JP2020071103A - Height distribution measurement device and height distribution measurement method - Google Patents

Height distribution measurement device and height distribution measurement method Download PDF

Info

Publication number
JP2020071103A
JP2020071103A JP2018204277A JP2018204277A JP2020071103A JP 2020071103 A JP2020071103 A JP 2020071103A JP 2018204277 A JP2018204277 A JP 2018204277A JP 2018204277 A JP2018204277 A JP 2018204277A JP 2020071103 A JP2020071103 A JP 2020071103A
Authority
JP
Japan
Prior art keywords
light
irradiation position
height distribution
irradiation
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018204277A
Other languages
Japanese (ja)
Inventor
千恵 豊田
Chie Toyoda
千恵 豊田
佑季子 田中
Yukiko Tanaka
佑季子 田中
有梨 田畑
Yuri Tabata
有梨 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2018204277A priority Critical patent/JP2020071103A/en
Publication of JP2020071103A publication Critical patent/JP2020071103A/en
Pending legal-status Critical Current

Links

Abstract

To provide a height distribution measurement device and a height distribution measurement method which improve resolution in a height direction by increasing an incident angle of light to an irradiation position even if members other than a measured object are arranged around the measured object.SOLUTION: A height distribution measurement device 12 includes: a light irradiation member 18 for applying light for measuring a height distribution of a surface of a measured object (measurement target roll 14); an imaging member 20 for imaging the measured object at an irradiation position LA to which the light is applied; a reflection member 22 for reflecting the light, so as to allow the light to enter the irradiation position LA at an incident angle larger than an angle at which the light directly enters the irradiation position LA from an output point of a light irradiation member 28; and a derivation device (control device 32) for deriving the height distribution from an image taken by the imaging member 20.SELECTED DRAWING: Figure 2

Description

本願は、高さ分布計測装置及び高さ分布計測方法に関する。   The present application relates to a height distribution measuring device and a height distribution measuring method.

特許文献1には、光切断法により測定対象物OBの3次元形状を測定するためにライン光を測定対象物OBに照射するとともに、測定対象物OBに照射したライン光の反射光を受光して受光信号を出力する検出装置が記載されている。特許文献1に記載の検出装置では、進行方向に垂直な断面形状がライン状であるライン光を出射するレーザー照射器と、受光カメラとを備えている。そして、レーザー照射器から略鉛直下方に向けて出射したライン光は第1ミラーによって反射されて、レーザー照射器の移動方向に垂直な方向に進行方向を変更する。測定対象物に照射したライン光は測定対象物の表面で散乱し、散乱光の一部の反射光が第1ミラーに入射し、入射した反射光の進行方向が、受光カメラに向かう方向である略上向き方向に変更される。このように進行方向が変更された反射光は第1ミラーの上部に位置する受光カメラにて受光される。   In Patent Document 1, line light is irradiated to the measurement object OB in order to measure the three-dimensional shape of the measurement object OB by the light cutting method, and reflected light of the line light irradiated to the measurement object OB is received. A detection device that outputs a received light signal is described. The detection device described in Patent Document 1 includes a laser irradiator that emits line light having a linear cross-sectional shape perpendicular to the traveling direction, and a light-receiving camera. Then, the line light emitted from the laser irradiator in a substantially vertical downward direction is reflected by the first mirror and changes its traveling direction to a direction perpendicular to the moving direction of the laser irradiator. The line light irradiated to the measurement target is scattered on the surface of the measurement target, a part of the reflected light of the scattered light is incident on the first mirror, and the traveling direction of the incident reflected light is the direction toward the light receiving camera. It is changed in a substantially upward direction. The reflected light whose traveling direction is changed in this way is received by the light receiving camera located above the first mirror.

特許文献2には、円筒状物体を溶接して作るタンクの内面の溶接痕形状を光により測定して検査するタンク内溶接痕検査装置が記載されている。特許文献2に記載のタンク内溶接痕検査装置では、半導体レーザユニットから出た光は、内蔵のレンズで測定対象上に焦点をもつ光束となり、シリンドリカルレンズに入射する。シリンドリカルレンズを出射した光はライン状に一方向のみ伸ばされる。その後折り返しミラーで方向をタンク内面に垂直な方向に変換され、タンク溶接痕に照射されてレーザーラインとなる。そして、タンク内面に照射されたレーザーラインはそこで拡散反射し、拡散反射した光の一部は折り返しミラーを介して2つの結像レンズを経て、2つのカメラに像を結び、画像化される。   Patent Document 2 describes an in-tank welding mark inspection device that measures the shape of a welding mark on the inner surface of a tank made by welding a cylindrical object by light and inspects it. In the in-tank welding mark inspection device described in Patent Document 2, the light emitted from the semiconductor laser unit becomes a light beam having a focus on the object to be measured by the built-in lens, and enters the cylindrical lens. The light emitted from the cylindrical lens is linearly extended in only one direction. After that, the direction is changed to a direction perpendicular to the inner surface of the tank by a folding mirror, and the tank welding mark is irradiated to form a laser line. Then, the laser line irradiated to the inner surface of the tank is diffused and reflected there, and a part of the diffusely reflected light passes through the two image forming lenses through the folding mirror and forms an image on two cameras to be imaged.

特開2008−203091号公報JP, 2008-203091, A 特開2018−9807号公報JP, 2008-9807, A

被計測物の表面の高さ分布を、照射した光の画像から計測する場合において、照射位置への光の入射角を大きくすることが、高さ方向の分解能を向上させる点で好ましい。しかしながら、照射位置の周囲に、被計測物以外の部材が配置されている場合等では、光源を配置できる範囲に制限が生じるため、照射位置への光の入射角を大きくすることが難しい場合がある。   When measuring the height distribution of the surface of the object to be measured from the image of the irradiated light, it is preferable to increase the incident angle of the light at the irradiation position in order to improve the resolution in the height direction. However, when a member other than the object to be measured is arranged around the irradiation position, the range in which the light source can be arranged is limited, and it may be difficult to increase the incident angle of light to the irradiation position. is there.

本発明では、被計測物の周囲に、被計測物以外の部材が配置されている場合であっても、照射位置への光の入射角を大きくして、高さ方向の分解能を向上させることが目的である。   In the present invention, even when a member other than the object to be measured is arranged around the object to be measured, the incident angle of light to the irradiation position is increased to improve the resolution in the height direction. Is the purpose.

第一態様では、被計測物の表面の高さ分布を計測するための光を照射する光照射部材と、前記光が照射された照射位置で前記被計測物を撮像する撮像部材と、前記光を反射させることで、前記光照射部材の出射点から前記照射位置へ前記光が直接的に入射する入射角よりも大きな入射角で前記照射位置へ入射させる反射部材と、前記撮像部材で撮像された前記照射位置における前記被計測物の画像から前記高さ分布を導出する導出装置と、を有する。   In the first aspect, a light irradiation member that irradiates light for measuring the height distribution of the surface of the measured object, an imaging member that images the measured object at an irradiation position where the light is irradiated, and the light. Is reflected by the reflection member to make the light incident on the irradiation position at an incident angle larger than the incident angle at which the light directly enters the irradiation position from the emission point of the light irradiation member. And a derivation device that derives the height distribution from the image of the measured object at the irradiation position.

この高さ分布計測装置では、光照射部材からの光が被計測物の照射位置に照射され、撮像装置が照射位置で被計測物を撮像する。そして、撮像部材で撮像された照射位置における被計測物の画像から、被計測物の表面の高さ分布を導出装置が導出する。   In this height distribution measuring device, the light from the light irradiation member is applied to the irradiation position of the measured object, and the imaging device images the measured object at the irradiation position. Then, the derivation device derives the height distribution of the surface of the measured object from the image of the measured object at the irradiation position imaged by the imaging member.

光照射部材で照射された光は、反射部材により反射される。この反射により、光は、光照射部材の出射点から照射位置へ直接的に入射する入射角よりも大きな入射角で、照射位置へ入射する。このように、照射位置への光の入射角を大きくすることで、高さ方向の分解能を向上させることができる。   The light emitted by the light emitting member is reflected by the reflecting member. Due to this reflection, the light enters the irradiation position at an angle of incidence larger than the angle of incidence directly from the emission point of the light irradiation member to the irradiation position. In this way, the resolution in the height direction can be improved by increasing the angle of incidence of light on the irradiation position.

しかも、この高さ分布計測装置では、反射部材で光を反射させることで照射位置への光の入射角を大きくしており、光が光照射部材の出射点から照射位置へ直接的に入射する構成ではない。照射位置への直接的な入射光の入射角を大きくする必要がないので、照射位置の周囲に被計測物以外の部材が配置されていても、これらの部材の影響を受けることなく、照射位置への光の入射角を大きくできる。   Moreover, in this height distribution measuring device, the incident angle of the light to the irradiation position is increased by reflecting the light with the reflection member, and the light is directly incident from the emission point of the light irradiation member to the irradiation position. Not a configuration. Since it is not necessary to increase the incident angle of the incident light directly to the irradiation position, even if members other than the object to be measured are arranged around the irradiation position, the irradiation position is not affected by these members. The angle of incidence of light on can be increased.

第二態様では、第一態様において、前記光が、進行方向と直交する軸直方向にライン状に広がるライン光であり、前記反射部材が、前記軸直方向に延在する反射面で前記ライン光の全体を反射させる。   In a second aspect, in the first aspect, the light is line light that spreads linearly in a direction perpendicular to the axis orthogonal to the traveling direction, and the reflecting member is a line that is a reflecting surface extending in the direction perpendicular to the axis. It reflects the entire light.

ライン光を用いることで、広がりのある範囲に光を照射できる。反射部材は、反射面によってライン光の全体を反射させるので、ライン光の全体で入射角を大きくすることが可能である。   By using the line light, it is possible to irradiate light in a wide range. Since the reflecting member reflects the entire line light by the reflecting surface, it is possible to increase the incident angle of the entire line light.

第三態様では、第一又は第二態様において、前記表面が前記撮像部材に向かって凸に湾曲している前記被計測物に対し、前記反射部材が、前記照射位置での前記表面の接平面に交差して配置される。   In a third aspect, in the first or second aspect, the reflection member is a tangential plane of the surface at the irradiation position with respect to the object to be measured whose surface is convexly curved toward the imaging member. Will be placed across.

すなわち、反射部材は、接平面よりも光照射部材に近い位置に配置される構成と比較して、照射位置への光の入射角をより大きくできる。また、反射部材の一部が、接平面よりも被計測物側に入り込むように配置できるので、配置の自由度が高い。   That is, the reflection member can increase the incident angle of light to the irradiation position, as compared with the configuration in which the reflection member is disposed closer to the light irradiation member than the tangential plane. Further, since a part of the reflecting member can be arranged so as to enter the measured object side with respect to the tangential plane, the degree of freedom of arrangement is high.

第四態様では、第一〜第三のいずれか1つの態様において、前記被計測物の外部で前記照射位置の両側に間隔をあけて2つの外部部材が配置されている前記被計測物に対し、前記反射部材が、2つの前記外部部材の間に配置されている。   In a fourth aspect, in any one of the first to third aspects, with respect to the measured object in which two external members are arranged outside the measured object on both sides of the irradiation position. , The reflective member is arranged between two outer members.

このように、被計測物の外部で照射位置の両側に間隔をあけて2つの外部部材が配置されていても、2つの外部部材の間に反射部材を配置することで、照射位置への光の入射角を大きくする構造を実現できる。   As described above, even if two external members are arranged outside the object to be measured with a space on both sides of the irradiation position, by arranging the reflecting member between the two external members, the light to the irradiation position is irradiated. It is possible to realize a structure for increasing the incident angle of.

第五態様では、被計測物の表面の高さ分布を計測するための光を照射し、前記光を反射させることで、前記光の出射点から照射位置へ前記光が直接的に入射する入射角よりも大きな入射角で前記照射位置へ入射させ、前記照射位置で前記被計測物を撮像し、撮像された前記照射位置における前記被計測物の画像から前記高さ分布を導出する。   In the fifth aspect, by irradiating light for measuring the height distribution of the surface of the object to be measured and reflecting the light, the light is directly incident from the emission point to the irradiation position. The height distribution is derived from the image of the measured object at the irradiation position, in which the measured object is imaged at the irradiation position.

この高さ分布計測方法では、光照射部材からの光が被計測物の照射位置に照射され、照射位置で被計測物を撮像する。そして、撮像された照射位置における被計測物の画像から、被計測物の表面の高さ分布を導出する。   In this height distribution measuring method, the light from the light irradiation member is applied to the irradiation position of the measured object, and the measured object is imaged at the irradiation position. Then, the height distribution of the surface of the measured object is derived from the imaged image of the measured object at the irradiation position.

被計測物の表面の高さ分布を計測するための光は反射されて照射位置に照射される。この反射により、光は、出射点から照射位置へ直接的に入射する入射角よりも大きな入射角で、照射位置へ入射する。このように、照射位置への光の入射角を大きくすることで、高さ方向の分解能を向上させることができる。   The light for measuring the height distribution of the surface of the measured object is reflected and applied to the irradiation position. Due to this reflection, the light enters the irradiation position at an angle of incidence larger than the angle of incidence of directly entering the irradiation position from the emission point. In this way, the resolution in the height direction can be improved by increasing the angle of incidence of light on the irradiation position.

しかも、この高さ分布計測方法では、光を反射させることで照射位置への光の入射角を大きくしており、光が出射点から照射位置へ直接的に入射する構成ではない。照射位置への直接的な入射光の入射角を大きくする必要がないので、照射位置の周囲に被計測物以外の部材が配置されていても、これらの部材の影響を受けることなく、照射位置への光の入射角を大きくできる。   Moreover, in this height distribution measuring method, the incident angle of the light to the irradiation position is increased by reflecting the light, and the light does not directly enter the irradiation position from the emission point. Since it is not necessary to increase the incident angle of the incident light directly to the irradiation position, even if members other than the object to be measured are arranged around the irradiation position, the irradiation position is not affected by these members. The angle of incidence of light on can be increased.

本願では、被計測物の周囲に、被計測物以外の部材が配置されている場合であっても、照射位置への光の入射角を大きくして、高さ方向の分解能を向上させることができる。   In the present application, even when a member other than the object to be measured is arranged around the object to be measured, it is possible to increase the incident angle of light to the irradiation position and improve the resolution in the height direction. it can.

図1は第一実施形態の高さ分布計測装置の斜視図である。FIG. 1 is a perspective view of the height distribution measuring device of the first embodiment. 図2は第一実施形態の高さ分布計測装置の側面図である。FIG. 2 is a side view of the height distribution measuring device of the first embodiment. 図3は第一実施形態の高さ分布計測装置を部分的に拡大して示す側面図である。FIG. 3 is a partially enlarged side view of the height distribution measuring device of the first embodiment. 図4は第一比較例の高さ分布計測装置の側面図である。FIG. 4 is a side view of the height distribution measuring device of the first comparative example. 図5は第二実施形態の高さ分布計測装置の側面図である。FIG. 5 is a side view of the height distribution measuring device of the second embodiment. 図6は第三実施形態の高さ分布計測装置の側面図である。FIG. 6 is a side view of the height distribution measuring device of the third embodiment. 図7は第二比較例の高さ分布計測装置の側面図である。FIG. 7 is a side view of the height distribution measuring device of the second comparative example.

以下、図面を参照して第一実施形態の高さ分布計測装置12を説明する。   Hereinafter, the height distribution measuring device 12 of the first embodiment will be described with reference to the drawings.

図1及び図2には、第一実施形態の高さ分布計測装置12が、被計測物である計測対象ロール14と共に示されている。   1 and 2, the height distribution measuring device 12 of the first embodiment is shown together with a measuring object roll 14 which is an object to be measured.

高さ分布計測装置12は、表面の高さ分布を計測する対象である計測対象ロール14と、この計測対象ロール14に接触配置された2つの外部ロール16A、16Bを有している。計測対象ロール14及び外部ロール16A、16Bは、円筒状の部材である。そして、計測対象ロール14及び2つの外部ロール16A、16Bはいずれも、計測対象ロール14とそれぞれの回転軸が平行になるように配置されている。   The height distribution measuring device 12 includes a measurement target roll 14 that is a target for measuring the height distribution of the surface, and two external rolls 16A and 16B arranged in contact with the measurement target roll 14. The measurement target roll 14 and the external rolls 16A and 16B are cylindrical members. Then, the measurement target roll 14 and the two external rolls 16A and 16B are both arranged so that their respective rotation axes are parallel to the measurement target roll 14.

計測対象ロール14の外周には、たとえば、リチウムイオン二次電池を構成する電極層が箔状に形成されており、この箔の表面に生じた微小な凹凸の高さ分布を高さ分布計測装置12で計測する。   On the outer circumference of the measurement target roll 14, for example, an electrode layer forming a lithium ion secondary battery is formed in a foil shape, and the height distribution of minute unevenness generated on the surface of the foil is measured by a height distribution measuring device. Measure at 12.

高さ分布計測装置12は、光照射部材18、撮像部材20及び反射部材22を有している。光照射部材18は、計測対象ロール14の表面の高さ分布を計測するためのライン光LLを照射する。ライン光LLは、反射部材22を経由して、計測対象ロール14の表面に設定された照射位置LAに達する。図1及び図2に示した例では、光照射部材18は、光源24と、この光源24の出射点LPから出射された光をライン状に広げてライン光LLとする照射レンズ26を有している。ライン光LLのライン方向(広がり方向)は、計測対象ロール14の軸方向と平行である。   The height distribution measuring device 12 has a light irradiation member 18, an imaging member 20, and a reflection member 22. The light irradiation member 18 irradiates the line light LL for measuring the height distribution of the surface of the measurement target roll 14. The line light LL reaches the irradiation position LA set on the surface of the measurement target roll 14 via the reflecting member 22. In the example shown in FIGS. 1 and 2, the light irradiation member 18 includes a light source 24 and an irradiation lens 26 that linearly spreads the light emitted from the emission point LP of the light source 24 into the line light LL. ing. The line direction (spreading direction) of the line light LL is parallel to the axial direction of the measurement target roll 14.

撮像部材20は、照射位置LAを動画又は静止画で撮像可能な撮像カメラ28と、この撮像カメラ28に像を結ぶための撮像レンズ30とを有している。図2に示すように、撮像部材20は制御装置32と接続されており、撮像データを制御装置32に送ることができる。制御装置32では、受信した撮像データの画像から、照射位置LAにおける高さ分布を、たとえば光切断法に基づく所定の計算式によって算出することができる。あるいは、制御装置32に、撮像データの各種値と計測対象ロール14の表面の高さを関連づける対応テーブルが記憶され、この対応テーブルに基づいて高さ分布を求める構成でもよい。いずれの構成であっても、本実施形態においては、制御装置32は計測対象ロール14の表面の高さ分布を導出する導出装置を兼ねている。   The image pickup member 20 includes an image pickup camera 28 capable of picking up a moving image or a still image of the irradiation position LA, and an image pickup lens 30 for forming an image on the image pickup camera 28. As shown in FIG. 2, the imaging member 20 is connected to the control device 32 and can send the imaging data to the control device 32. In the control device 32, the height distribution at the irradiation position LA can be calculated from the image of the received imaging data by a predetermined calculation formula based on, for example, the light section method. Alternatively, the control device 32 may store a correspondence table that associates various values of the imaging data with the height of the surface of the measurement target roll 14, and may obtain the height distribution based on the correspondence table. In any of the configurations, in the present embodiment, the control device 32 also serves as a derivation device that derives the height distribution of the surface of the measurement target roll 14.

上記したように、本実施形態における被計測物は、円筒状の計測対象ロール14である。計測対象ロール14の表面は、撮像部材20に向かって凸に湾曲している。   As described above, the object to be measured in the present embodiment is the cylindrical measurement target roll 14. The surface of the measurement target roll 14 is convexly curved toward the imaging member 20.

また、本実施形態では、撮像部材20の光軸A−1(照射位置LAから撮像部材20までの光路)が、照射位置LAにおける計測対象ロール14の法線NLの方向と一致しており、撮像部材20はいわゆる垂直配置とされている。この法線NLは、計測対象ロール14の表面の僅かな凹凸(計測しようとしている高さ分布)を均した場合の、円弧面における法線である。   Further, in the present embodiment, the optical axis A-1 of the imaging member 20 (the optical path from the irradiation position LA to the imaging member 20) coincides with the direction of the normal line NL of the measurement target roll 14 at the irradiation position LA, The image pickup member 20 is in a so-called vertical arrangement. This normal line NL is a normal line on the arc surface when the slight unevenness (height distribution to be measured) on the surface of the roll 14 to be measured is leveled.

2つの外部ロール16A、16Bの間には、反射部材22が配置されている。光照射部材18から照射されたライン光LLは、反射部材22で反射され、照射位置LA(図3参照)に照射される。光照射部材18からのライン光LLが反射部材22で反射されることなく直接的に光照射部材18に照射される構成と比較して、本実施形態ではライン光LLが反射部材22で反射されるので、照射位置LAへのライン光LLの入射角βが大きくなっている。この入射角βは、照射位置LAの法線NLと入射光(ライン光LL)の成す角である。   The reflection member 22 is arranged between the two outer rolls 16A and 16B. The line light LL emitted from the light emitting member 18 is reflected by the reflecting member 22 and is emitted to the irradiation position LA (see FIG. 3). Compared with the configuration in which the line light LL from the light irradiation member 18 is directly irradiated to the light irradiation member 18 without being reflected by the reflection member 22, the line light LL is reflected by the reflection member 22 in the present embodiment. Therefore, the incident angle β of the line light LL to the irradiation position LA is large. The incident angle β is an angle formed by the normal line NL of the irradiation position LA and the incident light (line light LL).

反射部材22は、このように光を反射することができれば、具体的構成は限定されず、たとえば、プリズムやミラーを用いることができる。   The reflective member 22 is not limited to a specific configuration as long as it can reflect light in this manner, and for example, a prism or a mirror can be used.

なお、本実施形態では、光照射部材18で照射されて反射部材22で反射されるまでのライン光LLの光軸A−2と、撮像部材20の光軸A−1とが平行である。   In the present embodiment, the optical axis A-2 of the line light LL, which is irradiated by the light irradiation member 18 and is reflected by the reflection member 22, is parallel to the optical axis A-1 of the imaging member 20.

図3に詳細に示すように、本実施形態の反射部材22は、その一部が、照射位置LAにおける計測対象ロール14の接平面TPに重なる位置に配置されている。   As shown in detail in FIG. 3, the reflection member 22 of the present embodiment is arranged such that a part thereof overlaps the tangent plane TP of the measurement target roll 14 at the irradiation position LA.

次に、本実施形態の作用、及び高さ分布計測方法を説明する。   Next, the operation of this embodiment and the height distribution measuring method will be described.

計測対象ロール14の表面の高さ分布を計測するには、図2に示すように、光照射部材18からライン光LLを照射する。このライン光LLは、反射部材22で反射され、計測対象ロール14の照射位置LAに入射角βで照射される。撮像部材20は、照射位置LAの画像を撮像する。この撮像された画像から、導出装置を兼ねる制御装置32が、表面の高さ分布を導出する。   In order to measure the height distribution of the surface of the measurement target roll 14, as shown in FIG. 2, the light irradiation member 18 irradiates the line light LL. The line light LL is reflected by the reflecting member 22 and is applied to the irradiation position LA of the measurement target roll 14 at the incident angle β. The image capturing member 20 captures an image of the irradiation position LA. From the captured image, the control device 32 which also functions as a derivation device derives the height distribution of the surface.

本実施形態では、光照射部材18で照射されたライン光LLが、反射部材22で反射されて、所定の入射角βで照射位置LAに入射する。   In the present embodiment, the line light LL irradiated by the light irradiation member 18 is reflected by the reflection member 22 and enters the irradiation position LA at a predetermined incident angle β.

ここで、第一比較例として、図4に示すように、反射部材22で反射されることなく、光照射部材18から照射位置LAに直接的にライン光が照射される構成の高さ分布計測装置82を考える。第一比較例の高さ分布計測装置82では、光照射部材18の出射点LPから照射位置LAまで直線的な光路となるので、入射角βが小さい。これに対し、本実施形態では、光照射部材18で照射された光が反射部材22で反射されるので、第一比較例よりも、入射角βが大きい。そして、本実施形態では、このように入射角βが大きいことで、第一比較例よりも高い分解能で、計測対象ロール14の表面の高さ分布を計測することができる。   Here, as a first comparative example, as shown in FIG. 4, the height distribution measurement in which the line light is directly irradiated from the light irradiation member 18 to the irradiation position LA without being reflected by the reflection member 22. Consider device 82. In the height distribution measuring device 82 of the first comparative example, the incident angle β is small because the light path is a straight optical path from the emission point LP of the light irradiation member 18 to the irradiation position LA. On the other hand, in the present embodiment, since the light emitted by the light emitting member 18 is reflected by the reflecting member 22, the incident angle β is larger than that in the first comparative example. In the present embodiment, since the incident angle β is large in this way, the height distribution of the surface of the measurement target roll 14 can be measured with higher resolution than that in the first comparative example.

なお、計測対象ロール14の照射位置LAへの入射角βを大きくするには、光照射部材18の位置を変更することも考えられる。しかし、本実施形態では、計測対象ロール14の外側に、2つの外部ロール16A、16Bが接触配置されている。したがって、例えば図2に二点鎖線で示す位置に光照射部材18を配置する(反射部材22は用いない)構成を採ると、光照射部材18の出射点LPから照射位置LAまでの光軸A−3に外部ロール16Aが被ってしまう。すなわち、照射位置LAを光照射部材18で照射することができない。   In addition, in order to increase the incident angle β of the measurement target roll 14 to the irradiation position LA, the position of the light irradiation member 18 may be changed. However, in this embodiment, two external rolls 16A and 16B are arranged in contact with each other outside the measurement target roll 14. Therefore, for example, when the light irradiating member 18 is arranged at the position shown by the chain double-dashed line in FIG. 2 (the reflecting member 22 is not used), the optical axis A from the emission point LP of the light irradiating member 18 to the irradiation position LA is taken. The external roll 16A covers -3. That is, the irradiation position LA cannot be irradiated by the light irradiation member 18.

これに対し、本実施形態では、光照射部材18から照射位置LAへの直接的な入射光の入射角を大きくする必要がない。このため、計測対象ロール14の外部で、照射位置LAの近傍に外部ロール16Aが配置されていても、この外部ロール16Aの影響を受けることなく、入射角を大きくできる。   On the other hand, in the present embodiment, it is not necessary to increase the incident angle of the incident light directly from the light irradiation member 18 to the irradiation position LA. Therefore, even if the external roll 16A is disposed near the irradiation position LA outside the measurement target roll 14, the incident angle can be increased without being affected by the external roll 16A.

しかも、反射部材22を用いて、照射位置LAへのライン光LLの入射角βを大きくしており、光照射部材18と撮像部材20の相対的な位置関係の制約が少ない。このため、光照射部材18と撮像部材20の相対位置の調整も容易である。   Moreover, the incident angle β of the line light LL to the irradiation position LA is increased by using the reflection member 22, and there are few restrictions on the relative positional relationship between the light irradiation member 18 and the imaging member 20. Therefore, it is easy to adjust the relative position between the light irradiation member 18 and the imaging member 20.

次に、第二実施形態について説明する。第二実施形態において、第一実施形態と同様の要素、部材等については同一符号を付して詳細な説明を省略する。   Next, a second embodiment will be described. In the second embodiment, the same elements and members as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

図5に示すように、第二実施形態の高さ分布計測装置42では、撮像部材20の光軸A−1が、照射位置LAにおける計測対象ロール14の法線NLに対し、所定の傾斜角αで傾斜している。ただし、第一実施形態と同様に、光照射部材18の出射点LPから反射部材22までの光軸A−2と、撮像部材20の光軸A−1とは平行である。   As shown in FIG. 5, in the height distribution measuring device 42 of the second embodiment, the optical axis A-1 of the imaging member 20 is at a predetermined inclination angle with respect to the normal line NL of the measurement target roll 14 at the irradiation position LA. It is inclined at α. However, as in the first embodiment, the optical axis A-2 from the emission point LP of the light irradiation member 18 to the reflection member 22 and the optical axis A-1 of the imaging member 20 are parallel to each other.

この第二実施形態のように、撮像部材20の光軸A−1が傾斜している構造では、法線NLに対し、照射されたライン光LLが入射する側と反対側、すなわち正反射方向に近い方向から照射位置LAを撮像する。したがって、たとえば光照射部材18からの光量が少ない場合であっても、照射位置LAを確実に撮像して高さ分布を計測できる。   In the structure in which the optical axis A-1 of the imaging member 20 is inclined as in the second embodiment, the side opposite to the side on which the irradiated line light LL is incident with respect to the normal NL, that is, the regular reflection direction. The irradiation position LA is imaged from a direction close to. Therefore, for example, even when the amount of light from the light irradiation member 18 is small, the irradiation position LA can be reliably imaged and the height distribution can be measured.

第一実施形態及び第二実施形態では、被計測物の一例として、計測対象ロール14を挙げている。計測対象ロール14は円筒状なので、照射位置LAの両側部分(周方向の両側部分)は、接平面TPよりも、撮像部材20から遠い位置にある。接平面TPと計測対象ロール14との間に空間GPが生じているので、反射部材22を配置できる範囲が広くなっている。たとえば図3に示した例では、反射部材22は接平面TPに交差して配置され、一部が接平面TPよりも計測対象ロール14側に入り込むように配置されている。このように、反射部材22を計測対象ロール14の表面に近接して配置することで、入射角βをより大きくすることが可能な構造である。なお、反射部材22は、接平面TPに交差することなく、接平面TPよりも光照射部材18側に配置される構成であっても、接平面TPと計測対象ロール14との間に空間GPが生じていれば、反射部材22を配置しやすい。   In the first and second embodiments, the measurement target roll 14 is cited as an example of the measured object. Since the measurement target roll 14 has a cylindrical shape, both side portions (both side portions in the circumferential direction) of the irradiation position LA are located farther from the imaging member 20 than the tangent plane TP. Since the space GP is generated between the tangent plane TP and the roll 14 to be measured, the range in which the reflecting member 22 can be arranged is wide. For example, in the example shown in FIG. 3, the reflection member 22 is arranged so as to intersect the tangential plane TP, and a part of the reflection member 22 is arranged so as to enter the measurement target roll 14 side from the tangential plane TP. In this way, by arranging the reflection member 22 close to the surface of the measurement target roll 14, the incident angle β can be increased. Even if the reflecting member 22 is arranged on the light irradiation member 18 side with respect to the tangential plane TP without intersecting the tangential plane TP, the space GP is provided between the tangential plane TP and the measurement target roll 14. If the occurrence of the reflection occurs, it is easy to arrange the reflection member 22.

次に、第三実施形態について説明する。第三実施形態において、第一実施形態又は第二実施形態と同様の要素、部材等については同一符号を付して詳細な説明を省略する。   Next, a third embodiment will be described. In the third embodiment, elements and members similar to those in the first or second embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

図6に示すように、第三実施形態の高さ分布計測装置52では、被計測物が、平坦な表面を有する平面部材54である。この平面部材54は、図示しない移動機構により、所定方向(たとえば矢印M1方向)に移動されるようになっている。   As shown in FIG. 6, in the height distribution measuring device 52 of the third embodiment, the object to be measured is a flat member 54 having a flat surface. The plane member 54 is moved in a predetermined direction (for example, the arrow M1 direction) by a moving mechanism (not shown).

平面部材54の照射位置LAの両側には、2つの外部部材56A、56Bが配置されている。第三実施形態における外部部材56A、56Bの一例としては、平面部材54における高さ分布以外の性状や形状を計測する計測装置を挙げることができるが、これに限定されない。   Two external members 56A and 56B are arranged on both sides of the irradiation position LA of the plane member 54. As an example of the external members 56A and 56B in the third embodiment, a measuring device that measures properties and shapes other than the height distribution in the planar member 54 can be cited, but is not limited thereto.

第三実施形態では、第二実施形態と同様に、撮像部材20の光軸A−1が、法線NLに対し所定の傾斜角α(第二実施形態と異なる値でもよい)で傾斜している。   In the third embodiment, as in the second embodiment, the optical axis A-1 of the imaging member 20 is tilted with respect to the normal line NL at a predetermined tilt angle α (a value different from that in the second embodiment). There is.

このような構成とされた第三実施形態においても、光照射部材18から照射されたライン光LLは、反射部材22で反射されて照射位置LAに照射される。   Also in the third embodiment having such a configuration, the line light LL emitted from the light emitting member 18 is reflected by the reflecting member 22 and is emitted to the irradiation position LA.

ここで、図7には、第二比較例の高さ分布計測装置92が示されている。第二比較例の高さ分布計測装置92では、第一比較例の高さ分布計測装置82と同様に、光照射部材18の出射点LPから照射位置LAまで、直接的にライン光LLが照射される。反射部材22によってライン光LLを反射しないので、外部部材56A、56Bの間の空間が狭い場合には、入射角βが小さくなる。   Here, FIG. 7 shows a height distribution measuring device 92 of the second comparative example. In the height distribution measuring device 92 of the second comparative example, as in the height distribution measuring device 82 of the first comparative example, the line light LL is directly irradiated from the emission point LP of the light irradiation member 18 to the irradiation position LA. To be done. Since the reflecting member 22 does not reflect the line light LL, the incident angle β becomes small when the space between the external members 56A and 56B is narrow.

これに対し、第三実施形態の高さ分布計測装置52では、外部部材56A、56Bの間が狭い場合でも、光照射部材18からのライン光LLを反射部材22で反射させることで、照射位置LAに大きな入射角βで入射させることができる。そして、第二比較例よりも高い分解能で、平面部材54の表面の高さ分布を計測することができる。   On the other hand, in the height distribution measuring device 52 of the third embodiment, even if the distance between the external members 56A and 56B is narrow, the line member LL from the light irradiating member 18 is reflected by the reflecting member 22, so that the irradiation position The light can be incident on LA at a large incident angle β. Then, the height distribution of the surface of the plane member 54 can be measured with higher resolution than that of the second comparative example.

上記では、光照射部材18から照射されるライン光LLの光軸A−2と、撮像部材20の光軸A−1とが平行である構造を例示した。このように、光軸A−2と光軸A−1とが平行であると、たとえば、光照射部材18と撮像部材20とを、接近させて配置することができ、設置スペースの点で有利である。また、光照射部材18と撮像部材20とを、相対位置が一定となるように保持具で保持することが可能であり、取り扱いが容易である。特に、光照射部材18と撮像部材20とを一体で設置する場合に、少ない設置治具で設置することが可能であり、また、設置時の調整や、メンテナンス時の交換等の各種作業も容易である。なお、ここでいう「平行」すなわち、光照射部材18から照射されるライン光LLの光軸A−2と、撮像部材20の光軸A−1との「平行」には、厳密に平行である構成の他に、実質的に平行であるとみなすことができる程度の構成を含む。   In the above, the structure in which the optical axis A-2 of the line light LL emitted from the light emitting member 18 and the optical axis A-1 of the imaging member 20 are parallel to each other has been illustrated. Thus, when the optical axis A-2 and the optical axis A-1 are parallel to each other, for example, the light irradiation member 18 and the imaging member 20 can be arranged close to each other, which is advantageous in terms of installation space. Is. Further, the light irradiating member 18 and the imaging member 20 can be held by a holding tool so that their relative positions are constant, and handling is easy. In particular, when the light irradiation member 18 and the imaging member 20 are integrally installed, they can be installed with a small installation jig, and various operations such as adjustment during installation and replacement during maintenance are easy. Is. It should be noted that the term “parallel” as used herein, that is, “parallel” between the optical axis A-2 of the line light LL emitted from the light emitting member 18 and the optical axis A-1 of the imaging member 20 is strictly parallel. In addition to a certain structure, a structure that can be regarded as being substantially parallel is included.

また、被計測物の表面の高さ分布を計測するための光として、上記ではライン光LLを挙げているが、この光はライン光に限定されず、たとえばスポット光であってもよい。ただし、ライン光LLを用いると、ライン状に広がりがある範囲で同時に光を照射でき、効率的な高さ分布計測が可能である。ライン光LLを用いた構成であっても、反射部材22として、ライン光LLの広がり範囲に対応した幅広の反射面を有する形状とすれば、ライン光LLの全体を反射させる、照射位置LAへの入射角βを大きくすることが可能である。   Further, as the light for measuring the height distribution of the surface of the object to be measured, the line light LL is mentioned above, but the light is not limited to the line light and may be spot light, for example. However, when the line light LL is used, it is possible to irradiate light simultaneously in a range where there is a line-shaped spread, and it is possible to perform efficient height distribution measurement. Even with the configuration using the line light LL, if the reflecting member 22 has a shape having a wide reflecting surface corresponding to the spread range of the line light LL, the entire line light LL is reflected to the irradiation position LA. It is possible to increase the incident angle β of.

上記各実施形態における計測対象は、リチウムイオン二次電池の電極層に限定されない。たとえば、反射防止フィルムの表面層や、粘着テープの粘着層、太陽電池(光電池)の表面、各種ディスプレイの表面等を挙げることができる。   The measurement target in each of the above embodiments is not limited to the electrode layer of the lithium ion secondary battery. For example, the surface layer of an antireflection film, the adhesive layer of an adhesive tape, the surface of a solar cell (photocell), the surface of various displays, etc. can be mentioned.

12 高さ分布計測装置
14 計測対象ロール(被計測物の一例)
16A、16B 外部ロール(外部部材の一例)
18 光照射部材
20 撮像部材
22 反射部材
24 光源
26 照射レンズ
28 撮像カメラ
30 撮像レンズ
32 制御装置(導出装置の一例)
42 高さ分布計測装置
52 高さ分布計測装置
54 平面部材(被計測物の一例)
56A 外部部材
12 Height distribution measuring device 14 Roll to be measured (an example of an object to be measured)
16A, 16B External roll (an example of external member)
18 Light Irradiation Member 20 Imaging Member 22 Reflecting Member 24 Light Source 26 Irradiation Lens 28 Imaging Camera 30 Imaging Lens 32 Control Device (One Example of Derivation Device)
42 Height distribution measuring device 52 Height distribution measuring device 54 Planar member (an example of an object to be measured)
56A External member

Claims (5)

被計測物の表面の高さ分布を計測するための光を照射する光照射部材と、
前記光が照射された照射位置で前記被計測物を撮像する撮像部材と、
前記光を反射させることで、前記光照射部材の出射点から前記照射位置へ前記光が直接的に入射する入射角よりも大きな入射角で前記照射位置へ入射させる反射部材と、
前記撮像部材で撮像された前記照射位置における前記被計測物の画像から前記高さ分布を導出する導出装置と、
を有する高さ分布計測装置。
A light irradiation member for irradiating light for measuring the height distribution of the surface of the measured object,
An imaging member that images the object to be measured at an irradiation position irradiated with the light,
By reflecting the light, a reflection member that is incident on the irradiation position at an incident angle larger than the incident angle at which the light is directly incident from the emission point of the light irradiation member to the irradiation position,
A deriving device that derives the height distribution from the image of the object to be measured at the irradiation position captured by the image capturing member,
A height distribution measuring device.
前記光が、進行方向と直交する軸直方向にライン状に広がるライン光であり、
前記反射部材が、前記軸直方向に延在する反射面で前記ライン光の全体を反射させる請求項1に記載の高さ分布計測装置。
The light is a line light that spreads linearly in a direction perpendicular to the axis orthogonal to the traveling direction,
The height distribution measuring device according to claim 1, wherein the reflecting member reflects the entire line light on a reflecting surface extending in the direction perpendicular to the axis.
前記表面が前記撮像部材に向かって凸に湾曲している前記被計測物に対し、
前記反射部材が、前記照射位置での前記表面の接平面に交差して配置される請求項1又は請求項2に記載の高さ分布計測装置。
For the object to be measured whose surface is convexly curved toward the imaging member,
The height distribution measuring device according to claim 1, wherein the reflecting member is arranged so as to intersect a tangential plane of the surface at the irradiation position.
前記被計測物の外部で前記照射位置の両側に間隔をあけて2つの外部部材が配置されている前記被計測物に対し、
前記反射部材が、2つの前記外部部材の間に配置されている請求項1〜請求項3のいずれか1項に記載の高さ分布計測装置。
With respect to the measured object in which two external members are arranged outside the measured object on both sides of the irradiation position,
The height distribution measuring device according to any one of claims 1 to 3, wherein the reflecting member is arranged between the two external members.
被計測物の表面の高さ分布を計測するための光を照射し、
前記光を反射させることで、前記光の出射点から照射位置へ前記光が直接的に入射する入射角よりも大きな入射角で前記照射位置へ入射させ、
前記照射位置で前記被計測物を撮像し、
撮像された前記照射位置における前記被計測物の画像から前記高さ分布を導出する、
高さ分布計測方法。
Irradiate light for measuring the height distribution of the surface of the measured object,
By reflecting the light, the light is incident on the irradiation position at an incident angle larger than the incident angle at which the light directly enters the irradiation position from the emission point,
Imaging the measured object at the irradiation position,
Deriving the height distribution from the image of the measured object at the imaged irradiation position,
Height distribution measurement method.
JP2018204277A 2018-10-30 2018-10-30 Height distribution measurement device and height distribution measurement method Pending JP2020071103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018204277A JP2020071103A (en) 2018-10-30 2018-10-30 Height distribution measurement device and height distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018204277A JP2020071103A (en) 2018-10-30 2018-10-30 Height distribution measurement device and height distribution measurement method

Publications (1)

Publication Number Publication Date
JP2020071103A true JP2020071103A (en) 2020-05-07

Family

ID=70547597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018204277A Pending JP2020071103A (en) 2018-10-30 2018-10-30 Height distribution measurement device and height distribution measurement method

Country Status (1)

Country Link
JP (1) JP2020071103A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195502A (en) * 2002-12-18 2004-07-15 Jfe Koken Corp Laser sensor for welding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195502A (en) * 2002-12-18 2004-07-15 Jfe Koken Corp Laser sensor for welding

Similar Documents

Publication Publication Date Title
CN102818528B (en) Apparatus and method for inspecting an object with increased depth of field
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
US9610729B2 (en) Device and method for performing and monitoring a plastic laser transmission welding process
US20130235387A1 (en) Three-dimensional measuring device and method
JP2006189389A (en) Optical thickness measuring method and device
US10976670B2 (en) Apparatus and method for detecting optimal focal plane of lithographic projection objective lens
JP2015072175A (en) Inspection equipment
JP2012078152A (en) Light projection beam adjusting method
EP3187822B1 (en) Surface shape measuring device
CN110050184B (en) Method and apparatus for inspecting defect on transparent substrate and method of emitting incident light
TW201719784A (en) Method of improving lateral resolution for height sensor using differential detection technology for semiconductor inspection and metrology
CN104280851B (en) A kind of focusing and leveling itself zero plane adjusting apparatus and method
JP2009025006A (en) Optical device, light source device, and optical measuring device
JP2020071103A (en) Height distribution measurement device and height distribution measurement method
JP2016170104A (en) Laser beam intensity distribution measurement device, and laser beam intensity distribution measurement method
JP2008032402A (en) Reflector evaluation device and method
KR20120071764A (en) Auto focusing apparatus
US8093540B2 (en) Method of focus and automatic focusing apparatus and detecting module thereof
JP5346670B2 (en) Non-contact surface shape measuring device
CN105807571A (en) Focusing and leveling system used for photo-etching machine and focusing and leveling method thereof
JP2008196855A (en) Method and device for positioning wafer
JP2003177292A (en) Lens adjusting device and method
JP2009271012A (en) Position adjusting method for distance sensor of thickness measuring instrument
JP2006071510A (en) Reflectivity-measuring method and reflectivity-measuring device
JP2014048192A (en) Object detection device and information acquisition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221206