JP2020069481A - Method for producing sprue spreader and method for producing laminating die - Google Patents

Method for producing sprue spreader and method for producing laminating die Download PDF

Info

Publication number
JP2020069481A
JP2020069481A JP2018202785A JP2018202785A JP2020069481A JP 2020069481 A JP2020069481 A JP 2020069481A JP 2018202785 A JP2018202785 A JP 2018202785A JP 2018202785 A JP2018202785 A JP 2018202785A JP 2020069481 A JP2020069481 A JP 2020069481A
Authority
JP
Japan
Prior art keywords
furnace
copper
temperature
steel
shunt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018202785A
Other languages
Japanese (ja)
Other versions
JP6755287B2 (en
Inventor
剛士 大本
Takeshi Omoto
剛士 大本
光朗 喜多村
Mitsuaki Kitamura
光朗 喜多村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryobi Ltd
Original Assignee
Ryobi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryobi Ltd filed Critical Ryobi Ltd
Priority to JP2018202785A priority Critical patent/JP6755287B2/en
Publication of JP2020069481A publication Critical patent/JP2020069481A/en
Application granted granted Critical
Publication of JP6755287B2 publication Critical patent/JP6755287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

To obtain a diffusion joining method free from the generation of defects.SOLUTION: Treatments including: a step where a steel (St) and copper or a copper alloy (Cu) before joining are arranged in a pressurization-heating furnace for performing diffusion joining in a combined state, and the temperature in the furnace is stabilized at 600±5°C for about 30 min; a step where the temperature in the furnace is increased for about 14 min at 750±5°C; a step where the pressurization of the inside of the furnace in a state having a stabilized temperature at 750±5°C is started, and the pressurization is gradually performed so that the pressurization force in the furnace reaches 20±0.1 MPa after about 30 min; a step where continuance is performed for about 2 hr in a state where the pressurization force in the furnace reaches 20±0.1 MPa; and a step where, after the passage of about 2 hr, the power source of the temperature in the furnace is made OFF to naturally decrease the temperature, and further, regarding the pressurization force in the furnace, the pressure in the furnace is gradually decreased for about 15 min to make the pressurization force zero are practiced, and also, when the respective treatment are practiced, the degree of vacuum in the furnace is kept to 0.5±0.1 Pa.SELECTED DRAWING: Figure 4

Description

本発明は、分流子の製造方法および積層金型の製造方法に関するものである。   The present invention relates to a method for manufacturing a shunt and a method for manufacturing a laminated die.

従来から、ダイカスト金型に分流子(スプルコア)を設けることが知られている(例えば、下記特許文献1参照)。すなわち、ダイカスト金型には、スリーブが設けられており、また、スリーブ内には、スリーブ内を前進して溶湯を押圧し、溶湯をビスケット、ランナーおよびゲートを介してキャビティに充填するためのプランジャーチップが設けられている。分流子は、プランジャーチップの前進方向対向位置であるビスケットの位置に設けられており、プランジャーチップによって押圧されてスリーブ内を送られてきた溶湯が分流子に衝突し、分流子によって溶湯がランナーおよびゲートへと導かれるように構成されている。分流子内部には冷媒用空間(冷媒通路)が形成されており、この冷媒通路内に冷媒が流されることにより、溶湯が衝突して温度上昇する分流子を冷却している。   It has been conventionally known to provide a shunt (sprue core) in a die casting mold (see, for example, Patent Document 1 below). That is, the die casting mold is provided with a sleeve, and the inside of the sleeve is a plan for advancing through the sleeve to press the molten metal and filling the molten metal into the cavity through the biscuit, runner and gate. A jar tip is provided. The shunt is provided at the position of the biscuit, which is a position opposite to the forward direction of the plunger tip, and the molten metal that has been pushed by the plunger tip and sent through the sleeve collides with the shunt and the shunt causes the molten metal to flow. It is designed to lead to runners and gates. A refrigerant space (refrigerant passage) is formed inside the shunt element, and the shunt element, whose temperature rises due to collision of the molten metal, is cooled by flowing the refrigerant into the refrigerant passage.

ところで、この種の分流子では、溶湯が衝突する前方部を含む箇所が鋼によって形成されるとともに、溶湯が衝突する前方部とは逆側の後方部に向けて開口して形成される冷媒通路の全周を取り囲む部位が銅又は銅合金によって形成されるものがある。このとき、異材である鋼と銅又は銅合金を分離不能に接合する技術としては、拡散接合等の公知の異材結合技術を採用することが知られている(例えば、下記特許文献2参照)。   By the way, in this kind of shunt, the refrigerant passage formed by forming a portion including a front portion where the molten metal collides with steel and opening toward a rear portion opposite to the front portion where the molten metal collides. There is one in which the portion surrounding the entire circumference is formed of copper or a copper alloy. At this time, it is known to employ a known dissimilar material bonding technique such as diffusion bonding as a technique for inseparably joining the dissimilar steel and copper or copper alloy (for example, refer to Patent Document 2 below).

特許第3097515号公報Japanese Patent No. 3097515 特許第5690314号公報Japanese Patent No. 5690314

しかしながら、従来公知の異材結合技術は、作業者の経験や勘によって接合条件が決定されることが多く、技術的に確立されたものではなかった。例えば、鋼と銅又は銅合金を拡散接合して分流子を製造する場合、接合時の温度条件や加圧条件によっては、接合時や接合後の焼入れ時に割れが発生してしまう可能性があった。特に、従来技術では、銅又は銅合金に対して割れが生じる現象が発生しており、従来公知の異材結合技術には改善の余地が残されていた。   However, the conventionally known dissimilar material joining technique is not established technically because the joining conditions are often determined by the experience and intuition of the operator. For example, when steel and copper or a copper alloy are diffusion bonded to manufacture a shunt, there is a possibility that cracks may occur during bonding or during quenching after bonding depending on the temperature conditions and pressure conditions during bonding. It was In particular, in the prior art, a phenomenon occurs in which a crack occurs in copper or a copper alloy, and there is room for improvement in the conventionally known dissimilar material bonding technology.

本発明は、上述した従来技術に存在する課題に鑑みて成されたものであり、鋼と銅又は銅合金を拡散接合して分流子を製造する際に、割れなどの不具合の発生しない新たな分流子の製造方法を提供することにある。また、本発明では、ダイカスト法に用いられる様々な積層金型の製造方法に対して、本発明方法を適用させる条件を見出すことを発明の目的としている。   The present invention has been made in view of the problems existing in the above-mentioned prior art, and when manufacturing a shunt by diffusion bonding steel and copper or a copper alloy, a new defect such as crack does not occur. It is to provide a method for manufacturing a shunt. Further, the present invention has an object of finding conditions for applying the method of the present invention to various methods for manufacturing a laminated die used in a die casting method.

以下、本発明について説明する。なお、本発明の理解を容易にするために添付図面の参照番号を括弧書きにて付記するが、それにより本発明が図示の形態に限定されるものではない。   The present invention will be described below. In addition, in order to facilitate understanding of the present invention, reference numerals in the accompanying drawings are added in parentheses, but the present invention is not limited to the illustrated forms.

本発明に係る分流子(40)の製造方法は、金型(1)のスリーブ(30)内を前進して溶湯(2)を押圧するプランジャーチップ(31)の前進方向対向位置に設けられる分流子(40)であり、溶湯(2)が衝突する前方部(f)を含む箇所が鋼(St)によって形成されるとともに、溶湯(2)が衝突する前方部(f)とは逆側の後方部(r)に向けて開口して形成される冷媒通路(41)の全周を取り囲む部位が銅又は銅合金(Cu)によって形成される分流子(40)の製造方法であって、前記鋼(St)と前記銅又は銅合金(Cu)を分離不能な状態に拡散接合する際に、拡散接合を行う加圧・加熱炉の炉内に接合前の前記鋼(St)と前記銅又は銅合金(Cu)を組み合わせた状態で配置し、炉内温度を600±5℃で約30分間安定させる工程(I)と、その後、炉内温度を約14分で750±5℃上昇させる工程(II)と、750±5℃で炉内温度が安定した状態(III−1)で炉内の加圧を開始し(III−2)、約30分後に炉内の加圧力が20±0.1MPaになるよう、徐々に加圧する(III−3)工程(III)と、炉内の加圧力が20±0.1MPaになった状態で約2時間継続する工程(IV)と、約2時間経過後、炉内温度の電源をOFFして(V−1)自然に温度を下げる(V−2)とともに、炉内の加圧力に関しては、約15分をかけて徐々に炉内の圧力を下げて加圧力0(ゼロ)にする(V−3)工程(V)と、を含む処理を実行し、かつ、上記各処理(I〜V)を実行する際に、炉内真空度を0.5±0.1Paに保つ(VI)ことを特徴とするものである。   The method of manufacturing the shunt (40) according to the present invention is provided at a position opposite to the forward direction of the plunger tip (31) that moves forward in the sleeve (30) of the mold (1) and presses the molten metal (2). A part of the shunt (40) including a front part (f) with which the molten metal (2) collides is formed of steel (St), and the side opposite to the front part (f) with which the molten metal (2) collides. Is a method for manufacturing a shunt (40) in which a portion surrounding the entire circumference of a refrigerant passage (41) formed by opening toward a rear part (r) of the is formed of copper or a copper alloy (Cu). When the steel (St) and the copper or the copper alloy (Cu) are diffusion-bonded to each other in an inseparable state, the steel (St) and the copper before the joining are performed in a furnace of a pressurizing / heating furnace for performing diffusion bonding. Alternatively, the copper alloy (Cu) is placed in a combined state, and the furnace temperature is 600 ± 5 ° C. Step (I) for stabilizing the temperature in the furnace, then step (II) for increasing the temperature in the furnace by 750 ± 5 ° C. in about 14 minutes, and in a state (III-1) in which the temperature in the furnace is stable at 750 ± 5 ° C. In the step (III), the pressure in the furnace is started (III-2), and after about 30 minutes, the pressure in the furnace is gradually increased to 20 ± 0.1 MPa (III-3). Step (IV) that continues for about 2 hours with the applied pressure being 20 ± 0.1 MPa, and after about 2 hours, turn off the power source of the furnace temperature (V-1) and lower the temperature naturally ( In addition to V-2), the pressure in the furnace includes a step (V-3) in which the pressure in the furnace is gradually reduced to 0 (zero) over about 15 minutes (V-3) step (V). When performing the treatment and each of the above treatments (I to V), maintain the degree of vacuum in the furnace at 0.5 ± 0.1 Pa (VI) It is an feature.

また、本発明に係る分流子(40)の製造方法は、前記鋼(St)と前記銅又は銅合金(Cu)の拡散接合が完了した状態の前記銅又は銅合金(Cu)の結晶組織を顕微鏡観察したときに、結晶の大きさが100〜400μmとなるようにすることができる。   Moreover, the manufacturing method of the shunt (40) which concerns on this invention WHEREIN: The crystal structure of the said copper or copper alloy (Cu) in the state which the diffusion joining of the said steel (St) and the said copper or copper alloy (Cu) was completed. The size of the crystal may be 100 to 400 μm when observed under a microscope.

本発明に係る積層金型の製造方法は、溶湯(2)が接触して熱に直接曝される箇所が鋼(St)によって形成されるとともに、前記鋼(St)が受ける熱を効率良く抜熱して冷却する箇所が銅又は銅合金(Cu)によって形成され、前記鋼(St)と前記銅又は銅合金(Cu)が分離不能な状態に拡散接合された積層金型の製造方法であって、前記鋼(St)と前記銅又は銅合金(Cu)を分離不能な状態に拡散接合する際に、拡散接合を行う加圧・加熱炉の炉内に接合前の前記鋼(St)と前記銅又は銅合金(Cu)を組み合わせた状態で配置し、炉内温度を600±5℃で約30分間安定させる工程(I)と、その後、炉内温度を約14分で750±5℃上昇させる工程(II)と、750±5℃で炉内温度が安定した状態(III−1)で炉内の加圧を開始し(III−2)、約30分後に炉内の加圧力が20±0.1MPaになるよう、徐々に加圧する(III−3)工程(III)と、炉内の加圧力が20±0.1MPaになった状態で約2時間継続する工程(IV)と、約2時間経過後、炉内温度の電源をOFFして(V−1)自然に温度を下げる(V−2)とともに、炉内の加圧力に関しては、約15分をかけて徐々に炉内の圧力を下げて加圧力0(ゼロ)にする(V−3)工程(V)と、を含む処理を実行し、かつ、上記各処理(I〜V)を実行する際に、炉内真空度を0.5±0.1Paに保つ(VI)ことを特徴とするものである。   In the method for manufacturing a laminated die according to the present invention, a portion where the molten metal (2) comes into contact and is directly exposed to heat is formed by steel (St), and the heat received by the steel (St) is efficiently removed. A method for producing a laminated mold, wherein a heated and cooled portion is formed of copper or a copper alloy (Cu), and the steel (St) and the copper or the copper alloy (Cu) are diffusion-bonded in an inseparable state. When the diffusion bonding of the steel (St) and the copper or the copper alloy (Cu) is performed in an inseparable state, the steel (St) and the pre-bonded steel are mixed in a furnace of a pressure / heating furnace for diffusion bonding. Step (I) of arranging in a state where copper or copper alloy (Cu) is combined and stabilizing the furnace temperature at 600 ± 5 ° C. for about 30 minutes, and then raising the furnace temperature by 750 ± 5 ° C. in about 14 minutes. The step (II) and the state in which the furnace temperature is stable at 750 ± 5 ° C. (III-1) Step (III) of starting pressurization in the furnace (III-2) and gradually increasing the pressurization in the furnace to 20 ± 0.1 MPa after about 30 minutes (III-3), (IV), which continues for about 2 hours with the applied pressure of 20 ± 0.1 MPa, and after about 2 hours, turn off the power to the furnace temperature (V-1) to naturally lower the temperature Along with (V-2), regarding the pressure in the furnace, the pressure in the furnace is gradually reduced to about 0 (zero) over about 15 minutes (V-3) step (V). It is characterized in that the degree of vacuum in the furnace is maintained at 0.5 ± 0.1 Pa (VI) when the processing including is performed and each of the above processings (I to V) is performed.

また、本発明に係る積層金型の製造方法は、前記鋼(St)と前記銅又は銅合金(Cu)の拡散接合が完了した状態の前記銅又は銅合金(Cu)の結晶組織を顕微鏡観察したときに、結晶の大きさが100〜400μmとなるようにすることができる。   Moreover, the manufacturing method of the laminated die which concerns on this invention WHEREIN: The crystal structure of the said copper or copper alloy (Cu) in the state which the diffusion joining of the said steel (St) and the said copper or copper alloy (Cu) was completed is observed under the microscope. At this time, the crystal size can be 100 to 400 μm.

本発明によれば、鋼と銅又は銅合金を拡散接合して分流子を製造する際に、割れなどの不具合の発生しない新たな分流子の製造方法を提供することができる。また、ダイカスト法に用いられる様々な積層金型の製造方法に対して、本発明方法を適用させることができる。   According to the present invention, it is possible to provide a new method for manufacturing a shunt, which does not cause defects such as cracks when a shunt is manufactured by diffusion-bonding steel and copper or a copper alloy. In addition, the method of the present invention can be applied to various manufacturing methods of laminated molds used in the die casting method.

本実施形態に係る分流子を備えたダイカスト金型を示す断面図であり、溶湯の充填前の状態を示している。It is a sectional view showing a die-casting die provided with a shunt according to the present embodiment, and shows a state before the molten metal is filled. 本実施形態に係る分流子を備えたダイカスト金型を示す断面図であり、溶湯の充填後の状態を示している。It is sectional drawing which shows the die-casting metal mold | die provided with the shunt according to this embodiment, and shows the state after the molten metal is filled. 本実施形態に係る分流子の縦断面側面図である。It is a longitudinal section side view of a shunt according to this embodiment. 本実施形態に係る分流子の製造方法を説明するためのグラフ図である。It is a graph figure for demonstrating the manufacturing method of the shunt according to this embodiment. 本実施形態に係る分流子の製造方法の効果を説明するための図であり、図中の分図(a)が図4で示した本実施形態に係る分流子の製造方法を用いて製造した分流子における無酸素銅(Cu)の結晶組織を顕微鏡観察した写真図であり、分図(b)が本発明方法の条件を逸脱して製造した場合の比較例としての分流子における無酸素銅(Cu)の結晶組織を顕微鏡観察した写真図である。It is a figure for demonstrating the effect of the manufacturing method of the shunt according to this embodiment, and was manufactured using the manufacturing method of the shunt according to this embodiment shown in FIG. It is the photograph figure which observed the crystal structure of the oxygen free copper (Cu) in a shunt with a microscope, and the partial diagram (b) is an oxygen free copper in a shunt as a comparative example when it deviates from the conditions of the method of this invention. It is a photograph figure which carried out the microscope observation of the crystal structure of (Cu).

以下、本発明を実施するための好適な実施形態について、図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. The following embodiments do not limit the invention according to each claim, and all combinations of features described in the embodiments are not necessarily essential to the solution means of the invention. ..

まず、図1および図2を参照して、本実施形態に係る分流子を用いる鋳造設備の全体構成を説明する。ここで、図1および図2は、本実施形態に係る分流子を備えたダイカスト金型を示す断面図であり、特に、図1は溶湯の充填前の状態を示しており、図2は溶湯の充填後の状態を示している。図1および図2に示されるように、分流子40は、ダイカストを行うダイカスト金型1に設けられている。   First, with reference to FIG. 1 and FIG. 2, an overall configuration of a casting facility using a shunt according to the present embodiment will be described. Here, FIG. 1 and FIG. 2 are cross-sectional views showing a die casting mold provided with a shunt according to the present embodiment, in particular, FIG. 1 shows a state before filling the molten metal, and FIG. 2 shows the molten metal. 4 shows the state after the filling. As shown in FIGS. 1 and 2, the shunt 40 is provided in the die casting mold 1 that performs die casting.

本実施形態に係るダイカスト金型1は、固定ダイス12と固定ホルダ11とを備える固定金型10と、可動ダイス22と可動ホルダ21とを備える可動金型20とを有している。固定ダイス12と可動ダイス22とによって、キャビティ1aが画成される。また、ダイカスト金型1には、スリーブ30が設けられている。スリーブ30は、ビスケット1b、ランナー1cおよびゲート1dを介してキャビティ1aと連通している。また、スリーブ30内には、プランジャーチップ31が設けられている。プランジャーチップ31は、スリーブ30内を進退可能であり、前進して溶湯2を押圧し、溶湯2をビスケット1b、ランナー1cおよびゲート1dを介してキャビティ1aに充填するように構成されている。   The die casting mold 1 according to the present embodiment includes a fixed mold 10 including a fixed die 12 and a fixed holder 11, and a movable mold 20 including a movable die 22 and a movable holder 21. The fixed die 12 and the movable die 22 define a cavity 1a. A sleeve 30 is provided on the die casting mold 1. The sleeve 30 communicates with the cavity 1a via the biscuit 1b, the runner 1c, and the gate 1d. A plunger tip 31 is provided in the sleeve 30. The plunger tip 31 is capable of advancing and retracting in the sleeve 30 and is configured to move forward and press the molten metal 2 to fill the cavity 2 with the molten metal 2 through the biscuit 1b, the runner 1c and the gate 1d.

本実施形態に係る分流子40は、プランジャーチップ31の前進方向対向位置であるビスケット1bの位置に設けられている。図1に示される状態から、図2に示される状態へと、プランジャーチップ31を前進させることにより、プランジャーチップ31によって押圧されてスリーブ30内を送られてきた溶湯2が、分流子40に衝突する。そして、分流子40に衝突した溶湯2は、分流子40によってランナー1cおよびゲート1dへと導かれるように構成されている。   The shunt 40 according to the present embodiment is provided at the position of the biscuit 1b, which is a position facing the forward direction of the plunger chip 31. When the plunger tip 31 is moved forward from the state shown in FIG. 1 to the state shown in FIG. 2, the molten metal 2 pressed by the plunger tip 31 and sent through the sleeve 30 is transferred to the shunt 40. Clash with. The molten metal 2 that collides with the shunt 40 is configured to be guided to the runner 1c and the gate 1d by the shunt 40.

つぎに、本実施形態に係る分流子40のより詳細な構成を、図3に示す。ここで、図3は、本実施形態に係る分流子の縦断面側面図である。   Next, a more detailed configuration of the shunt 40 according to the present embodiment is shown in FIG. Here, FIG. 3 is a vertical cross-sectional side view of the shunt according to the present embodiment.

本実施形態に係る分流子40は、溶湯が衝突する前方部fとは逆側の後方部rに向けて開口して形成される冷媒通路41と、ダイカスト法において不可避的に鋳造されるランナー部を押し出すための不図示の押し出しピンを摺動可能に配設する貫通孔42と、を有して構成されている。   The shunt 40 according to the present embodiment includes a refrigerant passage 41 formed to open toward a rear portion r opposite to a front portion f against which molten metal collides, and a runner portion inevitably cast by a die casting method. And a through-hole 42 in which a push-out pin (not shown) for pushing out is slidably arranged.

冷媒通路41には、冷媒供給通路と冷媒排出通路を有する不図示のインサート部材が嵌合可能である。冷媒通路41と不図示のインサート部材とは、溶接等の後加工により水密状に封止されることで、分流子40に形成された冷媒通路41の内部には、水やオイルなどの冷媒が流通してその周辺が冷却される。   An insert member (not shown) having a coolant supply passage and a coolant discharge passage can be fitted into the coolant passage 41. The coolant passage 41 and the insert member (not shown) are water-tightly sealed by post-processing such as welding, so that the coolant passage 41 formed in the shunt 40 contains coolant such as water and oil. It is distributed and the surrounding area is cooled.

また、本実施形態に係る分流子40は、前方部fを含む箇所が鋼(St)によって形成されるとともに、冷媒通路41の全周を取り囲む部位と貫通孔42の形成箇所の少なくとも一部が銅又は銅合金(Cu)によって形成されている。特に、本実施形態では、前記鋼(St)についてはSKD61が採用されており、一方、前記銅又は銅合金(Cu)については、無酸素銅が採用されている。   Further, in the shunt 40 according to the present embodiment, a portion including the front portion f is formed of steel (St), and at least a portion of the portion surrounding the entire circumference of the refrigerant passage 41 and a portion of the through hole 42 are formed. It is made of copper or copper alloy (Cu). In particular, in the present embodiment, SKD61 is adopted for the steel (St), while oxygen-free copper is adopted for the copper or copper alloy (Cu).

本実施形態で採用される無酸素銅は、銅又は銅合金のなかでも純度の高いものであり、熱伝導率が非常に高いという性質を有している。ただし、分流子40は、溶湯2がダイレクトに衝突して熱に直接曝されることになるので、効率良く熱を冷却しながらも強度を維持しなければならない。そこで、剛性の高い鋼(St;SKD61)と、熱伝導率の高い銅又は銅合金(Cu;無酸素銅)を組み合わせて分流子40が製造されている。   Oxygen-free copper used in this embodiment has a high purity among copper and copper alloys, and has a property of extremely high thermal conductivity. However, since the molten metal 2 directly collides with the shunt 40 and is directly exposed to heat, the shunt 40 must maintain strength while efficiently cooling heat. Therefore, the shunt 40 is manufactured by combining steel with high rigidity (St; SKD61) and copper or copper alloy (Cu; oxygen-free copper) with high thermal conductivity.

以上、本実施形態に係る分流子40の具体的な構成を説明した。つぎに、本実施形態に係る分流子40を構成するSKD61(St)と無酸素銅(Cu)という異材を接合する技術について、図4および図5を用いて説明を行う。ここで、図4は、本実施形態に係る分流子の製造方法を説明するためのグラフ図である。また、図5は、本実施形態に係る分流子の製造方法の効果を説明するための図であり、図中の分図(a)が図4で示した本実施形態に係る分流子の製造方法を用いて製造した分流子における無酸素銅(Cu)の結晶組織を顕微鏡観察した写真図であり、分図(b)が本発明方法の条件を逸脱して製造した場合の比較例としての分流子における無酸素銅(Cu)の結晶組織を顕微鏡観察した写真図である。   The specific configuration of the shunt 40 according to the present embodiment has been described above. Next, a technique for joining dissimilar materials SKD61 (St) and oxygen-free copper (Cu), which form the shunt 40 according to the present embodiment, will be described with reference to FIGS. 4 and 5. Here, FIG. 4 is a graph for explaining the method for manufacturing the shunt according to the present embodiment. Further, FIG. 5 is a diagram for explaining the effect of the method for manufacturing the shunt according to the present embodiment, and the shunt according to the present embodiment shown in FIG. It is a photograph figure which carried out the microscope observation of the crystal structure of oxygen free copper (Cu) in the shunt produced using the method, and as a comparative example when the diagram (b) deviates from the conditions of the method of the present invention. It is a photograph figure which carried out microscope observation of the crystal structure of oxygen free copper (Cu) in a shunt.

図4を参照して、本実施形態に係る分流子40の製造方法を説明する。本実施形態に係る分流子40の製造方法では、まず、鋼(St;SKD61)と銅又は銅合金(Cu;無酸素銅)を分離不能な状態に拡散接合するに際して、拡散接合を行う不図示の加圧・加熱炉の炉内に接合前の鋼(St;SKD61)と銅又は銅合金(Cu;無酸素銅)を組み合わせた状態で配置し、拡散接合が開始される。   A method for manufacturing the shunt 40 according to the present embodiment will be described with reference to FIG. In the method for manufacturing the shunt 40 according to the present embodiment, first, diffusion bonding is performed when steel (St; SKD61) and copper or copper alloy (Cu; oxygen-free copper) are diffusion bonded to each other in an inseparable state. The steel (St; SKD61) before joining and the copper or copper alloy (Cu; oxygen-free copper) are placed in the furnace of the pressurizing / heating furnace in a combined state, and diffusion joining is started.

そして、拡散接合の処理工程としては、まず初めに、炉内温度を600±5℃で約30分間安定させる工程(I)を実行し、その後、炉内温度を約14分で750±5℃上昇させる工程(II)を実行する。続いて、750±5℃で炉内温度が安定した状態(III−1)で炉内の加圧を開始し(III−2)、約30分後に炉内の加圧力が20±0.1MPaになるよう、徐々に加圧する(III−3)という工程(III)を実行し、さらに、炉内の加圧力が20±0.1MPaになった状態で約2時間継続する工程(IV)を実行する。そして、約2時間経過後、炉内温度の電源をOFF(V−1)して自然に温度を下げる(V−2)とともに、炉内の加圧力に関しては、約15分をかけて徐々に炉内の圧力を下げて加圧力0(ゼロ)にする(V−3)という工程(V)を実行する。また、上記した工程(I〜V)における各処理を実行する際には、炉内真空度を0.5±0.1Paに保つ処理工程(VI)が行われている。   As the diffusion bonding process step, first, a step (I) of stabilizing the furnace temperature at 600 ± 5 ° C. for about 30 minutes is performed, and thereafter, the furnace temperature is 750 ± 5 ° C. at about 14 minutes. Perform step (II) of raising. Then, pressurization in the furnace was started (III-2) in a state where the temperature in the furnace was stable at 750 ± 5 ° C. (III-1) (III-2), and the pressure in the furnace was 20 ± 0.1 MPa after about 30 minutes. Step (III) of gradually pressurizing (III-3), and further continuing step (IV) for about 2 hours in a state where the pressure in the furnace is 20 ± 0.1 MPa. Run. After about 2 hours, the temperature of the furnace is turned off (V-1) to naturally lower the temperature (V-2), and the pressure in the furnace is gradually increased over about 15 minutes. The step (V) of reducing the pressure in the furnace to 0 (zero) is applied (V-3). Moreover, when performing each process in the above-mentioned process (I-V), the process process (VI) which maintains the degree of vacuum in a furnace at 0.5 +/- 0.1 Pa is performed.

以上、図4を用いて説明した本実施形態に係る分流子40の製造方法を実行することで、割れなどの不具合が発生することの無い製造方法を見出すことができた。なお、発明者らは、本実施形態に係る分流子40の製造方法の検証実験を行っており、例えば、図5に示すように、鋼(St;SKD61)と銅又は銅合金(Cu;無酸素銅)の拡散接合が完了した状態の銅又は銅合金(Cu;無酸素銅)の結晶組織を顕微鏡観察した。ここで、図5中の分図(a)は、図4で示した本実施形態に係る分流子40の製造方法を用いて製造した分流子40における無酸素銅(Cu)の結晶組織を顕微鏡観察した写真図であるが、炉内温度を750℃で安定させた状態(III−1)で炉内の加圧力が20MPaになるようにした(IV)場合には、割れなどの不具合が全く発生しないことを確認した。またこのとき、銅又は銅合金(Cu;無酸素銅)の結晶の大きさが100〜400μmとなることを確認した。   As described above, by performing the method for manufacturing the shunt 40 according to the present embodiment described with reference to FIG. 4, it has been possible to find a manufacturing method that does not cause a defect such as cracking. The inventors have conducted a verification experiment of the method for manufacturing the shunt 40 according to the present embodiment. For example, as shown in FIG. 5, steel (St; SKD61) and copper or copper alloy (Cu; The crystal structure of copper or a copper alloy (Cu; oxygen-free copper) in a state where the diffusion bonding of (oxygen copper) was completed was observed under a microscope. Here, FIG. 5A shows a crystal structure of oxygen-free copper (Cu) in the shunt 40 manufactured by using the method of manufacturing the shunt 40 according to the present embodiment shown in FIG. It is a photograph figure observed, but when the pressure in the furnace was set to 20 MPa (IV) in a state (III-1) in which the temperature inside the furnace was stabilized at 750 ° C., defects such as cracks were not found at all. I confirmed that it does not occur. At this time, it was also confirmed that the crystal size of copper or copper alloy (Cu; oxygen-free copper) was 100 to 400 μm.

一方、図5中の分図(b)は、本発明方法の条件を逸脱して製造した場合の比較例としての分流子における無酸素銅(Cu)の結晶組織を顕微鏡観察した写真図であるが、炉内温度を900℃で安定させた状態で炉内の加圧力が20MPaになるようにした場合には、無酸素銅(Cu)に割れが発生してしまうことを確認した。またこのとき、銅又は銅合金(Cu;無酸素銅)の結晶の大きさは、600〜1100μmとなることを確認した。   On the other hand, the diagram (b) in FIG. 5 is a photomicrograph of the crystal structure of oxygen-free copper (Cu) in the shunt as a comparative example, which is produced by deviating from the conditions of the method of the present invention. However, it was confirmed that cracking occurred in oxygen-free copper (Cu) when the pressure inside the furnace was set to 20 MPa while the temperature inside the furnace was stabilized at 900 ° C. At this time, it was confirmed that the crystal size of copper or copper alloy (Cu; oxygen-free copper) was 600 to 1100 μm.

図5で示した検証実験の結果は、本実施形態に係る分流子40の製造方法を実行することで、銅又は銅合金(Cu;無酸素銅)の結晶の大きさが安定して制御され、また結晶の大きさが小さくなることで、割れの発生を好適に防止できることが確認できた。一方、本発明方法の条件を逸脱して拡散接合を行った場合には、無酸素銅(Cu)の結晶が粗大化し、結晶粒径が大きくなることで割れが発生し易い状況を生じさせてしまうことが確認できた。これらの検証実験の結果から、本実施形態に係る分流子40の製造方法によれば、鋼(St;SKD61)と銅又は銅合金(Cu;無酸素銅)を拡散接合して分流子を製造する際に、割れなどの不具合の発生しない新たな分流子の製造方法を提供することができることが確認された。   The result of the verification experiment shown in FIG. 5 shows that the crystal size of copper or copper alloy (Cu; oxygen-free copper) is stably controlled by executing the method for manufacturing the shunt 40 according to the present embodiment. It was also confirmed that the generation of cracks can be preferably prevented by reducing the crystal size. On the other hand, when diffusion bonding is performed without departing from the conditions of the method of the present invention, crystals of oxygen-free copper (Cu) become coarse, and the crystal grain size becomes large, causing a situation in which cracks are likely to occur. It was confirmed that it would end up. From the results of these verification experiments, according to the method of manufacturing the shunt 40 according to the present embodiment, steel (St; SKD61) and copper or copper alloy (Cu; oxygen-free copper) are diffusion-bonded to manufacture a shunt. In doing so, it was confirmed that it is possible to provide a new method for manufacturing a shunt that does not cause a defect such as cracking.

なお、本実施形態に係る分流子40の製造方法については、図4で示したように、各処理工程(I〜VI)が明確化されているので、従来技術のように作業者の経験や勘に頼った作業ではなく、拡散接合の作業工程を標準化できるので、不具合発生が無く安定した生産が可能な異材結合技術を提供することを実現している。さらに、このように標準化された本発明方法は、発明者らの更なる検証実験によって、ダイカスト法に用いられる様々な積層金型の製造方法に対しても、本発明方法を適用させることができることが確認されている。すなわち、本発明方法は、積層金型の製造方法など、あらゆる異材結合技術に対して適用可能であり、拡張性の高い技術となっている。   Regarding the method for manufacturing the shunt 40 according to the present embodiment, each processing step (I to VI) is clarified as shown in FIG. Since it is possible to standardize the work process of diffusion bonding, not the work relying on intuition, it is possible to provide a dissimilar material bonding technology that enables stable production without the occurrence of defects. Furthermore, the method of the present invention thus standardized can be applied to the method of manufacturing various laminated molds used in the die casting method by further verification experiments by the inventors. Has been confirmed. That is, the method of the present invention can be applied to any dissimilar material bonding technique such as a method for manufacturing a laminated die, and is a highly expandable technique.

以上、本発明の好適な実施形態について説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態には、多様な変更又は改良を加えることが可能である。   Although the preferred embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the scope described in the above embodiments. Various changes or improvements can be added to the above-described embodiment.

例えば、上述した実施形態で示した分流子40は、本発明方法が適用可能な分流子の一形態例を示したに過ぎない。本発明方法を適用可能な分流子が取り得る形態は、種々の変更が可能である。   For example, the shunt 40 shown in the above-described embodiment is merely an example of one embodiment of the shunt to which the method of the present invention can be applied. The form which the shunt can be applied to the method of the present invention can take various modifications.

また、上述した実施形態では、鋼(St)についてはSKD61が採用されており、銅又は銅合金(Cu)については無酸素銅が採用されている場合を例示して説明したが、本発明方法に適用可能な鋼や銅又は銅合金については、あらゆる種類・成分を有する多様な種類の金属に対して適用することが可能である。   Further, in the above-described embodiment, the case where SKD61 is adopted for the steel (St) and the oxygen-free copper is adopted for the copper or the copper alloy (Cu) has been described as an example. The steel, copper, or copper alloy applicable to the above can be applied to various kinds of metals having all kinds and components.

その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   It is apparent from the scope of the claims that the embodiment added with such changes or improvements can be included in the technical scope of the present invention.

1 ダイカスト金型、1a キャビティ、1b ビスケット、1c ランナー、1d ゲート、2 溶湯、10 固定金型、11 固定ホルダ、12 固定ダイス、20 可動金型、21 可動ホルダ、22 可動ダイス、30 スリーブ、31 プランジャーチップ、40 分流子、41 冷媒通路、42 貫通孔、St 鋼(SKD61)、Cu 銅又は銅合金(無酸素銅)、f 前方部、r 後方部。   1 die casting mold, 1a cavity, 1b biscuit, 1c runner, 1d gate, 2 molten metal, 10 fixed mold, 11 fixed holder, 12 fixed die, 20 movable mold, 21 movable holder, 22 movable die, 30 sleeve, 31 Plunger tip, 40 shunt, 41 refrigerant passage, 42 through hole, St steel (SKD61), Cu copper or copper alloy (oxygen-free copper), f front part, r rear part.

Claims (4)

金型のスリーブ内を前進して溶湯を押圧するプランジャーチップの前進方向対向位置に設けられる分流子であり、溶湯が衝突する前方部を含む箇所が鋼によって形成されるとともに、溶湯が衝突する前方部とは逆側の後方部に向けて開口して形成される冷媒通路の全周を取り囲む部位が銅又は銅合金によって形成される分流子の製造方法であって、
前記鋼と前記銅又は銅合金を分離不能な状態に拡散接合する際に、拡散接合を行う加圧・加熱炉の炉内に接合前の前記鋼と前記銅又は銅合金を組み合わせた状態で配置し、
炉内温度を600±5℃で約30分間安定させる工程と、
その後、炉内温度を約14分で750±5℃上昇させる工程と、
750±5℃で炉内温度が安定した状態で炉内の加圧を開始し、約30分後に炉内の加圧力が20±0.1MPaになるよう、徐々に加圧する工程と、
炉内の加圧力が20±0.1MPaになった状態で約2時間継続する工程と、
約2時間経過後、炉内温度の電源をOFFして自然に温度を下げるとともに、炉内の加圧力に関しては、約15分をかけて徐々に炉内の圧力を下げて加圧力0(ゼロ)にする工程と、
を含む処理を実行し、かつ、上記各処理を実行する際に、炉内真空度を0.5±0.1Paに保つことを特徴とする分流子の製造方法。
It is a shunt provided at the position opposite to the forward direction of the plunger tip that moves forward in the sleeve of the mold and presses the molten metal, and the portion including the front part where the molten metal collides is formed of steel, and the molten metal collides. A method of manufacturing a shunt, wherein a portion surrounding the entire circumference of the refrigerant passage formed by opening toward a rear portion on the opposite side to the front portion is formed of copper or a copper alloy,
When diffusion-bonding the steel and the copper or copper alloy in an inseparable state, the steel and the copper or copper alloy before the bonding are arranged in a combined state in a furnace of a pressure / heating furnace for performing diffusion bonding. Then
A step of stabilizing the furnace temperature at 600 ± 5 ° C. for about 30 minutes,
After that, a step of increasing the temperature in the furnace by 750 ± 5 ° C. in about 14 minutes,
A step of starting pressurization in the furnace at a temperature of 750 ± 5 ° C. in a stable state and gradually increasing the pressure in the furnace to 20 ± 0.1 MPa after about 30 minutes;
A step of continuing for about 2 hours with the pressure in the furnace being 20 ± 0.1 MPa;
After about 2 hours, the power of the furnace temperature is turned off to naturally lower the temperature, and the pressure in the furnace is gradually reduced over about 15 minutes by reducing the pressure to 0 (zero). ) Process,
A method for producing a shunt, characterized in that the vacuum degree in the furnace is maintained at 0.5 ± 0.1 Pa when a process including the above is performed and each of the above processes is performed.
請求項1に記載の分流子の製造方法において、
前記鋼と前記銅又は銅合金の拡散接合が完了した状態の前記銅又は銅合金の結晶組織を顕微鏡観察したときに、結晶の大きさが100〜400μmとなることを特徴とする分流子の製造方法。
The method for manufacturing a shunt according to claim 1,
When the crystal structure of the copper or the copper alloy in a state where the diffusion bonding of the steel and the copper or the copper alloy is completed is observed with a microscope, the size of the crystal is 100 to 400 μm. Method.
溶湯が接触して熱に直接曝される箇所が鋼によって形成されるとともに、前記鋼が受ける熱を効率良く抜熱して冷却する箇所が銅又は銅合金によって形成され、前記鋼と前記銅又は銅合金が分離不能な状態に拡散接合された積層金型の製造方法であって、
前記鋼と前記銅又は銅合金を分離不能な状態に拡散接合する際に、拡散接合を行う加圧・加熱炉の炉内に接合前の前記鋼と前記銅又は銅合金を組み合わせた状態で配置し、
炉内温度を600±5℃で約30分間安定させる工程と、
その後、炉内温度を約14分で750±5℃上昇させる工程と、
750±5℃で炉内温度が安定した状態で炉内の加圧を開始し、約30分後に炉内の加圧力が20±0.1MPaになるよう、徐々に加圧する工程と、
炉内の加圧力が20±0.1MPaになった状態で約2時間継続する工程と、
約2時間経過後、炉内温度の電源をOFFして自然に温度を下げるとともに、炉内の加圧力に関しては、約15分をかけて徐々に炉内の圧力を下げて加圧力0(ゼロ)にする工程と、
を含む処理を実行し、かつ、上記各処理を実行する際に、炉内真空度を0.5±0.1Paに保つことを特徴とする積層金型の製造方法。
The portion where the molten metal comes into contact and is directly exposed to heat is formed by steel, and the portion that efficiently removes and cools the heat received by the steel is formed by copper or a copper alloy, and the steel and the copper or copper. A method of manufacturing a laminated mold in which an alloy is diffusion-bonded in an inseparable state,
When diffusion-bonding the steel and the copper or copper alloy in an inseparable state, the steel and the copper or copper alloy before the bonding are arranged in a combined state in a furnace of a pressure / heating furnace for performing diffusion bonding. Then
A step of stabilizing the furnace temperature at 600 ± 5 ° C. for about 30 minutes,
After that, a step of increasing the temperature in the furnace by 750 ± 5 ° C. in about 14 minutes,
A step of starting pressurization in the furnace at a temperature of 750 ± 5 ° C. in a stable state and gradually increasing the pressure in the furnace to 20 ± 0.1 MPa after about 30 minutes;
A step of continuing for about 2 hours with the pressure in the furnace being 20 ± 0.1 MPa;
After about 2 hours, the power of the furnace temperature is turned off to naturally lower the temperature, and the pressure in the furnace is gradually reduced over about 15 minutes by reducing the pressure to 0 (zero). ) Process,
A method for manufacturing a laminated die, which comprises: performing a process including, and maintaining the degree of vacuum in the furnace at 0.5 ± 0.1 Pa when performing each of the above processes.
請求項3に記載の積層金型の製造方法において、
前記鋼と前記銅又は銅合金の拡散接合が完了した状態の前記銅又は銅合金の結晶組織を顕微鏡観察したときに、結晶の大きさが100〜400μmとなることを特徴とする積層金型の製造方法。
The method for manufacturing a laminated die according to claim 3,
When the crystal structure of the copper or the copper alloy in a state where the diffusion bonding of the steel and the copper or the copper alloy is completed is observed with a microscope, the crystal size is 100 to 400 μm. Production method.
JP2018202785A 2018-10-29 2018-10-29 Manufacturing method of branching element, manufacturing method of laminated mold Active JP6755287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018202785A JP6755287B2 (en) 2018-10-29 2018-10-29 Manufacturing method of branching element, manufacturing method of laminated mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018202785A JP6755287B2 (en) 2018-10-29 2018-10-29 Manufacturing method of branching element, manufacturing method of laminated mold

Publications (2)

Publication Number Publication Date
JP2020069481A true JP2020069481A (en) 2020-05-07
JP6755287B2 JP6755287B2 (en) 2020-09-16

Family

ID=70548858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018202785A Active JP6755287B2 (en) 2018-10-29 2018-10-29 Manufacturing method of branching element, manufacturing method of laminated mold

Country Status (1)

Country Link
JP (1) JP6755287B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112139480A (en) * 2020-09-25 2020-12-29 杭州凯普科技有限公司 Steel mould and tray cooperation structure for anode plate casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112139480A (en) * 2020-09-25 2020-12-29 杭州凯普科技有限公司 Steel mould and tray cooperation structure for anode plate casting
CN112139480B (en) * 2020-09-25 2022-03-25 杭州凯普科技有限公司 Steel mould and tray cooperation structure for anode plate casting

Also Published As

Publication number Publication date
JP6755287B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
CN111633209B (en) Steel/aluminum bimetal additive/equal material composite manufacturing method
CA2512426C (en) Preparation of filler-metal weld rod by injection molding of powder
US20230264257A1 (en) Method for manufacturing solid-state composite additive for high-performance structural component
CN109201982B (en) Forming device and forming method based on vacuum induction heating
JP2020069481A (en) Method for producing sprue spreader and method for producing laminating die
KR100669603B1 (en) Manufacturing method of aluminum wheel that make use of fusion forging method
US8342230B2 (en) Casting method
JP2009195914A (en) Method for producing molding die, and molding die
JP2005074461A (en) Molding manufacturing method
CN112705845B (en) Wear-resistant coating and preparation method and application thereof
JP2000351054A (en) Sleeve for die casting
KR101556980B1 (en) Method for manufacturing high pressure casting and forging member
CN102319889A (en) Process for forging automotive power steering pump cover by using liquid model
KR102442579B1 (en) Method for manufacturing titanium casting parts
US11826821B2 (en) Joined metal member and manufacturing method therefor
KR102602006B1 (en) Manufacturing method for products with complex internal shapes
KR102576599B1 (en) Manufacturing of soluble core for high pressure casting and method using the same
JP2002059251A (en) Die bush for die casting machine
Bodhayana et al. Molten metal flow analysis of housing component
WO2015198405A1 (en) Weld part structure
JP2022117565A (en) Manufacturing method for cast product or forged product having insert joined thereto
KR100982865B1 (en) A dissimilar metal joining method using vacuum investment casting and dissimilar joining body fabricated by the same
CN106925734B (en) Method for manufacturing dummy bar head
JP2022127094A (en) Die casting device and manufacturing method of die cast product
JP2022127095A (en) Metal molding device and metal molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200825

R150 Certificate of patent or registration of utility model

Ref document number: 6755287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150