JP2020072109A - Parallel adjusting unit, pickup device, mounting device, parallel adjusting method, pickup method, and mounting method - Google Patents

Parallel adjusting unit, pickup device, mounting device, parallel adjusting method, pickup method, and mounting method Download PDF

Info

Publication number
JP2020072109A
JP2020072109A JP2018202718A JP2018202718A JP2020072109A JP 2020072109 A JP2020072109 A JP 2020072109A JP 2018202718 A JP2018202718 A JP 2018202718A JP 2018202718 A JP2018202718 A JP 2018202718A JP 2020072109 A JP2020072109 A JP 2020072109A
Authority
JP
Japan
Prior art keywords
light receiving
light
unit
linear laser
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018202718A
Other languages
Japanese (ja)
Other versions
JP6899364B2 (en
Inventor
寺田 勝美
Katsumi Terada
勝美 寺田
晴 孝志
Takashi Harai
孝志 晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2018202718A priority Critical patent/JP6899364B2/en
Priority to CN201980069132.0A priority patent/CN112868092B/en
Priority to KR1020217015928A priority patent/KR20210080528A/en
Priority to PCT/JP2019/041642 priority patent/WO2020090605A1/en
Priority to TW108138789A priority patent/TWI814927B/en
Publication of JP2020072109A publication Critical patent/JP2020072109A/en
Application granted granted Critical
Publication of JP6899364B2 publication Critical patent/JP6899364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool

Abstract

To provide a device performing parallel adjustment accurately, without any hassle.SOLUTION: A parallel adjusting unit includes a first light emission part and a second light emission part placed at an interval in a first direction, and capable of emitting linear laser light toward opposite second direction, a first light receiving part capable of receiving linear laser light LB21 emitted from the first light emission part and a second light receiving part capable of receiving linear laser light LB22 emitted from the second light emission part, placed at an interval in a second direction, a drive part for driving a second object part (nozzle 12 of a head 11) and adjusting parallel of a first object part (a micro LED1 placed on a substrate 2) and a second object part, and a control section for controlling the drive part on the basis of the light receiving length in the linear direction of the linear laser light received by the first and second light receiving parts. The first and second light emission parts are configured to emit linear laser light in a direction substantially intersecting the opposite direction, toward the first and second light emission parts, in a state where the first and second object parts are substantially facing each other.SELECTED DRAWING: Figure 2

Description

本発明は、マイクロLED等の微小部品を複数同時にピックアップ又は実装する際の平行度を調整する平行度調整装置、及び平行度調整方法であり、また、それを用いたピックアップ装置及び実装装置、及びピックアップ方法及び実装方法に関するものである。   The present invention is a parallelism adjusting device and a parallelism adjusting method for adjusting parallelism when picking up or mounting a plurality of micro components such as micro LEDs at the same time, and a pickup device and a mounting device using the parallelism adjusting device, and The present invention relates to a pickup method and a mounting method.

半導体チップは、コスト低減のために小型化が進み、高速・高精度に実装するための取組みが行われている。特に、ディスプレイに用いられるLEDはマイクロLEDと呼ばれる50μm×50μm以下のLEDチップを数μmの精度で高速に実装することが求められている。マイクロLEDは、キャリア基板上にマトリックスに複数並べられており、これの少なくとも一部を同時にピックアップし、回路基板上に同時に実装することが行われている。その際、複数のマイクロLEDとピックアップするヘッド面、又はヘッドが保持している複数のマイクロLEDと実装対象の回路基板との平行度を正確に調整することが実装精度およびマイクロLEDの転写の成功率を確保する上で極めて重要となっている。   Semiconductor chips are becoming smaller in order to reduce costs, and efforts are being made to mount them at high speed and with high accuracy. In particular, for LEDs used in displays, it is required to mount an LED chip of 50 μm × 50 μm or less called a micro LED at high speed with an accuracy of several μm. A plurality of micro LEDs are arranged in a matrix on a carrier substrate, and at least a part of them is picked up at the same time and mounted on a circuit board at the same time. At that time, it is necessary to accurately adjust the parallelism between the plurality of micro LEDs and the head surface for picking up, or the plurality of micro LEDs held by the head and the circuit board to be mounted. It is extremely important in securing the rate.

特許文献1には、予めヘッド自身の平行度を治具により調整した後、ヘッド端部に搭載した3つのレーザ変位計からレーザ光を実装対象の回路基板に照射して距離を測定して、ヘッドと回路基板との平行度を調整するする構成が記載されている。   In Patent Document 1, after the parallelism of the head itself is adjusted by a jig in advance, laser light is emitted from three laser displacement gauges mounted on the end of the head to a circuit board to be mounted to measure the distance, A configuration for adjusting the parallelism between the head and the circuit board is described.

特許文献1:特開2018−32740号公報 Patent Document 1: JP-A-2018-32740

しかしながら、特許文献1記載のものは、予めヘッド自身の平行度を治具により調整する必要があって手間がかかるとともに、距離を測定する対象物が透明体であれば正確に測定することが困難であり、正確に平行度調整ができないという問題があった。   However, in the device described in Patent Document 1, it is necessary to adjust the parallelism of the head itself by a jig in advance, which is troublesome, and it is difficult to perform accurate measurement if the object whose distance is to be measured is a transparent body. However, there is a problem that the parallelism cannot be adjusted accurately.

本発明は、上記問題点を解決して、手間がかからず、正確に平行度調整することを課題とする。 SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to accurately adjust the parallelism without any trouble.

上記課題を解決するために本発明は、第1対象部と第2対象部との平行度を調整する平行度調整装置であって、
第1方向において間隔をおいて配置され、対向する第2方向に向けて線状に線状レーザ光を発光可能な第1発光部及び第2発光部と、
前記第2方向において間隔をおいて配置され、前記第1発光部から発光された線状レーザ光を受光可能な第1受光部、及び前記第2発光部から発光された線状レーザ光を受光可能な第2受光部と、
前記第1対象部又は前記第2対象部を駆動させて前記第1対象部と前記第2対象部との平行度を調整する駆動部と、
前記第1受光部及び前記第2受光部が受光した線状レーザ光における線状方向の受光長さに基づいて前記駆動部を制御する制御部と、を備え、
前記第1発光部及び前記第2発光部は、前記第1対象部と前記第2対象部とを略対向させた略対向状態で、前記第1受光部及び前記第2受光部に向けて、前記略対向方向と交差する方向の線状レーザ光を発光させることを特徴とする平行度調整装置を提供するものである。
In order to solve the above problems, the present invention is a parallelism adjusting device for adjusting the parallelism between a first target portion and a second target portion,
A first light emitting portion and a second light emitting portion, which are arranged at intervals in the first direction and are capable of linearly emitting linear laser light toward the opposing second direction;
A first light receiving portion, which is arranged at an interval in the second direction and is capable of receiving the linear laser light emitted from the first light emitting portion, and receives the linear laser light emitted from the second light emitting portion. A possible second light receiver,
A drive unit that drives the first target unit or the second target unit to adjust the parallelism between the first target unit and the second target unit;
A control unit that controls the drive unit based on a light receiving length in a linear direction in the linear laser light received by the first light receiving unit and the second light receiving unit,
The first light emitting unit and the second light emitting unit are in a substantially facing state in which the first target unit and the second target unit are substantially facing each other, toward the first light receiving unit and the second light receiving unit, A parallelism adjusting device is provided which emits linear laser light in a direction intersecting with the substantially opposite direction.

この構成により、手間がかからず、正確に平行度調整することができる。 With this configuration, it is possible to accurately adjust the parallelism without any trouble.

前記第1方向及び前記第2方向と交差する第3方向に間隔をおいて配置され、対向する第4方向に向けて線状に線状レーザ光を発光可能な第3発光部及び第4発光部と、 前記第4方向において間隔をおいて配置され、前記第3発光部から発光された線状レーザ光を受光可能な第3受光部、及び前記第4発光部から発光された線状レーザ光を受光可能な第4受光部と、を備え、 前記第3発光部及び前記第4発光部は、前記第1対象部と前記第2対象部とを略対向させた略対向状態で、前記第3受光部及び前記第4受光部に向けて、前記略対向方向と交差する方向の線状レーザ光を発光させるとともに、 前記制御部はさらに、前記第3受光部及び前記第4受光部が受光した線状レーザ光における線状方向の受光長さに基づいて前記駆動部を制御する構成としてもよい。 A third light emitting unit and a fourth light emitting unit, which are arranged at intervals in a third direction intersecting the first direction and the second direction and are capable of linearly emitting linear laser light toward the opposing fourth direction. Section, a third light receiving section which is arranged at an interval in the fourth direction and is capable of receiving the linear laser light emitted from the third light emitting section, and a linear laser emitted from the fourth light emitting section. A fourth light receiving portion capable of receiving light, wherein the third light emitting portion and the fourth light emitting portion are in a substantially facing state in which the first target portion and the second target portion are substantially facing each other, and The control unit further causes the third light receiving unit and the fourth light receiving unit to emit linear laser light in a direction intersecting with the substantially opposite direction. The drive unit is controlled based on the light receiving length of the received linear laser light in the linear direction. It may be configured to be.

この構成により、第1、第2方向及び第3、第4方向の両方向において正確に平行度調整することができる。 With this configuration, parallelism can be accurately adjusted in both the first and second directions and the third and fourth directions.

前記制御部は、前記略対向状態において、前記第1受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さと、前記第2受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さとの差が所定値以下になるように、前記駆動部を制御するとともに、
前記略対向状態において、前記第3受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さと、前記第4受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さとの差が所定値以下になるように、前記駆動部を制御する構成としてもよい。
In the substantially opposed state, the control unit has a light receiving length in a linear direction in the linear laser light in a direction intersecting the substantially opposed direction received by the first light receiving unit, and the light received by the second light receiving unit. The drive unit is controlled so that the difference between the linear laser light in the direction intersecting the substantially opposite direction and the light receiving length in the linear direction is equal to or less than a predetermined value,
In the substantially opposed state, the light receiving length of the linear laser beam in the direction intersecting the substantially opposed direction received by the third light receiving portion and the substantially opposed direction received by the fourth light receiving portion intersect. The drive unit may be controlled so that the difference between the linear laser light in the moving direction and the light receiving length in the linear direction is equal to or less than a predetermined value.

この構成により、手間のかからない平行度調整を実現できる。 With this configuration, it is possible to realize parallelism adjustment that does not require any trouble.

前記第1対象部は基板上に複数載置された微小部品群であり、前記第2対象部は前記微小部品群の少なくとも一部をピックアップ面で同時にピックアップ可能なヘッド部である上述の平行度調整装置を用いたピックアップ装置としてもよい。 The first target portion is a group of minute components mounted on a substrate, and the second target portion is a head portion capable of simultaneously picking up at least a part of the group of minute components on a pickup surface. A pickup device using an adjusting device may be used.

この構成により、微小部品群とヘッド部との平行度を正確に調整可能なピックアップ装置とすることができる。 With this configuration, it is possible to provide a pickup device that can accurately adjust the parallelism between the minute component group and the head portion.

前記第1対象部は複数の微小部品からなる微小部品群を載置可能な回路基板であり、前記第2対象部はヘッド部のピックアップ面でピックアップしている前記微小部品群である上述の平行度調整装置を用いた実装装置としてもよい。 The first target portion is a circuit board on which a micro component group including a plurality of micro components can be mounted, and the second target portion is the micro component group picked up by the pickup surface of the head portion. A mounting device using a degree adjusting device may be used.

この構成により、回路基板と微小部品群との平行度を正確に調整可能な実装装置とすることができる。 With this configuration, it is possible to provide a mounting apparatus capable of accurately adjusting the parallelism between the circuit board and the minute component group.

また、上記課題を解決するために本発明は、第1対象部と第2対象部との平行度を調整する平行度調整方法であって、 第1方向において間隔をおいて配置された第1発光部及び第2発光部から対向する第2方向に向けて線状に線状レーザ光を発光する第1第2発光工程と、 前記第2方向において間隔をおいて配置された第1受光部及び第2受光部において、前記第1発光部から発光された線状の線状レーザ光を第1受光部が受光し、前記第2発光部から発光された線状の線状レーザ光を第2受光部が受光する第1第2受光工程と、 前記第1受光部及び前記第2受光部が受光した線状レーザ光における線状方向の受光長さに基づいて前記第1対象部又は前記第2対象部を駆動させて前記第1対象部と前記第2対象部との平行度を調整する調整工程と、を備え、 前記第1第2発光工程では、前記第1対象部と前記第2対象部とを略対向させた略対向状態で、前記第1発光部及び前記第2発光部から前記第1受光部及び前記第2受光部に向けて、前記略対向方向と交差する方向の線状レーザ光を発光させることを特徴とする平行度調整方法を提供するものである。 Further, in order to solve the above-mentioned problems, the present invention is a parallelism adjusting method for adjusting the parallelism between a first target portion and a second target portion, the first parallelism adjusting method being arranged at intervals in the first direction. A first second light emitting step of linearly emitting linear laser light from the light emitting section and the second light emitting section in a second direction facing each other; and a first light receiving section arranged at an interval in the second direction. In the second light receiving section, the first light receiving section receives the linear linear laser light emitted from the first light emitting section, and the linear linear laser light emitted from the second light emitting section is received. The 2nd light receiving part receives the 1st 2nd light receiving process, and the said 1st target part or said 1st light receiving part based on the light receiving length of the linear direction in the linear laser beam which the said 1st light receiving part and the said 2nd light receiving part received. Adjustment for driving the second target portion to adjust the parallelism between the first target portion and the second target portion. In the first second light emitting step, the first light emitting portion and the second light emitting portion are in a substantially facing state in which the first target portion and the second target portion are substantially facing each other. There is provided a parallelism adjusting method characterized in that linear laser light in a direction intersecting the substantially opposite direction is emitted toward the first light receiving portion and the second light receiving portion.

この構成により、手間がかからず、正確に平行度調整することができる。 With this configuration, it is possible to accurately adjust the parallelism without any trouble.

前記第1方向及び前記第2方向と交差する第3方向に間隔をおいて配置され、対向する第4方向に向けて線状に線状レーザ光を発光する第3第4発光工程と、 前記第4方向において間隔をおいて配置された第3受光部及び第4受光部において、前記第3発光部から発光された線状レーザ光を第3受光部が受光し、前記第4発光部から発光された線状レーザ光を第4受光部が受光する第3第4受光工程と、を備え、 前記第3第4発光工程では、前記第1対象部と前記第2対象部とを略対向させた略対向状態で、前記第3発光部及び前記第4発光部から前記第3受光部及び前記第4受光部に向けて、前記略対向方向と交差する方向の線状レーザ光を発光させるとともに、 前記調整工程ではさらに、前記第3第4受光工程で、第3受光部及び前記第4受光部が受光したレーザ光における線状方向の受光長さに基づいて前記第1対象部又は前記第2対象部を駆動させて前記第1対象部と前記第2対象部との平行度を調整する構成としてもよい。 A third fourth light emitting step, which is arranged at a distance in a third direction intersecting the first direction and the second direction and linearly emits linear laser light toward a fourth direction facing the third direction; In the third light receiving portion and the fourth light receiving portion which are arranged at intervals in the fourth direction, the third light receiving portion receives the linear laser light emitted from the third light emitting portion, and the linear light is emitted from the fourth light emitting portion. A third fourth light receiving step in which a fourth light receiving section receives the emitted linear laser light, and in the third fourth light emitting step, the first target section and the second target section are substantially opposed to each other. In the substantially opposed state, the linear laser light is emitted from the third light emitting portion and the fourth light emitting portion toward the third light receiving portion and the fourth light receiving portion in a direction intersecting with the substantially opposite direction. In addition, in the adjusting step, in the third and fourth light receiving step, the third light receiving unit and the front The parallelism between the first target section and the second target section by driving the first target section or the second target section based on the light receiving length of the laser light received by the fourth light receiving section in the linear direction. May be adjusted.

この構成により、第1、第2方向及び第3、第4方向の両方向において正確に平行度調整することができる。 With this configuration, parallelism can be accurately adjusted in both the first and second directions and the third and fourth directions.

前記調整工程では、前記略対向状態において、前記第1受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さと、前記第2受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さとの差が所定値以下になるように、前記第1対象部又は前記第2対象部を駆動するとともに、 前記略対向状態において、前記第3受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さと、前記第4受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さとの差が所定値以下になるように、前記第1対象部又は前記第2対象部を駆動する構成としてもよい。 In the adjusting step, in the substantially opposed state, the light receiving length in the linear direction of the linear laser light in the direction intersecting the substantially opposed direction received by the first light receiving unit, and the second light receiving unit receiving the light The first target portion or the second target portion is driven so that the difference between the linear laser light in the direction intersecting the substantially opposing direction and the light receiving length in the linear direction is equal to or less than a predetermined value, and In the state, the light receiving length in the linear direction of the linear laser light in the direction intersecting with the substantially opposite direction received by the third light receiving portion and the direction intersecting with the substantially opposite direction received by the fourth light receiving portion. The first target portion or the second target portion may be driven such that the difference between the linear laser light and the light receiving length in the linear direction is equal to or less than a predetermined value.

この構成により、手間のかからない平行度調整を実現できる。 With this configuration, it is possible to realize parallelism adjustment that does not require any trouble.

前記第1対象部は基板上に複数載置された微小部品群であり、前記第2対象部は前記微小部品群の少なくとも一部をピックアップ面で同時にピックアップ可能なヘッド部である上述の平行度調整方法を用いたピックアップ方法としてもよい。 The first target portion is a group of minute components mounted on a substrate, and the second target portion is a head portion capable of simultaneously picking up at least a part of the group of minute components on a pickup surface. A pickup method using an adjustment method may be used.

この構成により、微小部品群とヘッド部との平行度を正確に調整可能なピックアップ方法とすることができる。 With this configuration, it is possible to provide a pickup method capable of accurately adjusting the parallelism between the minute component group and the head portion.

前記第1対象部は複数の微小部品からなる微小部品群を載置可能な回路基板であり、前記第2対象部はヘッド部のピックアップ面でピックアップしている前記微小部品群である上述の平行度調整方法を用いた実装方法としてもよい。 The first target portion is a circuit board on which a micro component group including a plurality of micro components can be mounted, and the second target portion is the micro component group picked up by the pickup surface of the head portion. A mounting method using a degree adjusting method may be used.

この構成により、回路基板と微小部品群との平行度を正確に調整可能な実装方法とすることができる。 With this configuration, it is possible to provide a mounting method in which the parallelism between the circuit board and the minute component group can be accurately adjusted.

本発明の平行度調整装置、ピックアップ装置、実装装置、平行度調整方法、ピックアップ方法、及び実装方法により、手間がかからず、正確に平行度調整することができる。 With the parallelism adjusting device, the pickup device, the mounting device, the parallelism adjusting method, the pickup method, and the mounting method of the present invention, the parallelism can be accurately adjusted without any trouble.

本発明の実施例1におけるピックアップ方法を説明する図である。It is a figure explaining the pick-up method in Example 1 of this invention. 本発明の実施例1における平行度調整方法を説明する図であり、(a)は、平行度が調整された状態、(b)は平行度が調整されていない状態を示す。It is a figure explaining the parallelism adjusting method in Example 1 of this invention, (a) shows the state where parallelism was adjusted, (b) shows the state where parallelism is not adjusted. 本発明の実施例1における平行度調整装置を説明する側面図である。It is a side view explaining the parallelism adjusting device in Example 1 of the present invention. 本発明の実施例1における平行度調整装置を説明する上面図である。It is a top view explaining the parallelism adjusting device in Example 1 of the present invention. 本発明の実施例2における実装方法を説明する図である。It is a figure explaining the mounting method in Example 2 of this invention.

本発明の実施例1について、図1〜図4を参照して説明する。図1は、本発明の実施例1におけるピックアップ方法を説明する図である。図2は、本発明の実施例1における平行度調整方法を説明する図であり、(a)は、平行度が調整された状態、(b)は平行度が調整されていない状態を示す。図3は、本発明の実施例1における平行度調整装置を説明する側面図である。図4は、本発明の実施例1における平行度調整装置を説明する上面図である。 Example 1 of the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating a pickup method according to the first embodiment of the present invention. 2A and 2B are views for explaining the parallelism adjusting method according to the first embodiment of the present invention. FIG. 2A shows a state where the parallelism is adjusted, and FIG. 2B shows a state where the parallelism is not adjusted. FIG. 3 is a side view illustrating the parallelism adjusting device according to the first embodiment of the present invention. FIG. 4 is a top view illustrating the parallelism adjusting device according to the first embodiment of the present invention.

実施例1においては、キャリア基板2にマトリックス状に載置された複数のマイクロLED1(図1の奥行き方向にも載置されている)をヘッド11に設けた複数のノズル12(図1の奥行き方向にも設けられている)でピックアップする場合の平行度調整方法及び平行度調整装置について説明する。すなわち、実施例1においては、複数のマイクロLED1を微小部品群とする。 In the first embodiment, a plurality of nozzles 12 (depth in FIG. 1) provided on the head 11 with a plurality of micro LEDs 1 (also mounted in the depth direction in FIG. 1) mounted in a matrix on the carrier substrate 2 are used. A parallelism adjusting method and a parallelism adjusting device in the case of picking up in the (direction is also provided) will be described. That is, in the first embodiment, the plurality of micro LEDs 1 are used as a minute component group.

ヘッド11に設けた各ノズルはポリマー系樹脂で構成され、粘着性を有しており、マイクロLED1のXY方向に配列ピッチのN倍のピッチでアレイ状にピックアップ可能に設けられている。ここで、マイクロLED1のXY方向に配列ピッチのN倍のピッチでピックアップするとは、実装対象の回路基板にマイクロLED1を実装する場合に回路基板のディスプレイの画素ピッチに配列することを可能とするためである。つまり、マイクロLED1はキャリア基板2からN回ピックアップすると配列ピッチのN倍=画素ピッチとすることでピッチ変更なしに所定の場所に無駄なく回路基板に実装することができる。同様にR、G、Bの各色を1画素として、それぞれのキャリア基板から回路基板に実装することができる。 Each nozzle provided in the head 11 is made of a polymer resin and has an adhesive property, and is provided so as to be picked up in an array at a pitch N times the array pitch in the XY direction of the micro LED 1. Here, picking up the micro LEDs 1 at a pitch N times as large as the arrangement pitch in the XY direction means that when the micro LEDs 1 are mounted on the circuit board to be mounted, they can be arranged at the pixel pitch of the display on the circuit board. Is. That is, when the micro LED 1 is picked up from the carrier substrate 2 N times, the arrangement pitch is N times the pixel pitch = pixel pitch, so that the micro LED 1 can be mounted on the circuit board without waste in a predetermined place without changing the pitch. Similarly, each color of R, G, and B can be set as one pixel and can be mounted on the circuit board from each carrier board.

この粘着性を有した各ノズル12でキャリア基板2上に載置されたマイクロLED1をピックアップする。つまり、図1(a)に示すように、ノズル12がマイクロLED1の真上に位置するようにヘッド11を移動させて位置決めした後、微小部品群であるマイクロLED1に向かって下降させる。図1(b)に示すように、ノズル12の先端がマイクロLED1の上部に接触するとヘッドの下降を停止させる。キャリア基板2とマイクロLED1とは粘着性のある部材で粘着されているが、ノズル12の先端面の粘着度の方がキャリア基板2の粘着度よりも大きいのでノズル12を接触させて上昇させることにより、マイクロLED1をピックアップすることができる(図1(c)) The micro LED 1 mounted on the carrier substrate 2 is picked up by each nozzle 12 having the adhesive property. That is, as shown in FIG. 1A, the head 11 is moved and positioned so that the nozzle 12 is located right above the micro LED 1, and then the head 12 is moved down toward the micro LED 1 which is a minute component group. As shown in FIG. 1B, when the tip of the nozzle 12 comes into contact with the upper part of the micro LED 1, the lowering of the head is stopped. The carrier substrate 2 and the micro LED 1 are adhered by an adhesive member, but since the degree of adhesion of the tip surface of the nozzle 12 is greater than the degree of adhesion of the carrier substrate 2, the nozzle 12 should be brought into contact with the nozzle 12 to raise it. Can pick up the micro LED 1 (FIG. 1C).

このピックアップ時に、例えば、ヘッド11又はキャリア基板2が傾いているとヘッド11のいずれかの端部に近いノズル12とマイクロLED1とが接触することができず、又は位置がずれて、ピックアップすることができない場合が考えられる。そのため、実施例1においては、ヘッド11のノズル12とキャリア基板2上のマイクロLED1との平行度を調整してピックアップするように構成している。また、後述するように、ヘッド11のノズル12でピックアップしたマイクロLED1を回路基板3に実装する場合も同様の平行度を調整して実装することが重要である。 ここで、ヘッド11は図示しないヘッドホルダーに吸着又はその他の保持手段で脱着可能に保持され、キャリア基板2及び回路基板3は図示しない載置台に吸着又はその他の保持手段で脱着可能に保持されている。そして、平行度調整においては、ヘッド11、キャリア基板2、回路基板3のそれぞれの平坦度が担保されていれば、ヘッドホルダーと載置台の間の平行度を調整する方法でも構わない。 When the head 11 or the carrier substrate 2 is tilted at the time of this pickup, the nozzle 12 near any one end of the head 11 and the micro LED 1 cannot come into contact with each other, or the position is deviated and the pickup is performed. It is possible that you cannot. Therefore, in the first embodiment, the parallelism between the nozzle 12 of the head 11 and the micro LED 1 on the carrier substrate 2 is adjusted and picked up. Further, as will be described later, when mounting the micro LED 1 picked up by the nozzle 12 of the head 11 on the circuit board 3, it is important to adjust the parallelism and mount the same. Here, the head 11 is held by a head holder (not shown) so as to be detachable by suction or other holding means, and the carrier substrate 2 and the circuit board 3 are held by a holding table (not shown) so as to be detachable by suction or other holding means. There is. In the parallelism adjustment, a method of adjusting the parallelism between the head holder and the mounting table may be used as long as the flatness of each of the head 11, the carrier substrate 2, and the circuit board 3 is secured.

図2を参照して、本発明における平行度調整方法について説明する。図2(a)は、ヘッド11のノズル12(第2対象部)と微小部品群である複数のマイクロLED1(第1対象部)とが隙間を有して略対向され、ノズル12の先端と複数のマイクロLED1との平行度が調整された状態を示している。LB21及びLB22は、図2の奥行き方向から手前方向に第1発光部21及び第2発光部22から発光された(第1第2発光工程)線状レーザ光を示しており、ノズル12の先端からマイクロLED1の先端まで透過しているが、ノズル12及びマイクロLED1に照射された線状レーザ光は透過していない。そして、透過した線状レーザ光LB21及び線状レーザ光LB22を第1受光部31及び第2受光部32が受光する(第1第2受光工程)。図2(a)では、線状レーザ光LB21及び線状レーザ光LB22の線状方向(Z方向)の長さがL0で同じとなっておりその長さの差はゼロである。   The parallelism adjusting method according to the present invention will be described with reference to FIG. In FIG. 2A, the nozzle 12 (second target portion) of the head 11 and a plurality of micro LEDs 1 (first target portion) that are minute component groups are substantially opposed to each other with a gap, and It shows a state in which the parallelism with the plurality of micro LEDs 1 is adjusted. LB21 and LB22 indicate linear laser light emitted from the first light emitting unit 21 and the second light emitting unit 22 in the front direction from the depth direction of FIG. 2 (first second light emitting step), and the tip of the nozzle 12 To the tip of the micro LED 1, but the linear laser light emitted to the nozzle 12 and the micro LED 1 is not transmitted. Then, the transmitted linear laser light LB21 and linear laser light LB22 are received by the first light receiving portion 31 and the second light receiving portion 32 (first second light receiving step). In FIG. 2A, the linear laser light LB21 and the linear laser light LB22 have the same length L0 in the linear direction (Z direction), and the difference between the lengths is zero.

図2(b)は、ヘッド11のノズル12の先端と微小部品群である複数のマイクロLED1とが隙間を有して略対向され、ノズル12の先端と複数のマイクロLED1との平行度が調整されておらずθだけ傾いた状態を示している。線状レーザ光LB21及び線状レーザ光LB22は、図2の奥行き方向から手前方向に第1第2発光工程にて発光された線状レーザ光を示しており、ノズル12の先端からマイクロLED1の先端まで透過している。線状レーザ光LB21及び線状レーザ光LB22は、第1第2受光工程にて第1受光部31及び第2受光部32が受光する。図2(b)では、線状レーザ光LB21の線状方向(Z方向)の長さL2が線状レーザ光LB22の線状方向(Z方向)の長さL1よりも長く、その長さの差はL2−L1である。   In FIG. 2B, the tip of the nozzle 12 of the head 11 and the plurality of micro LEDs 1 which are a minute component group are substantially opposed to each other with a gap, and the parallelism between the tip of the nozzle 12 and the plurality of micro LEDs 1 is adjusted. It is shown that it has not been moved and is tilted by θ. The linear laser light LB21 and the linear laser light LB22 represent the linear laser light emitted in the first and second light emitting steps from the depth direction to the front direction of FIG. It penetrates to the tip. The linear laser light LB21 and the linear laser light LB22 are received by the first light receiving unit 31 and the second light receiving unit 32 in the first second light receiving step. In FIG. 2B, the length L2 of the linear laser beam LB21 in the linear direction (Z direction) is longer than the length L1 of the linear laser beam LB22 in the linear direction (Z direction), and The difference is L2-L1.

すなわち、実施例1においては、線状レーザ光LB21の線状方向の受光長さL2と線状レーザ光LB22の線状方向の受光長さL1との差により平行度が調整されているか否かを知ることができ、当該差に基づいて第1対象部であるキャリア基板2上に複数載置された微小部品群(マイクロLED1)と、第2対象部であるヘッド部(ヘッド11のノズル12)との平行度を調整するように構成している。つまり、線状レーザ光LB21の線状方向の受光長さL2と線状レーザ光LB22の線状方向の受光長さL1との差が所定値以下になるようにヘッド11を駆動して平行度を調整する調整工程を実施する。   That is, in the first embodiment, whether the parallelism is adjusted by the difference between the light receiving length L2 of the linear laser light LB21 in the linear direction and the light receiving length L1 of the linear laser light LB22 in the linear direction. It is possible to know, based on the difference, a plurality of minute component groups (micro LEDs 1) mounted on the carrier substrate 2 which is the first target portion, and the head portion which is the second target portion (the nozzle 12 of the head 11). ) Is configured to adjust the parallelism with. That is, the head 11 is driven so that the difference between the light receiving length L2 of the linear laser light LB21 in the linear direction and the light receiving length L1 of the linear laser light LB22 in the linear direction is equal to or less than a predetermined value, and the parallelism is increased. And an adjustment step for adjusting.

なお、実施例1においては、第2対象部を駆動して平行度を調整するように構成したが、必ずしもこれに限定されず適宜変更が可能である。例えば、第1対象部を駆動して平行度を調整するように構成してもよいし、第1対象部及び第2対象部の双方を駆動して平行度を調整するように構成してもよい。   In the first embodiment, the second target unit is driven to adjust the parallelism, but the present invention is not limited to this and can be changed as appropriate. For example, the first target section may be driven to adjust the parallelism, or both the first target section and the second target section may be driven to adjust the parallelism. Good.

次に、図3、図4を参照して、実施例1における平行度調整装置について説明する。図3は、本発明の実施例1における平行度調整装置を説明する側面図である。図4は、本発明の実施例1における平行度調整装置を説明する上面図である。   Next, the parallelism adjusting device in the first embodiment will be described with reference to FIGS. 3 and 4. FIG. 3 is a side view illustrating the parallelism adjusting device according to the first embodiment of the present invention. FIG. 4 is a top view illustrating the parallelism adjusting device according to the first embodiment of the present invention.

図3、図4に示すように、+X方向(第1方向)において間隔をおいて配置され、対向する−X方向(第2方向)に向けて線状に線状レーザ光LB21を発光可能な第1発光部21及び線状レーザ光LB21を発光可能な第2発光部が設けられている。また、−X方向(第2方向)において間隔をおいて配置され、第1発光部21から発光された線状レーザ光LB21を受光可能な第1受光部31、及び第2発光部22から発光された線状レーザ光LB22を受光可能な第2受光部32が設けられている。   As shown in FIGS. 3 and 4, the linear laser light LB21 can be emitted linearly in the + X direction (first direction) at intervals and in the opposite −X direction (second direction). A first light emitting unit 21 and a second light emitting unit capable of emitting the linear laser beam LB21 are provided. In addition, light is emitted from the first light receiving unit 31 and the second light emitting unit 22, which are arranged at intervals in the −X direction (second direction) and can receive the linear laser light LB21 emitted from the first light emitting unit 21. A second light receiving section 32 capable of receiving the linear laser beam LB22 thus generated is provided.

また、第1方向及び第2方向と直交する+Y方向(第3方向)において間隔をおいて配置され、対向する−Y方向(第4方向)に向けて線状に線状レーザ光LB23を発光可能な第3発光部23及び線状レーザ光LB24を発光可能な第4発光部24が設けられている。また、−Y方向(第4方向)において間隔をおいて配置され、第3発光部23から発光された線状レーザ光LB23を受光可能な第3受光部33、及び第4発光部24から発光された線状レーザ光LB24を受光可能な第4受光部34が設けられている。   In addition, the linear laser light LB23 is linearly emitted in the + Y direction (third direction) orthogonal to the first direction and the second direction, and is arranged in the opposite −Y direction (fourth direction). A possible third light emitting portion 23 and a fourth light emitting portion 24 capable of emitting the linear laser beam LB24 are provided. In addition, the third light receiving unit 33, which is arranged at intervals in the −Y direction (fourth direction) and is capable of receiving the linear laser light LB23 emitted from the third light emitting unit 23, and the fourth light emitting unit 24 emit light. A fourth light receiving section 34 capable of receiving the linear laser light LB24 thus formed is provided.

第1発光部21、第2発光部22、第3発光部23、及び第4発光部24は、いずれも同じ構成を有しており、半導体レーザ源を線状に配列して構成されている。また、第1受光部31、第2受光部32、第3受光部33、及び第4受光部34は、いずれも同じ構成を有しており、線状に配列したCCDセンサーからなっている。   The first light emitting unit 21, the second light emitting unit 22, the third light emitting unit 23, and the fourth light emitting unit 24 all have the same configuration and are configured by arranging semiconductor laser sources linearly. .. Further, the first light receiving unit 31, the second light receiving unit 32, the third light receiving unit 33, and the fourth light receiving unit 34 all have the same configuration and are composed of linearly arranged CCD sensors.

ここで、第1発光部21と第2発光部との間隔、及び第3発光部と第4発光部との間隔は、できるだけ離れていることが好ましい。ヘッド11の両端部のノズル12付近が最も好ましい。図2においては、マイクロLED1のある場所に線状レーザ光LB21及び線状レーザ光LB22が照射されているが、マイクロLED1がない場所であってもよい。   Here, it is preferable that the distance between the first light emitting portion 21 and the second light emitting portion and the distance between the third light emitting portion and the fourth light emitting portion are as large as possible. The vicinity of the nozzles 12 at both ends of the head 11 is most preferable. In FIG. 2, the linear laser beam LB21 and the linear laser beam LB22 are irradiated to the place where the micro LED 1 is present, but it may be the place where the micro LED 1 is not present.

また、第1発光部21と第1受光部31、第2発光部22と第2受光部32、第3発光部23と第3受光部33、及び第4発光部24と第4受光部34は、それぞれX軸又はY軸方向に平行に配置して対向させ、第1発光部21と第1受光部31、及び第2発光部22と第2受光部32に対して直交する方向に第3発光部23と第3受光部33、及び第4発光部24と第4受光部34を配置しているが、必ずしもこれに限定されず適宜変更が可能である。例えば、第1発光部21と第1受光部31及び第2発光部22と第2受光部32、又は第3発光部23と第3受光部33、及び第4発光部24と第4受光部34を、X軸又はY軸に対して角度を有した状態で対向させてもよいし、第1発光部21と第1受光部31及び第2発光部22と第2受光部32のみをX軸又はY軸と角度を有した状態で対向させてもよい。少なくとも第1発光部21と第1受光部31及び第2発光部22と第2受光部32に対して公差する方向に第3発光部23と第3受光部33及び第4発光部24と第4受光部34を配置すればよい。   Further, the first light emitting portion 21 and the first light receiving portion 31, the second light emitting portion 22 and the second light receiving portion 32, the third light emitting portion 23 and the third light receiving portion 33, and the fourth light emitting portion 24 and the fourth light receiving portion 34. Are arranged parallel to the X-axis or Y-axis direction and face each other, and are arranged in a direction orthogonal to the first light emitting unit 21 and the first light receiving unit 31, and the second light emitting unit 22 and the second light receiving unit 32. Although the third light emitting unit 23 and the third light receiving unit 33, and the fourth light emitting unit 24 and the fourth light receiving unit 34 are arranged, the present invention is not necessarily limited to this and can be appropriately changed. For example, the first light emitting unit 21, the first light receiving unit 31, the second light emitting unit 22, the second light receiving unit 32, or the third light emitting unit 23, the third light receiving unit 33, and the fourth light emitting unit 24, the fourth light receiving unit. 34 may be opposed to each other at an angle with respect to the X axis or the Y axis, or only the first light emitting portion 21, the first light receiving portion 31, and the second light emitting portion 22 and the second light receiving portion 32 may be X. You may oppose in the state which has an angle with an axis or a Y-axis. At least the third light emitting unit 23, the third light receiving unit 33, the fourth light emitting unit 24, and the fourth light emitting unit 24 in the direction of tolerance with respect to at least the first light emitting unit 21, the first light receiving unit 31, the second light emitting unit 22, and the second light receiving unit 32. The four light receiving parts 34 may be arranged.

第1発光部21、第2発光部22、第3発光部23、及び第4発光部24からは、ヘッド11のノズル12(第2対象部)と複数のマイクロLED1(第1対象部)とを隙間を有して略対向させた略対向方向と直交する方向(Z方向)の線状レーザ光をそれぞれ第1受光部31、第2受光部32、第3受光部33、及び第4受光部34に向かって線状に発光する。発光した線状レーザ光は直進し、図3に示すLB21のように、ノズル12やマイクロLED1等の障害物に遮断され、障害物のない空間のみを通過してそれぞれ対応する受光部に到達する。   From the first light emitting portion 21, the second light emitting portion 22, the third light emitting portion 23, and the fourth light emitting portion 24, the nozzle 12 (second target portion) of the head 11 and the plurality of micro LEDs 1 (first target portion) are connected. Of the linear laser light in a direction (Z direction) orthogonal to the substantially opposite direction in which they are substantially opposed to each other with a gap therebetween, respectively, the first light receiving unit 31, the second light receiving unit 32, the third light receiving unit 33, and the fourth light receiving. Light is emitted linearly toward the portion 34. The emitted linear laser light travels straight, is blocked by an obstacle such as the nozzle 12 or the micro LED 1, and passes through only the space without the obstacle to reach the corresponding light receiving portion, as in LB21 shown in FIG. ..

そして、図2(a)に示すように平行度が調整された状態であれば、例えば、第1第2発光工程で発行された線状レーザ光を、第1第2受光工程で第1受光部31が受光した線状レーザ光LB21における線状方向(Z方向)の受光長さL0と、第2受光部32が受光した線状レーザ光LB22における線状方向(Z方向)の受光長さLOとは同じ長さとなり、その差はゼロとなる。   Then, if the parallelism is adjusted as shown in FIG. 2A, for example, the linear laser light emitted in the first and second light emitting steps is first received in the first and second light receiving steps. Light receiving length L0 in the linear direction (Z direction) of the linear laser light LB21 received by the portion 31 and light receiving length in the linear direction (Z direction) of the linear laser light LB22 received by the second light receiving portion 32. It has the same length as LO, and the difference is zero.

また、図2(b)に示すように平行度が調整されていない状態であれば、例えば、第1第2発光工程で発行された線状レーザ光を、第1第2受光工程で第1受光部31が受光した線状レーザ光LB21における線状方向(Z方向)の受光長さL2と、第2受光部32が受光した線状レーザ光LB22における線状方向(Z方向)の受光長さL1とは同じ長さとはならず、その差はL2−L1となりゼロではない。   Further, if the parallelism is not adjusted as shown in FIG. 2B, for example, the linear laser light emitted in the first and second light emitting steps is changed to the first in the first and second light receiving steps. The light receiving length L2 of the linear laser beam LB21 received by the light receiving unit 31 in the linear direction (Z direction) and the light receiving length of the linear laser beam LB22 received by the second light receiving unit 32 in the linear direction (Z direction). The length is not the same as the length L1, and the difference is L2-L1 and is not zero.

図2では、第1第2発光工程及び第1第2受光工程における平行度調整方法について示しているが、第3発光部23及び第4発光部24が線状レーザ光を発光する第3第4発光工程、及び第3受光部33及び第4受光部34が線状レーザ光を受光する第3第4発光工程においても同様である。   Although FIG. 2 shows the parallelism adjusting method in the first and second light emitting steps and the first and second light receiving steps, the third light emitting section 23 and the fourth light emitting section 24 emit a linear laser beam. The same applies to the fourth light emitting step and the third fourth light emitting step in which the third light receiving unit 33 and the fourth light receiving unit 34 receive the linear laser light.

実施例1における平行度調整装置は、第2対象部であるヘッド部(ヘッド11のノズル12)を駆動させて第1対象部であるキャリア基板2上に複数載置された微小部品群(マイクロLED1)との平行度を調整する駆動部と、線状レーザ光における線状方向の受光長さL1及びL2に基づいて駆動部を制御する制御部を備えている。   The parallelism adjusting apparatus according to the first embodiment drives a head portion (nozzle 12 of the head 11) that is a second target portion to mount a plurality of micro component groups (micro) mounted on the carrier substrate 2 that is the first target portion. A drive unit that adjusts the parallelism with the LED 1) and a control unit that controls the drive unit based on the light receiving lengths L1 and L2 of the linear laser light in the linear direction are provided.

制御部は、上述のそれぞれの受光長さの差であるL2−L1が所定値以下となるように駆動部を駆動させて平行度を調整する調整工程を実行する。駆動部は、X方向及びY方向にそれぞれ傾きを変更する手段を設けてもよいし、X方向及びY方向の傾きを同時に変更する手段を設けてもよい。   The control unit executes the adjusting step of driving the driving unit so as to adjust the parallelism so that L2-L1 which is the difference between the light receiving lengths described above becomes equal to or less than a predetermined value. The drive unit may be provided with means for changing the inclinations in the X direction and the Y direction, or may be provided with means for changing the inclinations in the X direction and the Y direction at the same time.

ここで、所定値以下とは、複数のマイクロLED1の全てがヘッド11の複数のノズル12にピックアップ可能な値であればよく、好ましくは1μm以下であればよく、最も好ましくは0.5μm以下が望ましい。また、第1第2受光工程で受光した線状レーザ光の受光長さの差に基づいて平行度調整する際の所定値と、第3第4受光工程で受光した線状レーザ光の受光長さの差に基づいて平行度調整する際の所定値とは、同じ値であってもよいし、異なる値であってもよい。   Here, the predetermined value or less may be a value at which all of the plurality of micro LEDs 1 can be picked up by the plurality of nozzles 12 of the head 11, preferably 1 μm or less, and most preferably 0.5 μm or less. desirable. Further, a predetermined value for adjusting the parallelism based on the difference in the light receiving length of the linear laser light received in the first and second light receiving steps, and the light receiving length of the linear laser light received in the third and fourth light receiving steps. The predetermined value for adjusting the parallelism based on the difference in height may be the same value or different values.

なお、実施例1においては、第1方向、第2方向(X方向)に第1発光部21、及び第2発光部22を設け、第3方向、第4方向(Y方向)に第3発光部23、及び第4発光部24を設け、それぞれ対向する第1受光部31、第2受光部32、第3受光部33、及び第4受光部34を設けるように構成したが、必ずしもこれに限定されず適宜変更が可能である。例えば、第1方向、第2方向(X方向)さえ平行度調整すれば、第3方向、第4方向(Y方向)の平行度は満足される場合は、第1方向、第2方向(X方向)に第1発光部21、及び第2発光部22を設けるとともに対向する第1受光部31、第2受光部32を設けるのみでよい。   In the first embodiment, the first light emitting unit 21 and the second light emitting unit 22 are provided in the first direction and the second direction (X direction), and the third light emitting is performed in the third direction and the fourth direction (Y direction). The portion 23 and the fourth light emitting portion 24 are provided, and the first light receiving portion 31, the second light receiving portion 32, the third light receiving portion 33, and the fourth light receiving portion 34, which are opposed to each other, are provided, but this is not always the case. It is not limited and can be changed as appropriate. For example, if the parallelism in the third direction and the fourth direction (Y direction) is satisfied only by adjusting the parallelism in the first direction and the second direction (X direction), the first direction and the second direction (X direction) It is only necessary to provide the first light emitting portion 21 and the second light emitting portion 22 in the (direction) and to provide the first light receiving portion 31 and the second light receiving portion 32 facing each other.

なお、実施例1においては、ヘッド11のノズル12(第2対象部)と複数のマイクロLED1(第1対象部)とを隙間を有して略対向させて第1第2発光工程、第3第4発光工程、第1第2受光工程、及び第3第4受光工程を実行しているが、必ずしもこれに限定されず適宜変更が可能である。例えば、隙間を有さずに略対向させて第1第2発光工程、第3第4発光工程、第1第2受光工程、及び第3第4受光工程を実行してもよい。この場合もL2−L1が所定値以下になるように平行度を調整すればよい。   In the first embodiment, the nozzle 12 (second target portion) of the head 11 and the plurality of micro-LEDs 1 (first target portion) are made to face each other with a gap, and the first and second light emitting steps are performed. Although the fourth light emitting step, the first second light receiving step, and the third fourth light receiving step are executed, the present invention is not necessarily limited to this, and can be appropriately changed. For example, you may perform a 1st 2nd light emission process, a 3rd 4th light emission process, a 1st 2nd light reception process, and a 3rd 4th light reception process by making it oppose substantially without a clearance gap. Also in this case, the parallelism may be adjusted so that L2-L1 is equal to or less than the predetermined value.

第1発光部21、第2発光部22、第3発光部23、及び第4発光部24からは、第2対象部と第1対象部とを略対向させた略対向方向と直交する方向(Z方向)の線状レーザ光を線状に発光するように構成したが、必ずしもこれに限定されず適宜変更が可能である。例えば、略対向方向とは直交せず所定の角度を有した方向に線状レーザ光を線状に発光するように構成してもよい。少なくとも略対向方向と交差する方向に線状レーザ光を線状に発光するように構成すればよい。   From the first light emitting portion 21, the second light emitting portion 22, the third light emitting portion 23, and the fourth light emitting portion 24, a direction (a direction orthogonal to the substantially opposing direction in which the second target portion and the first target portion are substantially opposed to each other ( Although the linear laser light in the Z direction) is configured to be emitted linearly, the present invention is not necessarily limited to this and can be appropriately changed. For example, the linear laser light may be linearly emitted in a direction that is not orthogonal to the substantially opposite direction and has a predetermined angle. The linear laser light may be emitted linearly at least in a direction intersecting the substantially opposite direction.

このように実施例1においては、第1対象部と第2対象部との平行度を調整する平行度調整装置であって、
第1方向において間隔をおいて配置され、対向する第2方向に向けて線状に線状レーザ光を発光可能な第1発光部及び第2発光部と、
前記第2方向において間隔をおいて配置され、前記第1発光部から発光された線状レーザ光を受光可能な第1受光部、及び前記第2発光部から発光された線状レーザ光を受光可能な第2受光部と、
前記第1対象部又は前記第2対象部を駆動させて前記第1対象部と前記第2対象部との平行度を調整する駆動部と、
前記第1受光部及び前記第2受光部が受光した線状レーザ光における線状方向の受光長さに基づいて前記駆動部を制御する制御部と、を備え、
前記第1発光部及び前記第2発光部は、前記第1対象部と前記第2対象部とを略対向させた略対向状態で、前記第1受光部及び前記第2受光部に向けて、前記略対向方向と交差する方向の線状レーザ光を発光させることを特徴とする平行度調整装置により、手間がかからず、正確に平行度調整することができる。
As described above, in the first embodiment, the parallelism adjusting device that adjusts the parallelism between the first target portion and the second target portion,
A first light emitting portion and a second light emitting portion, which are arranged at intervals in the first direction and are capable of linearly emitting linear laser light toward the opposing second direction;
A first light receiving portion, which is arranged at an interval in the second direction and is capable of receiving the linear laser light emitted from the first light emitting portion, and receives the linear laser light emitted from the second light emitting portion. A possible second light receiver,
A drive unit that drives the first target unit or the second target unit to adjust the parallelism between the first target unit and the second target unit;
A control unit that controls the drive unit based on a light receiving length in a linear direction in the linear laser light received by the first light receiving unit and the second light receiving unit,
The first light emitting unit and the second light emitting unit are in a substantially facing state in which the first target unit and the second target unit are substantially facing each other, toward the first light receiving unit and the second light receiving unit, With the parallelism adjusting device characterized in that linear laser light is emitted in a direction intersecting with the substantially opposite direction, it is possible to accurately adjust the parallelism without any trouble.

また、第1対象部と第2対象部との平行度を調整する平行度調整方法であって、
第1方向において間隔をおいて配置された第1発光部及び第2発光部から対向する第2方向に向けて線状に線状レーザ光を発光する第1第2発光工程と、
前記第2方向において間隔をおいて配置された第1受光部及び第2受光部において、前記第1発光部から発光された線状の線状レーザ光を第1受光部が受光し、前記第2発光部から発光された線状の線状レーザ光を第2受光部が受光する第1第2受光工程と、
前記第1受光部及び前記第2受光部が受光した線状レーザ光における線状方向の受光長さに基づいて前記第1対象部又は前記第2対象部を駆動させて前記第1対象部と前記第2対象部との平行度を調整する調整工程と、を備え、
前記第1第2発光工程では、前記第1対象部と前記第2対象部とを略対向させた略対向状態で、前記第1発光部及び前記第2発光部から前記第1受光部及び前記第2受光部に向けて、前記略対向方向と交差する方向の線状レーザ光を発光させることを特徴とする平行度調整方法により、手間がかからず、正確に平行度調整することができる。
A parallelism adjusting method for adjusting the parallelism between the first target portion and the second target portion,
A first second light emitting step of linearly emitting linear laser light from a first light emitting portion and a second light emitting portion arranged at intervals in the first direction toward a second direction facing each other,
In the first light receiving portion and the second light receiving portion which are arranged at intervals in the second direction, the first light receiving portion receives the linear linear laser light emitted from the first light emitting portion, A first and second light receiving step in which the second light receiving portion receives the linear laser light emitted from the two light emitting portions,
The first target portion or the second target portion is driven by driving the first target portion or the second target portion based on the light receiving length in the linear direction in the linear laser light received by the first light receiving portion and the second light receiving portion. An adjusting step of adjusting parallelism with the second target portion,
In the first second light emitting step, the first light emitting portion and the second light emitting portion are moved from the first light receiving portion to the first light receiving portion in a substantially facing state where the first target portion and the second target portion are substantially facing each other. With the parallelism adjusting method characterized in that the linear laser light is emitted toward the second light receiving portion in the direction intersecting with the substantially opposite direction, the parallelism can be adjusted accurately without a trouble. ..

さらに、上述の平行度調整装置をピックアップ装置に適用して、平行度調整方法を実行することにより精度が高く確実なピックアップ方法を実現することができる。   Further, by applying the above parallelism adjusting device to the pickup device and executing the parallelism adjusting method, a highly accurate and reliable pickup method can be realized.

本発明の実施例2は、平行度調整装置を実装装置に適用し、平行度調整方法を実装方法に適用した点で実施例1と異なっている。実施例2について、図5を参照して説明する。図5は、本発明の実施例2における実装方法を説明する図である。 The second embodiment of the present invention is different from the first embodiment in that the parallelism adjusting device is applied to the mounting device and the parallelism adjusting method is applied to the mounting method. Example 2 will be described with reference to FIG. FIG. 5 is a diagram illustrating a mounting method according to the second embodiment of the present invention.

図5(a)に示すように、ヘッド11の複数のノズル12には、それぞれマイクロLED1がピックアップされている。そして、これらマイクロLED1の実装対象である回路基板3の所定位置上方に位置決めした後、回路基板3に向かって下降させる。その際、ピックアップされている複数のマイクロLED1(微小部品群)と回路基板3とは平行度が調整されていないといずれかのマイクロLED1が回路基板3上の所定位置に実装できず位置ずれを起こしたり、隙間によって実装出来なかったり、実装の衝撃でマイクロLED1を破壊したりすることがある。   As shown in FIG. 5A, the micro LED 1 is picked up by each of the plurality of nozzles 12 of the head 11. After positioning the circuit board 3 on which the micro LEDs 1 are mounted on a predetermined position, the micro LED 1 is lowered toward the circuit board 3. At that time, if the parallelism between the plurality of picked-up micro LEDs 1 (small component group) and the circuit board 3 is not adjusted, any one of the micro LEDs 1 cannot be mounted at a predetermined position on the circuit board 3 and the positional deviation occurs. There is a case where the micro LED 1 is raised or cannot be mounted due to a gap, or the micro LED 1 is destroyed by a shock of mounting.

そのため、上述した平行度調整装置を用いて平行度調整方法を実行する。実施例2においては、第1対象部は複数のマイクロLED1(微小部品)からなる微小部品群を載置可能な回路基板3であり、第2対象部はヘッド部(ヘッド11のノズル12)のピックアップ面でピックアップしている複数のマイクロLED1(微小部品)からなる微小部品群である。   Therefore, the parallelism adjusting method is executed using the parallelism adjusting device described above. In the second embodiment, the first target portion is the circuit board 3 on which a micro component group including a plurality of micro LEDs 1 (micro components) can be mounted, and the second target portion is the head portion (nozzle 12 of the head 11). It is a micro component group including a plurality of micro LEDs 1 (micro components) picked up on the pickup surface.

平行度調整を完了した後、ヘッド11が下降し、複数のノズル12でピックアップしている複数のマイクロLED1の実装面が全て回路基板3に接触すると下降を停止する(図5(b))。次に、ヘッド11を上昇させるとマイクロLED1は全て回路基板3上に保持される。これは、回路基板3の実装位置にも図示しない粘着層が設けられており、この粘着層の粘着度の方がノズル12の粘着度よりも大きく構成しているためである。つまり、キャリア基板2の粘着度<ノズル12の粘着度<回路基板の粘着度、の関係を有している。   After the parallelism adjustment is completed, the head 11 descends, and when the mounting surfaces of the plurality of micro LEDs 1 picked up by the plurality of nozzles 12 all come into contact with the circuit board 3, the descending stops (FIG. 5B). Next, when the head 11 is raised, all the micro LEDs 1 are held on the circuit board 3. This is because an adhesive layer (not shown) is also provided at the mounting position of the circuit board 3, and the adhesive degree of this adhesive layer is larger than that of the nozzle 12. That is, there is a relationship of the degree of adhesion of the carrier substrate 2 <the degree of adhesion of the nozzle 12 <the degree of adhesion of the circuit board.

このように、実施例2においては、平行度調整装置を実装装置に適用して平行度調整方法を実行することにより、転写ミスのない高い成功率と精度の高い実装を実現することができる。   As described above, in the second embodiment, by applying the parallelism adjusting device to the mounting device and executing the parallelism adjusting method, it is possible to realize a high success rate without transfer errors and highly accurate mounting.

本発明における平行度調整装置、ピックアップ装置、実装装置、平行度調整方法、ピックアップ方法、及び実装方法は、マイクロLEDに限らずチップコンデンサ等の微小部品を高速・高精度に確実に実装する分野に広く用いることができる。 INDUSTRIAL APPLICABILITY The parallelism adjusting device, the pickup device, the mounting device, the parallelism adjusting method, the pickup method, and the mounting method according to the present invention are not limited to the micro LED, and are applicable to the field of reliably mounting a minute component such as a chip capacitor with high speed and high accuracy. It can be widely used.

1:マイクロLED 2:キャリア基板 3:回路基板 11:ヘッド 12:ノズル 21:第1発光部 22:第2発光部 23:第3発光部 24:第4発光部 31:第1受光部 32:第2受光部 33:第3受光部 34:第4受光部 LB21:線状レーザ光 LB22:線状レーザ光 LB23:線状レーザ光 LB24:線状レーザ光 1: Micro LED 2: Carrier board 3: Circuit board 11: Head 12: Nozzle 21: First light emitting part 22: Second light emitting part 23: Third light emitting part 24: Fourth light emitting part 31: First light receiving part 32: Second light receiving unit 33: Third light receiving unit 34: Fourth light receiving unit LB21: Linear laser light LB22: Linear laser light LB23: Linear laser light LB24: Linear laser light

Claims (10)

第1対象部と第2対象部との平行度を調整する平行度調整装置であって、
第1方向において間隔をおいて配置され、対向する第2方向に向けて線状に線状レーザ光を発光可能な第1発光部及び第2発光部と、
前記第2方向において間隔をおいて配置され、前記第1発光部から発光された線状レーザ光を受光可能な第1受光部、及び前記第2発光部から発光された線状レーザ光を受光可能な第2受光部と、
前記第1対象部又は前記第2対象部を駆動させて前記第1対象部と前記第2対象部との平行度を調整する駆動部と、
前記第1受光部及び前記第2受光部が受光した線状レーザ光における線状方向の受光長さに基づいて前記駆動部を制御する制御部と、を備え、
前記第1発光部及び前記第2発光部は、前記第1対象部と前記第2対象部とを略対向させた略対向状態で、前記第1受光部及び前記第2受光部に向けて、前記略対向方向と交差する方向の線状レーザ光を発光させることを特徴とする平行度調整装置。
A parallelism adjusting device for adjusting the parallelism between a first target portion and a second target portion,
A first light emitting portion and a second light emitting portion, which are arranged at intervals in the first direction and are capable of linearly emitting linear laser light toward the opposing second direction;
A first light receiving portion, which is arranged at an interval in the second direction and is capable of receiving the linear laser light emitted from the first light emitting portion, and receives the linear laser light emitted from the second light emitting portion. A possible second light receiver,
A drive unit that drives the first target unit or the second target unit to adjust the parallelism between the first target unit and the second target unit;
A control unit that controls the drive unit based on a light receiving length in a linear direction in the linear laser light received by the first light receiving unit and the second light receiving unit,
The first light emitting unit and the second light emitting unit are in a substantially facing state in which the first target unit and the second target unit are substantially facing each other, toward the first light receiving unit and the second light receiving unit, A parallelism adjusting device, which emits linear laser light in a direction intersecting with the substantially opposite direction.
前記第1方向及び前記第2方向と交差する第3方向に間隔をおいて配置され、対向する第4方向に向けて線状に線状レーザ光を発光可能な第3発光部及び第4発光部と、
前記第4方向において間隔をおいて配置され、前記第3発光部から発光された線状レーザ光を受光可能な第3受光部、及び前記第4発光部から発光された線状レーザ光を受光可能な第4受光部と、を備え、
前記第3発光部及び前記第4発光部は、前記第1対象部と前記第2対象部とを略対向させた略対向状態で、前記第3受光部及び前記第4受光部に向けて、前記略対向方向と交差する方向の線状レーザ光を発光させるとともに、
前記制御部はさらに、前記第3受光部及び前記第4受光部が受光した線状レーザ光における線状方向の受光長さに基づいて前記駆動部を制御することを特徴とする請求項1に記載の平行度調整装置。
A third light emitting unit and a fourth light emitting unit, which are arranged at intervals in a third direction intersecting the first direction and the second direction and are capable of linearly emitting linear laser light toward the opposing fourth direction. Department,
A third light receiving portion, which is arranged at an interval in the fourth direction and is capable of receiving the linear laser light emitted from the third light emitting portion, and receives the linear laser light emitted from the fourth light emitting portion. And a possible fourth light receiving part,
The third light emitting unit and the fourth light emitting unit are in a substantially facing state in which the first target unit and the second target unit are substantially facing each other, toward the third light receiving unit and the fourth light receiving unit, While emitting linear laser light in a direction intersecting the substantially opposite direction,
The control unit further controls the drive unit based on a light receiving length in a linear direction in the linear laser light received by the third light receiving unit and the fourth light receiving unit. The parallelism adjusting device described.
前記制御部は、前記略対向状態において、前記第1受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さと、前記第2受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さとの差が所定値以下になるように、前記駆動部を制御するとともに、
前記略対向状態において、前記第3受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さと、前記第4受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さとの差が所定値以下になるように、前記駆動部を制御することを特徴とする請求項2に記載の平行度調整装置。
In the substantially opposed state, the control unit has a light receiving length in a linear direction in the linear laser light in a direction intersecting the substantially opposed direction received by the first light receiving unit, and the light received by the second light receiving unit. The drive unit is controlled so that the difference between the linear laser light in the direction intersecting the substantially opposite direction and the light receiving length in the linear direction is equal to or less than a predetermined value,
In the substantially opposed state, the light receiving length of the linear laser beam in the direction intersecting the substantially opposed direction received by the third light receiving portion and the substantially opposed direction received by the fourth light receiving portion intersect. 3. The parallelism adjusting device according to claim 2, wherein the drive unit is controlled so that a difference between the linear laser light in the moving direction and the light receiving length in the linear direction is equal to or less than a predetermined value.
前記第1対象部は基板上に複数載置された微小部品群であり、前記第2対象部は前記微小部品群の少なくとも一部をピックアップ面で同時にピックアップ可能なヘッド部であることを特徴とする請求項1〜3のいずれかに記載の平行度調整装置を用いたピックアップ装置。   The first target portion is a minute component group mounted on the substrate in plural numbers, and the second target portion is a head portion capable of simultaneously picking up at least a part of the minute component group on a pickup surface. A pickup device using the parallelism adjusting device according to claim 1. 前記第1対象部は複数の微小部品からなる微小部品群を載置可能な回路基板であり、前記第2対象部はヘッド部のピックアップ面でピックアップしている前記微小部品群であることを特徴とする請求項1〜3のいずれかに記載の平行度調整装置を用いた実装装置。   The first target portion is a circuit board on which a micro component group including a plurality of micro components can be mounted, and the second target portion is the micro component group picked up by a pickup surface of a head portion. A mounting device using the parallelism adjusting device according to claim 1. 第1対象部と第2対象部との平行度を調整する平行度調整方法であって、
第1方向において間隔をおいて配置された第1発光部及び第2発光部から対向する第2方向に向けて線状に線状レーザ光を発光する第1第2発光工程と、
前記第2方向において間隔をおいて配置された第1受光部及び第2受光部において、前記第1発光部から発光された線状の線状レーザ光を第1受光部が受光し、前記第2発光部から発光された線状の線状レーザ光を第2受光部が受光する第1第2受光工程と、
前記第1受光部及び前記第2受光部が受光した線状レーザ光における線状方向の受光長さに基づいて前記第1対象部又は前記第2対象部を駆動させて前記第1対象部と前記第2対象部との平行度を調整する調整工程と、を備え、
前記第1第2発光工程では、前記第1対象部と前記第2対象部とを略対向させた略対向状態で、前記第1発光部及び前記第2発光部から前記第1受光部及び前記第2受光部に向けて、前記略対向方向と交差する方向の線状レーザ光を発光させることを特徴とする平行度調整方法。
A parallelism adjusting method for adjusting the parallelism between a first target portion and a second target portion,
A first second light emitting step of linearly emitting linear laser light from a first light emitting portion and a second light emitting portion arranged at intervals in the first direction toward a second direction facing each other,
In the first light receiving portion and the second light receiving portion which are arranged at intervals in the second direction, the first light receiving portion receives the linear linear laser light emitted from the first light emitting portion, A first and second light receiving step in which the second light receiving portion receives the linear laser light emitted from the two light emitting portions,
The first target portion or the second target portion is driven by driving the first target portion or the second target portion based on the light receiving length in the linear direction in the linear laser light received by the first light receiving portion and the second light receiving portion. An adjusting step of adjusting parallelism with the second target portion,
In the first second light emitting step, the first light emitting portion and the second light emitting portion are moved from the first light receiving portion to the first light receiving portion in a substantially facing state in which the first target portion and the second target portion are substantially facing each other. A parallelism adjusting method, characterized in that linear laser light is emitted toward a second light receiving portion in a direction intersecting with the substantially opposite direction.
前記第1方向及び前記第2方向と交差する第3方向に間隔をおいて配置され、対向する第4方向に向けて線状に線状レーザ光を発光する第3第4発光工程と、
前記第4方向において間隔をおいて配置された第3受光部及び第4受光部において、前記第3発光部から発光された線状レーザ光を第3受光部が受光し、前記第4発光部から発光された線状レーザ光を第4受光部が受光する第3第4受光工程と、を備え、
前記第3第4発光工程では、前記第1対象部と前記第2対象部とを略対向させた略対向状態で、前記第3発光部及び前記第4発光部から前記第3受光部及び前記第4受光部に向けて、前記略対向方向と交差する方向の線状レーザ光を発光させるとともに、
前記調整工程ではさらに、前記第3第4受光工程で、第3受光部及び前記第4受光部が受光したレーザ光における線状方向の受光長さに基づいて前記第1対象部又は前記第2対象部を駆動させて前記第1対象部と前記第2対象部との平行度を調整することを特徴とする請求項6に記載の平行度調整方法。
A third fourth light emitting step, which is arranged at intervals in a third direction intersecting the first direction and the second direction, and linearly emits linear laser light toward a fourth direction facing the third direction;
In the third light receiving portion and the fourth light receiving portion which are arranged at intervals in the fourth direction, the third light receiving portion receives the linear laser light emitted from the third light emitting portion, and the fourth light emitting portion. A third fourth light receiving step in which the fourth light receiving section receives the linear laser light emitted from
In the third and fourth light emitting steps, the third light emitting unit and the fourth light emitting unit are moved from the third light receiving unit to the third light receiving unit in the substantially facing state in which the first target unit and the second target unit are substantially facing each other. A linear laser beam is emitted toward the fourth light receiving portion in a direction intersecting the substantially opposite direction,
In the adjusting step, further, based on the light receiving length in the linear direction of the laser light received by the third light receiving section and the fourth light receiving section in the third and fourth light receiving step, the first target section or the second The parallelism adjusting method according to claim 6, wherein the parallelism between the first target portion and the second target portion is adjusted by driving the target portion.
前記調整工程では、前記略対向状態において、前記第1受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さと、前記第2受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さとの差が所定値以下になるように、前記第1対象部又は前記第2対象部を駆動するとともに、
前記略対向状態において、前記第3受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さと、前記第4受光部が受光した前記略対向方向と交差する方向の線状レーザ光における線状方向の受光長さとの差が所定値以下になるように、前記第1対象部又は前記第2対象部を駆動することを特徴とする請求項7に記載の平行度調整方法。
In the adjusting step, in the substantially opposed state, the light receiving length in the linear direction of the linear laser light in the direction intersecting the substantially opposed direction received by the first light receiving unit, and the second light receiving unit receiving the light While driving the first target portion or the second target portion so that the difference between the linear laser light in the direction intersecting the substantially opposite direction and the light receiving length in the linear direction is equal to or less than a predetermined value,
In the substantially opposed state, the light receiving length of the linear laser beam in the direction intersecting the substantially opposed direction received by the third light receiving portion and the substantially opposed direction received by the fourth light receiving portion intersect. 8. The first target portion or the second target portion is driven so that a difference between the linear laser light in the direction of the linear laser light and the light receiving length in the linear direction is equal to or less than a predetermined value. Parallelism adjustment method.
前記第1対象部は基板上に複数載置された微小部品群であり、前記第2対象部は前記微小部品群の少なくとも一部をピックアップ面で同時にピックアップ可能なヘッド部であることを特徴とする請求項6〜8のいずれかに記載の平行度調整方法を用いたピックアップ方法。   The first target portion is a minute component group mounted on the substrate in plural numbers, and the second target portion is a head portion capable of simultaneously picking up at least a part of the minute component group on a pickup surface. A pickup method using the parallelism adjusting method according to claim 6. 前記第1対象部は複数の微小部品からなる微小部品群を載置可能な回路基板であり、前記第2対象部はヘッド部のピックアップ面でピックアップしている前記微小部品群であることを特徴とする請求項6〜8のいずれかに記載の平行度調整方法を用いた実装方法。

The first target portion is a circuit board on which a micro component group including a plurality of micro components can be mounted, and the second target portion is the micro component group picked up by a pickup surface of a head portion. A mounting method using the parallelism adjusting method according to claim 6.

JP2018202718A 2018-10-29 2018-10-29 Parallelism adjustment device, pickup device, mounting device, parallelism adjustment method, pickup method, and mounting method Active JP6899364B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018202718A JP6899364B2 (en) 2018-10-29 2018-10-29 Parallelism adjustment device, pickup device, mounting device, parallelism adjustment method, pickup method, and mounting method
CN201980069132.0A CN112868092B (en) 2018-10-29 2019-10-24 Parallelism adjusting device, pickup device, mounting device, parallelism adjusting method, pickup method, and mounting method
KR1020217015928A KR20210080528A (en) 2018-10-29 2019-10-24 Parallelism adjusting device, pickup device, mounting device, parallelism adjusting method, pickup method, and mounting method
PCT/JP2019/041642 WO2020090605A1 (en) 2018-10-29 2019-10-24 Parallelism adjusting device, pickup device, mounting device, parallelism adjust method, pickup method, and mounting method
TW108138789A TWI814927B (en) 2018-10-29 2019-10-28 Parallelism adjustment device, pickup device, installation device, parallelism adjustment method, pickup method, and installation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018202718A JP6899364B2 (en) 2018-10-29 2018-10-29 Parallelism adjustment device, pickup device, mounting device, parallelism adjustment method, pickup method, and mounting method

Publications (2)

Publication Number Publication Date
JP2020072109A true JP2020072109A (en) 2020-05-07
JP6899364B2 JP6899364B2 (en) 2021-07-07

Family

ID=70462283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018202718A Active JP6899364B2 (en) 2018-10-29 2018-10-29 Parallelism adjustment device, pickup device, mounting device, parallelism adjustment method, pickup method, and mounting method

Country Status (5)

Country Link
JP (1) JP6899364B2 (en)
KR (1) KR20210080528A (en)
CN (1) CN112868092B (en)
TW (1) TWI814927B (en)
WO (1) WO2020090605A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274499A (en) * 2000-03-27 2001-10-05 Toshiba Electronic Engineering Corp Semiconductor laser device and mounting method for semiconductor laser chip
JP2010147048A (en) * 2008-12-16 2010-07-01 Adwelds:Kk Tilt adjusting method and tilt adjusting device, and device adjusted by the tilt adjusting method
JP2018032740A (en) * 2016-08-24 2018-03-01 東レエンジニアリング株式会社 Mounting method and mounting apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441273B1 (en) * 2001-08-10 2004-07-22 (주)디지탈옵틱 Apparatus and method for detecting the alignments of shaft by laser
JP2004077202A (en) * 2002-08-12 2004-03-11 Canon Inc Device and method for detecting substrate position
WO2018061896A1 (en) * 2016-09-29 2018-04-05 東レエンジニアリング株式会社 Transfer method, mounting method, transfer device, and mounting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274499A (en) * 2000-03-27 2001-10-05 Toshiba Electronic Engineering Corp Semiconductor laser device and mounting method for semiconductor laser chip
JP2010147048A (en) * 2008-12-16 2010-07-01 Adwelds:Kk Tilt adjusting method and tilt adjusting device, and device adjusted by the tilt adjusting method
JP2018032740A (en) * 2016-08-24 2018-03-01 東レエンジニアリング株式会社 Mounting method and mounting apparatus

Also Published As

Publication number Publication date
WO2020090605A1 (en) 2020-05-07
JP6899364B2 (en) 2021-07-07
TW202030805A (en) 2020-08-16
CN112868092B (en) 2023-12-15
KR20210080528A (en) 2021-06-30
TWI814927B (en) 2023-09-11
CN112868092A (en) 2021-05-28

Similar Documents

Publication Publication Date Title
US5115559A (en) Electronic component mounting apparatus
KR102132094B1 (en) Electronic component mounting device and electronic component mounting method
US6470103B2 (en) Semiconductor parts and semiconductor mounting apparatus
CN111321385B (en) Substrate mounting method, film forming apparatus, and system for manufacturing organic EL panel
KR20210052530A (en) Die attach system, and method for integrated accuracy verification and calibration using such system
JP2000114787A5 (en)
CN113990790B (en) Bonding system and bonding method
JP6899364B2 (en) Parallelism adjustment device, pickup device, mounting device, parallelism adjustment method, pickup method, and mounting method
KR20190110026A (en) Die bonding apparatus and manufacturing method of semiconductor device
US5177864A (en) Electronic component mounting apparatus and method of mounting electronic component
JP2012248728A (en) Die bonder and bonding method
JP2021097220A (en) Element mounting device
KR20230081535A (en) Apparatus for Transferring Micro LED Chips
US11749791B2 (en) LED precision assembly method
JP4569419B2 (en) Electronic component mounting apparatus, electronic component mounting method, and nozzle height detection method
KR102177446B1 (en) A System for a Small Size of a Led Element
CN114585955B (en) Offset patterned microlens and micro optical bench having the same
JP4903663B2 (en) Parts supply device
CN217253604U (en) Welding equipment
CN111326442A (en) Substrate bonding apparatus
KR20230000992A (en) Display panel and display device including the same
CN217995984U (en) Huge transfer equipment
JP2003168892A (en) Verification method for mounting accuracy, method and device for mounting, and fixture for verifying mounting accuracy
JP6531278B2 (en) Electronic component mounting device
CN114473194A (en) Welding equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

R150 Certificate of patent or registration of utility model

Ref document number: 6899364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150