JP2020065004A - Mounting apparatus and manufacturing method of semiconductor device - Google Patents

Mounting apparatus and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2020065004A
JP2020065004A JP2018196687A JP2018196687A JP2020065004A JP 2020065004 A JP2020065004 A JP 2020065004A JP 2018196687 A JP2018196687 A JP 2018196687A JP 2018196687 A JP2018196687 A JP 2018196687A JP 2020065004 A JP2020065004 A JP 2020065004A
Authority
JP
Japan
Prior art keywords
semiconductor chip
substrate
stage
electromagnetic wave
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018196687A
Other languages
Japanese (ja)
Inventor
高野 徹朗
Tetsuaki Takano
徹朗 高野
智宣 中村
Tomonobu Nakamura
智宣 中村
前田 徹
Toru Maeda
前田  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Robotics Holdings Co Ltd
Original Assignee
Yamaha Motor Robotics Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Robotics Holdings Co Ltd filed Critical Yamaha Motor Robotics Holdings Co Ltd
Priority to JP2018196687A priority Critical patent/JP2020065004A/en
Publication of JP2020065004A publication Critical patent/JP2020065004A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector

Abstract

To provide a mounting apparatus that can appropriately heat a bonding target semiconductor chip and a manufacturing method of a semiconductor device.SOLUTION: A mounting apparatus that bonds a semiconductor chip 12 to a mounted body being a substrate 30 or other semiconductor chip 12 to manufacture a semiconductor device comprises: a stage 120 on which the substrate 30 is mounted; a mounting head 124 that is relatively movable for the stage 120, and that bonds the semiconductor chip 12 to the mounted body; and an irradiation unit 150a that has an electromagnetic wave source 132 which outputs an electromagnetic wave transmitting through the stage 120 and heating the substrate 30 or an intermediate member 140, and an adjustment mechanism which adjusts intensity distribution of the electromagnetic wave for the semiconductor chip 12. The stage 120 has a first layer 122 that is formed on an upper surface side, and heat resistance of the first layer 122 in a surface direction is larger than heat resistance in a thickness direction.SELECTED DRAWING: Figure 5

Description

本明細書は、半導体チップを、基板または他の半導体チップである被実装体にボンディングして半導体装置を製造する実装装置、および、半導体装置の製造方法を開示する。   The present specification discloses a mounting apparatus for manufacturing a semiconductor device by bonding a semiconductor chip to a mounted body which is a substrate or another semiconductor chip, and a method for manufacturing the semiconductor device.

半導体チップを、基板または他の半導体チップの上にボンディングする場合、通常、加熱した実装ヘッドで、半導体チップを加熱加圧する。ただし、実装ヘッドからの熱のみで、ボンディング対象となる半導体チップを適切に加熱することは難しい。特に、近年は、半導体装置の更なる高機能化、小型化のために、複数の半導体チップを積層して実装することが提案されている。この場合、実装処理の時間短縮のために、複数の半導体チップを仮圧着しながら積層した後、当該複数の半導体チップを一括で本圧着する場合がある。すなわち、複数の半導体チップを仮圧着状態で積層して仮積層体を形成した後、当該仮積層体の上面を加熱した実装ヘッドで加熱加圧して本圧着する場合がある。かかる場合には、実装ヘッドからの熱のみで、仮積層体の最下層の半導体チップまで適切に加熱することは難しい。そこで、従来から、半導体装置をボンディングする際には、基板が載置されるステージ全体を加熱している。これによれば、半導体チップの上下両側から加熱できる。   When a semiconductor chip is bonded onto a substrate or another semiconductor chip, the semiconductor chip is usually heated and pressed by a heated mounting head. However, it is difficult to properly heat the semiconductor chip to be bonded only by the heat from the mounting head. In particular, in recent years, it has been proposed to stack and mount a plurality of semiconductor chips in order to further enhance the functionality and size of the semiconductor device. In this case, in order to reduce the mounting process time, a plurality of semiconductor chips may be stacked while being temporarily pressure-bonded, and then the plurality of semiconductor chips may be collectively pressure-bonded together. That is, there is a case in which a plurality of semiconductor chips are stacked in a temporary pressure-bonded state to form a temporary stacked body, and then the upper surface of the temporary stacked body is heated and pressed by a heating mounting head to perform final pressure bonding. In such a case, it is difficult to properly heat the lowermost semiconductor chip of the temporary stack by using only the heat from the mounting head. Therefore, conventionally, when bonding a semiconductor device, the entire stage on which the substrate is placed is heated. According to this, it is possible to heat the semiconductor chip from both upper and lower sides.

国際公開第2010/050209号International Publication No. 2010/050209 特許第3833531号公報Japanese Patent No. 3833531 特許第4001341号公報Japanese Patent No. 4001341

しかし、ステージ全体を加熱した場合、ボンディング対象(加熱対象)の半導体チップとは異なる箇所に配置された半導体チップも加熱され続けることになる。結果として、半導体チップに、長時間、熱が入力されることになる。こうした長期に亘る熱入力は、半導体チップ、特に半導体チップの底面に設けられた非導電性フィルム(Non Conductive Film)等の樹脂の劣化を招き、ひいては、実装品質の低下を招く。   However, when the entire stage is heated, the semiconductor chip arranged at a position different from the bonding target (heating target) semiconductor chip also continues to be heated. As a result, heat is input to the semiconductor chip for a long time. Such a long-term heat input causes deterioration of the resin such as the semiconductor chip, in particular, a non-conductive film (Non Conductive Film) provided on the bottom surface of the semiconductor chip, and eventually the mounting quality.

かかる問題を避けるために、ステージの複数箇所に、パルスヒータ等の局所加熱用のヒータを設けておき、必要な箇所のヒータのみをオンすることも考えられる。しかし、こうした局所加熱用のヒータをステージに埋め込んだ場合、ステージの平坦度を維持することが難しく、ひいては、実装品質の低下を招く。   In order to avoid such a problem, it is possible to provide a heater for local heating such as a pulse heater at a plurality of locations on the stage and turn on only the heater at a required location. However, when such a heater for local heating is embedded in the stage, it is difficult to maintain the flatness of the stage, which leads to deterioration of mounting quality.

また、特許文献1−3には、ステージの裏側から照射した光により、基板を光加熱する技術が開示されているが、これらは、いずれも、基板を局所的に加熱することについては、十分に、考慮されていない。   Further, Patent Documents 1-3 disclose a technique of optically heating a substrate with light emitted from the back side of the stage. However, all of these techniques are sufficient for locally heating the substrate. Is not taken into account.

また、基板上に配置された半導体チップを裏面側から照射した光によって加熱する場合、半導体チップの周辺部は、外気や基板に熱が拡散するため中心部よりも温度が低下することが予想される。そのため、半導体チップに均等に光を照射したとしても半導体チップの面内において温度ムラが発生する。   Further, when the semiconductor chip arranged on the substrate is heated by the light emitted from the back surface side, the temperature of the peripheral portion of the semiconductor chip is expected to be lower than that of the central portion because heat diffuses to the outside air or the substrate. It Therefore, even if the semiconductor chip is uniformly irradiated with light, temperature unevenness occurs in the surface of the semiconductor chip.

そこで、本明細書では、ボンディング対象の半導体チップを適切に加熱できる実装装置、および、半導体装置の製造方法を提供する。   Therefore, the present specification provides a mounting apparatus that can appropriately heat a semiconductor chip to be bonded, and a method of manufacturing the semiconductor device.

本明細書で開示する実装装置は、半導体チップを、基板または他の半導体チップである被実装体にボンディングして半導体装置を製造する実装装置であって、前記基板が直接、または、中間部材を介して載置される第一面と前記第一面と反対側の第二面とを有するステージと、前記ステージに対して相対移動が可能であり、前記半導体チップを前記被実装体にボンディングする実装ヘッドと、前記ステージを透過するとともに、前記基板または前記中間部材を加熱する電磁波を前記第二面側から照射する照射ユニットと、を備え、前記ステージは、前記第一面側に形成された第一層を有し、前記第一層は、面方向の熱抵抗が厚み方向の熱抵抗よりも大きいことを特徴とする。   A mounting device disclosed in the present specification is a mounting device for manufacturing a semiconductor device by bonding a semiconductor chip to a substrate or a mounted object which is another semiconductor chip, wherein the substrate is directly mounted or an intermediate member is mounted. A stage having a first surface mounted via the stage and a second surface opposite to the first surface, and capable of relative movement with respect to the stage, and bonding the semiconductor chip to the mounted body The mounting head, and an irradiation unit that transmits the electromagnetic wave that heats the substrate or the intermediate member from the second surface side while passing through the stage, and the stage is formed on the first surface side. A first layer is provided, and the first layer is characterized in that the thermal resistance in the surface direction is larger than the thermal resistance in the thickness direction.

前記基板は、複数の前記半導体チップが熱圧着されるものであり、前記照射ユニットは、前記第一面における前記電磁波の照射領域、および、前記第一面における前記電磁波の照射位置の少なくとも一方を変更する変更手段を備えてもよい。   The substrate is one in which a plurality of the semiconductor chips are thermocompression bonded, the irradiation unit, at least one of the irradiation area of the electromagnetic wave on the first surface, and the irradiation position of the electromagnetic wave on the first surface. A changing means for changing may be provided.

また、前記実装ヘッドは、複数の前記半導体チップが仮圧着された状態で積層された仮積層体を加熱して本圧着するヒータを備え、前記照射ユニットは、前記ヒータとともに前記仮積層体を加熱してもよい。   Further, the mounting head includes a heater that heats and temporarily press-bonds a temporary stacked body in which the plurality of semiconductor chips are temporarily pressed and the irradiation unit heats the temporary stacked body together with the heater. You may.

また、前記ステージは、前記第一層よりも前記第二面側に形成された第二層をさらに有し、前記第一層は、前記第二層よりも面方向への熱抵抗が大きくてもよい。   Further, the stage further has a second layer formed on the second surface side with respect to the first layer, and the first layer has a larger thermal resistance in the surface direction than the second layer. Good.

また、前記第二層は、前記電磁波が透過可能な材料からなる中実部位であり、前記第一層は、上面に複数の溝または層内に複数の細孔が形成された部位であってもよい。   The second layer is a solid part made of a material that can transmit the electromagnetic waves, and the first layer is a part having a plurality of grooves on the upper surface or a plurality of pores in the layer. Good.

また、前記基板は、シリコンウエハであるとともに、前記ステージに直接、載置され、前記電磁波は、波長1200nm以下であり、前記基板が、前記電磁波により局所的に加熱されてもよい。   Further, the substrate may be a silicon wafer and may be placed directly on the stage, the electromagnetic wave may have a wavelength of 1200 nm or less, and the substrate may be locally heated by the electromagnetic wave.

また、前記基板は、前記中間部材を介して前記ステージに載置され、前記電磁波は、前記中間部材に吸収されるとともに、前記基板に吸収されない波長を有しており、前記電磁波により局所的に加熱された前記中間部材からの伝熱により、前記基板が局所的に加熱されてもよい。   Further, the substrate is placed on the stage via the intermediate member, the electromagnetic wave is absorbed by the intermediate member, and has a wavelength not absorbed by the substrate, locally by the electromagnetic wave. The substrate may be locally heated by heat transfer from the heated intermediate member.

本明細書で開示する半導体装置の製造方法は、半導体チップを、基板または他の半導体チップである被実装体にボンディングして半導体装置を製造する半導体装置製造方法であって、前記基板を直接、または、中間部材を介してステージの第一面に載置する載置工程と、前記ステージに対して相対移動が可能な実装ヘッドにより、前記半導体チップを前記被実装体にボンディングするボンディング工程と、前記ボンディング工程の少なくとも一部と並行して、前記ステージを挟んで前記実装ヘッドの反対側に配される照射ユニットから、前記基板または前記中間部材で吸収されるとともに前記ステージを透過する電磁波を照射することで、前記基板または前記中間部材を加熱する基板加熱工程と、を備え、前記ステージは、前記第一面側に形成された第一層を有し、
前記第一層は、面方向の熱抵抗が厚み方向の熱抵抗よりも大きい、ことを特徴とする。
A method for manufacturing a semiconductor device disclosed in the present specification is a semiconductor device manufacturing method for manufacturing a semiconductor device by bonding a semiconductor chip to a mounted body that is a substrate or another semiconductor chip, and directly manufacturing the substrate. Alternatively, a mounting step of mounting the semiconductor chip on the first surface of the stage via an intermediate member, and a bonding step of bonding the semiconductor chip to the mounted body by a mounting head movable relative to the stage, In parallel with at least a part of the bonding step, an irradiation unit disposed on the opposite side of the mounting head with the stage interposed therebetween emits electromagnetic waves absorbed by the substrate or the intermediate member and transmitted through the stage. And a substrate heating step of heating the substrate or the intermediate member, and the stage is formed on the first surface side. Having a first layer which is,
The first layer is characterized in that the thermal resistance in the surface direction is larger than the thermal resistance in the thickness direction.

前記ボンディング工程は、前記実装ヘッドにより、基板の上に1以上の前記半導体チップを仮圧着しながら積層してなる仮積層体を、前記基板の複数箇所に順番に形成する仮圧着工程と、前記仮圧着工程の後、一つの仮積層体をその上面から加熱加圧することで、当該仮積層体を構成する1以上の前記半導体チップを一括で本圧着する処理を、前記基板の複数箇所で順番に行う本圧着工程と、を含み、前記基板加熱工程は、前記半導体チップを一括で本圧着する処理と並行して、前記基板または前記中間部材のうち前記本圧着実行箇所に対応する箇所に、前記電磁波を照射してもよい。   The bonding step includes a temporary pressure bonding step of sequentially forming, on the plurality of positions of the substrate, a temporary stacked body in which one or more semiconductor chips are stacked while being temporarily pressure bonded by the mounting head. After the temporary pressure bonding step, heating and pressing one temporary laminated body from the upper surface thereof to perform main compression bonding of one or more of the semiconductor chips forming the temporary laminated body collectively at a plurality of positions on the substrate. In the main pressure bonding step performed in, the substrate heating step, in parallel with the process of main compression bonding the semiconductor chips in a batch, at a location corresponding to the main compression execution location of the substrate or the intermediate member, You may irradiate the said electromagnetic wave.

本明細書で開示する装置および方法によれば、基板が局所的に電磁波で加熱されるため、ボンディング対象の半導体チップを適切に加熱できる。また、ステージの第一層が面方向の熱抵抗が厚み方向の熱抵抗よりも高いため、面方向に離間して配された他の半導体チップへの伝熱が抑制され、ひいては、他の半導体チップへの熱入力が抑制される。   According to the apparatus and method disclosed in the present specification, since the substrate is locally heated by the electromagnetic wave, the semiconductor chip to be bonded can be appropriately heated. Further, since the thermal resistance of the first layer of the stage in the surface direction is higher than the thermal resistance in the thickness direction, heat transfer to other semiconductor chips spaced apart in the surface direction is suppressed, and by extension other semiconductors. Heat input to the chip is suppressed.

実装装置の構成を示す図である。It is a figure which shows the structure of a mounting apparatus. 半導体装置の一例を示す図である。It is a figure which shows an example of a semiconductor device. 基板の一例を示す図である。It is a figure which shows an example of a board | substrate. 半導体チップの一例を示す図である。It is a figure which shows an example of a semiconductor chip. 基板を局所加熱している様子を示す図である。It is a figure which shows a mode that the substrate is locally heated. 図5のX部拡大図である。It is an X section enlarged view of FIG. ステージの他の一例を示す図である。It is a figure which shows another example of a stage. ステージの他の一例を示す図である。It is a figure which shows another example of a stage. ステージの他の一例を示す図である。It is a figure which shows another example of a stage. ステージの他の一例を示す図である。It is a figure which shows another example of a stage. 加熱装置を示す模式図、及び電磁波の強度を示す図である。It is a schematic diagram which shows a heating device, and a figure which shows the intensity | strength of an electromagnetic wave. 加熱装置を示す模式図、及び電磁波の強度を示す図である。It is a schematic diagram which shows a heating device, and a figure which shows the intensity | strength of an electromagnetic wave.

以下、半導体装置の製造方法および実装装置100について図面を参照して説明する。図1は、実装装置100の構成を示す図である。この実装装置100は、基板30の上に、半導体チップ12を実装する装置である。この実装装置100は、複数の半導体チップ12を積層して実装する場合に特に好適な構成となっている。なお、以下の説明では、複数の半導体チップ12を積層して成る積層体のうち、積層体を構成する複数の半導体チップ12が仮圧着状態のものを「仮積層体STt」と呼び、複数の半導体チップ12が、本圧着状態のものを「チップ積層体STc」と呼び区別する。   Hereinafter, a semiconductor device manufacturing method and a mounting apparatus 100 will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of the mounting apparatus 100. The mounting apparatus 100 is an apparatus for mounting the semiconductor chip 12 on the substrate 30. The mounting apparatus 100 has a particularly suitable configuration when a plurality of semiconductor chips 12 are stacked and mounted. In the following description, among the stacked bodies formed by stacking the plurality of semiconductor chips 12, those in which the plurality of semiconductor chips 12 forming the stacked body are in the temporary pressure bonding state are referred to as “temporary stacked body STt”, and The semiconductor chip 12 that is in the main pressure-bonding state is referred to as a “chip stacked body STc” to distinguish them.

実装装置100は、チップ供給ユニット102、チップ搬送ユニット104、ボンディングユニット106、照射ユニット108、および、これらの駆動を制御する制御部130と、を備える。チップ供給ユニット102は、チップ供給源から半導体チップ12を取り出し、チップ搬送ユニット104に供給する部位である。このチップ供給ユニット102は、突上部110とダイピッカ114と移送ヘッド116と、を備えている。   The mounting apparatus 100 includes a chip supply unit 102, a chip transport unit 104, a bonding unit 106, an irradiation unit 108, and a control unit 130 that controls driving of these. The chip supply unit 102 is a part that takes out the semiconductor chip 12 from the chip supply source and supplies it to the chip transport unit 104. The chip supply unit 102 includes a protrusion 110, a die picker 114, and a transfer head 116.

チップ供給ユニット102において、複数の半導体チップ12は、ダイシングテープTE上に載置されている。このとき半導体チップ12は、バンプ18が上側を向いたフェイスアップ状態で載置されている。突上部110は、この複数の半導体チップ12の中から一つの半導体チップ12のみを、フェイスアップ状態のまま、上方に突き上げる。ダイピッカ114は、突上部110により突き上げられた半導体チップ12を、その下端で吸引保持して受け取る。半導体チップ12を受け取ったダイピッカ114は、当該半導体チップ12のバンプ18が下方を向くように、すなわち、半導体チップ12がフェイスダウン状態になるように、その場で180度回転する。この状態になれば、移送ヘッド116が、ダイピッカ114から半導体チップ12を受け取る。   In the chip supply unit 102, the plurality of semiconductor chips 12 are placed on the dicing tape TE. At this time, the semiconductor chip 12 is mounted in a face-up state with the bumps 18 facing upward. The protrusion 110 pushes only one semiconductor chip 12 out of the plurality of semiconductor chips 12 upward in a face-up state. The die picker 114 sucks and holds the semiconductor chip 12 pushed up by the protrusion 110 at its lower end. The die picker 114 that has received the semiconductor chip 12 rotates 180 degrees on the spot so that the bumps 18 of the semiconductor chip 12 face downward, that is, the semiconductor chip 12 is placed face down. In this state, the transfer head 116 receives the semiconductor chip 12 from the die picker 114.

移送ヘッド116は、上下および水平方向に移動可能であり、その下端で、半導体チップ12を吸着保持できる。ダイピッカ114が180度回転して、半導体チップ12がフェイスダウン状態となれば、移送ヘッド116は、その下端で、当該半導体チップ12を吸着保持する。その後、移送ヘッド116は、水平および上下方向に移動して、チップ搬送ユニット104へと移動する。   The transfer head 116 can move vertically and horizontally, and the lower end thereof can suck and hold the semiconductor chip 12. When the die picker 114 rotates 180 degrees to bring the semiconductor chip 12 into the face-down state, the transfer head 116 sucks and holds the semiconductor chip 12 at its lower end. Then, the transfer head 116 moves horizontally and vertically to move to the chip transfer unit 104.

チップ搬送ユニット104は、鉛直な回転軸Raを中心として回転する回転台118を有している。移送ヘッド116は、回転台118の所定位置に、半導体チップ12を載置する。半導体チップ12が載置された回転台118が回転軸Raを中心として回転することで、当該半導体チップ12が、チップ供給ユニット102と反対側に位置するボンディングユニット106に搬送される。   The chip transport unit 104 has a turntable 118 that rotates about a vertical rotation axis Ra. The transfer head 116 mounts the semiconductor chip 12 at a predetermined position on the turntable 118. When the rotary table 118 on which the semiconductor chip 12 is mounted rotates about the rotation axis Ra, the semiconductor chip 12 is transported to the bonding unit 106 located on the opposite side of the chip supply unit 102.

ボンディングユニット106は、基板30を支持するステージ120と、半導体チップ12を基板30に取り付ける実装ヘッド124と、を備えている。ステージ120は、基板30が載置される上面(第一面)と、当該第一面と反対側の下面(第二面)とを有する。また、ステージ120は、水平方向に移動可能であり、載置されている基板30と実装ヘッド124との相対位置関係を調整する。ステージ120は、後に詳説するように、照射ユニット108から照射される電磁波134を透過可能な材料で構成されている。また、ステージ120は、面方向への熱抵抗が厚み方向の熱抵抗よりも高い第一層と、第一層の下側に配される第二層とを有した多層構造となっているが、これについても後述する。   The bonding unit 106 includes a stage 120 that supports the substrate 30, and a mounting head 124 that attaches the semiconductor chip 12 to the substrate 30. The stage 120 has an upper surface (first surface) on which the substrate 30 is placed and a lower surface (second surface) opposite to the first surface. Further, the stage 120 is movable in the horizontal direction, and adjusts the relative positional relationship between the mounted substrate 30 and the mounting head 124. The stage 120 is made of a material capable of transmitting the electromagnetic wave 134 emitted from the irradiation unit 108, as described later in detail. The stage 120 has a multi-layer structure including a first layer having a thermal resistance in the plane direction higher than that in the thickness direction and a second layer arranged below the first layer. This will also be described later.

実装ヘッド124は、基板30に、複数の半導体チップ12を積層して実装する。実装ヘッド124は、その下端に半導体チップ12を保持でき、また、鉛直な回転軸Rb回りの回転と、昇降と、が可能となっている。この実装ヘッド124は、半導体チップ12を基板30または他の半導体チップ12の上に圧着する。具体的には、保持している半導体チップ12を基板30等に押し付けるように、実装ヘッド124が、下降することで、半導体チップ12の仮圧着または本圧着が行われる。この実装ヘッド124には、温度可変のヒータ(図示せず)が内蔵されており、実装ヘッド124は、仮圧着実行時には、第一温度T1に、本圧着実行時には、第一温度T1よりも高い第二温度T2に加熱される。また、実装ヘッド124は、仮圧着実行時には、第一荷重F1を、本圧着実行時には、第二荷重F2を、半導体チップ12に付加する。   The mounting head 124 mounts the semiconductor chips 12 stacked on the substrate 30. The mounting head 124 can hold the semiconductor chip 12 at its lower end, and is capable of rotating around the vertical rotation axis Rb and moving up and down. The mounting head 124 press-bonds the semiconductor chip 12 onto the substrate 30 or another semiconductor chip 12. Specifically, the mounting head 124 is lowered so as to press the held semiconductor chip 12 against the substrate 30 or the like, so that the semiconductor chip 12 is temporarily or permanently pressed. A temperature variable heater (not shown) is built in the mounting head 124, and the mounting head 124 is at a first temperature T1 when performing temporary pressure bonding and higher than the first temperature T1 when performing main pressure bonding. It is heated to the second temperature T2. Further, the mounting head 124 applies the first load F1 to the semiconductor chip 12 when executing the temporary pressure bonding and the second load F2 when performing the main pressure bonding.

実装ヘッド124の近傍には、カメラ(図示せず)が設けられている。基板30および半導体チップ12には、それぞれ、位置決めの基準となるアライメントマークが付されている。カメラは、このアライメントマークが映るように、基板30および半導体チップ12を撮像する。制御部130は、この撮像により得られた画像データに基づいて、基板30および半導体チップ12の相対位置関係を把握、必要に応じて、実装ヘッド124の軸Rb回りの回転角度およびステージ120の水平位置を調整する。   A camera (not shown) is provided near the mounting head 124. The substrate 30 and the semiconductor chip 12 are each provided with an alignment mark serving as a positioning reference. The camera captures an image of the substrate 30 and the semiconductor chip 12 so that the alignment mark can be seen. The control unit 130 grasps the relative positional relationship between the substrate 30 and the semiconductor chip 12 based on the image data obtained by this imaging, and if necessary, the rotation angle of the mounting head 124 about the axis Rb and the horizontal direction of the stage 120. Adjust the position.

照射ユニット108は、ステージ120の裏側から特定波長の電磁波134を照射することで基板30を局所的に加熱する。照射ユニット108は、少なくとも、電磁波134を照射する電磁波源132を有している。電磁波134は、ステージ120を透過しやすく、基板30に吸収されやすい波長を有していれば特に限定されないが、出力や指向性を考慮すれば、電磁波134は、望ましくは、レーザ光である。電磁波源132としては、所望の波長、パワーの光を所望のパワーで照射できるのであれば、特に限定されず、例えば、レーザ発振器やLD(Laser Diode)、LED、ハロンゲンランプ等を用いることができる。照射ユニット108は、さらに、電磁波134を、基板30の特定範囲のみを照射するために、絞りやレンズ、ミラー、光ファイバ等の光学部材や、これら光学部材を駆動して電磁波を走査させる駆動部材等を有してもよい。   The irradiation unit 108 locally heats the substrate 30 by irradiating the electromagnetic wave 134 having a specific wavelength from the back side of the stage 120. The irradiation unit 108 has at least an electromagnetic wave source 132 that irradiates an electromagnetic wave 134. The electromagnetic wave 134 is not particularly limited as long as it has a wavelength that easily passes through the stage 120 and is easily absorbed by the substrate 30, but considering the output and directivity, the electromagnetic wave 134 is preferably laser light. The electromagnetic wave source 132 is not particularly limited as long as it can emit light having a desired wavelength and power with a desired power, and for example, a laser oscillator, an LD (Laser Diode), an LED, a Halongen lamp, or the like can be used. it can. The irradiation unit 108 further includes optical members such as a diaphragm, a lens, a mirror, and an optical fiber in order to irradiate only a specific area of the substrate 30 with the electromagnetic waves, and a driving member that drives these optical members to scan the electromagnetic waves. And so on.

制御部130は、各部の駆動を制御するもので、例えば、各種演算を行うCPUと、各種データやプログラムを記憶する記憶部と、を備えている。制御部130は、記憶部に記憶されたプログラムに従い、各部を駆動して、半導体チップの実装処理を実行する。例えば、制御部130は、実装ヘッド124およびステージ120を駆動して、半導体チップを基板30に実装させる。また、制御部130は、後述する本圧着処理と並行して、照射ユニット108を駆動して、基板30を局所的に加熱させる。   The control unit 130 controls the drive of each unit, and includes, for example, a CPU that performs various calculations and a storage unit that stores various data and programs. The control unit 130 drives each unit according to the program stored in the storage unit to execute the semiconductor chip mounting process. For example, the control unit 130 drives the mounting head 124 and the stage 120 to mount the semiconductor chip on the substrate 30. Further, the control unit 130 drives the irradiation unit 108 to locally heat the substrate 30 in parallel with the main pressure bonding process described later.

次に、この実装装置100で製造される半導体装置10について図3〜図5を参照して説明する。図3は、半導体装置10の一例を示す模式図、図4は、基板30の模式図、図5は、半導体チップ12の模式図である。なお、図3において、半導体チップ12と基板30との境界、および、二つの半導体チップ12の境界における太線は、本圧着されていることを示している。   Next, the semiconductor device 10 manufactured by the mounting apparatus 100 will be described with reference to FIGS. 3 is a schematic diagram showing an example of the semiconductor device 10, FIG. 4 is a schematic diagram of the substrate 30, and FIG. 5 is a schematic diagram of the semiconductor chip 12. Note that, in FIG. 3, thick lines at the boundary between the semiconductor chip 12 and the substrate 30 and at the boundary between the two semiconductor chips 12 indicate that the main compression bonding is performed.

本例で取り扱う半導体装置10は、図3に示すように、基板30の上面に、複数(図示例では4つ)の半導体チップ12が積層実装されている。また、本例では、基板30として、シリコンウエハを使用する。したがって、本明細書で開示する実装プロセスは、シリコンウエハの回路形成面に、半導体チップ12を積層実装する「チップオンウェハプロセス」である。   As shown in FIG. 3, the semiconductor device 10 handled in this example has a plurality of (four in the illustrated example) semiconductor chips 12 stacked and mounted on the upper surface of a substrate 30. In this example, a silicon wafer is used as the substrate 30. Therefore, the mounting process disclosed in this specification is a “chip-on-wafer process” in which the semiconductor chips 12 are stacked and mounted on the circuit formation surface of the silicon wafer.

シリコンウエハである基板30は、主にシリコンからなり、樹脂やガラスからなる一般的な回路基板に比して、熱伝導率が高い。図2に示すように、基板30には、格子状に並ぶ複数の実装区画34が設定されている。各実装区画34には、複数の半導体チップ12が積層実装される。実装区画34は、所定の配置ピッチPで配設されている。この配置ピッチPの値は、実装対象の半導体チップ12のサイズ等に応じて適宜、設定される。また、本実施形態では、実装区画34を略正方形としているが、適宜、他の形状、例えば略長方形としてもよい。各実装区画34の表面には、実装される半導体チップ12のバンプ18に対応した位置に、電極36(図3参照)が形成されている。   The substrate 30, which is a silicon wafer, is mainly made of silicon and has a higher thermal conductivity than a general circuit board made of resin or glass. As shown in FIG. 2, a plurality of mounting sections 34 arranged in a grid pattern are set on the substrate 30. A plurality of semiconductor chips 12 are stacked and mounted in each mounting section 34. The mounting sections 34 are arranged at a predetermined arrangement pitch P. The value of the arrangement pitch P is appropriately set according to the size of the semiconductor chip 12 to be mounted and the like. Further, in the present embodiment, the mounting section 34 has a substantially square shape, but may have another shape, for example, a substantially rectangular shape, as appropriate. Electrodes 36 (see FIG. 3) are formed on the surface of each mounting section 34 at positions corresponding to the bumps 18 of the semiconductor chip 12 to be mounted.

次に半導体チップ12の構成について図4に示すように、半導体チップ12の上下面には、電極端子14,16が形成されている。また、半導体チップ12の片面には、電極端子14に連なってバンプ18が形成されている。バンプ18は、導電性金属からなり、所定の溶融温度Tmで溶融する。   Next, regarding the configuration of the semiconductor chip 12, as shown in FIG. 4, electrode terminals 14 and 16 are formed on the upper and lower surfaces of the semiconductor chip 12. Further, bumps 18 are formed on one surface of the semiconductor chip 12 so as to be continuous with the electrode terminals 14. The bump 18 is made of a conductive metal and melts at a predetermined melting temperature Tm.

また、半導体チップ12の片面には、バンプ18を覆うように、非導電性フィルム(以下「NCF」という)20が貼り付けられている。NCF20は、半導体チップ12と、基板30または他の半導体チップ12とを接着する接着剤として機能するもので、非導電性の熱硬化性樹脂、例えば、ポリイミド樹脂、エポキシ樹脂、アクリル樹脂、フェノキシ樹脂、ポリエーテルスルホン樹脂等からなる。このNCF20の厚みは、バンプ18の平均高さよりも大きく、バンプ18は、このNCF20によりほぼ完全に覆われている。NCF20は、常温下では、固体のフィルムであるが、所定の軟化開始温度Tsを超えると、徐々に、可逆的に軟化して流動性を発揮し、所定の硬化開始温度Ttを超えると、不可逆的に硬化し始める。   Further, a non-conductive film (hereinafter referred to as “NCF”) 20 is attached to one surface of the semiconductor chip 12 so as to cover the bumps 18. The NCF 20 functions as an adhesive that bonds the semiconductor chip 12 to the substrate 30 or another semiconductor chip 12, and is a non-conductive thermosetting resin such as polyimide resin, epoxy resin, acrylic resin, or phenoxy resin. , Polyethersulfone resin, etc. The thickness of the NCF 20 is larger than the average height of the bump 18, and the bump 18 is almost completely covered by the NCF 20. Although the NCF 20 is a solid film at room temperature, it gradually reversibly softens and exhibits fluidity when it exceeds a predetermined softening start temperature Ts, and becomes irreversible when it exceeds a predetermined hardening start temperature Tt. Begins to harden.

ここで、軟化開始温度Tsは、硬化開始温度Ttおよびバンプ18の溶融温度Tmよりも低い。仮圧着用の第一温度T1は、この軟化開始温度Tsより高く、溶融温度Tmおよび硬化開始温度Ttよりも低い。また、本圧着用の第二温度T2は、溶融温度Tmおよび硬化開始温度Ttよりも高い。すなわち、Ts<T1<(Tm,Tt)<T2となっている。   Here, the softening start temperature Ts is lower than the hardening start temperature Tt and the melting temperature Tm of the bump 18. The first temperature T1 for temporary pressure bonding is higher than the softening start temperature Ts and lower than the melting temperature Tm and the hardening start temperature Tt. Further, the second temperature T2 for the main pressure bonding is higher than the melting temperature Tm and the curing start temperature Tt. That is, Ts <T1 <(Tm, Tt) <T2.

半導体チップ12を基板30または下側の半導体チップ12(以下、両者を区別しない場合は「被実装体」と呼ぶ)に仮圧着する際には、実装ヘッド124を、第一温度T1に加熱したうえで半導体チップ12を加圧する。このとき、半導体チップ12のNCF20は、実装ヘッド124からの伝熱により、第一温度T1近傍まで加熱され、軟化し、流動性を持つ。そして、これにより、NCF20が、半導体チップ12と被実装体との隙間に流れ込み、当該隙間を確実に埋めることができる。   When the semiconductor chip 12 is temporarily pressure-bonded to the substrate 30 or the lower semiconductor chip 12 (hereinafter, referred to as “mounting body” when the two are not distinguished from each other), the mounting head 124 is heated to the first temperature T1. Then, the semiconductor chip 12 is pressed. At this time, the NCF 20 of the semiconductor chip 12 is heated to near the first temperature T1 by heat transfer from the mounting head 124, softens, and has fluidity. As a result, the NCF 20 flows into the gap between the semiconductor chip 12 and the mounted body, and the gap can be reliably filled.

半導体チップ12を、被実装体に本圧着する際には、実装ヘッド124を、第二温度T2に加熱したうえで、半導体チップ12を加圧する。このとき、半導体チップ12のバンプ18およびNCF20は、実装ヘッド124からの伝熱により、第二温度T2近傍まで加熱される。これにより、バンプ18は、溶融し、対向する被実装体に溶着できる。また、この加熱により、NCF20が、半導体チップ12と被実装体との隙間を埋めた状態で硬化するため、半導体チップ12と被実装体とが強固に固定される。つまり、本圧着の際、半導体チップ12は、基板30等に熱圧着される。   When the semiconductor chip 12 is permanently pressure-bonded to the mounted body, the mounting head 124 is heated to the second temperature T2 and then the semiconductor chip 12 is pressed. At this time, the bump 18 and the NCF 20 of the semiconductor chip 12 are heated to near the second temperature T2 by the heat transfer from the mounting head 124. As a result, the bumps 18 are melted and can be welded to the opposing mounted body. Further, due to this heating, the NCF 20 is cured in a state where the gap between the semiconductor chip 12 and the mounted body is filled, so that the semiconductor chip 12 and the mounted body are firmly fixed. That is, the semiconductor chip 12 is thermocompression bonded to the substrate 30 or the like during the main compression bonding.

ここで、実装ヘッド124の温度を、第一温度T1から第二温度T2、または、第二温度T2から第一温度T1へ切り替えるには、一定の時間がかかる。したがって、半導体装置10を製造時間を短縮するためには、実装ヘッド124の温度の切り替え回数を低減することが有効である。そこで、複数の半導体チップ12を積層実装する場合には、全ての半導体チップ12を仮圧着した後に、この仮圧着された半導体チップ12を本圧着するプロセスが提案されている。具体的には、まず、第一温度T1に加熱した実装ヘッド124を用いて、複数の半導体チップ12を仮圧着しながら積層して成る仮積層体STtを、複数の実装区画34に形成する。続いて、第二温度T2に切り替えた実装ヘッド124で仮積層体STtの上面を加圧し、これにより、仮積層体STtを構成する複数の半導体チップ12を一括で本圧着する。かかる手順で半導体チップ12を実装していくことで、実装ヘッド124の温度の切り替え回数を大幅に低減でき、半導体装置10の製造時間を大幅に短縮できる。   Here, it takes a certain time to switch the temperature of the mounting head 124 from the first temperature T1 to the second temperature T2 or from the second temperature T2 to the first temperature T1. Therefore, in order to reduce the manufacturing time of the semiconductor device 10, it is effective to reduce the number of times the temperature of the mounting head 124 is switched. Therefore, when stacking and mounting a plurality of semiconductor chips 12, a process has been proposed in which all the semiconductor chips 12 are temporarily pressure-bonded, and then the temporarily pressure-bonded semiconductor chips 12 are finally pressure-bonded. Specifically, first, using the mounting head 124 heated to the first temperature T1, the temporary stacked body STt formed by stacking the plurality of semiconductor chips 12 while temporarily pressure-bonding is formed in the plurality of mounting sections 34. Subsequently, the mounting head 124 that has been switched to the second temperature T2 pressurizes the upper surface of the temporary stacked body STt, so that the plurality of semiconductor chips 12 that form the temporary stacked body STt are collectively press-bonded together. By mounting the semiconductor chip 12 in this procedure, the number of times the temperature of the mounting head 124 is switched can be significantly reduced, and the manufacturing time of the semiconductor device 10 can be significantly reduced.

ところで、これまでの説明で明らかな通り、半導体チップ12を適切に実装するためには、実装対象の半導体チップ12が、その処理過程に応じた適切な温度に加熱されることが望まれる。例えば、本圧着を行う際には、半導体チップ12は、NCF20の硬化開始温度Tt以上、かつ、バンプ18の溶融温度Tm以上に加熱されていなければならない。しかし、実装ヘッド124からの熱のみで、全ての半導体チップ12を適切な温度に加熱することは難しい場合もあった。特に、積層体STtを構成する複数の半導体チップ12を一括で本圧着する場合、実装ヘッド124からの熱のみでは、最下層の半導体チップ12を、適切に加熱することは難しかった。   By the way, as is apparent from the above description, in order to properly mount the semiconductor chip 12, it is desired that the semiconductor chip 12 to be mounted is heated to an appropriate temperature according to the processing process. For example, when the main pressure bonding is performed, the semiconductor chip 12 must be heated to the curing start temperature Tt of the NCF 20 or higher and the melting temperature Tm of the bump 18 or higher. However, it may be difficult to heat all the semiconductor chips 12 to an appropriate temperature only with the heat from the mounting head 124. In particular, when the plurality of semiconductor chips 12 forming the stacked body STt are collectively press-bonded together, it is difficult to appropriately heat the lowermost semiconductor chip 12 only by the heat from the mounting head 124.

また、一つの仮積層体STtにおいて、最上層の半導体チップ12の温度と最下層の半導体チップ12の温度差(以下「積層体内温度差」)ΔTは、小さいことが望まれる。積層体内温度差ΔTが大きいと、実装品質のバラツキを招くこととなる。しかし、実装ヘッド124からの熱のみでは、積層体内温度差ΔTを小さくすることは難しかった。   Further, in one temporary stacked body STt, it is desired that the temperature difference between the uppermost semiconductor chip 12 and the lowermost semiconductor chip 12 (hereinafter referred to as “temperature difference in stacked body”) ΔT is small. If the temperature difference ΔT in the laminated body is large, the mounting quality varies. However, it was difficult to reduce the temperature difference ΔT in the laminated body only by the heat from the mounting head 124.

そこで、従来は、基板30が載置されるステージ120にヒータを内蔵しておき、基板30全体も加熱することが多かった。かかる構成によれば、仮積層体STtが、下側からも加熱されるため、最下層の半導体チップ12も、適切な温度に加熱されやすく、また、積層体内温度差ΔTをある程度小さくできる。   Therefore, conventionally, a heater is often built in the stage 120 on which the substrate 30 is placed and the entire substrate 30 is also heated. According to this configuration, since the temporary stacked body STt is also heated from the lower side, the semiconductor chip 12 in the lowermost layer is easily heated to an appropriate temperature, and the temperature difference ΔT in the stacked body can be reduced to some extent.

ただし、ステージ120全体を加熱する場合、当然ながら、その温度は、NCF20の硬化開始温度Ttよりも十分に低くしなければならない。これは、ステージ120の温度が、硬化開始温度Ttより高いと、仮圧着後、本圧着前の半導体チップ12のNCF20が、熱硬化してしまうからである。そのため、ステージ120は、あまり高温にすることはできず、積層体内温度差ΔTを十分に小さくすることは難しかった。   However, when heating the entire stage 120, the temperature must be sufficiently lower than the curing start temperature Tt of the NCF 20 as a matter of course. This is because when the temperature of the stage 120 is higher than the curing start temperature Tt, the NCF 20 of the semiconductor chip 12 after the temporary pressure bonding and before the main pressure bonding is thermally cured. Therefore, the stage 120 cannot be heated to a very high temperature, and it is difficult to sufficiently reduce the temperature difference ΔT in the stacked body.

また、ステージ120が、硬化開始温度Ttより低温であったとしても、当該ステージ120全体が加熱される場合、基板30上に仮圧着または本圧着された半導体チップ12には、長時間、熱が入力され続けることになる。こうした長期間に及ぶ熱の入力は、半導体チップ12、特に、NCF20の劣化、ひいては、実装品質の劣化を招く。   Even if the stage 120 has a temperature lower than the curing start temperature Tt, if the entire stage 120 is heated, the semiconductor chip 12 temporarily or permanently pressure-bonded onto the substrate 30 is exposed to heat for a long time. It will continue to be entered. Such heat input over a long period of time causes deterioration of the semiconductor chip 12, particularly the NCF 20, and eventually deterioration of mounting quality.

そこで、既述した通り、本明細書で開示する実装装置100では、ステージ120の下側に、照射ユニット108を配置し、基板30を局所的に電磁波134で加熱する。図5は、基板30を局所的に加熱する様子を示すイメージ図である。なお、図5において、三つの実装区画34を図示しているが、以下の説明では、これらの実装区画34を、図面左側から順に、「区画A」、「区画B」、「区画C」と呼び、区別する。また、図5において、半導体チップ12と被実装体(基板30または他の半導体チップ12)との境界における太線は、本圧着されていることを示し、破線は、仮圧着されていることを示している。したがって、図5において、区画Aの積層体は、本圧着されたチップ積層体STcであり、区画B,Cの積層体は、仮圧着後かつ本圧着前の仮積層体STtである。図5は、区画Bの仮積層体STtを本圧着するときの様子を示している。   Therefore, as described above, in the mounting apparatus 100 disclosed in this specification, the irradiation unit 108 is arranged below the stage 120, and the substrate 30 is locally heated by the electromagnetic wave 134. FIG. 5 is an image diagram showing how the substrate 30 is locally heated. Although FIG. 5 shows three mounting sections 34, in the following description, these mounting sections 34 will be referred to as “section A”, “section B”, and “section C” in order from the left side of the drawing. Call and distinguish. Further, in FIG. 5, the thick line at the boundary between the semiconductor chip 12 and the mounted body (the substrate 30 or the other semiconductor chip 12) indicates the main pressure bonding, and the broken line indicates the temporary pressure bonding. ing. Therefore, in FIG. 5, the stacked body of the section A is the chip stacked body STc that is subjected to the main pressure bonding, and the stacked body of the sections B and C is the temporary stacked body STt after the temporary pressure bonding and before the main pressure bonding. FIG. 5 shows a state where the temporary laminate STt in the section B is subjected to main pressure bonding.

図5に示すように、一つの仮積層体STtを本圧着する際には、第二温度T2に加熱された実装ヘッド124で、当該仮積層体STtを加熱・加圧する。また、基板30のうち、本圧着対象の仮積層体STtが配された区画Bに、電磁波134を照射し、当該区画Bを電磁波134で加熱する。   As shown in FIG. 5, when one temporary laminated body STt is permanently pressure-bonded, the temporary laminated body STt is heated and pressed by the mounting head 124 heated to the second temperature T2. In addition, in the substrate 30, the section B in which the temporary stacked body STt to be permanently bonded is arranged is irradiated with the electromagnetic wave 134, and the section B is heated by the electromagnetic wave 134.

ここで、既述した通り、電磁波134は、ステージ120を透過しやすく、かつ、基板30に吸収されやすい波長を有している。本例では、基板30は、シリコンウエハである。シリコンの透過率は、波長1200nmを下回ると急激に低下する。したがって、シリコンウエハを基板30として用いる場合、電磁波134の波長は、1200nm以下とすることが望ましい。ただし、波長が過度に小さいと、電磁波のエネルギーも低下するため、電磁波134の波長は、可視光よりも大きい、すなわち、750nm以上であることが望ましい。   Here, as described above, the electromagnetic wave 134 has a wavelength that easily passes through the stage 120 and is easily absorbed by the substrate 30. In this example, the substrate 30 is a silicon wafer. The transmittance of silicon sharply drops below a wavelength of 1200 nm. Therefore, when a silicon wafer is used as the substrate 30, the wavelength of the electromagnetic wave 134 is preferably 1200 nm or less. However, if the wavelength is too small, the energy of the electromagnetic wave also decreases, so the wavelength of the electromagnetic wave 134 is preferably larger than that of visible light, that is, 750 nm or more.

また、ステージ120は、電磁波134の透過率が高いことが望ましい。また、ステージ120は、伝熱性の乏しい材料であることも望まれる。これは、電磁波134により加熱された実装区画34の熱が、ステージ120を介して他の実装区画34に伝熱することを防止するためである。こうした条件を満たすために、ステージ120は、例えば、石英やフッ化バリウム、フッ化マグネシウム、フッ化カルシウム等で構成されることが望ましい。   Further, it is desirable that the stage 120 has a high transmittance of the electromagnetic wave 134. It is also desired that the stage 120 be made of a material having poor heat conductivity. This is to prevent the heat of the mounting section 34 heated by the electromagnetic wave 134 from being transferred to the other mounting section 34 via the stage 120. In order to satisfy these conditions, it is desirable that the stage 120 be made of, for example, quartz, barium fluoride, magnesium fluoride, calcium fluoride, or the like.

電磁波134の照射範囲は、半導体チップ12の外形とほぼ同範囲であることが望ましい。また、照射ユニット108は、所望の範囲のみに電磁波134を照射するために、電磁波134の照射範囲および照射位置の少なくとも一方を変更する変更手段を有することが望ましい。変更手段の構成としては、種々考えられるが、変更手段は、例えば、ステージ120に対する電磁波源132の位置を移動させる移動機構を有してもよい。かかる移動機構としては、例えば、ステージ120を移動させるXY移動機構が含まれる。また、変更手段は、所望の照射範囲にのみ照射するために、例えば、図5に示すように、照射範囲よりも十分に大径の電磁波134の経路途中に設けられ、照射範囲に対応した開口が形成された絞り135を有してもよい。この絞り135は、対象となる半導体装置に応じて、適宜、交換されてもよい。   The irradiation range of the electromagnetic wave 134 is preferably substantially the same as the outer shape of the semiconductor chip 12. Further, the irradiation unit 108 preferably has a changing unit that changes at least one of the irradiation range and the irradiation position of the electromagnetic wave 134 in order to irradiate the electromagnetic wave 134 only in a desired range. There are various conceivable configurations of the changing unit, but the changing unit may include, for example, a moving mechanism that moves the position of the electromagnetic wave source 132 with respect to the stage 120. Examples of such a moving mechanism include an XY moving mechanism that moves the stage 120. Further, in order to irradiate only a desired irradiation range, the changing means is provided, for example, as shown in FIG. 5, in the middle of the path of the electromagnetic wave 134 having a diameter sufficiently larger than the irradiation range, and an opening corresponding to the irradiation range. You may have the diaphragm 135 with which was formed. The diaphragm 135 may be appropriately replaced depending on the target semiconductor device.

また、別の形態として、基板30近傍において照射範囲よりも十分に小径となる電磁波134で、照射範囲を走査してもよい。基板30近傍において小径の電磁波134を得るために、小径の平行電磁波(例えば平行光)を出射する電磁波源132を用いてもよいし、光学部材(レンズ等)を用いて大径の電磁波134を基板30周辺で合焦させてもよい。また、電磁波134を走査させるために、電磁波源132自体を動かしてもよいし、電磁波134を屈曲させるミラー等を動かしてもよい。ミラーを動かす形態としては、例えば、2以上のミラーをガルバノモータで駆動させるガルバノミラー機構を用いてもよい。また、ミラーや電磁波源132を駆動する機構として、コイルモータやカム等を用いてもよい。   As another form, the irradiation range may be scanned with an electromagnetic wave 134 having a diameter sufficiently smaller than the irradiation range in the vicinity of the substrate 30. In order to obtain the small-diameter electromagnetic wave 134 near the substrate 30, an electromagnetic wave source 132 that emits a small-diameter parallel electromagnetic wave (for example, parallel light) may be used, or an optical member (lens or the like) may be used to generate the large-diameter electromagnetic wave 134. Focusing may be performed around the substrate 30. In order to scan the electromagnetic wave 134, the electromagnetic wave source 132 itself may be moved, or a mirror or the like that bends the electromagnetic wave 134 may be moved. As a mode of moving the mirrors, for example, a galvano mirror mechanism in which two or more mirrors are driven by a galvano motor may be used. A coil motor or a cam may be used as a mechanism for driving the mirror or the electromagnetic wave source 132.

また、別の形態として、所望の照射範囲にのみ照射するために、各種光学部材を用いて、電磁波134のプロファイル(サイズ・形等)を変化させてもよい。例えば、幾何学的なビーム成形機能を有した矩形コアファイバを用いてもよい。また、別の形態として、電磁波134の経路途中に、筒体の内面に複数のミラーが貼り付けられたカレイドスコープを配してもよい。さらに、上述の光学部材と変えて、または、加えて、回折レンズやフライアレンズ、その他の光学レンズを用いて、電磁波134のプロファイルを変化させてもよい。   As another form, in order to irradiate only a desired irradiation range, various optical members may be used to change the profile (size, shape, etc.) of the electromagnetic wave 134. For example, a rectangular core fiber having a geometrical beam forming function may be used. As another form, a kaleidoscope having a plurality of mirrors attached to the inner surface of the cylindrical body may be arranged in the path of the electromagnetic wave 134. Furthermore, the profile of the electromagnetic wave 134 may be changed by using a diffractive lens, a flyer lens, or another optical lens instead of or in addition to the above-mentioned optical member.

また、図1では、電磁波源132を一つだけ図示しているが、電磁波源132は、2以上設けられてもよく、この2以上の電磁波源132は、互いに同種の電磁波源でもよいし、互いに異なる種類の電磁波源でもよい。また、電磁波134のパワーは、基板30を所望の時間で、所望の温度まで加熱できることが望ましい。例えば、仮積層体STtを一括で本圧着する際には、最下層の半導体チップ12を、最上層の半導体チップ12と同じ温度まで加熱することが望まれる。通常、本圧着の実行時間は、数秒であるため、電磁波134は、この本圧着の実行中(数秒以内)に基板30を第二温度T2近くまで加熱できる程度のパワーを有することが望ましい。   Further, although only one electromagnetic wave source 132 is illustrated in FIG. 1, two or more electromagnetic wave sources 132 may be provided, and the two or more electromagnetic wave sources 132 may be the same kind of electromagnetic wave source. Different types of electromagnetic wave sources may be used. Further, it is desirable that the power of the electromagnetic wave 134 can heat the substrate 30 to a desired temperature for a desired time. For example, when the temporary stacked bodies STt are collectively pressure-bonded together, it is desired to heat the lowermost semiconductor chip 12 to the same temperature as the uppermost semiconductor chip 12. Usually, since the execution time of the main pressure bonding is several seconds, it is desirable that the electromagnetic wave 134 has a power enough to heat the substrate 30 to the second temperature T2 during the main pressure bonding (within several seconds).

いずれにしても、ステージ120を透過しやすく、基板30に吸収されやすい波長の電磁波134を照射することで、基板30において電磁波134が吸収される。そして、吸収された電磁波のエネルギーが熱に変換されることで、基板30のうち電磁波134が照射された範囲のみが局所的に加熱される。そして、基板が局所的に加熱されることで、当該加熱部分(照射部分)の上に位置する半導体チップ12も加熱される。こうした局所加熱(電磁波134の照射)を、本圧着処理を行う実装区画34にのみ行うことで、最下層の半導体チップ12も適切に加熱でき、良好な実装品質が得られる。また、本圧着処理を行う実装区画34に対して局所加熱を行うことで、積層体内温度差ΔTを低減でき、一つの積層体を構成する複数の半導体チップ12の実装品質を均一化できる。   In any case, the electromagnetic wave 134 is absorbed in the substrate 30 by irradiating the electromagnetic wave 134 having a wavelength that is easily transmitted through the stage 120 and easily absorbed by the substrate 30. Then, the energy of the absorbed electromagnetic waves is converted into heat, so that only the area of the substrate 30 irradiated with the electromagnetic waves 134 is locally heated. Then, by locally heating the substrate, the semiconductor chip 12 located on the heated portion (irradiated portion) is also heated. By performing such local heating (irradiation of the electromagnetic wave 134) only in the mounting section 34 in which the main pressure bonding process is performed, the semiconductor chip 12 in the lowermost layer can be appropriately heated, and good mounting quality can be obtained. Further, by locally heating the mounting section 34 in which the main pressure bonding process is performed, the temperature difference ΔT in the stacked body can be reduced, and the mounting quality of the plurality of semiconductor chips 12 forming one stacked body can be made uniform.

その一方で、本圧着処理を行わない実装区画34には、電磁波134を照射しないため、当該実装区域の温度上昇、ひいては、本圧着処理の対象でない半導体チップ12の熱に起因する劣化や変質を効果的に防止できる。   On the other hand, the mounting section 34 that is not subjected to the main pressure bonding process is not irradiated with the electromagnetic wave 134, so that the mounting region 34 is not deteriorated or deteriorated due to the temperature rise of the mounting region and eventually the heat of the semiconductor chip 12 that is not the target of the main pressure bonding process. It can be effectively prevented.

ただし、本圧着対象の実装区画34のみを電磁波134で加熱した場合、当該実装区画34で生じた熱の一部は、基板30や、ステージ120を介して、他の実装区画34へと伝達される。例えば、図5において、区画Bのみを電磁波134で加熱した場合であっても、当該区画Bで生じた熱の一部は、基板30およびステージ120を介して、区画Aや区画Cへと流出する。こうした熱流出は、熱効率の悪化や、本圧着処理の対象でない区画Aや区画Bの半導体チップ12の熱劣化を招くおそれがある。   However, when only the mounting section 34 that is the object of main pressure bonding is heated by the electromagnetic wave 134, part of the heat generated in the mounting section 34 is transferred to the other mounting section 34 via the substrate 30 and the stage 120. It For example, in FIG. 5, even when only the section B is heated by the electromagnetic wave 134, part of the heat generated in the section B flows to the sections A and C via the substrate 30 and the stage 120. To do. Such heat outflow may lead to deterioration of thermal efficiency and thermal deterioration of the semiconductor chips 12 in the sections A and B not subjected to the main pressure bonding process.

そこで、本明細書で開示する実装装置100では、加熱対象の実装区画以外の実装区画への伝熱を低減するために、ステージ120を、上述した通り、伝熱性の乏しい材料、例えば石英等で構成している。さらに、本例では、ステージ120を介した面方向へ伝熱を低減するために、ステージ120の表面に、複数の溝を形成している。かかる溝を形成することで、面方向に向かう経路途中には複数の空気層(溝部分)が存在することになり、面方向の熱抵抗が高くなる。以下では、ステージ120のうち、この溝が形成された部分を「第一層122」と呼び、第一層122の下側に配される中実部分を「第二層123」と呼ぶ。第一層122は、その表面に複数の溝が形成されているため、面方向の熱抵抗が、厚み方向の熱抵抗よりも高くなっている。また、第二層123は、中実構造であるため、第一層122に比べて、面方向への熱抵抗が低い一方で、強度が高く、撓みにくくなっている。   Therefore, in the mounting apparatus 100 disclosed in the present specification, in order to reduce the heat transfer to the mounting section other than the mounting section to be heated, the stage 120 is made of a material having poor heat conductivity, such as quartz, as described above. I am configuring. Further, in this example, in order to reduce heat transfer in the surface direction through the stage 120, a plurality of grooves are formed on the surface of the stage 120. By forming such grooves, a plurality of air layers (groove portions) are present in the middle of the route toward the surface direction, and the thermal resistance in the surface direction increases. In the following, of the stage 120, the portion where the groove is formed is referred to as a “first layer 122”, and the solid portion disposed below the first layer 122 is referred to as a “second layer 123”. Since the first layer 122 has a plurality of grooves formed on its surface, the thermal resistance in the surface direction is higher than the thermal resistance in the thickness direction. Further, since the second layer 123 has a solid structure, the second layer 123 has a lower thermal resistance in the surface direction than the first layer 122, but has a high strength and is hard to bend.

第一層122に形成された溝のピッチは、特に限定されないが、例えば、半導体チップ12の一辺よりも十分に小さく(例えば、溝ピッチは、半導体チップの一辺の1/10以下等)してもよい。溝のピッチが小さく、溝の数が多くなることで、溝のエッジと基板30との当接箇所に生じる応力集中を緩和することができ、ひいては、ボンディング(仮圧着、本圧着)を行う際に、半導体チップ12全体にかかる圧力を均一化できる。また、別の形態として、溝のピッチを、実装区画34の配置ピッチPと同じにし、当該溝が、実装区画34の境界線とほぼ同じ位置に配されるようにしてもよい。換言すれば、半導体チップ12の真下には、溝が存在せず、面方向に隣接する二つの半導体チップ12の間にのみ溝が存在するようにしてもよい。かかる構成とすれば、ボンディング(仮圧着、本圧着)を行う歳に、半導体チップ12全体にかかる圧力をより均一化できる。また、この第一層122に形成された溝は、載置された基板30を吸引保持するための吸引機構(図示せず)と連通されてもよい。   The pitch of the grooves formed in the first layer 122 is not particularly limited, but is, for example, sufficiently smaller than one side of the semiconductor chip 12 (for example, the groove pitch is 1/10 or less of one side of the semiconductor chip). Good. Since the groove pitch is small and the number of grooves is large, stress concentration occurring at the contact portion between the edge of the groove and the substrate 30 can be relaxed, and when bonding (temporary pressure bonding, main pressure bonding) is performed. In addition, the pressure applied to the entire semiconductor chip 12 can be made uniform. Further, as another form, the pitch of the grooves may be the same as the arrangement pitch P of the mounting sections 34, and the grooves may be arranged at substantially the same position as the boundary line of the mounting sections 34. In other words, the groove may not exist directly below the semiconductor chip 12, and the groove may exist only between two semiconductor chips 12 that are adjacent to each other in the surface direction. With this configuration, the pressure applied to the entire semiconductor chip 12 can be made more uniform during the bonding (temporary pressure bonding, main pressure bonding). Further, the groove formed in the first layer 122 may be communicated with a suction mechanism (not shown) for suction-holding the placed substrate 30.

このように、ステージ120の表層に、面方向の熱抵抗が厚み方向の熱抵抗より高い第一層122を設けることにより、当該ステージ120を介した面方向への伝熱が効果的に防止できる。これについて、図6を参照して説明する。図6は、図5のX部拡大図である。照射ユニット108により、区画Bのみを電磁波134で加熱したとする。この場合、区画Bで生じた熱は、上方(半導体チップ12側)、面方向(区画A,C側)、下方(ステージ120側)へと伝達される。ここで、熱効率を高めるためには、区画Bで生じた熱のうち、上方(半導体チップ12側)に伝達される熱量を増やし、面方向(区画A,C側)および下方(ステージ120側)に伝達される熱量を低減することが望ましい。基板30が、伝熱性の高いシリコンウエハである場合、面方向(区画A,C側)への伝熱量を低減することは難しい。一方、本例では、ステージ120を断熱性の高い材料で構成し、さらに、その表面に複数の溝を形成して、基板30との接触面積を低減しているため、下方(ステージ120側)への伝熱量は、効果的に低減できる。つまり、ステージ120を断熱性の高い材料から構成するとともに、ステージ120と基板30との接触面積を低減することで、照射ユニット108で半導体チップ12を加熱する際の熱効率を向上させることができる。   Thus, by providing the first layer 122 having a thermal resistance in the surface direction higher than the thermal resistance in the thickness direction on the surface layer of the stage 120, heat transfer in the surface direction via the stage 120 can be effectively prevented. . This will be described with reference to FIG. FIG. 6 is an enlarged view of the X part of FIG. It is assumed that only the section B is heated by the electromagnetic wave 134 by the irradiation unit 108. In this case, the heat generated in the section B is transferred upward (semiconductor chip 12 side), in the surface direction (sections A and C side), and downward (stage 120 side). Here, in order to improve the thermal efficiency, of the heat generated in the section B, the amount of heat transferred to the upper side (semiconductor chip 12 side) is increased so that the surface direction (sections A and C side) and the lower side (stage 120 side). It is desirable to reduce the amount of heat transferred to. When the substrate 30 is a silicon wafer having a high heat transfer property, it is difficult to reduce the amount of heat transfer in the surface direction (parts A and C sides). On the other hand, in this example, the stage 120 is made of a material having a high heat insulating property, and a plurality of grooves are formed on the surface of the stage 120 to reduce the contact area with the substrate 30. The amount of heat transfer to the can be effectively reduced. That is, the stage 120 is made of a material having a high heat insulating property, and the contact area between the stage 120 and the substrate 30 is reduced, so that the thermal efficiency at the time of heating the semiconductor chip 12 by the irradiation unit 108 can be improved.

ただし、ステージ120への伝熱量は、少ないとはいえ、ゼロにはできない。ステージ120に伝達された熱が、当該ステージ120を介して、面方向(区画A,C側)に伝達されると、加熱対象以外の半導体チップ12に入力される熱量が増加する。しかし、本例のステージ120は、面方向への熱抵抗が高い第一層122を有しているため、熱がステージ120を介して面方向(区画A,C側)に伝達されることが効果的に防止される。結果として、加熱対象以外の半導体チップ12に入力される熱量を低減でき、半導体チップ12の熱に起因する劣化や変質を防止できる。   However, although the amount of heat transferred to the stage 120 is small, it cannot be zero. When the heat transferred to the stage 120 is transferred in the surface direction (sides of the sections A and C) via the stage 120, the amount of heat input to the semiconductor chips 12 other than the heating target increases. However, since the stage 120 of the present example has the first layer 122 having a high thermal resistance in the surface direction, heat may be transferred in the surface direction (sections A and C sides) via the stage 120. Effectively prevented. As a result, the amount of heat input to the semiconductor chip 12 other than the heating target can be reduced, and the deterioration or deterioration of the semiconductor chip 12 due to the heat can be prevented.

ところで、半導体チップ12をボンディング(仮圧着、本圧着)する際には、実装ヘッド124を用いて当該半導体チップ12に圧力を付与する。ステージ120が、面方向熱抵抗が高い第一層122のみを有する場合、ボンディングの際に付加される荷重に耐えられず、基板30の平面度が維持できないおそれがある。そこで、本例では、第一層122の下に、第一層122よりも剛性の高い第二層123を設けている。これにより、大きな荷重が付加された場合でも、撓みにくく、基板30の平面度を維持できる。   By the way, when the semiconductor chip 12 is bonded (temporary pressure bonding, main pressure bonding), pressure is applied to the semiconductor chip 12 using the mounting head 124. When the stage 120 includes only the first layer 122 having high thermal resistance in the surface direction, the stage 120 may not be able to withstand the load applied during bonding, and the flatness of the substrate 30 may not be maintained. Therefore, in this example, the second layer 123 having higher rigidity than the first layer 122 is provided below the first layer 122. As a result, even when a large load is applied, it is difficult to bend and the flatness of the substrate 30 can be maintained.

次に、この実装装置100を用いた半導体装置10の製造の流れについて説明する。半導体装置10を製造する場合には、まず、基板30を、直接、ステージ120に載置する載置工程を実行する。続いて、実装ヘッド124を用いて、基板30の上面に、半導体チップ12をボンディングするボンディング工程を実行する。このボンディング工程は、さらに、仮圧着工程と、本圧着工程と、に大別される。   Next, a flow of manufacturing the semiconductor device 10 using the mounting apparatus 100 will be described. In the case of manufacturing the semiconductor device 10, first, a mounting step of directly mounting the substrate 30 on the stage 120 is executed. Subsequently, a bonding step of bonding the semiconductor chip 12 to the upper surface of the substrate 30 using the mounting head 124 is performed. This bonding process is further roughly classified into a temporary pressure bonding process and a main pressure bonding process.

仮圧着工程では、実装ヘッド124は、全ての実装区画34において、複数の半導体チップ12を仮圧着しながら積層し、仮積層体STtを形成する。具体的には、実装ヘッド124は、予め第一温度T1に加熱しておく。その状態で、まず、ステージ120を水平移動させて、一つの実装区画34を、実装ヘッド124の真下に配置する。そして、実装ヘッド124は、チップ搬送ユニット104で搬送された半導体チップ12を、その先端吸引保持した後、下降し、当該半導体チップ12を、被実装体(基板30または他の半導体チップ12)の上に載置し、第一荷重F1で押圧する。これにより、半導体チップ12のNCF20が軟化し、半導体チップ12が仮圧着される。この仮圧着作業を、複数回繰り返し、一つの実装区画34に、仮積層体STtを形成する。一つの実装区画34に、仮積層体STtが形成できれば、ステージ120は、他の実装区画34が、実装ヘッド124の真下に位置するように、水平方向に移動する。そして、再び、実装ヘッド124を用いて仮積層体STtの形成を行う。以降、同様の処理を、全ての実装区画34に対して行う。   In the temporary pressure bonding step, the mounting head 124 stacks the plurality of semiconductor chips 12 in all the mounting sections 34 while performing temporary pressure bonding to form a temporary stacked body STt. Specifically, the mounting head 124 is heated to the first temperature T1 in advance. In that state, first, the stage 120 is horizontally moved to arrange one mounting section 34 directly below the mounting head 124. The mounting head 124 sucks and holds the tip of the semiconductor chip 12 transported by the chip transport unit 104, and then descends, so that the semiconductor chip 12 is mounted on the mounted body (the substrate 30 or another semiconductor chip 12). It is placed on top and pressed by the first load F1. As a result, the NCF 20 of the semiconductor chip 12 is softened and the semiconductor chip 12 is temporarily pressure-bonded. This temporary pressure bonding work is repeated a plurality of times to form the temporary stacked body STt in one mounting section 34. If the temporary stacked body STt can be formed in one mounting section 34, the stage 120 moves in the horizontal direction so that the other mounting section 34 is located directly below the mounting head 124. Then, again, the mounting head 124 is used to form the temporary stacked body STt. After that, the same processing is performed on all the mounting sections 34.

全ての実装区画34において、仮積層体STtが形成できれば、続いて、本圧着工程を実行する。本圧着工程では、本圧着処理を複数の積層体STtに対して順番に行う。具体的には、実装ヘッド124は、第一温度T1から第二温度T2に温度を切り替える。また、その状態で、ステージ120を水平移動させて、一つの実装区画34を、実装ヘッド124の真下に配置する。この状態になれば、実装ヘッド124は、下降して、一つの仮積層体STtの上面を第二荷重F2で加圧する。これにより、当該一つの仮積層体STtを構成する複数の半導体チップ12が、一括で本圧着される。   If the temporary stacked body STt can be formed in all the mounting sections 34, subsequently, the main pressure bonding step is executed. In the main pressure bonding step, the main pressure bonding process is sequentially performed on the plurality of stacked bodies STt. Specifically, the mounting head 124 switches the temperature from the first temperature T1 to the second temperature T2. Further, in this state, the stage 120 is horizontally moved to arrange one mounting section 34 directly below the mounting head 124. In this state, the mounting head 124 descends and presses the upper surface of one temporary stacked body STt with the second load F2. As a result, the plurality of semiconductor chips 12 forming the one temporary laminated body STt are collectively and permanently pressure-bonded.

ここで、この本圧着処理と並行して、当該一つの仮積層体STtが配された実装区画34を局所的に加熱する基板加熱工程も行う。具体的には、対象となる実装区画34(実装ヘッド124の真下領域)に、電磁波134を照射し、当該実装区画34のみを局所的に加熱する。これにより、対象の実装区画34の温度が上昇し、当該実装区画の上に配された半導体チップ12も加熱される。そして、これにより、仮積層体STtの上層と下層との温度差(積層体内温度差ΔT)が小さい状態で、本圧着処理を行うことができる。結果として、半導体チップ12の実装品質をより向上できる。   Here, in parallel with the main pressure bonding process, a substrate heating step of locally heating the mounting section 34 in which the one temporary stacked body STt is arranged is also performed. Specifically, the target mounting section 34 (the area directly below the mounting head 124) is irradiated with the electromagnetic wave 134 to locally heat only the mounting section 34. As a result, the temperature of the target mounting section 34 rises, and the semiconductor chip 12 arranged on the mounting section is also heated. Thus, the main pressure bonding process can be performed in a state where the temperature difference between the upper layer and the lower layer of the temporary laminate STt (temperature difference ΔT in the laminate) is small. As a result, the mounting quality of the semiconductor chip 12 can be further improved.

一つの仮積層体STtが本圧着されれば、ステージ120は、他の実装区画34が、実装ヘッド124の真下に位置するように、水平方向に移動する。そして、再び、実装ヘッド124を用いた仮積層体STtの加熱加圧と、電磁波134による基板30の局所加熱を行う。そして、同様の処理を、全ての実装区画34に対して行えば、半導体装置10の製造処理が終了となる。   When one temporary stacked body STt is permanently pressure-bonded, the stage 120 moves in the horizontal direction so that the other mounting section 34 is located directly below the mounting head 124. Then, again, heating and pressurization of the temporary stacked body STt using the mounting head 124 and local heating of the substrate 30 by the electromagnetic wave 134 are performed. Then, if the same process is performed on all the mounting sections 34, the manufacturing process of the semiconductor device 10 is completed.

以上の説明から明らかな通り、本明細書で開示する半導体装置10の製造方法によれば、基板30のうち、加熱対象の半導体チップ12が載置されている実装区画34に電磁波134を照射することで、当該実装区画34のみを電磁波134で加熱している。これにより、加熱対象の半導体チップ12を適切に加熱することができる一方で、加熱対象でない半導体チップ12に、長時間、熱が入力することが防止できる。また、ステージ120に、面方向の熱抵抗が厚み方向の熱抵抗よりも高い第一層122と、剛性の高い第二層123と、を設けることにより、基板30の平面度が維持されるとともに、ステージ120を介して、加熱対象でない半導体チップ12へ伝熱が低減される。結果として、半導体チップ12の実装品質をより向上できる。   As is clear from the above description, according to the method of manufacturing the semiconductor device 10 disclosed in the present specification, the electromagnetic wave 134 is emitted to the mounting section 34 of the substrate 30 on which the semiconductor chip 12 to be heated is mounted. As a result, only the mounting section 34 is heated by the electromagnetic wave 134. As a result, the semiconductor chip 12 to be heated can be appropriately heated, while heat can be prevented from being input to the semiconductor chip 12 not to be heated for a long time. Further, by providing the stage 120 with the first layer 122 having a heat resistance in the surface direction higher than that in the thickness direction and the second layer 123 having a high rigidity, the flatness of the substrate 30 is maintained. The heat transfer to the semiconductor chip 12 which is not the heating target via the stage 120 is reduced. As a result, the mounting quality of the semiconductor chip 12 can be further improved.

なお、これまでの説明した構成は、いずれも一例であり、適宜、変更されてもよい。例えば、上述の説明では、基板30として、シリコンウエハを用いていたが、例えば、シリコンカーバイド(SiC)や窒化ガリウム(GaN)、サファイア等からなるウエハを基板30として用いてもよい。また、ウエハではなく、樹脂基板やガラス基板等を基板30として用いてもよい。   The configurations described so far are all examples, and may be changed as appropriate. For example, although a silicon wafer is used as the substrate 30 in the above description, for example, a wafer made of silicon carbide (SiC), gallium nitride (GaN), sapphire, or the like may be used as the substrate 30. Further, instead of the wafer, a resin substrate, a glass substrate or the like may be used as the substrate 30.

ところで、こうした基板、ウエハの中には、電磁波134による加熱が困難なものもある。この場合には、基板30を、ステージ120に直接載置するのではなく、ステージ120と基板30との間に、電磁波134を吸収する中間部材140を配置すればよい。中間部材140は、電磁波134を吸収しやすい材料からなるのであれば特に限定されない。したがって、中間部材140は、図7に示すように、ステージ120の上面に配置される略平板状部材でもよい。また、別の形態として、中間部材140は、電磁波134を吸収する材料から成るのであれば、図8に示すように、ステージ120の表面を被覆する被膜(例えば黒体被膜)であってもよい。   By the way, it is difficult to heat some of these substrates and wafers by the electromagnetic wave 134. In this case, the substrate 30 is not directly mounted on the stage 120, but the intermediate member 140 that absorbs the electromagnetic wave 134 may be disposed between the stage 120 and the substrate 30. The intermediate member 140 is not particularly limited as long as it is made of a material that easily absorbs the electromagnetic wave 134. Therefore, the intermediate member 140 may be a substantially flat plate-shaped member arranged on the upper surface of the stage 120, as shown in FIG. 7. As another form, if the intermediate member 140 is made of a material that absorbs the electromagnetic wave 134, as shown in FIG. 8, it may be a coating (for example, a black body coating) that covers the surface of the stage 120. .

いずれにしても、ステージ120と基板30との間に、電磁波134を吸収する中間部材140を設けることで、基板30の種類に関わらず、常に、基板30を、電磁波134で加熱することができる。なお、中間部材140を設ける場合、ステージ120は、第一層122を有さない構造であってもよい。例えば、中実ブロック状のステージ120の上に、中間部材140を載置し、この中間部材140の上に、基板30を載置するようにしてもよい。   In any case, by providing the intermediate member 140 that absorbs the electromagnetic wave 134 between the stage 120 and the substrate 30, the substrate 30 can be always heated by the electromagnetic wave 134 regardless of the type of the substrate 30. . When the intermediate member 140 is provided, the stage 120 may have a structure that does not have the first layer 122. For example, the intermediate member 140 may be placed on the solid block-shaped stage 120, and the substrate 30 may be placed on the intermediate member 140.

また、これまでの説明では、ステージ120に設ける第一層122を、複数の溝が形成された部位として説明したが、第一層122は、面方向の熱抵抗が厚み方向の熱抵抗よりも高いのであれば、他の構成でもよい。例えば、図9に示すように、第一層122と第二層123は、別部材であってもよい。ただし、この場合でも、第一層122および第二層123は、いずれも、電磁波134を透過しやすいことが望まれる。また、第一層122を構成する素材の熱伝導率は、第二層123を構成する素材の熱伝導率以下であることが望ましい。したがって、例えば、電磁波134の波長が1200nm以下であり、第二層123が石英からなる場合、第一層122は、近赤外線を透過する光学用プラスチック材料で構成してもよい。   Further, in the description so far, the first layer 122 provided on the stage 120 has been described as a portion in which a plurality of grooves are formed, but the first layer 122 has a thermal resistance in the surface direction which is higher than that in the thickness direction. Other configurations may be used as long as they are expensive. For example, as shown in FIG. 9, the first layer 122 and the second layer 123 may be separate members. However, even in this case, it is desirable that both the first layer 122 and the second layer 123 easily transmit the electromagnetic wave 134. The thermal conductivity of the material forming the first layer 122 is preferably equal to or lower than the thermal conductivity of the material forming the second layer 123. Therefore, for example, when the wavelength of the electromagnetic wave 134 is 1200 nm or less and the second layer 123 is made of quartz, the first layer 122 may be made of an optical plastic material that transmits near infrared rays.

次に、本発明の他の実施の形態について説明する。図11は、加熱装置を示す模式図、及び電磁波の強度を示す図である。なお、図において基板や積層された半導体チップの図示を省略している。   Next, another embodiment of the present invention will be described. FIG. 11 is a schematic diagram showing a heating device and a diagram showing the intensity of electromagnetic waves. It should be noted that illustration of a substrate and stacked semiconductor chips is omitted in the drawings.

他の実施の形態に係る照射ユニット150aは、図11(a)に示すように、半導体チップ100を加熱する電磁波を放射する電磁波源151と、電磁波源151が放射した電磁波の方向を整えるレンズ152とを備える。電磁波源151は、例えばレーザダイオードであるが、LED等の半導体光源、ガスレーザ等のレーザ源、さらにはハロゲンランプ等のランプヒータであってもよい。また、電磁波源151の種類、特性によりレンズ152を省略することができる。本実施の形態の照射ユニット150aは、図11(a)に示すように、照射範囲において平坦な出力特性を有している。   As shown in FIG. 11A, an irradiation unit 150a according to another embodiment emits an electromagnetic wave that heats the semiconductor chip 100, and a lens 152 that adjusts the direction of the electromagnetic wave emitted by the electromagnetic wave source 151. With. The electromagnetic wave source 151 is, for example, a laser diode, but may be a semiconductor light source such as an LED, a laser source such as a gas laser, or a lamp heater such as a halogen lamp. Further, the lens 152 can be omitted depending on the type and characteristics of the electromagnetic wave source 151. The irradiation unit 150a of the present embodiment has a flat output characteristic in the irradiation range, as shown in FIG.

レンズ152は、電磁波源151が発した電磁波を屈折させて半導体チップ101に対応する範囲に照射する。照射ユニット150aは、図示しない駆動装置によりステージ120の面方向に駆動し、加熱対象となる半導体チップ101に電磁波を照射して加熱する。なお、照射ユニット150aを固定し、ステージ120を駆動させる構成としてもよい。   The lens 152 refracts the electromagnetic wave emitted by the electromagnetic wave source 151 and irradiates the electromagnetic wave on a range corresponding to the semiconductor chip 101. The irradiation unit 150a is driven in the surface direction of the stage 120 by a driving device (not shown), and irradiates the semiconductor chip 101 to be heated with electromagnetic waves to heat the semiconductor chip 101. Note that the irradiation unit 150a may be fixed and the stage 120 may be driven.

また、図11(b)に示すように、照射ユニット150aに可動式又は固定式の絞り153をレンズ152とステージ120との間に設け、電磁波が照射される範囲を絞ってもよい。これにより、加熱対象となる半導体チップ12以外の箇所の加熱を抑制できる。なお、絞り153は、例えば可動式のリング状絞りであるが、半導体チップ12の形状に合わせて矩形状の開口を有するものであってもよい。   Further, as shown in FIG. 11B, a movable or fixed diaphragm 153 may be provided between the lens 152 and the stage 120 in the irradiation unit 150a to narrow the range where the electromagnetic waves are irradiated. As a result, it is possible to suppress the heating of the portion other than the semiconductor chip 12 that is the heating target. Note that the diaphragm 153 is, for example, a movable ring diaphragm, but may have a rectangular opening according to the shape of the semiconductor chip 12.

また、図11(c)に示すように、照射ユニット150aに中央に開口を有するプリズム154をレンズ152とステージ120との間に設けてもよい。プリズム153は、ガラスやアクリル等の透明部材で形成され、レンズ152から出射した電磁波を屈折させて半導体チップ12の周辺部に集中して照射する。プリズム153を設けることにより、半導体チップ12の温度が低下しやすい周辺部への出力が高まるので、半導体チップ12の面内の温度ムラを低減できる。プリズム154は、例えば中央に開口を有するリング状であるが、半導体チップ12の形状に合わせて矩形状の開口を有するものであってもよい。   Further, as shown in FIG. 11C, a prism 154 having an opening at the center may be provided in the irradiation unit 150a between the lens 152 and the stage 120. The prism 153 is formed of a transparent member such as glass or acrylic, and refracts the electromagnetic wave emitted from the lens 152 to concentrate and irradiate the peripheral portion of the semiconductor chip 12. By providing the prism 153, the output to the peripheral portion where the temperature of the semiconductor chip 12 is apt to decrease is increased, so that the in-plane temperature unevenness of the semiconductor chip 12 can be reduced. The prism 154 has, for example, a ring shape having an opening at the center, but may have a rectangular opening according to the shape of the semiconductor chip 12.

また、図11(d)に示すように、中央に遮光部156を有する板部材155をレンズとステージ120との間に設け、半導体チップ12の中央部分に照射される電磁波の出力を低減してもよい。また、図11(e)に示すように、中央に拡散部157を有する板部材155を設け、中央部分の電磁波を拡散して半導体チップ12に照射してもよい。中央部分の出力を低減し、散乱光がチップ外周部の加熱に寄与することにより、半導体チップ12の面内の温度ムラを低減できる。板部材155は、例えば円盤状であるが、半導体チップ12の形状に合わせて矩形状であってもよい。   Further, as shown in FIG. 11D, a plate member 155 having a light shielding portion 156 in the center is provided between the lens and the stage 120 to reduce the output of the electromagnetic wave with which the central portion of the semiconductor chip 12 is irradiated. Good. Alternatively, as shown in FIG. 11E, a plate member 155 having a diffusion portion 157 in the center may be provided to diffuse the electromagnetic waves in the central portion and irradiate the semiconductor chip 12. By reducing the output of the central portion and contributing to the heating of the peripheral portion of the chip by the scattered light, it is possible to reduce the temperature unevenness within the surface of the semiconductor chip 12. The plate member 155 has, for example, a disc shape, but may have a rectangular shape according to the shape of the semiconductor chip 12.

さらに、本発明の他の実施の形態を図12(a)〜(e)に示す。本実施の形態の照射ユニット150bは、図12(a)に示すように、ガウス曲線の出力特性を有する電磁波をレンズ152を介してステージ120に照射する電磁波源151を備える。   Furthermore, another embodiment of the present invention is shown in FIGS. As shown in FIG. 12A, the irradiation unit 150b of the present embodiment includes an electromagnetic wave source 151 that irradiates the stage 120 with an electromagnetic wave having a Gaussian curve output characteristic through the lens 152.

本実施の形態において、図12(b)に示すように、レンズ152とステージ120との間に錐体形状のプリズム158を配置し、半導体チップ12の周辺部に照射される電磁波の強度を高めてもよい。さらに、プリズム158の位置を調整し、半導体チップ12の中心部に照射される電磁波の強度を低下させるとともに、周辺部の強度を高めてもよい。プリズム158は、例えば中央に凸部を有する円錐であるが、半導体チップ12の形状に合わせて四角錐であってもよい。   In this embodiment, as shown in FIG. 12B, a cone-shaped prism 158 is arranged between the lens 152 and the stage 120 to increase the intensity of electromagnetic waves emitted to the peripheral portion of the semiconductor chip 12. May be. Further, the position of the prism 158 may be adjusted to reduce the intensity of the electromagnetic wave with which the central portion of the semiconductor chip 12 is irradiated and to enhance the intensity of the peripheral portion. The prism 158 is, for example, a cone having a convex portion in the center, but may be a quadrangular pyramid according to the shape of the semiconductor chip 12.

また、別の形態として、第一層122の面方向の熱抵抗を厚み方向の熱抵抗よりも高めるため、第一層122を所定の形状に加工してもよい。なお、ここでの「加工」とはフライス等で材料の一部を除去するような機械加工に限らず、プラスチック射出成型のような成形加工も含む。したがって、例えば、上述したように、第一層122は、複数の溝を形成したり、図10に示すように、層内に孔を形成したりすることで、面方向の熱抵抗を向上させてもよい。この場合、第一層122と第二層123は、一体化されていてもよい、別部材であってもよい。   As another form, the first layer 122 may be processed into a predetermined shape in order to increase the thermal resistance in the surface direction of the first layer 122 higher than the thermal resistance in the thickness direction. The “processing” here is not limited to mechanical processing such as removing a part of the material with a milling machine, but also includes molding processing such as plastic injection molding. Therefore, for example, as described above, the first layer 122 improves the thermal resistance in the surface direction by forming a plurality of grooves or forming holes in the layer as shown in FIG. May be. In this case, the first layer 122 and the second layer 123 may be integrated or may be separate members.

また、上述の説明では、仮積層体STtを一括で本圧着する場合にのみ、基板30を電磁波134で加熱しているが、必要であれば、仮圧着時においても、電磁波134で加熱してもよい。また、上述の説明では、複数の半導体チップ12を積層実装する場合のみを例示したが、本明細書で開示の技術は、積層実装しない場合にも、当然に適用できる。   Further, in the above description, the substrate 30 is heated by the electromagnetic wave 134 only when the temporary stacked body STt is subjected to the main pressure bonding collectively, but if necessary, the substrate 30 is heated by the electromagnetic wave 134 during the temporary pressure bonding. Good. Further, in the above description, only the case where the plurality of semiconductor chips 12 are stacked and mounted is illustrated, but the technique disclosed in the present specification can be naturally applied to the case where the semiconductor chips 12 are not stacked and mounted.

また、上述の説明では、実装ヘッド124や照射ユニット108を一つとしているが、必要に応じて、これらは、複数設けてもよく、複数箇所で同時、圧着処理や基板30の電磁波134による加熱を行ってもよい。   Further, in the above description, the mounting head 124 and the irradiation unit 108 are one, but if necessary, a plurality of these may be provided, and the plurality of them may be simultaneously pressure-bonded or heated by the electromagnetic wave 134 of the substrate 30. You may go.

10 半導体装置、12 半導体チップ、14 電極端子、16 電極端子、18 バンプ、30 基板、34 実装区画、36 電極、100 実装装置、102 チップ供給ユニット、104 チップ搬送ユニット、106 ボンディングユニット、108 照射ユニット、110 突上部、114 ダイピッカ、116 移送ヘッド、118 回転台、120 ステージ、122 第一層、123 第二層、124 実装ヘッド、130 制御部、132 電磁波源、134 電磁波、140 中間部材、150a、150b 照射ユニット、151 電磁波源、152 レンズ、153 絞り、154 プリズム、155 板部材、156 遮光部、157 拡散部、158 プリズム、STc チップ積層体、STt 仮積層体。

10 semiconductor devices, 12 semiconductor chips, 14 electrode terminals, 16 electrode terminals, 18 bumps, 30 substrates, 34 mounting sections, 36 electrodes, 100 mounting devices, 102 chip supply units, 104 chip transport units, 106 bonding units, 108 irradiation units , 110 protrusion, 114 die picker, 116 transfer head, 118 turntable, 120 stage, 122 first layer, 123 second layer, 124 mounting head, 130 control unit, 132 electromagnetic wave source, 134 electromagnetic wave, 140 intermediate member, 150a, 150b irradiation unit, 151 electromagnetic wave source, 152 lens, 153 diaphragm, 154 prism, 155 plate member, 156 light shielding part, 157 diffusion part, 158 prism, STc chip laminated body, STt temporary laminated body.

Claims (12)

半導体チップを、基板または他の半導体チップである被実装体にボンディングして半導体装置を製造する実装装置であって、
前記基板が直接、または、中間部材を介して載置される第一面と前記第一面と反対側の第二面とを有するステージと、
前記ステージに対して相対移動が可能であり、前記半導体チップを前記被実装体にボンディングする実装ヘッドと、
前記ステージを透過するとともに、前記基板または前記中間部材を加熱する電磁波を出力する電磁波源と、前記半導体チップに対する前記電磁波の強度分布を調整する調整機構とを有する照射ユニットと、
を備え、
前記ステージは、前記第一面側に形成された第一層を有し、
前記第一層は、面方向の熱抵抗が厚み方向の熱抵抗よりも大きい、
ことを特徴とする実装装置。
A mounting device for manufacturing a semiconductor device by bonding a semiconductor chip to a mounted object which is a substrate or another semiconductor chip,
A stage having a first surface on which the substrate is mounted directly or via an intermediate member, and a second surface opposite to the first surface,
A mounting head that is movable relative to the stage and that bonds the semiconductor chip to the mounted body,
An irradiation unit having an electromagnetic wave source that outputs an electromagnetic wave that heats the substrate or the intermediate member while passing through the stage, and an adjustment mechanism that adjusts the intensity distribution of the electromagnetic wave with respect to the semiconductor chip.
Equipped with
The stage has a first layer formed on the first surface side,
The first layer, the thermal resistance in the plane direction is greater than the thermal resistance in the thickness direction,
A mounting device characterized by the above.
請求項1に記載の実装装置であって、
前記調整機構は、前記電磁波の照射範囲を狭める絞り機構である、
ことを特徴とする実装装置。
The mounting apparatus according to claim 1, wherein
The adjustment mechanism is a diaphragm mechanism that narrows the irradiation range of the electromagnetic waves,
A mounting device characterized by the above.
請求項1に記載の実装装置であって、
前記調整機構は、前記半導体チップの周辺部に照射される前記電磁波の強度を前記半導体チップの中央部の強度よりも高めて照射する、
ことを特徴とする実装装置。
The mounting apparatus according to claim 1, wherein
The adjusting mechanism irradiates the semiconductor chip with a higher intensity of the electromagnetic waves applied to the peripheral portion of the semiconductor chip than the intensity of the central portion of the semiconductor chip,
A mounting device characterized by the above.
請求項3に記載の実装装置であって、
前記調整機構は、中央部に開口を有するプリズムである、
ことを特徴とする実装装置。
The mounting apparatus according to claim 3,
The adjusting mechanism is a prism having an opening in the center,
A mounting device characterized by the above.
請求項3に記載の実装装置であって、
前記調整機構は、中央に凸部を有する錐体形状のプリズムである、
ことを特徴とする実装装置。
The mounting apparatus according to claim 3,
The adjusting mechanism is a cone-shaped prism having a convex portion in the center,
A mounting device characterized by the above.
請求項1に記載の実装装置であって、
前記調整機構は、中央に遮光部を有する板部材である、
ことを特徴とする実装装置。
The mounting apparatus according to claim 1, wherein
The adjusting mechanism is a plate member having a light shielding portion in the center,
A mounting device characterized by the above.
請求項1に記載の実装装置であって、
前記調整機構は、中央に拡散部を有する板部材である、
ことを特徴とする実装装置。
The mounting apparatus according to claim 1, wherein
The adjustment mechanism is a plate member having a diffusion portion in the center,
A mounting device characterized by the above.
請求項1から7のいずれか1項に記載の実装装置であって、
前記ステージは、前記第一層よりも前記第二面側に形成された第二層をさらに有し、
前記第一層は、前記第二層よりも面方向への熱抵抗が大きい、
ことを特徴とする実装装置。
The mounting apparatus according to any one of claims 1 to 7, wherein:
The stage further has a second layer formed on the second surface side of the first layer,
The first layer has a larger thermal resistance in the surface direction than the second layer,
A mounting device characterized by the above.
請求項7に記載の実装装置であって、
前記第二層は、前記第一層よりも、剛性が高い、ことを特徴とする実装装置。
The mounting apparatus according to claim 7, wherein
The mounting device, wherein the second layer has higher rigidity than the first layer.
請求項8または9に記載の実装装置であって、
前記第二層は、前記電磁波が透過可能な材料からなる中実部位であり、
前記第一層は、上面に複数の溝または層内に複数の細孔が形成された部位である、
ことを特徴とする実装装置。
The mounting apparatus according to claim 8 or 9, wherein
The second layer is a solid portion made of a material that can transmit the electromagnetic waves,
The first layer is a portion having a plurality of grooves on the upper surface or a plurality of pores in the layer,
A mounting device characterized by the above.
請求項1から10のいずれか1項に記載の実装装置であって、
前記基板は、シリコンウエハであるとともに、前記ステージに直接、載置され、
前記電磁波は、波長1200nm以下であり、
前記基板が、前記電磁波により局所的に加熱される、
ことを特徴とする実装装置。
The mounting device according to any one of claims 1 to 10, wherein:
The substrate is a silicon wafer and is placed directly on the stage,
The electromagnetic wave has a wavelength of 1200 nm or less,
The substrate is locally heated by the electromagnetic waves,
A mounting device characterized by the above.
請求項1から11のいずれか1項に記載の実装装置であって、
前記基板は、前記中間部材を介して前記ステージに載置され、
前記電磁波は、前記中間部材に吸収されるとともに、前記基板に吸収されない波長を有しており、
前記電磁波により局所的に加熱された前記中間部材からの伝熱により、前記基板が局所的に加熱される、
ことを特徴とする実装装置。

The mounting apparatus according to any one of claims 1 to 11,
The substrate is placed on the stage via the intermediate member,
The electromagnetic wave has a wavelength that is absorbed by the intermediate member and not absorbed by the substrate,
The substrate is locally heated by heat transfer from the intermediate member that is locally heated by the electromagnetic wave,
A mounting device characterized by the above.

JP2018196687A 2018-10-18 2018-10-18 Mounting apparatus and manufacturing method of semiconductor device Pending JP2020065004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018196687A JP2020065004A (en) 2018-10-18 2018-10-18 Mounting apparatus and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018196687A JP2020065004A (en) 2018-10-18 2018-10-18 Mounting apparatus and manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2020065004A true JP2020065004A (en) 2020-04-23

Family

ID=70387579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018196687A Pending JP2020065004A (en) 2018-10-18 2018-10-18 Mounting apparatus and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2020065004A (en)

Similar Documents

Publication Publication Date Title
TWI684256B (en) System and method for laser assisted bonding of semiconductor die
CN109103116B (en) Apparatus and method for laser bonding of flip chips
CN110326096B (en) Laser reflow soldering device
US10483228B2 (en) Apparatus for bonding semiconductor chip and method for bonding semiconductor chip
JP6384937B1 (en) Light emitting device and manufacturing method thereof
JP6802583B2 (en) Manufacturing method of mounting equipment and semiconductor equipment
JP7409730B2 (en) laser reflow equipment
TWI656934B (en) Laser bonding apparatus
US10847434B2 (en) Method of manufacturing semiconductor device, and mounting apparatus
KR20170048971A (en) Apparatus for bonding of flip chip
KR20110026671A (en) Solder reflow apparatus
JP6373811B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
TWI690036B (en) Packaging device and method for manufacturing semiconductor device
JP2020065004A (en) Mounting apparatus and manufacturing method of semiconductor device
KR20200129437A (en) Laser reflow method of laser reflow apparatus
US20210043478A1 (en) Pressure heating apparatus
KR102376989B1 (en) Flow transfer type laser reflow apparatus
KR20190100777A (en) Flip chip bonding apparatus and method
JP7396830B2 (en) Pressure heating device
KR20200129435A (en) Workpiece transfer module of laser reflow equipment
KR102174930B1 (en) Laser pressure head module of laser reflow equipment
KR102174929B1 (en) Laser reflow method of laser reflow apparatus
KR20220083629A (en) Laser reflow method of laser reflow apparatus
JP2011187700A (en) Manufacturing device for semiconductor device
KR20210149980A (en) laser debonding device