埋し、−80℃で3日以上冷凍した。
O.C.T.コンパウンドで包埋した腫瘍を、クライオスタット(LEICA社)で厚さ40μmの切片にスライスした。スライドガラス上に切片を載せ、ドライヤーで2時間風乾した。切片の周りをリキッドブロッカーで囲い、スライド染色バットにスライドガラスをセットし、PBSを用いて室温で10分間洗浄することによりO.C.T.コンパウンドを洗い流した。4%PFA/PBSを用いて室温で10分間後固定を行い、PBSを用いて室温で10分間洗浄を行った。ブロッキング溶液(5% normal goat serum/1% BSA/2% skim milk/PBS)を切片上に滴下し、室温で20分間ブロッキングを行った。1次抗体には、抗マウスCD31抗体であるPurified Hamster Anti−PECAM−1(MILLIPORE社:MAB1398Z)を用い、ブロッキング溶液で200倍希釈して切片上に滴下し、4℃で一晩反応させた。Tween20を含むPBS(PBST)で10分間の洗浄を5回行い、さらにPBSで10分間洗浄を行った。2次抗体には、Alexa Fluor 488 Goat Anti−Hamster IgG(Jackson ImmunoResearch Labolatories社)を用い、ブロッキング溶液で400倍希釈して切片に滴下し、2時間遮光で反応させた。PBSTで10分間の洗浄を5回行い、Vectashild(Vector Laboratories Inc.社)を数滴落とし、カバーガラスで封入した。作製した組織標本を共焦点レーザー顕微鏡(LEICA社)にて観察し、写真撮影を行った。
(2)結果
結果を図1に示した。(A)はコントロール群の代表的な写真であり、(B)はLPA群の代表的な写真である。各写真の右下の枠内は、腫瘍の中央部の拡大像である。血管内皮細胞が緑色蛍光に染色され、写真では白く描出されている。(A)では網目構造が疎であり、中心部の血管が不連続になっていることが観察された。一方(B)では、血管同士のネットワークが構築され、途切れのない網状構造が観察された。結果を示していないが、VPC31144S群もLPA群と同様に血管同士のネットワークが構築され、途切れのない網状構造が観察された。また、がん細胞株としてLLC細胞以外のcolon26大腸がん細胞やB16メラノーマ細胞を用いた実験においても同様の結果が得られた。
〔参考例2:スフィンゴシン−1−リン酸(以下、「S1P」という。)投与による腫瘍血管の構造変化〕
LPA以外のリゾリン脂質であるS1Pを用いて、LPAと同様に腫瘍血管のネットワーク構築が誘導されるかどうかを観察した。
(1)実験方法
参考例1と同じ方法で8週齢のC57BL/6NCrSlcマウス(♀、SLC社)の皮下にLLC細胞を移植した。S1P(Avanti POLAR LIPIDS社)はPBSで10mMとなるように調製し、これをストック溶液として−30℃で保存した。凍結保存ストック溶液を使用時に解凍し、超音波洗浄機(エスエヌディ社)で1分間細分化した後、PBSで0.3mg/kg/100μLとなるように投与用S1P溶液を用時調製した。
LLC細胞移植後9日目のマウス(腫瘍体積が60〜80mmになった個体)を実験に供し、コントロール群とS1P群の2群に分けた(n=3)。群分け当日から3日間連続で、S1P群のマウスにS1Pを0.3mg/kg/100μLの用量で1日1回、尾静脈内に投与した。コントロール群のマウスにはS1Pに代えてPBS(100μL)を尾静脈内に投与した。最終投与の24時間後にマウスから腫瘍を摘出し、参考例1と同じ方法で腫瘍血管の組織標本を作製した。共焦点レーザー顕微鏡(LEICA社)にて組織標本を観察し、写真撮影を行った。
(2)結果
結果を図2に示した。(A)はコントロール群の代表的な写真であり、(B)はS1P群の代表的な写真である。LPAを投与した場合と同様に、S1Pを投与した場合も腫瘍血管のネットワーク構築が誘導されることが明らかになった。この結果から、腫瘍血管のネットワーク構築を誘導して正常化させることができるのはLPAに限定されず、他のリゾリン脂質を用いても同じ効果を奏することが判明した。
〔参考例3:LPA投与後の腫瘍血管内腔の構造的変化〕
(1)実験方法
参考例1と同じ方法で8週齢のC57BL/6NCrSlcマウス(♀、SLC社)の皮下にLLC細胞を移植した。また、参考例1と同じ方法で投与用のLPAを調製した。LLC細胞移植後9日目のマウス(腫瘍体積が60〜80mmになった個体)を実験に供し、コントロール群とLPA群の2群に分けた(n=3)。群分け後、LPA(3mg/kg/100μL)またはPBS(100μL)を腹腔内投与した。LPAまたはPBS投与の24時間後に、ペントバルビタール(共立製薬株式会社)麻酔下で、マウスを潅流固定した。固定液には、2%ホルムアルデヒドおよび2.5%グルタールアルデヒドを含む0.1Mリン酸緩衝液(pH7.4)を用いた。還流固定後、腫瘍を摘出し、潅流に用いたものと同じ固定液に浸漬して4℃で一晩振盪した。さらに1%四酸化オスミウムおよび0.5%フェロシアンカリウムを含む0.1Mリン酸緩衝液(pH7.4)に腫瘍を浸漬して固定した。濃度上昇系列エタノールで脱水し、t−ブチルアルコールに置換して凍結乾燥を行った。凍結乾燥後、四酸化オスミウムを蒸着し、日立ハイテク製の走査型電子顕微鏡S−4800で、血管内腔面を観察した。
(2)結果
結果を図3に示した。(A)はコントロール群の代表的な写真であり、(B)はLPA群の代表的な写真である。コントロール群の血管内腔面には糸状仮足を伸ばしたような歪な構造が観察されたが、LPA群の血管内腔は非常に平滑な構造が観察された。この結果から、LPAを投与することにより腫瘍内の血液の循環が改善することが予想された。
〔参考例4:LPA投与後の腫瘍血管から腫瘍組織への薬剤送達の改善〕
従来から知られているように、腫瘍内は血流が乏しいことに加え、血管透過性が過剰な亢進状態にある。そのため、最終的に腫瘍間質圧を増加させ、腫瘍間質内と血管内の浸透圧の差がなくなり、血管内腔から腫瘍組織内への物質の移動が困難となっている。LPA投与後に腫瘍内の血管網が密に構築され、血管内腔も平滑になることが明らかになったため、LPA投与後の腫瘍血管では薬剤の透過性が改善していることが予想された。そこで、LPA投与後の腫瘍における薬剤の透過性を確認するために、以下の実験を行った。
(1)実験方法
参考例1と同じ方法で8週齢のC57BL/6NCrSlcマウス(♀、SLC社)の皮下にLLC細胞を移植した。また、参考例1と同じ方法で投与用のLPAを調製した。LLC細胞移植後11日目に、腫瘍体積が100〜120mmになったマウスを選択し、コントロール群とLPA群の2群に分けた(n=3)。群分け後、LPA(3mg/kg/100μL)またはPBS(100μL)を腹腔内投与した。LPAまたはPBS投与の24時間後に、ペントバルビタール麻酔下で、ドキソルビシン(ドキソルビシン塩酸塩、日本化薬株式会社)を1.5mg/kgの用量でマウスに尾静脈内に投与した。ドキソルビシンは生理食塩水(大塚製薬株式会社)に溶解し、1.5mg/kgとなるように希釈した後、超音波洗浄機で1分間細分化を行ってから投与した。なお、ドキソルビシンは蛍光を発する抗癌剤であり、励起波長480nm、測定波長575nmで観察することが可能な化合物である。ドキソルビシン投与の20分後にマウスから腫瘍を摘出し、切片の厚さを20μmに変更した以外は実施例1と同じ方法で腫瘍の組織標本を作製した。共焦点レーザー顕微鏡(LEICA社)にて観察し、写真撮影を行った。
(2)結果
結果を図4に示した。(A)はコントロール群の代表的な写真であり、(B)はLPA群の代表的な写真である。図4中、矢印はドキソルビシンの赤色蛍光シグナルを示す。血管内皮細胞は、抗CD31抗体により緑色蛍光を発している。コントロール群ではドキソルビシンの腫瘍内移行はほとんど観察されなかったが、LPA群の腫瘍においては、ドキソルビシンが血管内から腫瘍深部に送達されていることが観察された。
〔実施例1:LPA投与による腫瘍内免疫細胞の変化〕
マウスがん細胞株をマウス皮下に移植して腫瘍を形成させた後にLPAを投与し、腫瘍内の免疫細胞がどのように変化するかを観察した。
(1)実験方法
上記参考例1で作製した腫瘍の切片を、抗CD4抗体および抗CD8抗体で免疫染色した。1次抗体には、抗マウスCD31抗体であるPurified Hamster Anti−PECAM−1(MILLIPORE社)、PEラベルされた抗マウスCD4抗体(Pharmingen社)およびFITCラベルされた抗マウスCD8抗体(Pharmingen社)を用いた。2次抗体には、Alexa Fluor 647 conjugated Anti・Armenian Hamster IgGを用いた。上記参考例1と同じ手順で免疫染色を行い、共焦点レーザー顕微鏡(LEICA社)にて観察し、写真撮影を行った。
(2)結果
結果を図5に示した。左列が抗CD31抗体で染色した写真であり、血管部分が青色蛍光に染色され、写真では白く描出されている。中央列が抗CD4抗体で染色した写真であり、CD4陽性細胞が赤色蛍光に染色され、写真では白く描出されている。右列が抗CD8抗体で染色した写真であり、CD8陽性細胞が緑色蛍光に染色され、写真では白く描出されている。上段がコントロール群、下段がLPA群である。図5の各写真の点線は腫瘍の辺縁を示している。図5から明らかなように、コントロール群では、血管の不連続性が観察され(左)、CD4陽性細胞が腫瘍の辺縁部に少数存在したが中央部には存在せず(中央)、CD8陽性細胞は中心部にも辺縁部にも存在しなかった(右)。一方LPA群では、連続した血管が観察され(左)、腫瘍の中心部にもCD4陽性細胞が観察され(中央)、CD8陽性細胞は腫瘍の全体で観察された(右)。この結果から、LPA投与により腫瘍内の腫瘍免疫応答が改善し、腫瘍細胞の細胞死を誘導できる状態になり得ることが示唆された。
〔実施例2:LPA投与がマウス皮下に形成した腫瘍に及ぼす影響〕
LPA投与により、免疫細胞を腫瘍の中心部に浸潤させることができたため、LPAが腫瘍の増大を抑制できるか否かを観察した。
3−1 LLC細胞由来の腫瘍に及ぼす影響
(1)実験方法
参考例1と同じ方法で8週齢のC57BL/6NCrSlcマウス(♀)の皮下にLLC細胞(1×10個/100μL・PBS/匹)を注射した。また、参考例1と同じ方法で投与用のLPAを調製した。抗癌剤として5−FU(協和発酵キリン社)を使用した。5−FUの調製には生理食塩水(大塚製薬株式会社)を用いた。LLC細胞移植後7日目に、腫瘍体積が30〜50mmになったマウスを選択し、試験に供した。コントロール群、5−FU群およびLPA群の3群を設けた(n=3)。群分け後、LPA(3mg/kg/100μL)または5−FU(100mg/kg/100μL)またはPBS(100μL)を腹腔内投与した。LPAまたはPBSは1日1回7日間連日投与した。5−FUは週1回、合計2回(移植後7日目と14日目)に投与した。投与開始後経時的に腫瘍サイズを測定した。腫瘍体積は、長径×短径×高さ×0.5で計算した。
(2)結果
結果を図6に示した。図6から明らかなように、5−FU群は顕著に腫瘍の増大を抑制したが、LPA群もコントロールと比較して腫瘍の増大を抑制することが示された。
3−2 メラノーマ細胞由来の腫瘍に及ぼす影響
(1)実験方法
マウスメラノーマ由来細胞株のB16−BL6細胞を用いた。8週齢のC57BL/6NCrSlcマウス(♀)の皮下に、B16−BL6細胞(1×10個/100μL・PBS/匹)を注射した。B16−BL6細胞移植後7日目に、腫瘍体積が30〜50mmになったマウスを選択し、試験に供した。以後の実験方法は、上記3−1と同じである。
(2)結果
結果を図7に示した。図7から明らかなように、メラノーマ細胞由来の腫瘍に対するLPAの腫瘍増大抑制効果は、5−FUの効果に匹敵するものであることが示された。
LPAは腫瘍血管を破綻させず、がんの低酸素を誘導しないので、がん細胞の悪性化を誘導しないと考えられる。そして、上記の参考例および実施例の知見により、LPAは腫瘍領域全体への免疫細胞の浸潤を促進し、細胞障害性T細胞等の免疫細胞による腫瘍細胞に対する殺細胞効果を増強させることができること、また、腫瘍内部を正常組織のようにCD4陽性免疫細胞によるサーベイランスが機能する状態にできることが明らかになった。さらに、LPAは正常組織の血管に障害を与えないので、副作用のリスクは非常に低い。このようなLPAの機能はがん種によって異なることなく生じると考えられるため、LPAはどのようながん種にも適用可能であり、特に、血流の乏しいがん(膵臓がん等)に対して顕著な効果が期待できる。
〔実施例3:LPAと免疫チェックポイント阻害剤の併用による抗腫瘍効果の増強〕
LPA投与により多くの免疫細胞を腫瘍内に浸潤させることができたため、LPAと免疫チェックポイント阻害剤の併用効果を解析した。
(1)実験方法
参考例1と同じ方法で8週齢のC57BL/6NCrSlcマウス(♀)の皮下にLLC細胞(1×10個/100μL・PBS/匹)を注射した。LLC細胞移植後6日目に、腫瘍体積(長径×短径×高さ×0.5)が30〜40mmになったマウスを選択し、4グループ(コントロール群、LPA投与群、抗PD−1抗体投与群、LPAと抗PD−1抗体併用投与群)に分けて試験に供した。LPA投与群、LPAと抗PD−1抗体併用投与群は、腫瘍細胞移植後6日目より20日目までLPA(3mg/kg/100μL)の腹腔内投与を連日行った。抗PD−1抗体投与群、PAと抗PD−1抗体併用投与群に対して腫瘍細胞移植後7日目に抗PD−1抗体療法を開始した。具体的にはanti−mouse PD−1 antibody(Clone: RMP1-14、BioXcell社、BE0146)を100μg/mouseの投与量で、腫瘍細胞移植後7、9、11、14、16および18日目に腹腔内投与した。コントロール群およびLPA投与群にはisotype control antibody(Clone: 2A3、BioXcell社、BE0089)を100μg/mouseの投与量で、抗PD−1抗体の投与と同じスケジュールで投与した。腫瘍体積は経時的に21日目まで測定した。
(2)結果
結果を図8に示した。(A)がLPA投与群とコントロール群の結果、(B)が抗PD−1抗体投与群とコントロール群の結果、(C)がLPAと抗PD−1抗体併用投与群とコントロール群の結果である。本実施例3の投与スケジュールでは、(A)LPAの単独投与および(B)抗PD−1抗体の単独投与では、コントロール群と比較してわずかに腫瘍の増大を抑制したが、(C)LPAと抗PD−1抗体の併用投与では、顕著に腫瘍の増大を抑制した。
抗PD−1抗体を始めとする免疫チェックポイント阻害剤は、抗腫瘍効果をもたらすことが期待されている薬剤であるが、この薬剤単独の効果は低いことが判明してきている。その原因として、仮に免疫チェックポイント阻害薬がリンパ球の抗腫瘍活性を誘導したとしても、腫瘍内にリンパ球が侵入できなければその効果を発揮できないからであると考えられる。実施例3の結果は、LPAがLPAR4を介して腫瘍血管からの免疫細胞の腫瘍内浸潤を旺盛にすることにより、併用する免疫チェックポイント阻害剤の効果を十分に発揮させることができることを証明したものと考えられた。
なお本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。

Claims (3)

  1. リゾリン脂質受容体を活性化する物質を有効成分とし、腫瘍領域の一部または全体への白血球の浸潤を生じさせるまたは促進させる作用を有し、がん免疫療法と組み合わせて使用する白血球浸潤促進剤であって、リゾリン脂質受容体を活性化する物質がリゾホスファチジン酸またはスフィンゴシン−1−リン酸であり、がん免疫療法が、抗CTLA−4抗体、PD−1遮断薬、抗PD−1抗体、PD−L1遮断薬および抗PD−L1抗体からなる群より選択される免疫チェックポイント阻害剤を用いる免疫抑制解除療法であることを特徴とする白血球浸潤促進剤。
  2. 免疫チェックポイント阻害剤が、PD−1遮断薬、抗PD−1抗体、PD−L1遮断薬および抗PD−L1抗体からなる群より選択される請求項1に記載の白血球浸潤促進剤。
  3. 免疫チェックポイント阻害剤が、抗PD−1抗体である請求項2に記載の白血球浸潤促進剤。
JP2020004902A 2015-09-29 2020-01-16 白血球浸潤促進剤および腫瘍免疫活性化剤 Ceased JP2020073572A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015191202 2015-09-29
JP2015191202 2015-09-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017543597A Division JP6652264B2 (ja) 2015-09-29 2016-09-29 白血球浸潤促進剤および腫瘍免疫活性化剤

Publications (1)

Publication Number Publication Date
JP2020073572A true JP2020073572A (ja) 2020-05-14

Family

ID=58423942

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017543597A Active JP6652264B2 (ja) 2015-09-29 2016-09-29 白血球浸潤促進剤および腫瘍免疫活性化剤
JP2020004902A Ceased JP2020073572A (ja) 2015-09-29 2020-01-16 白血球浸潤促進剤および腫瘍免疫活性化剤

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017543597A Active JP6652264B2 (ja) 2015-09-29 2016-09-29 白血球浸潤促進剤および腫瘍免疫活性化剤

Country Status (7)

Country Link
US (1) US11033559B2 (ja)
EP (1) EP3357512A4 (ja)
JP (2) JP6652264B2 (ja)
CN (1) CN108136020A (ja)
AU (1) AU2016329670B2 (ja)
CA (1) CA2999691C (ja)
WO (1) WO2017057643A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017284499A1 (en) * 2016-06-17 2019-01-31 Osaka University Intratumoral vein formation promoter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105922A (ja) * 1981-12-17 1983-06-24 Dai Ichi Seiyaku Co Ltd 白血病治療剤
JPS63152327A (ja) * 1987-11-20 1988-06-24 Toyama Chem Co Ltd 脂肪乳剤から成る溶血防止用組成物を含有する製剤
JPH08500816A (ja) * 1992-04-03 1996-01-30 ザ・バイオメンブレイン・インスティテュート スフィンゴシン−1−ホスフェートその誘導体および擬態物による細胞能動性の阻害方法、並びにスフィンゴシン−1−ホスフェートおよびその誘導体の合成方法
US5565439A (en) * 1992-11-24 1996-10-15 The Procter & Gamble Company Methods of using lysophosphatidic acid for treating hyperproliferative conditions
JP2005530488A (ja) * 2002-03-11 2005-10-13 ベーイーオー・メリュー invitroで単球を成熟樹状細胞に分化させるためのL−α−リゾホスファチジルコリンの使用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2046092B (en) * 1979-03-05 1983-11-02 Toyama Chemical Co Ltd Pharmaceutical composition containing a lysophospholid and a phospholipid
KR100404072B1 (ko) 2001-03-12 2003-11-03 주식회사 두산 광범위 피부질환 치료용 조성물
US20030036531A1 (en) * 2001-05-16 2003-02-20 Wisconsin Alumni Research Foundation Use of lysophospholipids to inhibit mammalian phospholipase D
FR2836828A1 (fr) * 2002-03-11 2003-09-12 Bio Merieux Utilisation de l-alpha-lysophosphatidylcholine pour obtenir la differenciation de monocytes en cellules dendritiques matures in vitro
ITMI20101872A1 (it) * 2010-10-13 2012-04-14 Vincenzo Cinosi Uso di fosfatidilcolina nel trattamento di tumori
CN103961699B (zh) * 2013-02-05 2018-11-06 日东电工株式会社 经皮给予用wt1肽癌症疫苗组合物
AU2015242791B2 (en) * 2014-04-04 2017-08-17 Osaka University Drug Delivery Enhancer Comprising Substance For Activating Lysophospholipid Receptors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105922A (ja) * 1981-12-17 1983-06-24 Dai Ichi Seiyaku Co Ltd 白血病治療剤
JPS63152327A (ja) * 1987-11-20 1988-06-24 Toyama Chem Co Ltd 脂肪乳剤から成る溶血防止用組成物を含有する製剤
JPH08500816A (ja) * 1992-04-03 1996-01-30 ザ・バイオメンブレイン・インスティテュート スフィンゴシン−1−ホスフェートその誘導体および擬態物による細胞能動性の阻害方法、並びにスフィンゴシン−1−ホスフェートおよびその誘導体の合成方法
US5565439A (en) * 1992-11-24 1996-10-15 The Procter & Gamble Company Methods of using lysophosphatidic acid for treating hyperproliferative conditions
JP2005530488A (ja) * 2002-03-11 2005-10-13 ベーイーオー・メリュー invitroで単球を成熟樹状細胞に分化させるためのL−α−リゾホスファチジルコリンの使用

Also Published As

Publication number Publication date
CA2999691C (en) 2020-07-14
CA2999691A1 (en) 2017-04-06
AU2016329670A1 (en) 2018-05-10
EP3357512A4 (en) 2019-05-29
EP3357512A1 (en) 2018-08-08
AU2016329670B2 (en) 2019-12-12
US11033559B2 (en) 2021-06-15
WO2017057643A1 (ja) 2017-04-06
JP6652264B2 (ja) 2020-02-19
CN108136020A (zh) 2018-06-08
JPWO2017057643A1 (ja) 2018-08-16
US20180264015A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP6573329B2 (ja) リゾリン脂質受容体を活性化する物質を含有する薬剤送達促進剤
US20140322242A1 (en) Materials and methods for the prevention and treatment of cancer
AU2017326569B2 (en) Combinations including ABX196 for the treatment of cancer
US20170340670A1 (en) CD11 B[low] MACROPHAGES AND CONDITIONED MEDIA THEREOF FOR TREATING CANCER AND/OR FIBROSIS
JP2020073572A (ja) 白血球浸潤促進剤および腫瘍免疫活性化剤
WO2017082186A1 (ja) Npr-aアゴニストの新規用途
JP7535285B2 (ja) 腫瘍関連マクロファージ賦活化剤
WO2017217517A1 (ja) 腫瘍内静脈形成促進剤

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20210727