JP2020062040A - Deaeration/heating/high-pressure treatment method for food - Google Patents

Deaeration/heating/high-pressure treatment method for food Download PDF

Info

Publication number
JP2020062040A
JP2020062040A JP2019235596A JP2019235596A JP2020062040A JP 2020062040 A JP2020062040 A JP 2020062040A JP 2019235596 A JP2019235596 A JP 2019235596A JP 2019235596 A JP2019235596 A JP 2019235596A JP 2020062040 A JP2020062040 A JP 2020062040A
Authority
JP
Japan
Prior art keywords
heating
pressure
less
treatment
degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019235596A
Other languages
Japanese (ja)
Other versions
JP6905232B2 (en
Inventor
和貴 山本
Kazuki Yamamoto
和貴 山本
三輪 章志
Shoji Miwa
章志 三輪
友嗣 有手
Tomotsugu Arite
友嗣 有手
恵美 南出
Emi Minamide
恵美 南出
深井 洋一
Yoichi Fukai
洋一 深井
正彦 竹内
Masahiko Takeuchi
正彦 竹内
慎也 山崎
Shinya Yamazaki
山崎  慎也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagano Prefecture
Ishikawa Prefecture
National Agriculture and Food Research Organization
Naganoken Nosonkogyo Research Institute
Original Assignee
Nagano Prefecture
Ishikawa Prefecture
National Agriculture and Food Research Organization
Naganoken Nosonkogyo Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagano Prefecture, Ishikawa Prefecture, National Agriculture and Food Research Organization, Naganoken Nosonkogyo Research Institute filed Critical Nagano Prefecture
Publication of JP2020062040A publication Critical patent/JP2020062040A/en
Application granted granted Critical
Publication of JP6905232B2 publication Critical patent/JP6905232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Storage Of Fruits Or Vegetables (AREA)
  • Alcoholic Beverages (AREA)
  • Preparation Of Fruits And Vegetables (AREA)
  • Beans For Foods Or Fodder (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

To provide deaeration/heating/high-pressure treatment method suitable for producing vegetable and meat pickles, fruit syrup pickles, soybean curd pickles and mushroom processed products.SOLUTION: In deaeration/heating/high-pressure treatment method to be applied to production of vegetable and meat pickles, fruit syrup pickles, soybean curd pickles and mushroom processed products, a seasoning liquid is applied to a food, the food applied with the seasoning liquid is put in a polyethylene bag followed by deaeration, and vegetables, meat, fruits, soybean curd or mushrooms put in the polyethylene bag are treated in a condition of 300 MPa or less, 20°C or more and 90°C or less, and 20 min or more and within 16 hrs. In the case of for instance, meat pickles, a treatment pressure after deaeration is 300 MPa or less, a treatment temperature is 20°C or more and 90°C or less, preferably 30°C or more and 60°C or less, and a treatment time is 1 hr or more and within 16 hrs. In the case of soybean curd pickles, a treatment pressure after deaeration is 300 MPa or less, a treatment temperature is 20°C or more and 90°C or less, preferably 30°C or more and 60°C or less, and a treatment time is 16 hrs or more and within 90 hrs.SELECTED DRAWING: Figure 2

Description

本発明は食品に対する脱気・加熱・高圧処理方法に関する。   The present invention relates to a deaeration / heating / high-pressure treatment method for food.

特許文献1には、調味料の製造方法として、タンパク質分解酵素を含むか添加された鰯や生牡蠣などの食材を40℃〜60℃の温度域で50MPa〜100MPaの圧力下で保持することで、微生物の増殖を抑制しながら酵素の作用を促進して調味料の熟成期間を短縮する方法が開示されている。   In Patent Document 1, as a method of producing a seasoning, by holding food materials such as sardines and raw oysters containing or added proteolytic enzyme under a pressure of 50 MPa to 100 MPa in a temperature range of 40 ° C. to 60 ° C. , A method of accelerating the action of an enzyme while suppressing the growth of microorganisms to shorten the ripening period of seasonings is disclosed.

特許文献2には、かぶら寿しなどの魚肉加工製品の製造方法として、ブリなどの魚肉材料に100MPa以下の比較的低い圧力を掛けることで、魚肉材料の組織を破壊し、塩漬などの調味に要する期間を短縮する技術が開示されている。   In Patent Document 2, as a method for producing a processed fish product such as Kaburasu Sushi, by applying a relatively low pressure of 100 MPa or less to a fish meat material such as yellowtail, the structure of the fish meat material is destroyed and seasoning such as salting is performed. Techniques for shortening the required period are disclosed.

非特許文献1には、30kg/cmの圧力で密閉される含浸装置を用いた山菜への機能性糖類(5%トレハロースと5%サイクロデキストリン)の注入方法について記載されている。 Non-Patent Document 1 describes a method for injecting functional sugars (5% trehalose and 5% cyclodextrin) into wild plants using an impregnating device sealed at a pressure of 30 kg / cm 2 .

非特許文献2、3には、木材に硬化剤を注入する際に利用されていた含浸法を食品の浅漬けに応用することで、野菜(ナス、キュウリなど)の浅漬けを短時間で製造する内容が記載されている。   In Non-Patent Documents 2 and 3, by applying the impregnation method used when pouring a curing agent to wood to lightly pickled foods, lightly pickled vegetables (eggplant, cucumber, etc.) can be produced in a short time. The contents to be done are described.

特許第3475328号公報Japanese Patent No. 3475328 特開2013−55912号公報JP, 2013-55912, A

第4回トレハロースシンポジウム(2000年11月8日)The 4th Trehalose Symposium (November 8, 2000) 日本農業新聞(平成元年10月3日発行)Japan Agricultural Newspaper (issued on October 3, 1989) 北国新聞(平成元年9月28日発行)Kitaguni Shimbun (Published September 28, 1989)

高圧処理によって、短時間のうちに食品の内部まで調味液や酵素を含浸させることができ、また、微生物の増殖を抑制しながら酵素の作用を促進するため、呈味成分の増加や液化処理などが期待できる。   By high-pressure treatment, it is possible to impregnate the inside of food with seasoning liquid and enzyme in a short time, and since it promotes the action of enzyme while suppressing the growth of microorganisms, it increases the number of taste components and liquefaction treatment. Can be expected.

しかしながら、高圧処理を従来の食品の製法に併用する場合は当該従来方法の条件との兼ね合いがあり、また同一の製法であっても個々の食品ごとに含有成分が異なるため、同一の高圧処理の条件で同等の効果が期待できるものではなく、高圧処理を適用する製法及び個々の食品ごとに最適な処理条件が存在する。
特に、「ナス、ダイコン、ウリなどの奈良漬」にあっては、下漬(塩漬)、中漬(脱塩を兼ねた粕香味付)から上漬(ミリン粕または、酒粕で漬け込む)さらに商品によっては、特上漬(吟醸粕で漬け込む)を経て1年から1年半の長い製造期間が必要となる課題があり、ニンジン等の「野菜の生醤油漬」にも、2週間程度の製造期間が必要となる課題があり、リンゴ、ウメ、アンズなどの「果実のシロップ漬」にあっては、食感を維持しながら殺菌効果を高めて保存期間を長くしたいという要望があり、「畜肉の漬物」には、呈味成分である遊離アミノ酸や糖を増加する条件、食感が柔らかくなる条件が分かっておらず、「豆腐の漬物」についても同様に、従来では豆腐が柔らかくなり且つ遊離アミノ酸が増えるには数カ月かかっていたが、これを短時間で行う条件が分かっておらず、「キノコ加工品」については水煮の状態で旨味成分であるグアニル酸を増加させる条件が特定できていない。
However, when high-pressure treatment is used in combination with a conventional food production method, there is a trade-off with the conditions of the conventional method, and even in the same production method, since each food contains different ingredients, the same high-pressure treatment Equivalent effects cannot be expected under the conditions, and there are optimum processing conditions for each manufacturing method and high-pressure processing and each food product.
In particular, in the case of "Nara-zuke such as eggplant, Japanese radish, and seaweed", simmered (salted), medium-salted (with dessert-seasoning flavor) to top-salted (soaked with mirin lees or sake lees) There is a problem that some products require a long manufacturing period of one to one and a half years after being specially pickled (pickled in Ginjo lees), and it takes about two weeks for "vegetable fresh soy sauce pickles" such as carrots. There is a problem that a manufacturing period is required, and for "fruit syrup pickles" such as apples, plums and apricots, there is a demand to enhance the bactericidal effect while maintaining the texture and prolong the storage period. For "meat pickles", the conditions for increasing free amino acids and sugars that are taste components, and the conditions for softening the texture are not known. Similarly, for "tofu pickles", tofu becomes softer in the past and It took a few months for free amino acids to increase, The conditions for performing this in a short time are not known, and the conditions for increasing the umami constituent guanylic acid in the boiled state have not been specified for the "processed mushrooms".

上記課題を解決すべく、本発明に係る脱気・加熱・高圧処理方法は食品の製造に適用され、適用対象の食品としては、野菜の浅漬、野菜の生醤油漬、果実のシロップ漬、畜肉の漬物、豆腐の漬物、キノコの加工品、魚介類の粕漬け及び魚介類のソフトスモークのいずれかであり、処理方法は、前記食品を調味液とともにポリエチレン袋などの容器内に入れて脱気して前記容器内に食品と調味液のみを保持し、このポリエチレン袋に食品を入れた状態で、300MPa以下且つ20℃以上90℃以下で所定時間処理する。   In order to solve the above problems, the degassing / heating / high-pressure treatment method according to the present invention is applied to the production of foods, and the foods to be applied include lightly pickled vegetables, fresh soy sauce pickled vegetables, syrup pickled fruits, and livestock meat. Pickles, pickled tofu, processed mushrooms, pickled seafood or soft smoked seafood.The treatment method is to put the food together with the seasoning liquid in a container such as a polyethylene bag and degas. Then, only the food and the seasoning liquid are held in the container, and the food is placed in this polyethylene bag and treated at 300 MPa or less and 20 ° C. or more and 90 ° C. or less for a predetermined time.

前記食品が野菜の嚥下漬物の場合には、ペクチナーゼなど組織崩壊酵素を添加した調味液を用いて脱気後の処理圧力は300MPa以下、処理温度は20℃以上90℃以下好ましくは、40℃以上60℃以下、処理時間は15〜30分とし、この後常圧加熱理を施し、更に加熱によって酵素を失活させる。   When the food is a swallowed pickled vegetable, the processing pressure after deaeration is 300 MPa or less, the processing temperature is 20 ° C or higher and 90 ° C or lower, preferably 40 ° C or higher, using a seasoning liquid to which a tissue-disintegrating enzyme such as pectinase is added. The treatment time is set to 60 ° C. or less and the treatment time is set to 15 to 30 minutes. After that, heating under normal pressure is performed, and the enzyme is inactivated by further heating.

また野菜の浅漬の場合には、脱気後の高圧処理圧力は300MPa以下、処理温度は20℃以上90℃以下好ましくは、40℃以上60℃以下、処理時間は15〜30分とし、この後常圧加熱処理を施し、酵素を失活させる。   In the case of lightly pickled vegetables, the high-pressure treatment pressure after deaeration is 300 MPa or less, the treatment temperature is 20 ° C or higher and 90 ° C or lower, preferably 40 ° C or higher and 60 ° C or lower, and the treatment time is 15 to 30 minutes. The enzyme is inactivated by heat treatment at atmospheric pressure.

またナス、ダイコンまたはウリの生醤油漬の場合には、脱気後の高圧処理圧力は300MPa以下、処理温度は20℃以上90℃以下好ましくは、30℃以上60℃以下、処理時間は20分〜16時間とする。
この場合、高圧処理の前処理として食品を0.5〜1cmの厚さにカットして日干して乾燥させることで、調味液の浸透効果を高めることができる。
In the case of pickled eggplant, Japanese radish or sea urchin in raw soy sauce, the high-pressure treatment pressure after deaeration is 300 MPa or less, the treatment temperature is 20 ° C. or higher and 90 ° C. or lower, preferably 30 ° C. or higher and 60 ° C. or lower, and the treatment time is 20 minutes. ~ 16 hours.
In this case, as a pretreatment for the high-pressure treatment, the food can be cut into a thickness of 0.5 to 1 cm, sun-dried, and dried to enhance the permeation effect of the seasoning liquid.

またリンゴ、ウメまたはアンズのシロップ漬の場合には、脱気後の高圧処理圧力は300MPa以下、処理温度は20℃以上90℃以下好ましくは、30℃以上70℃以下、処理時間は20分〜16時間とする。
この場合、シロップとして高甘味度甘味料である低粘性スクラロース水溶液を用い、この低粘度シロップとともにフィチン酸などの酸味料を添加することで発芽誘導を促進し殺菌効果を高めることができる。
Further, in the case of syrup pickling of apple, plum or apricot, the high-pressure treatment pressure after deaeration is 300 MPa or less, the treatment temperature is 20 ° C. or higher and 90 ° C. or lower, preferably 30 ° C. or higher and 70 ° C. or lower, and the treatment time is 20 minutes to 16 hours
In this case, a low-viscosity sucralose aqueous solution, which is a high-intensity sweetener, is used as the syrup, and an acidulant such as phytic acid is added together with the low-viscosity syrup to promote germination induction and enhance the bactericidal effect.

また畜肉の漬物の場合には、脱気後の高圧処理圧力は300MPa以下、処理温度は20℃以上90℃以下好ましくは、30℃以上60℃以下、処理時間は1時間以上16時間以内とする。   In the case of pickles of livestock meat, the high-pressure treatment pressure after deaeration is 300 MPa or less, the treatment temperature is 20 ° C or more and 90 ° C or less, preferably 30 ° C or more and 60 ° C or less, and the treatment time is 1 hour or more and 16 hours or less. .

前記畜肉としては、例えば牛や豚のモモ肉を1cm厚にスライスしたものを用い、前記調味液としては、例えば味噌78wt%、みりん11wt%、砂糖11wt%の合せ味噌を用いる。   As the above-mentioned meat, for example, beef or pork thigh meat sliced to a thickness of 1 cm is used, and as the above seasoning liquid, for example, a combined miso of 78 wt% miso, 11 wt% mirin, and 11 wt% sugar is used.

また豆腐の漬物の場合には、脱気後の高圧処理圧力は300MPa(以下、処理温度は20℃以上90℃以下好ましくは、30℃以上60℃以下、処理時間は16時間以上90時間以内とする。   In the case of pickled tofu, the high-pressure treatment pressure after degassing is 300 MPa (hereinafter, the treatment temperature is 20 ° C. or higher and 90 ° C. or lower, preferably 30 ° C. or higher and 60 ° C. or lower, and the treatment time is 16 hours or longer and 90 hours or shorter. To do.

前記豆腐としては、例えば石川県特産の堅豆腐(厚さ1cm)を用い、調味液としては、酒粕液、味噌液または塩麹液などを用いる。また、高圧処理の前処理として1週間ほど冷蔵処理を行うことも可能である。   As the tofu, for example, Kentofu (thickness 1 cm) specially produced in Ishikawa Prefecture is used, and as the seasoning liquid, sake cake liquid, miso liquid, salt koji liquid or the like is used. It is also possible to perform refrigeration for about one week as a pretreatment for the high-pressure treatment.

またキノコの加工品の場合には、脱気後の高圧処理圧力は300MPa以下、処理温度は20℃以上90℃以下好ましくは、60℃以上75℃以下、処理時間は30分(時間範囲を記載)とする。キノコの種類としては例えばシイタケを用いる。   In the case of processed mushrooms, the high-pressure treatment pressure after degassing is 300 MPa or less, the treatment temperature is 20 ° C. or higher and 90 ° C. or lower, preferably 60 ° C. or higher and 75 ° C. or lower, and the treatment time is 30 minutes. ). As the mushroom type, for example, shiitake mushroom is used.

また魚介類(フクラギやイカなど)の粕漬けおよびソフトスモークの場合は、脱気後の高圧処理圧力は80MPa以上300MPa以下、且つ20℃以上60℃以下とし、処理時間は例えばフクラギの場合7.5時間〜30時間とし、イカの場合は5時間〜30時間とする。   Further, in the case of pickling seafood (bulkfish, squid, etc.) in dregs and soft smoke, the high-pressure treatment pressure after deaeration is 80 MPa or more and 300 MPa or less and 20 ° C. or more and 60 ° C. or less, and the treatment time is 7.5 kg in the case of, for example, FUJURAGI. The time is from 30 hours to 30 hours, and in the case of squid, it is from 5 hours to 30 hours.

本発明に係る脱気・加熱・高圧処理方法によれば、遊離アミノ酸、糖などの旨味(呈味成分)成分を短時間のうちに増加させることができ、特に野菜の奈良漬を本発明方法で製造した場合には、従来1年から1年半かかっていた製造期間を数日に短縮することができ、野菜の浅漬の場合は従来の2週間程度の製造期間を20分程度に短縮することができる。   According to the degassing / heating / high-pressure treatment method of the present invention, it is possible to increase the umami (taste component) components such as free amino acids and sugars in a short time. In the case of producing vegetables, the production period, which used to take one to one and a half years, can be shortened to several days. In the case of lightly pickled vegetables, the conventional production period of about two weeks can be shortened to about 20 minutes. be able to.

また、リンゴ、ウメ、アンズなどの果実のシロップ漬の製造に本発明方法を適用した場合には、殺菌効果を高め保存期間を長くすることができる。   When the method of the present invention is applied to the production of syrup pickling of fruits such as apples, plums and apricots, the bactericidal effect can be increased and the storage period can be extended.

また、畜肉の漬物を本発明方法で製造した場合には、上記の他に肉の食感(柔らかさ)が向上し、豆腐の漬物を本発明方法で製造した場合には、舌でつぶせる程度の硬さでクリームチーズのような食感が得られ且つ遊離アミノ酸を増加させることができ、キノコ加工品を本発明方法で製造した場合には、今まで乾物製法でしかできなかったグアニル酸の増加を水煮においても可能とした。   In addition, when the pickles of livestock meat are produced by the method of the present invention, the texture of the meat (softness) is improved in addition to the above, and when the pickles of tofu are produced by the method of the present invention, they can be crushed by the tongue. The texture of cream cheese can be obtained and free amino acids can be increased, and when the processed mushroom product is produced by the method of the present invention, guanylate of The increase was possible even in boiled water.

更に、魚介類の粕漬けおよびソフトスモーク製品を本発明方法で製造した場合には、高圧加温処理の効果だけでなく、酒粕に含まれるアルコールや薫煙による殺菌効果との相乗効果によって菌の増殖などが抑制される。   Furthermore, when seaweed pickles and soft smoked products are produced by the method of the present invention, not only the effect of high-pressure heating treatment, but also the growth of bacteria due to the synergistic effect with the alcohol and smoke contained in the sake lees Is suppressed.

奈良漬けにおいて粕床を70℃以上で処理した場合と、従来の処理法で処理した場合の検出成分を示した図The figure showing the detected components when the rice cake was treated at 70 ° C or higher in Nara-zuke and when treated by the conventional treatment method. 従来の製法と本発明の脱気・加熱・高圧処理方法を比較した図Diagram comparing conventional manufacturing method and degassing / heating / high pressure processing method of the present invention 本発明方法で処理した、ナスの奈良漬、ダイコンの奈良漬、ウリの奈良漬の写真Photographs of eggplant Nara pickles, Japanese radish Nara pickles, and sea urchin Nara pickles treated by the method of the present invention 脱気・加熱・高圧処理の殺菌原理を説明した図Diagram explaining the sterilization principle of degassing, heating, and high-pressure treatment 本発明方法に係る脱気・加熱・高圧処理によって製造した咀嚼困難者用野菜の浅漬の写真Photograph of lightly pickled vegetables for people who have difficulty chewing produced by degassing, heating and high pressure treatment according to the method of the present invention 本発明方法に係る脱気・加熱・高圧処理によって製造した野菜の生醤油オリ漬を製造する工程を説明した図The figure explaining the process of manufacturing the raw soy sauce ori pickles of the vegetables manufactured by the deaeration, heating, and high-pressure processing which concerns on the method of this invention. ダイコンに対する生醤油オリの浸透量を示すグラフGraph showing the permeation amount of raw soy sauce ori into Japanese radish 各種野菜に対する生醤油オリの浸透量を示すグラフGraph showing the permeation amount of raw soy sauce ori into various vegetables ダイコンへの醤油浸透効果を示す写真Photograph showing soy sauce penetration effect on Japanese radish ダイコンへの醤油浸透効果を比較したグラフGraph comparing soy sauce penetration effect on Japanese radish ダイコンに切れ目を入れた場合の効果を示す写真とグラフPhotos and graphs showing the effect of cutting the radish リンゴシロップ濃度と自滅的発芽殺菌効果の関係を示すグラフA graph showing the relationship between apple syrup concentration and self-destructive germicidal effect スクラロース水溶液に酸味料(フィチン酸)を添加した場合の自発的発芽誘導殺菌効果の結果を示すグラフThe graph which shows the result of the spontaneous germination induction bactericidal effect when the acidulant (phytic acid) is added to the sucralose aqueous solution. 5種類のリンゴに対し、脱気・加熱・高圧処理を施し、果汁とシロップの糖度及び酸度を比較したグラフA graph comparing the sugar content and acidity of fruit juice and syrup after subjecting five types of apples to deaeration, heating, and high-pressure treatment リンゴのシロップ漬の菌数を示す写真A photograph showing the number of bacteria in apple syrup リンゴのシロップ漬の菌数を示す写真A photograph showing the number of bacteria in apple syrup リンゴのシロップ漬の菌数を示す写真A photograph showing the number of bacteria in apple syrup アンズに対し4種類の処理条件で脱気・加熱・高圧処理を施し、果汁とシロップの糖度および果肉の物性を比較したグラフA graph comparing the sugar content of the juice and syrup and the physical properties of the flesh after deaeration, heating and high-pressure treatment of the apricots under four different treatment conditions アンズ、酒および糖を合わせて脱気・加熱・高圧処理を施し抽出液の酸度を比較したグラフA graph comparing the acidity of extracts by subjecting apricots, sake and sugar to degassing, heating and high pressure treatment アンズ及びウメの脱気・加熱・高圧処理シロップ漬に対しシアン化合物の分析を行った結果を示すグラフGraph showing the result of analysis of cyanide compounds in degassing, heating and high-pressure treatment of apricots and plums アンズのシロップ漬の一例を示す図Illustration showing an example of pickled apricot syrup ウメのシロップ漬製法の一例を示す図Diagram showing an example of how to make plum syrup 5℃で4か月保存したウメのシロップ漬の写真A photo of ume syrup pickled at 5 ℃ for 4 months 25℃で4か月保存したウメのシロップ漬の写真Photo of plum syrup pickled at 25 ℃ for 4 months 穴あけ加工したウメと穴あけ加工しないウメのシロップ漬け後の形状を比較した写真A photograph comparing the shapes of ume that has been drilled and plums that have not been drilled after immersing in syrup ウメのシロップ漬と同様の方法によって製造した和ナシのシロップ漬の写真Photograph of Japanese pear syrup pickled made by the same method as plum syrup pickled ウメと糖を合わせて脱気・加熱・高圧処理を施したウメのシロップ漬けを原料にしたウメ酒の製法A method for producing umeshu made from ume syrup pickled with deaeration, heating, and high-pressure treatment of ume and sugar 高圧処理時間別梅酒の成分含量(酸度)の比較グラフComparison graph of ingredient content (acidity) of umeshu by high pressure treatment time 高圧処理時間別梅酒の成分含量(ポリフェノール)の比較グラフComparison graph of ingredient content (polyphenol) of umeshu by high pressure treatment time 高圧処理時間別梅酒の成分含量(ショ糖分解率)の比較グラフComparison graph of ingredient content (sucrose decomposition rate) of umeshu by high pressure treatment time ウメ酒の酸度とポリフェノールについて、従来法、本発明法及び市販品を比較したグラフA graph comparing the acidity and polyphenols of Umeshu with the conventional method, the method of the present invention and commercial products 製法別梅酒のショ糖分解率(熟成の指標)の比較グラフComparison graph of sucrose decomposition rate (index of aging) of umeshu by manufacturing method 製法別梅酒の色調の比較グラフComparison graph of the color tone of umeshu by manufacturing method 豚肉味噌漬の例1〜3の遊離アミノ酸濃度を示すグラフA graph showing the free amino acid concentrations of Examples 1 to 3 of pork miso pickles 豚肉味噌漬の例1〜3のグルコース濃度を示すグラフGraph showing glucose concentrations of Examples 1 to 3 of pork miso pickles 豚肉味噌漬の加熱温度による加熱後の硬さの違いを示すグラフGraph showing the difference in hardness after heating of pork miso pickles depending on the heating temperature 豚肉味噌漬の加熱温度による加熱後の噛み切りやすさの違いを示すグラフGraph showing the difference in easiness of biting after heating according to the heating temperature of pork miso pickles 豚肉味噌漬の処理時間の違いによる加熱後の噛み切りやすさの違いを示すグラフGraph showing the difference in ease of biting after heating due to the difference in processing time of pork miso pickles 豚肉味噌漬の調味液の違いによる加熱後の噛み切りやすさの変化を示すグラフGraph showing change in ease of biting after heating due to difference in seasoning liquid of pork miso pickles 牛肉味噌漬の例1〜3の酸可溶性窒素含量を示すグラフGraph showing acid-soluble nitrogen contents of Examples 1 to 3 of beef miso pickles 牛肉味噌漬の例1〜3のグルコース濃度を示すグラフGraph showing glucose concentration of Examples 1 to 3 of beef miso pickles 牛肉味噌漬の例1〜3の加熱後の硬さ(破断応力)の違いを示すグラフGraph showing the difference in hardness (breaking stress) after heating of Examples 1 to 3 of beef miso pickles 豆腐粕漬の遊離アミノ酸濃度を示すグラフGraph showing the concentration of free amino acids in tofu cake pickle 豆腐粕漬の硬さを示すグラフ(例1〜3)Graph showing hardness of tofu lees pickled (Examples 1 to 3) 豆腐粕漬、味噌漬、塩麹漬の硬さを示すグラフ(例3〜5)Graph showing the hardness of tofu lees pickled, miso pickled, and salted koji pickled (Examples 3 to 5) グアニル酸の生成と分解を説明した図Diagram illustrating the formation and decomposition of guanylic acid 各処理をしたシイタケに含まれるグアニル酸を示すグラフGraph showing guanylic acid contained in shiitake mushrooms after each treatment 各処理をしたシイタケに含まれる塩分を示すグラフGraph showing the salt content of shiitake mushrooms after each treatment 各処理をしたシイタケの硬さ(破断応力)を示すグラフGraph showing hardness (breaking stress) of shiitake mushrooms after each treatment 粕漬けした大根の塩分濃度を示すグラフGraph showing salt concentration of radish pickled in lees 粕漬けした大根の噛み切り易さを示すグラフGraph showing the ease of biting off radish pickled in lees 粕漬けした大根の変色程度を示すグラフGraph showing the degree of discoloration of radish pickled in lees (a)は高圧加熱処理する前の大根の写真、(b)は高圧加熱処理した後の大根の写真(A) is a photograph of the radish before the high-pressure heat treatment, (b) is a photograph of the radish after the high-pressure heat treatment 粕漬けした中島菜の塩分濃度を示すグラフA graph showing the salt concentration of Nakajima greens pickled in lees 粕漬けした中島菜の茎の硬さ示すグラフGraph showing the hardness of the stalk of Nakajima greens pickled in lees 粕漬けした中島菜の変色程度を示すグラフGraph showing the degree of discoloration of Nakajima greens pickled in lees (a)は高圧加熱処理する前の中島菜の写真、(b)は高圧加熱処理した後の中島菜の写真(A) is a photograph of Nakajima vegetables before high-pressure heat treatment, and (b) is a photograph of Nakajima vegetables after high-pressure heat treatment. 醤油漬けした大根の塩分濃度を示すグラフGraph showing the salt concentration of radish pickled in soy sauce 醤油漬けした大根の噛み切り易さを示すグラフGraph showing how easy it is to bite off radish pickled in soy sauce (a)は高圧加熱処理する前の大根の写真、(b)は高圧加熱処理した後の大根の写真(A) is a photograph of the radish before the high-pressure heat treatment, (b) is a photograph of the radish after the high-pressure heat treatment 醤油漬けした大根の処理温度別の細胞破壊度を示すグラフA graph showing the degree of cell destruction of soy sauce pickled radish by treatment temperature 醤油漬けした大根の旨味成分量を示すグラフGraph showing the amount of umami components of radish pickled in soy sauce 醤油漬けした中島菜の塩分濃度を示すグラフGraph showing the salt concentration of Nakajima vegetables pickled in soy sauce 醤油漬けした中島菜の茎の硬さ示すグラフGraph showing the hardness of the stalks of Nakajima vegetables pickled in soy sauce 醤油漬けした中島菜の変色程度を示すグラフGraph showing the degree of discoloration of soy sauce pickled Nakajima vegetables (a)は高圧加熱処理する前の中島菜の写真、(b)は高圧加熱処理した後の中島菜の写真(A) is a photograph of Nakajima vegetables before high-pressure heat treatment, and (b) is a photograph of Nakajima vegetables after high-pressure heat treatment. シロップ漬けした梅の糖度を示すグラフGraph showing sugar content of syrup pickled plum シロップ漬けした梅の酸度を示すグラフGraph showing the acidity of plums pickled in syrup シロップ漬けした梅の硬さを示すグラフGraph showing the hardness of plum pickled in syrup シロップ漬けした梅の変色程度を示すグラフGraph showing the degree of discoloration of ume pickled in syrup (a)は高圧加熱処理する前の梅の写真、(b)は高圧加熱処理した後の梅の写真(A) is a photograph of plum before high-pressure heat treatment, (b) is a photograph of plum after high-pressure heat treatment シロップ漬けした梨の糖度を示すグラフGraph showing sugar content of pears pickled in syrup シロップ漬けした梨の硬さ示すグラフGraph showing the hardness of pears pickled in syrup シロップ漬けした梨の変色程度を示すグラフGraph showing the degree of discoloration of pears pickled in syrup (a)は高圧加熱処理する前の梨の写真、(b)は高圧加熱処理した後の梨の写真(A) is a photograph of the pear before the high-pressure heat treatment, and (b) is a photograph of the pear after the high-pressure heat treatment. シロップ漬けした梨の処理温度別の細胞破壊度を示すグラフGraph showing the degree of cell destruction by treatment temperature of pears soaked in syrup シロップ漬けしたぶどうの糖度を示すグラフGraph showing sugar content of grapes pickled in syrup シロップ漬けしたぶどうの硬さ及び噛み切り易さを示すグラフGraph showing hardness and easiness of biting grapes soaked in syrup シロップ漬けしたぶどう果肉の変色程度を示すグラフGraph showing the degree of discoloration of grape pulp pickled in syrup (a)は高圧加熱処理する前のぶどうの写真、(b)は高圧加熱処理した後のぶどうの写真(A) is a photograph of the grape before high-pressure heat treatment, (b) is a photograph of the grape after high-pressure heat treatment 味噌漬けした牛モモ肉の糖濃度を示すグラフGraph showing sugar concentration of beef thigh meat pickled in miso 味噌漬けした牛モモ肉の加熱後の硬さを示すグラフGraph showing the hardness of beef thigh meat pickled in miso after heating (a)は高圧加熱処理する前の牛モモ肉の写真、(b)は高圧加熱処理した後の牛モモ肉の写真(A) is a photograph of beef thigh before high-pressure heat treatment, (b) is a photograph of beef thigh meat after high-pressure heat treatment 味噌漬けした牛モモ肉のアミノ酸含有量を示すグラフGraph showing the amino acid content of beef thigh meat pickled with miso 味噌漬けした牛タンの糖濃度を示すグラフGraph showing sugar concentration of beef tongue pickled in miso 味噌漬けした牛タンの硬さを示すグラフGraph showing the hardness of beef tongue pickled in miso (a)は高圧加熱処理する前の牛タンの写真、(b)は高圧加熱処理した後の牛タンの写真(A) Photo of beef tongue before high-pressure heat treatment, (b) Photo of beef tongue after high-pressure heat treatment 味噌漬けした牛タンのアミノ酸含有量を示すグラフGraph showing the amino acid content of beef tongue pickled in miso 糀漬けした牛モモ肉のグルコース濃度を示すグラフGraph showing glucose concentration of beef thigh pickled in koji 糀漬けした牛モモ肉の加熱後の硬さを示すグラフGraph showing hardness of beef thigh pickled in koji after heating (a)は高圧加熱処理する前の牛モモ肉の写真、(b)は高圧加熱処理した後の牛モモ肉の写真(A) is a photograph of beef thigh before high-pressure heat treatment, (b) is a photograph of beef thigh meat after high-pressure heat treatment 糀漬けした牛モモ肉のアミノ酸含有量を示すグラフGraph showing the amino acid content of beef thigh pickled in koji 糀漬けした牛タンのグルコース濃度を示すグラフGraph showing glucose concentration of beef tongue pickled in koji 糀漬けした牛タンの加熱後の硬さを示すグラフGraph showing the hardness of beef tongue pickled in koji after heating (a)は高圧加熱処理する前の牛タンの写真、(b)は高圧加熱処理した後の牛タンの写真(A) Photo of beef tongue before high-pressure heat treatment, (b) Photo of beef tongue after high-pressure heat treatment 糀漬けした牛タンのアミノ酸含有量を示すグラフGraph showing the amino acid content of beef tongue pickled in koji 粕漬けした堅豆腐のグルコース濃度を示すグラフGraph showing glucose concentration of hardened tofu pickled in lees 粕漬けした堅豆腐の硬さを示すグラフGraph showing the hardness of hard tofu pickled in lees 粕漬けした堅豆腐の変色程度を示すグラフA graph showing the degree of discoloration of hardened tofu pickled in lees (a)は高圧加熱処理する前の堅豆腐の写真、(b)は高圧加熱処理した後の堅豆腐の写真(A) is a photograph of hard tofu before high-pressure heat treatment, (b) is a photograph of hard tofu after high-pressure heat treatment 粕漬けした堅豆腐のアミノ酸含有量を示すグラフA graph showing the amino acid content of pickled tofu 粕漬けしたフクラギのグルコース濃度を示すグラフA graph showing the glucose concentration of dried syrup 粕漬けしたフクラギの硬さを示すグラフA graph showing the hardness of fluffy pickled in lees 粕漬けしたフクラギの変色程度を示すグラフA graph showing the degree of discoloration of dried syrup (a)は高圧加熱処理する前のフクラギの写真、(b)は高圧加熱処理した後のフクラギの写真(A) is a photograph of the Japanese mulberry before high-pressure heat treatment, (b) is a photograph of the Japanese mulberry tree after high-pressure heat treatment 粕漬けしたイカのグルコース濃度を示すグラフGraph showing glucose concentration of squid pickled in lees 粕漬けしたイカの硬さを示すグラフGraph showing the hardness of squid pickled in lees 粕漬けしたイカの変色程度を示すグラフGraph showing the degree of discoloration of squid pickled in lees (a)は高圧加熱処理する前のイカの写真、(b)は高圧加熱処理した後のイカの写真(A) is a photograph of squid before the high-pressure heat treatment, and (b) is a photograph of squid after the high-pressure heat treatment. ソフトスモークしたフクラギのグルコース濃度を示すグラフGraph showing glucose concentration in soft-smoked kraft ソフトスモークしたフクラギの硬さを示すグラフGraph showing the hardness of soft smoked fluffy ソフトスモークしたフクラギの変色程度を示すグラフA graph showing the degree of discoloration of soft smoked fluffy (a)は高圧加熱処理する前のフクラギの写真、(b)は高圧加熱処理した後のフクラギの写真(A) is a photograph of the Japanese mulberry before high-pressure heat treatment, (b) is a photograph of the Japanese mulberry tree after high-pressure heat treatment ソフトスモークしたイカのグルコース濃度を示すグラフGraph showing glucose concentration of soft smoked squid ソフトスモークしたイカの硬さを示すグラフGraph showing the hardness of soft smoked squid ソフトスモークしたイカの変色程度を示すグラフGraph showing the degree of discoloration of soft smoked squid (a)は高圧加熱処理する前のイカの写真、(b)は高圧加熱処理した後のイカの写真(A) is a photograph of squid before the high-pressure heat treatment, and (b) is a photograph of squid after the high-pressure heat treatment.

以下に本発明を実施するための最良の形態を、「野菜の奈良漬」、「野菜の浅漬」、「野菜の生醤油漬」、「果実のシロップ漬」、「畜肉の漬物」、「豆腐の漬物」、「キノコの加工品」、これらの追加実験および魚介類の粕漬けとソフトスモークの製造に分けて説明する。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention is as follows: "Vegetable Nara pickles", "Vegetable pickles", "Vegetable raw soy sauce pickles", "Fruit syrup pickles", "Livestock meat pickles", "Tofu" "Pickles of pickles", "processed mushrooms", these additional experiments, and the process of pickling seafood and making soft smoke.

野菜の奈良漬
1.実験方法
1−1 試料の調整
野菜として、ナス、ダイコン及びウリを用意し、天日乾燥や脱気処理によって植物組織内部の空気を抜き、粕床の成分の浸透が促進されるようにし、特に表面がツルツルのナスについては、剣山で多数の穴をあけるか、沸騰水中で一度煮て冷やす(ブランチング処理)ことで粕床の成分の浸透を速めた。
Nara pickles of vegetables 1. Experimental method 1-1 Preparation of sample Prepare eggplant, Japanese radish and sea urchin as vegetables and remove air from the plant tissue by sun drying and deaeration to promote penetration of ingredients in the dreg bed. In particular, for eggplants with a smooth surface, the permeation of the ingredients in the dreg bed was accelerated by making a large number of holes in Kenzan or by boiling and boiling once in boiling water (blanching treatment).

1−2 加工処理
ナスについては、粕床を塗りポリエチレン袋に入れた後に脱気し、このポリエチレン袋に入れた状態で、100MPa、70℃、60時間の条件で加熱・高圧処理を施した。
ダイコンについては、粕床を塗りポリエチレン袋に入れた後に脱気し、このポリエチレン袋に入れた状態で、100MPa、70℃、18時間の条件で加熱・高圧処理を施した。
ウリについては、加熱処理で短期に製造した粕床を用いた。この粕を塗りポリエチレン袋に入れた後に脱気し、次いでポリエチレン袋に入れた状態で、100MPa、50℃、60時間の条件で加熱・高圧処理を施した。
1-2 Processing The eggplant was subjected to heating / high pressure treatment under the conditions of 100 MPa, 70 ° C., and 60 hours in a state in which it was deaerated after being coated in a polyethylene bag and put in a polyethylene bag.
Regarding the radish, after putting the dreg floor in a polyethylene bag and degassing, the radish was subjected to heating / high pressure treatment under the conditions of 100 MPa, 70 ° C. and 18 hours in the state of being put in the polyethylene bag.
As for cucumber, a dreg bed produced by heat treatment in a short time was used. The lees were put in a coated polyethylene bag, deaerated, and then heated and pressurized under a condition of 100 MPa, 50 ° C., and 60 hours in a polyethylene bag.

粕床を短期間で製造するには、10%の砂糖と5%の食塩を添加し、70℃以上の高温で数時間〜数日間処理し、メイラード反応を促進させた。通常の粕床の調製には長期間を要するが、本実施例の方法によれば奈良漬粕床独特の風味を有する促成粕床を数時間〜数日で作ることができる。
上記の促成粕床を使用した場合には、GC-MSで分析すると、特有な成分(図1の枠で囲った成分)が検出されるので、従来品との判別が容易である。
To produce a cake bed in a short period of time, 10% sugar and 5% sodium chloride were added, and the mixture was treated at a high temperature of 70 ° C. or higher for several hours to several days to promote the Maillard reaction. Although it takes a long time to prepare an ordinary cake bed, according to the method of the present example, a forcing cake bed having a flavor unique to Nara pickled cake bed can be produced in several hours to several days.
When the above-mentioned forcing cake is used, a unique component (a component surrounded by a frame in FIG. 1) is detected by GC-MS analysis, so that it can be easily distinguished from the conventional product.

また以下の(表1)は粕を加熱・高圧処理した際のバチルス胞子の殺菌効果を示すものであり、この表から100MPa、65℃以上、60時間の条件でバチルス胞子を検出しなくなることが分かる。   The following (Table 1) shows the bactericidal effect of Bacillus spores when the rice cake is heated and treated under high pressure. From this table, Bacillus spores may not be detected under the conditions of 100 MPa, 65 ° C or higher and 60 hours. I understand.

Figure 2020062040
Figure 2020062040

2. 試験結果・考察
図2は従来の製法と本発明の加熱・高圧処理方法を比較した図であり、本発明方法では、塩、ミリン入りの吟醸粕を用いて1工程で塩漬する方法と、塩、ミリン入りの酒粕で塩漬した後、吟醸粕に漬け込む2工程で行った。何れの場合も伝統的手法の製造期間(1年から1年半)を大幅に短縮できた。
2. Test Results / Discussion FIG. 2 is a diagram comparing the conventional manufacturing method and the heating / high pressure treatment method of the present invention. In the method of the present invention, a method of salting in a single step using ginjo lees containing salt and mirin After soaking in sake lees with salt and mirin, it was soaked in ginjo lees in two steps. In either case, the manufacturing period (1 to 1 and a half years) of the traditional method could be greatly shortened.

図3は上記の加熱・高圧処理で製造したナス、ダイコン及びウリの写真であり、何れの奈良漬も味、香り、食感が従来の伝統的手法で製造した奈良漬と遜色がなかった。   FIG. 3 is a photograph of eggplant, Japanese radish, and sea urchin produced by the above heating and high-pressure treatment, and the taste, aroma, and texture of any Nara-zuke were comparable to those of Nara-zuke produced by the conventional traditional method.

以下の(表2)は加熱・高圧処理で製造したナスの奈良漬の一般生菌数及び酵母数の測定結果を示し、この表から本発明方法によって製造した奈良漬は実質的に無菌であることが分かる。   The following (Table 2) shows the results of measurement of the number of general viable bacteria and yeasts of eggplant Nara pickles produced by heating and high pressure treatment. From this table, the Nara pickles produced by the method of the present invention are substantially sterile. I understand.

Figure 2020062040
Figure 2020062040

図4は加熱・高圧処理の殺菌原理を説明した図であり、常温では芽胞菌の一部しか発芽しないが、加熱では全ての芽胞菌が発芽する。そして、一旦発芽した細菌は途中で止まることがなく且つ発芽した菌は50℃以上の加熱処理で死滅する。
従来の常温常圧処理では最終的に高温で殺菌しなければならなかったが、加熱・高圧処理の場合は、高温処理が不要のため、殺菌処理に伴う食品の品質劣化を防止することができる。
FIG. 4 is a diagram for explaining the sterilization principle of heating and high-pressure treatment. At room temperature, only a part of the spore-forming bacteria germinates, but upon heating, all the spore-forming bacteria germinate. Then, once germinated bacteria do not stop on the way, and germinated germs die by heat treatment at 50 ° C. or higher.
In the conventional normal temperature and normal pressure treatment, it was necessary to finally sterilize at high temperature, but in the case of heating and high pressure treatment, high temperature treatment is unnecessary, so deterioration of food quality due to sterilization treatment can be prevented. .

3.100MPa以上の処理での効果
前記段落(0025)以降に記載した野菜の奈良漬けの製法を高圧処理条件の圧力条件のみ100〜300MPa範囲で変えて検討したところ、表3に示す結果となり、本発明が100〜300MPaの圧力範囲でも有効であることを確認した。
3. Effect of treatment at 100 MPa or more When the method of pickling vegetables in Nara described in the paragraph (0025) and subsequent paragraphs was examined by changing only the pressure condition of the high pressure treatment condition within the range of 100 to 300 MPa, the results shown in Table 3 were obtained. It was confirmed that the invention is effective even in the pressure range of 100 to 300 MPa.

Figure 2020062040
Figure 2020062040

咀嚼困難者用野菜の浅漬
1.実験方法
1−1 試料の調整
野菜として、ニンジン、ナス及びダイコンを用意し、厚さ約1cmにカットした。
Lightly pickled vegetables for people who have difficulty chewing 1. Experimental method 1-1 Carrots, eggplants, and Japanese radish were prepared as sample preparation vegetables and cut into pieces having a thickness of about 1 cm.

1−2 加工処理
上記のカットした野菜を調味液(市販の浅漬けの素)およびペクチナーゼとともにポリエチレン袋に入れた後に脱気引きし、このポリエチレン袋に入れた状態で、100MPa、50℃、15分の条件で加熱・高圧処理を施した。
この後、各野菜に0.1MPa、3〜15時間の常圧加熱理を施した。具体的にはニンジンについては15時間、ナスについては3時間、ダイコンについては3時間及び5時間の二種類の処理を施した。
更にその後、沸騰水中で5分間加熱処理することで、酵素を失活させた。
1-2 Processing Treatment The cut vegetables above were put in a polyethylene bag together with a seasoning liquid (commercial lightly pickled dip) and pectinase, and then deaerated, and in the polyethylene bag, 100 MPa, 50 ° C, 15 Heat treatment and high pressure treatment were performed under the condition of minutes.
Then, each vegetable was heated at 0.1 MPa for 3 to 15 hours under atmospheric pressure. Specifically, carrots were subjected to two types of treatments: 15 hours, eggplants for 3 hours, and radish for 3 hours and 5 hours.
After that, the enzyme was inactivated by heating for 5 minutes in boiling water.

2. 試験結果・考察
図5は上記の本発明方法に係る加熱・高圧処理によって製造した野菜の浅漬の写真である。
図5に示した野菜は、表4に示す通り、いずれも咀嚼困難者でも喫食可能な口溶する程に極めて柔らかく、しかも殺菌効果も確認でき長期保存が可能であった。
2. Test Results / Discussion FIG. 5 is a photograph of vegetables pickled by heating and high pressure treatment according to the method of the present invention.
As shown in Table 4, each of the vegetables shown in FIG. 5 was so soft that it could be eaten by a person who had difficulty chewing, and was so soft that it could be confirmed to have a bactericidal effect.

3.100MPa以上の処理での効果
前記段落(0037)以降に記載した野菜の浅漬けの製法を高圧処理条件の圧力条件のみ100〜300MPa範囲で変えて検討したところ、表4に示す結果となり、本発明が100〜300MPaの圧力範囲でも有効であることを確認した。
3. Effect of treatment at 100 MPa or more When the method of lightly pickling vegetables described in the paragraph (0037) and thereafter was examined by changing only the pressure condition of the high pressure treatment condition within the range of 100 to 300 MPa, the results shown in Table 4 were obtained. It was confirmed that the present invention is effective even in the pressure range of 100 to 300 MPa.

Figure 2020062040
Figure 2020062040

野菜の生醤油漬
1.実験方法
1−1 試料の調整
野菜として、ニンジン、ダイコン、キュウリ、ナス、ゴボウ、ナガイモ及びレンコンを用意し、厚さ0.5〜1cmにカットした。
1−2 加工処理
図6に示すように、厚さ0.5〜1cmにカットした上記野菜を日干する。この工程により水分が除去され、調味液(生醤油オリ)が浸透しやすくなる。
次いで、上記のカットした野菜を調味液(生醤油オリ)とともにポリエチレン袋に入れた後に脱気引きし、このポリエチレン袋に入れた状態で、100MPa、50℃、20分の条件で脱気・加熱・高圧処理を施した。
図7は、0.5cm厚に切った天日干しダイコンと1cm厚に切った天日干しダイコンの脱気・加熱・高圧処理の条件を変化させた場合の、処理直後と翌日の、色調及び塩分を測定した結果を示すグラフである。このグラフから、
本発明方法によって、調味液(生醤油オリ)がダイコンに容易に浸透することが分かる。
また図8は、前記ダイコンを含む各種野菜について脱気・加熱・高圧処理により調味液(生醤油オリ)を浸透させた結果を示すグラフである。このグラフから、本発明方法はダイコン以外にも有効であることが分かる。
Vegetables in raw soy sauce 1. Experimental method 1-1 Preparation of sample As vegetables, carrot, radish, cucumber, eggplant, burdock root, yam and lotus root were prepared and cut into a thickness of 0.5 to 1 cm.
1-2 Processing As shown in FIG. 6, the above vegetables cut to a thickness of 0.5 to 1 cm are sun-dried. Water is removed by this step, and the seasoning liquid (raw soy sauce dregs) easily penetrates.
Then, put the above-mentioned cut vegetables in a polyethylene bag together with the seasoning liquid (raw soy sauce paste) and then deaerate, and in this polyethylene bag, deaerate and heat at 100 MPa, 50 ° C. for 20 minutes. -High pressure treatment was applied.
Fig. 7 shows the color tone and salt content immediately after the treatment and on the next day when the conditions of deaeration, heating, and high-pressure treatment of the sun-dried radish cut into 0.5 cm thickness and the sun-dried radish cut into 1 cm thickness were changed. It is a graph which shows the measured result. From this graph,
It can be seen that the seasoning liquid (fresh soy sauce dregs) easily penetrates into the radish by the method of the present invention.
Further, FIG. 8 is a graph showing the results of permeating the seasoning liquid (fresh soy sauce dregs) by deaeration, heating, and high-pressure treatment for various vegetables including the Japanese radish. From this graph, it can be seen that the method of the present invention is effective in addition to Japanese radish.

2. 試験結果・考察
図6、図7及び図8に示すように、野菜に調味液の色調および塩分が均一に浸透し、製造期間も従来の2週間程度から20分まで大幅に短縮できた。しかも、表5に示すように殺菌効果も確認でき、長期保存が可能であった。
2. Test Results / Discussion As shown in FIG. 6, FIG. 7 and FIG. 8, the color tone and salt content of the seasoning liquid permeated the vegetables uniformly, and the manufacturing period could be greatly reduced from the conventional 2 weeks to 20 minutes. . Moreover, as shown in Table 5, the bactericidal effect was confirmed, and long-term storage was possible.

3.ダイコンの形状別による比較例
上記とは別に調味液の浸透に関し、特にダイコンについて検討した。
材料としては石川農研産のフクホマレを3cm圧の輪切りにし、これを外観写真用と、塩分・色差測定用に分け、調味液としては直源醤油(株)製の濃口醤油を用い、濃度は20%、40%、60%、80%、100%とし、加熱・高圧処理としては、100MPa、30℃または50℃、24時間とした。
3. Comparative example according to the shape of radish In addition to the above, we examined the penetration of seasoning liquid, especially radish.
As a material, Fukuhomare produced by Ishikawa Agricultural Research Co., Ltd. was sliced into 3 cm pieces, which was divided into a photograph for external appearance and a salt / color difference measurement. As the seasoning liquid, thick soy sauce manufactured by Naogen Soy Sauce Co., Ltd. was used. 20%, 40%, 60%, 80%, 100%, and heating / high pressure treatment was performed at 100 MPa, 30 ° C. or 50 ° C. for 24 hours.

図9はダイコンへの醤油浸透効果を示す写真であり、図10はダイコンへの醤油浸透効果を比較したグラフであり、この写真及びグラフから処理温度が30℃から50℃に高くなり、且つ調味液の濃度を濃くすることで、内外の浸透効果が均一化されることが分かる。しかし、塩濃度が高いために漬け物食品としては適さない。   FIG. 9 is a photograph showing the soy sauce penetration effect on the radish, and FIG. 10 is a graph comparing the soy sauce penetration effect on the radish. From this picture and the graph, the treatment temperature increased from 30 ° C. to 50 ° C., and the seasoning was performed. It can be seen that the penetration effect inside and outside is made uniform by increasing the concentration of the liquid. However, its high salt concentration makes it unsuitable as a pickled food.

また図11はダイコンに切れ目を入れた場合の効果を示す写真とグラフであり、この図11から切れ目を入れることで、外側と内側の彩度の差が小さくなり、浸透性が向上することが分かる。しかし、この方法でも十分に内部まで調味液が浸透しなかった。   FIG. 11 is a photograph and a graph showing the effect of making a cut in the radish. By making a cut in FIG. 11, the difference in saturation between the outer side and the inner side is reduced, and the permeability is improved. I understand. However, even with this method, the seasoning liquid did not sufficiently penetrate into the inside.

4.100MPa以上の処理での効果
前記段落(0038)以降に記載した野菜の生醤油漬けの製法を高圧処理条件の圧力条件のみ100〜300MPa範囲で変えて検討したところ、表5に示す結果となり、本発明が100〜300MPaの圧力範囲でも有効であることを確認した。
4. Effect of treatment at 100 MPa or more When the method of pickling vegetables with raw soy sauce described in the paragraph (0038) and thereafter was examined by changing only the pressure condition of the high pressure treatment condition within the range of 100 to 300 MPa, the results shown in Table 5 were obtained. It was confirmed that the present invention is effective even in the pressure range of 100 to 300 MPa.

Figure 2020062040
Figure 2020062040

果実のシロップ漬
1.実験方法
1−1 試料の調整
果実としてリンゴ(シナノゴールドなど)、アンズ(信山丸など)、ウメ(石川1号など)を用意した。
Pickling fruits with syrup 1. Experimental method 1-1 Preparation of samples Apples (such as Shinano Gold), apricots (such as Shinyama Maru) and plums (such as Ishikawa No. 1) were prepared as fruits.

1−2 加工処理
リンゴ、アンズ、ウメのそれぞれをシロップとともにポリエチレン袋に入れた後に脱気し、このポリエチレン袋に入れた状態で、100MPa、65℃〜75℃、30分〜60分の条件で加熱・高圧処理を施した。
1-2 Processing Apple, apricot, and plum were placed in a polyethylene bag together with syrup and then degassed, and in this polyethylene bag, under conditions of 100 MPa, 65 ° C to 75 ° C, and 30 minutes to 60 minutes. Heated / high pressure processed.

2. 試験結果・考察
2−1 自滅的発芽殺菌効果
リンゴシロップ漬素材に10〜10CFU/gのBacillus subtilis芽胞を接種し、各処理後に自滅的発芽殺菌効果を検討した。結果を図12に示す。
この図12から、脱気・加熱・高圧処理した場合は常温常圧または加熱常圧処理に比べ殺菌効果が高く、具体的には2log(CFU/g)程度の殺菌効果があることが分かる。特にシロップの濃度は薄いほど殺菌効果が高くなることを示している。
2. Test Results / Discussion 2-1 Self-destructive germicidal bactericidal effect Apple syrup pickled material was inoculated with 10 7 to 10 8 CFU / g of Bacillus subtilis spores, and the self-destructive germicidal bactericidal effect was examined after each treatment. Results are shown in FIG.
From FIG. 12, it can be seen that the deaeration, heating, and high-pressure treatment has a higher sterilizing effect than the ordinary-temperature and normal-pressure or heating and normal-pressure treatment, and specifically has a sterilizing effect of about 2 log (CFU / g). In particular, the lower the concentration of syrup, the higher the bactericidal effect.

図13はシロップの代替品として高甘味度甘味料であるスクラロース水溶液を用い、これに酸味料(フィチン酸)を添加した場合の自発的発芽誘導殺菌効果の結果を示すグラフであり、このグラフから、酸味料を添加した低濃度の甘味料を用い、脱気・加熱・高圧処理することで大幅に殺菌効果が高まることが分かる。   FIG. 13 is a graph showing the results of the spontaneous germination-inducing bactericidal effect when an aqueous sucralose solution, which is a high-intensity sweetener, is used as a substitute for syrup, and an acidulant (phytic acid) is added thereto. It can be seen that the bactericidal effect is significantly enhanced by using a low-concentration sweetener to which an acidulant is added and deaeration, heating, and high-pressure treatment.

2−2.リンゴに対する脱気・加熱・高圧処理
リンゴの種類は、つがる、秋映、シナノスイート、シナノゴールド及びふじの5種類を用意した。
上記の5種類に対し、100MPa、65℃、30分間の脱気・加熱・高圧処理を施し、果汁とシロップの糖度及び酸度を比較した。結果を図14に示す。
図14から糖度については加熱・高圧処理の温度が高いほど果汁とシロップの糖度が近くなり、酸度については品種によって影響されることが分かる。
2-2. Deaeration, heating, and high-pressure treatment for apples There are five types of apples: Tsugaru, Aki, Shinano Sweet, Shinano Gold, and Fuji.
The above five kinds were subjected to deaeration, heating, and high pressure treatment at 100 MPa, 65 ° C. for 30 minutes, and the sugar content and acidity of the fruit juice and the syrup were compared. The results are shown in Fig. 14.
From FIG. 14, it can be seen that the higher the temperature of heating / high pressure treatment is, the closer the sugar content of the juice and the syrup becomes to sugar content, and the acidity is influenced by the variety.

表6はリンゴの脱気・加熱・高圧処理の製造温度と保存期間を変化させた場合の菌の検出結果を示すグラフであり、表7は表6の保存期間が0ヶ月の場合、表8は保存期間が4ヶ月の場合を示す。これらの表から常温での保存は3ヶ月、好ましくは2ヶ月が安全と考えられる。   Table 6 is a graph showing the detection results of the bacteria when the manufacturing temperature and the storage period of apple deaeration / heating / high pressure treatment were changed, and Table 7 shows the results obtained when the storage period of Table 6 was 0 months, and Table 8 Indicates the case where the storage period is 4 months. From these tables, it is considered safe to store at room temperature for 3 months, preferably 2 months.

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

また、図15は表6の4ヶ月(製造温度65℃、保存温度25℃)の場合の「果実」側での菌の状態を示す写真、図16は表6の4ヶ月(製造温度65℃、保存温度25℃)の場合の「シロップ」側での菌の状態を示す写真、図17は表6の4ヶ月(製造温度70℃、保存温度25℃)の場合の「シロップ」側での菌の状態を示す写真である。   FIG. 15 is a photograph showing the condition of the fungus on the “fruit” side in the case of 4 months of Table 6 (production temperature 65 ° C., storage temperature 25 ° C.), and FIG. 16 is 4 months of Table 6 (production temperature 65 ° C. , A photograph showing the state of the bacteria on the "syrup" side at a storage temperature of 25 ° C, and Fig. 17 shows the "syrup" side at 4 months of Table 6 (manufacturing temperature 70 ° C, storage temperature 25 ° C). It is a photograph showing the state of bacteria.

2−3.硬度向上(保持)
ふじとシナノゴールドに対し、硬度を向上させるため乳酸カルシウムを添加したところ、良好な結果が得られた。
2-3. Hardness improvement (holding)
When calcium lactate was added to Fuji and Shinano Gold to improve the hardness, good results were obtained.

2−4.保存性
表9は本発明方法の加熱・高圧処理を施したリンゴを5℃と常温(25℃)で保存した場合の、微生物の検出結果を示す表である。
2-4. Preservability Table 9 is a table showing the detection results of microorganisms when apples that have been subjected to the heating / high pressure treatment of the method of the present invention are stored at 5 ° C and room temperature (25 ° C).

Figure 2020062040
Figure 2020062040

この表9から、5℃で保存した場合は6ヶ月近く微生物が繁殖しないことが分かる。また常温で保存しても3ヶ月間は確保される。また、表9からは5℃で保存したリンゴは6ヶ月後も殆ど外観が変化しないことが分かる。   It can be seen from Table 9 that microorganisms do not reproduce for about 6 months when stored at 5 ° C. Even if it is stored at room temperature, it can be secured for 3 months. Further, it can be seen from Table 9 that the appearance of apples stored at 5 ° C hardly changes after 6 months.

2−5.アンズに対する脱気・加熱・高圧処理
アンズと40%シロップを脱気包装後、100MPa、65〜75℃、30〜60分の脱気・加熱・高圧処理を行った。その結果、図18に示すように生の食感や、生の風味を持ったシロップ漬が得られた。
冷凍したアンズとホワイトリカーを合わせて、100MPa、65℃、30〜120分の脱気・加熱・高圧処理を行った。その結果、図19に示すように高い有機酸抽出効果により、アンズ風味のリキュールが得られた。
表10はアンズ(品種:平和)のシロップ漬の殺菌効果を示すものである。この表から、本発明方法の脱気・加熱・高圧処理法はオートクレーブ処理と同程度の殺菌効果があることが分かる。
2-5. Deaeration / heating / high pressure treatment for apricot Apricot and 40% syrup were deaerated and packaged, and then deaeration / heating / high pressure treatment was performed at 100 MPa, 65 to 75 ° C for 30 to 60 minutes. As a result, as shown in FIG. 18, syrup pickles having a raw texture and a raw flavor were obtained.
The frozen apricots and white liquor were combined and subjected to deaeration, heating, and high-pressure treatment at 100 MPa, 65 ° C. for 30 to 120 minutes. As a result, apricot-flavored liqueur was obtained due to the high organic acid extraction effect as shown in FIG.
Table 10 shows the bactericidal effect of apricot (variety: Heiwa) pickled in syrup. From this table, it can be seen that the degassing / heating / high pressure treatment method of the present invention has the same sterilizing effect as the autoclave treatment.

Figure 2020062040
Figure 2020062040

表11はアンズシロップ漬の保存期間0カ月の場合の菌数のデータであり、表12は保存試験の結果を表す表である。   Table 11 is data on the number of bacteria when the apricot syrup was stored for 0 months, and Table 12 is a table showing the results of the storage test.

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

アンズ及びウメの脱気・加熱・高圧処理したシロップ漬に対しシアン化合物の分析を行った。結果は図20に示すように、果肉中のシアン化合物は未加工原料に比べてほとんど増加していなかった。
また、図21はアンズシロップ漬の写真である。
The cyanide compounds were analyzed for syrup pickled apricots and plums that had been degassed, heated, and subjected to high pressure. As a result, as shown in FIG. 20, the cyanide content in the pulp was hardly increased as compared with the raw material.
In addition, FIG. 21 is a photograph of pickled apricot syrup.

2−6.ウメのシロップ漬
図22はウメのシロップ漬の一例を示す図であり、この実施例にあっては、急速冷凍した青ウメまたは黄熟ウメを材量とし、この冷凍ウメの芯の部分を刳り抜く穴あけ処理を行い、次いでブランチング水晒しし、この後、加熱・高圧処理を行う。加熱・高圧処理の条件は、100MPa、65℃、30分とする。この後、常圧、50℃、40時間静置し果実とシロップの味を均一にした。
2-6. Ume syrup pickling Fig. 22 is a diagram showing an example of ume syrup picking. In this example, quick-frozen green ume or yellow-ripened ume is used as the material and the core of this frozen ume A hole is drilled to hollow out the part, then exposed to blanching water, and then heated and pressurized. The conditions of heating and high pressure treatment are 100 MPa, 65 ° C., and 30 minutes. Then, the fruit and syrup were made to have a uniform taste by allowing to stand at atmospheric pressure and 50 ° C. for 40 hours.

表13は加熱・高圧処理を行なわない生ウメの保存試験の結果を示す表であり、表14は加熱・高圧処理を行なったシロップ漬けのウメの保存試験の結果(0ヶ月)を示す表であり、表15は加熱・高圧処理を行なったシロップ漬けのウメの保存試験の結果(1ヶ月)を示す表であり、表16は加熱・高圧処理を行なったシロップ漬けのウメの保存試験の結果(2ヶ月)を示す表であり、表17は加熱・高圧処理を行なったシロップ漬けのウメの保存試験の結果(3ヶ月)を示す表であり、表18は加熱・高圧処理を行なったシロップ漬けのウメの保存試験の結果(4ヶ月)を示す表である。   Table 13 is a table showing the results of the storage test of raw Ume without heating and high pressure treatment, and Table 14 is a table showing the results of the storage test of syrup-pickled Ume subjected to heating and high pressure treatment (0 months). Yes, Table 15 is a table showing the result (1 month) of the preservation test of the syrup-pickled plum subjected to the heating / high pressure treatment, and Table 16 is the result of the storage test of the syrup-pickled plum subjected to the heating / high pressure treatment. (2 months), Table 17 is a table showing the results (3 months) of the storage test of syrup-pickled plums that have been subjected to heat / high pressure treatment, and Table 18 is a syrup that has been subjected to heat / high pressure treatment. It is a table which shows the result (4 months) of the storage test of pickled plum.

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

また図23は、5℃で4ヶ月保存したウメシロップ漬けの写真、図24は25℃で4ヶ月保存したウメシロップ漬けの写真である。   FIG. 23 is a photograph of pickled Ume syrup stored at 5 ° C. for 4 months, and FIG. 24 is a photograph of pickled Ume syrup stored at 25 ° C. for 4 months.

図25は穴あけ加工したウメと穴あけ加工しないウメのシロップ漬け後の形状を比較した写真であり、穴あけ処理することで、見栄えの良いシロップ漬が得られる。   FIG. 25 is a photograph comparing the shapes of plums that have been drilled and plums that have not been drilled after immersing in syrup. By piercing, syrups that look good are obtained.

2−5.和ナシのシロップ漬
加熱・高圧処理の条件は、100MPa、65℃、30分とする。この後、常圧、50℃、40時間静置し果実とシロップの味を均一にした。
図26は上記の製造方法を適用して製造した和ナシのシロップ漬の写真である。さらに、表19で示す通り、本発明で行った和ナシのシロップ漬は、殺菌効果が向上した。
2-5. Japanese pear soaked in syrup The conditions of heating and high pressure treatment are 100 MPa, 65 ° C., and 30 minutes. Then, the fruit and syrup were made to have a uniform taste by allowing to stand at atmospheric pressure and 50 ° C. for 40 hours.
FIG. 26 is a photograph of Japanese pear syrup pickled manufactured by applying the above manufacturing method. Furthermore, as shown in Table 19, the syrup pickling of Japanese pear carried out in the present invention improved the bactericidal effect.

3.100MPa以上の処理での効果
前記段落(0049)以降に記載した果実のシロップ漬製法を高圧処理条件の圧力条件のみ100〜300MPa範囲で変えて検討したところ、表19に示す結果となり、本発明が100〜300MPaの圧力範囲でも有効であることを確認した。
3. Effect of treatment at 100 MPa or more When the syrup pickling method of the fruit described in the above paragraph (0049) or later was examined by changing only the pressure condition of the high pressure treatment condition within the range of 100 to 300 MPa, the results shown in Table 19 were obtained, and It was confirmed that the invention is effective even in the pressure range of 100 to 300 MPa.

Figure 2020062040
Figure 2020062040

ウメ酒
上記ではウメをシロップ漬けすることを説明したが、本発明はウメ酒を製造する場合にも応用できる。
即ち、従来はウメ、砂糖、酒の3種の材料を混合して、常温常圧で72時間(3日間)処理し、その後3ヶ月程度熟成させていたが、本発明方法によれば、図27に示すように、ウメと砂糖をパックに入れ、脱気・加熱・高圧処理(100MPa、50℃、72時間)することでエキスが抽出され、これを酒と混合することでウメ酒ができる。
ウメと砂糖の割合、処理条件は、例えばウメ(果肉)100gに対し砂糖を100〜300g、圧力は100MPa以上、加熱温度は35〜65℃、高圧処理時間は24〜72時間とするのが好ましい。
結果は、図28−1、図28−2、図28−3図28−4、図29、図30に示すように、従来法(72時間)では、ウメのエキス(酸、ポリフェノール)は十分に抽出されていないが、本発明法(72時間)ではかなり抽出できている。同じく、熟成の目安であるショ糖の分解は、従来法ではほとんど起きていないが、中高圧法ではかなり進んでいる。更に色(b*値、褐色の指標)は、従来法より中高圧法の方が濃い。本発明法は1ヶ月熟成させると、従来法で3ヶ月以上熟成させたものと、ほぼ同等の色の濃さになることが分かる。
このように本発明方法により梅酒の熟成が早く進む理由は、ウメからエキス(酸、ポリフェノール)や熟成を促進させる酵素(糖分解酵素(インベルターゼ))が迅速に抽出され、加熱・高圧圧処理下では、糖の分解が早く進行するためである。
Umeshu In the above description, ume is soaked in syrup, but the present invention can also be applied to the production of umeshu.
That is, conventionally, three materials of plum, sugar and liquor were mixed, treated at room temperature and atmospheric pressure for 72 hours (3 days) and then aged for about 3 months. According to the method of the present invention, As shown in 27, put plum and sugar in a pack and degas, heat and pressurize (100MPa, 50 ° C, 72 hours) to extract the extract, and mix it with sake to make plum wine. .
The ratio of ume to sugar and the treatment conditions are, for example, 100 to 300 g of sugar per 100 g of ume (flesh), the pressure is 100 MPa or more, the heating temperature is 35 to 65 ° C., and the high pressure treatment time is preferably 24 to 72 hours. .
As shown in FIG. 28-1, FIG. 28-2, FIG. 28-3, FIG. 28-4, FIG. 29, and FIG. 30, in the conventional method (72 hours), plum extract (acid, polyphenol) was sufficient. Although it was not extracted in Example 2, it was considerably extracted by the method of the present invention (72 hours). Similarly, the decomposition of sucrose, which is a standard for aging, has hardly occurred in the conventional method, but is considerably advanced in the medium-high pressure method. Furthermore, the color (b * value, brown index) is darker in the medium- and high-pressure method than in the conventional method. It can be seen that when the method of the present invention is aged for 1 month, the color strength is almost the same as that of the method aged for 3 months or more by the conventional method.
As described above, the reason why the aging of umeshu proceeds quickly by the method of the present invention is that the extract (acid, polyphenol) and the enzyme that promotes aging (sugar-degrading enzyme (invertase)) are rapidly extracted from ume under heat and high pressure treatment. Then, the decomposition of sugar proceeds rapidly.

3.100MPa以上の処理での効果
前記段落(0083)以降に記載したウメ酒の製法を高圧処理条件の圧力条件のみ100〜300MPa範囲で変えて検討したところ、表20に示す結果となり、本発明が100〜300MPaの圧力範囲でも有効であることを確認した。
3. Effect of treatment at 100 MPa or more When the umeshu production method described in the paragraph (0083) or later was examined by changing only the pressure condition of the high pressure treatment condition within the range of 100 to 300 MPa, the results shown in Table 20 were obtained, and the present invention was obtained. Was confirmed to be effective even in the pressure range of 100 to 300 MPa.

Figure 2020062040
Figure 2020062040

畜肉の漬物
1.豚肉の漬物
1−1 実験方法
1−1−a 試料の調整
加工処理に先立ち、約1cm厚にスライスした豚ロース肉の両面に、下記表21に示す調味液を肉の2/3重量塗り、ポリエチレン製の袋に入れ、脱気包装機を用いて、脱気度99%の脱気包装を行った。
Pickled meat
1. Pickles of pork 1-1 Experimental method 1-1-a Preparation of sample Prior to processing, both sides of pork loin sliced to a thickness of about 1 cm were coated with 2/3 weight of the seasoning liquid shown in Table 21 below, It was put in a polyethylene bag and deaerated with a deaeration degree of 99% using a deaeration packaging machine.

ここでは、豚肉の厚さを1cm、調味液の量を畜肉の2/3重量としたが、本発明はこの豚肉の厚さ、調味液の量に限定されるものではなく、脱気包装の真空度も、袋内の空気が十分に取り除かれるのであれば、任意の真空度でよい。   Here, the thickness of the pork is 1 cm and the amount of the seasoning liquid is 2/3 weight of the livestock meat, but the present invention is not limited to the thickness of the pork and the amount of the seasoning liquid, and the degassing packaging The vacuum degree may be any vacuum degree as long as the air in the bag is sufficiently removed.

Figure 2020062040
Figure 2020062040

1−1−b 加工処理
脱気包装した試料に対して、下記表22に示す加工処理を行った。従来法では、調味液に味噌液を用いて、冷蔵庫内(常圧、4℃)にて72時間保管した。例1〜3では、調味液に味噌液を用いて、100MPaの加熱・高圧処理を、それぞれ35、45、55℃の処理温度で、16時間行った。
例4では、調味液に100℃で10分間加熱して酵素類を失活させた加熱味噌液を用いて、100MPa の加熱・高圧処理を、45℃の処理温度で、16時間行った。
例5では、調味液に味噌液を用いて、100MPa の加熱・高圧処理を、45℃の処理温度で、1時間行った。
例6では、調味液に酒粕液を用いて、100MPa の加熱・高圧処理を、45℃の処理温度で、16時間行った。
例7では、調味液に塩麹を用いて、100MPa の加熱・高圧処理を、45℃の処理温度で、16時間行った。加熱・高圧処理は、(株)東洋高圧製「まるごとエキスTFS-20」を用いて行った。
1-1-b Processing The samples shown in Table 22 below were processed on the degassed and packed samples. In the conventional method, miso liquid was used as the seasoning liquid and stored in a refrigerator (normal pressure, 4 ° C.) for 72 hours. In Examples 1 to 3, the miso liquid was used as the seasoning liquid, and heating / high pressure treatment at 100 MPa was performed for 16 hours at treatment temperatures of 35, 45, and 55 ° C., respectively.
In Example 4, the seasoning liquid was heated at 100 ° C. for 10 minutes to inactivate the enzymes, and a heating / high pressure treatment at 100 MPa was performed at a treatment temperature of 45 ° C. for 16 hours.
In Example 5, miso liquid was used as the seasoning liquid, and heating / high pressure treatment at 100 MPa was performed at a treatment temperature of 45 ° C. for 1 hour.
In Example 6, a sake cake liquid was used as a seasoning liquid, and heating / high pressure treatment at 100 MPa was performed at a treatment temperature of 45 ° C. for 16 hours.
In Example 7, salt koji was used as the seasoning liquid, and heating / high pressure treatment at 100 MPa was performed at a treatment temperature of 45 ° C. for 16 hours. The heating and high pressure treatment were performed using "Marugoto Extract TFS-20" manufactured by Toyo High Pressure Co., Ltd.

Figure 2020062040
Figure 2020062040

1−1−C 呈味成分の測定
従来法および例1〜3の加工処理を行った試料を用いて、呈味成分として遊離アミノ酸濃度およびグルコース濃度を測定した。
具体的には、各処理後の肉をホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。定容した液に含まれる主要なアミノ酸20種の合計濃度を測定し、元の試料に含まれる遊離アミノ酸濃度に換算した。アミノ酸は日立高速アミノ酸分析計L−8900を用いて測定した。また、定容した液のグルコース濃度を、和光純薬工業(株)製グルコースCIIテストを用いて測定し、元の試料に含まれるグルコース濃度に換算した。1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。
1-1-C Measurement of Taste Components Using the conventional method and the samples processed in Examples 1 to 3, free amino acid concentration and glucose concentration were measured as taste components.
Specifically, after homogenizing the meat after each treatment, 5 ml of an 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, and the mixture was vigorously shaken, filtered and clarified to a volume of 50 ml. The total concentration of 20 major amino acids contained in the fixed volume solution was measured and converted into the concentration of free amino acid contained in the original sample. Amino acids were measured using Hitachi High Speed Amino Acid Analyzer L-8900. Further, the glucose concentration of the constant-volume solution was measured using a glucose CII test manufactured by Wako Pure Chemical Industries, Ltd., and converted into the glucose concentration contained in the original sample. Each treatment was repeated 3 times, and the average value and standard deviation were obtained.

1−1−d 食感分析
従来法および例1〜7の加工処理を行った試料を用いて、食感の目安として「硬さ」と「噛み切りやすさ」を測定した。
具体的には、各処理を行った肉から調味液を取り除き、肉表面の水分をペーパータオルでふき取った後、試料を新しいプラスチック袋に入れて脱気包装(真空度99%)した。
包装した試料を70℃で1時間湯煎した後、流水で30分間冷却し、カミソリを用いて肉をおおよそ1cm角に切断した。切断した試料を、レオメーター(株)サン科学製CR-500DX)を用いて、カミソリの刃の付いていない側で、筋線維に対して垂直方向に9mm圧縮し、5mm圧縮したときの応力を「硬さ」の指標に、切断したときの応力(せん断応力)を「噛み切りやすさ」の指標にした。
1試料あたり1cm角切片を12個測定し、最大値と最小値を除いた10個の平均値をその試料の測定値とした。以上の操作を1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。
1-1-d Texture analysis "Hardness" and "easiness of biting" were measured as a measure of texture using the samples subjected to the conventional method and the processing of Examples 1 to 7.
Specifically, the seasoning liquid was removed from the treated meat, water on the surface of the meat was wiped off with a paper towel, and the sample was put in a new plastic bag and degassed (vacuum degree 99%).
The packed sample was roasted at 70 ° C. for 1 hour, then cooled with running water for 30 minutes, and the meat was cut into pieces of about 1 cm square using a razor. Using a rheometer (San Kagaku CR-500DX), the cut sample was compressed 9 mm in the direction perpendicular to the muscle fibers on the side without the razor blade, and the stress when compressed 5 mm The stress at the time of cutting (shear stress) was used as the index of "hardness" and the index of "easiness of biting".
Twelve 1 cm square pieces were measured for each sample, and the average value of 10 excluding the maximum value and the minimum value was used as the measured value of the sample. The above operation was repeated 3 times per treatment, and the average value and standard deviation were obtained.

1−2. 試験結果・考察
1−2−a 遊離アミノ酸濃度
図31に、従来法および例1〜3の加工処理を行った試料の遊離アミノ酸濃度を示す。
従来法および例1〜3では、処理前の生肉よりも遊離アミノ酸濃度が上昇しており、例1〜3は、従来法よりも処理時間が大幅に短いにも関わらず、遊離アミノ酸濃度が従来法よりも高かった。
また、例1〜3の中では、処理温度の最も高い例3が最も遊離アミノ酸濃度が高かった。従って、加熱・高圧処理を利用した例1〜3では、従来法よりも短時間で旨味成分を増やすことができ、処理温度は55℃が最も旨味成分が増加すると考えられる。
1-2. Test Result / Discussion 1-2-a Free Amino Acid Concentration FIG. 31 shows the free amino acid concentration of the sample subjected to the conventional method and the processing of Examples 1 to 3.
In the conventional method and Examples 1 to 3, the free amino acid concentration was higher than that of the raw meat before the treatment, and in Examples 1 to 3, the free amino acid concentration was higher than that of the conventional method in spite of the significantly shorter treatment time. It was higher than the law.
In addition, among Examples 1 to 3, Example 3 having the highest treatment temperature had the highest free amino acid concentration. Therefore, in Examples 1 to 3 using the heating / high pressure treatment, it is considered that the umami component can be increased in a shorter time than the conventional method, and the umami component is most increased at the treatment temperature of 55 ° C.

1−2−b グルコース濃度
図32に、従来法および例1〜3の加工処理を行った試料のグルコース濃度を示す。
従来法および例1〜3では、処理前の生肉よりもグルコース濃度が上昇しており、例1〜3は、従来法よりも処理時間が大幅に短いにも関わらず、グルコース濃度が従来法とおおよそ同じ程度になっていた。また、例1〜3の中では、処理温度の最も高い例3が最もグルコース濃度が高かった。従って、加熱・高圧処理を利用した例1〜3では、従来法よりも短時間で調味液中のグルコース濃度を上昇させることができると考えられる。
1-2-b Glucose Concentration FIG. 32 shows the glucose concentration of the sample subjected to the conventional method and the processing of Examples 1 to 3.
In the conventional method and Examples 1 to 3, the glucose concentration is higher than that of the raw meat before the treatment, and in Examples 1 to 3, the glucose concentration is the same as that of the conventional method, although the treatment time is significantly shorter than that of the conventional method. It was about the same. In addition, among Examples 1 to 3, Example 3 having the highest treatment temperature had the highest glucose concentration. Therefore, it is considered that in Examples 1 to 3 using the heating and high pressure treatment, the glucose concentration in the seasoning liquid can be increased in a shorter time than the conventional method.

1−2−c 処理温度による加熱後の硬さの変化
図33に、従来法および例1〜4の加工処理を行った試料の、加熱後の硬さを示す。
従来法は無処理とほぼ同じ硬さであったが、例1〜3は無処理よりも柔らかくなっていた。また、例1〜3の中では、例2、例3が最も柔らかくなり、無処理のおおよそ半分の硬さになった。さらに、加熱して味噌の酵素を失活させた例4は、例2と同じ加工処理を行ったにもかかわらず、無処理とほぼ同じ硬さであった。したがって、例1〜3において加熱後の肉が柔らかくなったのは、調味液に含まれる酵素と加工処理(加熱・高圧処理)の相乗効果によるものと考えられる。
1-2-c Change in Hardness after Heating with Treatment Temperature FIG. 33 shows the hardness after heating of the samples that were subjected to the conventional method and the processing of Examples 1 to 4.
The conventional method had almost the same hardness as the untreated, but Examples 1 to 3 were softer than the untreated. Further, among Examples 1 to 3, Examples 2 and 3 were the softest, and the hardness was about half that of the untreated one. Further, Example 4 in which the enzyme of miso was inactivated by heating had almost the same hardness as the untreated one, although the same processing as in Example 2 was performed. Therefore, in Examples 1 to 3, the softened meat after heating is considered to be due to the synergistic effect of the enzyme contained in the seasoning liquid and the processing (heating / high pressure processing).

1−2−d 処理温度による加熱後の噛み切りやすさの変化
図34に、従来法および例1〜4の加工処理を行った試料の、加熱後の噛み切りやすさを示す。
従来法および例2、例3は、無処理よりも噛み切りやすくなっており、例2、例3は、従来法よりも処理時間が大幅に短いにも関わらず、従来法よりも噛み切りやすくなっていた。一方、例1は無処理とほぼ同じであったことから、加熱・高圧処理を利用して加熱後の肉を噛み切りやすくするには、35℃より高い温度で処理する必要があると考えられる。また、例4は無処理と噛み切りやすさに有意な差がなかったことから、加熱後の肉を噛み切りやすくするには、調味液に含まれる酵素が必要であると考えられる。
1-2-d Change in ease of biting after heating depending on treatment temperature FIG. 34 shows the ease of biting after heating of the samples subjected to the conventional method and the processing treatments of Examples 1 to 4.
The conventional method and the examples 2 and 3 are easier to bite than the non-treatment, and the examples 2 and 3 are easier to bite than the conventional method in spite of the significantly shorter processing time than the conventional method. Was becoming. On the other hand, since Example 1 was almost the same as untreated, it is considered that it is necessary to treat at a temperature higher than 35 ° C. in order to easily bite the meat after heating by utilizing the heating / high pressure treatment. . Further, in Example 4, there was no significant difference between the untreated and the bite-easiness, so that it is considered that the enzyme contained in the seasoning liquid is necessary for making the meat after the biting easy.

1−2−e 処理時間の違いによる加熱後の噛み切りやすさの変化
図35に、従来法、例2、例5の加工処理を行った試料の加熱後の噛み切りやすさを示す。
100 MPa、45℃の加熱・高圧処理を1時間行った例5は、従来法よりは劣るものの、無処理よりも噛み切りやすくなっていた。従って、加熱後の肉を噛み切りやすくするには、100 MPa、45℃という処理条件の場合、加熱・高圧処理を1時間以上行えば良いと考えられる。
1-2-e Change in ease of biting after heating due to difference in treatment time FIG. 35 shows the ease of biting after heating of the samples processed by the conventional method, Example 2 and Example 5.
Example 5 in which heating at 100 MPa and 45 ° C. and high-pressure treatment for 1 hour was performed was inferior to the conventional method, but was easier to bite than the non-treatment. Therefore, in order to make it easier to bite off the meat after heating, it is considered that under the processing conditions of 100 MPa and 45 ° C., heating and high-pressure treatment should be performed for 1 hour or more.

1−2−f 調味液の違いによる加熱後の噛み切りやすさの変化
図36に、例2、例6、例7の加工処理を行った試料の、加熱後の噛み切りやすさを示す。
調味液に酒粕液を用いた例6、塩麹を用いた例7ともに、調味液に味噌液を用いた例2とほぼ同じ程度の噛み切りやすさになっていた。従って、本発明は味噌漬に限定されるものではなく、酒粕漬や塩麹漬など、酵素を含む調味液に畜肉を漬ける食品全般に利用できる技術と考えられる。
1-2-f Change in ease of biting after heating due to difference in seasoning liquid FIG. 36 shows the ease of biting after heating of the samples subjected to the processing treatments of Example 2, Example 6 and Example 7.
In both Example 6 using sake lees liquid as the seasoning liquid and Example 7 using salted koji, the bite was about the same as in Example 2 using the miso liquid as the seasoning liquid. Therefore, the present invention is not limited to miso pickles, but is considered to be a technology that can be used for all foods in which livestock meat is soaked in a seasoning solution containing an enzyme, such as sake lees pickles and salt koji pickles.

1−2−g 殺菌効果
表24で示す通り、本発明で行った豚肉の味噌漬は、殺菌効果が向上した。
1-2 g Bactericidal effect As shown in Table 24, the pork miso pickle according to the present invention has an improved bactericidal effect.

2.牛肉の漬物
2−1 実験方法
2−1−a 試料の調整
加工処理に先立ち、約1cm厚にスライスしたホルスタインの外モモ肉の両面に、味噌調味液(味噌78%、砂糖11%、みりん11%)を肉の2/3重量塗り、ポリエチレン製の袋に入れ、脱気包装機を用いて、脱気度99%の脱気包装を行った。
2. Pickles of beef 2-1 Experimental method 2-1-a Preparation of sample Miso seasoning liquid (miso 78%, sugar 11%, mirin 11) %) Of the meat was applied, put in a polyethylene bag, and deaerated with a deaeration degree of 99% using a deaeration packaging machine.

ここでは、牛肉の厚さを1cm、調味液の量を畜肉の2/3重量としたが、本発明はこの牛肉の厚さ、調味液の量に限定されるものではなく、脱気包装の真空度も、袋内の空気が十分に取り除かれるのであれば、任意の真空度でよい。   Here, the thickness of the beef is 1 cm and the amount of the seasoning liquid is 2/3 weight of the livestock meat, but the present invention is not limited to the thickness of the beef and the amount of the seasoning liquid, and the deaeration packaging The vacuum degree may be any vacuum degree as long as the air in the bag is sufficiently removed.

2−1−b 加工処理
脱気包装した試料に対して、下記表23に示す加工処理を行った。従来法では、調味液に味噌液を用いて、冷蔵庫内(常圧、4℃)にて72時間保管した。例1〜3では、100MPaの加熱・高圧処理を、全ての例で処理温度を45℃にし、処理時間をそれぞれ4、8、16時間で行った。
加熱・高圧処理は、(株)東洋高圧製「まるごとエキスTFS-20」を用いて行った。
2-1-b Processing The processing shown in Table 23 below was performed on the degassed and packed samples. In the conventional method, miso liquid was used as the seasoning liquid and stored in a refrigerator (normal pressure, 4 ° C.) for 72 hours. In Examples 1 to 3, the heating / high pressure treatment at 100 MPa was performed at the treatment temperature of 45 ° C. and the treatment time of 4, 8 and 16 hours in all the examples.
The heating and high pressure treatment were performed using "Marugoto Extract TFS-20" manufactured by Toyo High Pressure Co., Ltd.

Figure 2020062040
Figure 2020062040

2−1−c 呈味成分の測定
従来法および例1〜3の加工処理を行った試料を用いて、呈味成分として遊離アミノ酸濃度およびグルコース濃度を測定した。
具体的には、各処理後の肉をホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。タンパク質分解物(遊離アミノ酸およびペプチド)の指標として、トリクロロ酢酸抽出液中の窒素量をケルダール法で測定した。また、定容した液のグルコース濃度を、和光純薬工業(株)製グルコースCIIテストを用いて測定し、元の試料に含まれるグルコース濃度に換算した。1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。
2-1-c Measurement of taste component Using the conventional method and the samples processed in Examples 1 to 3, free amino acid concentration and glucose concentration were measured as taste components.
Specifically, after homogenizing the meat after each treatment, 5 ml of an 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, and the mixture was vigorously shaken, filtered and clarified to a volume of 50 ml. The amount of nitrogen in the trichloroacetic acid extract was measured by the Kjeldahl method as an index of protein degradation products (free amino acids and peptides). Further, the glucose concentration of the constant-volume solution was measured using a glucose CII test manufactured by Wako Pure Chemical Industries, Ltd., and converted into the glucose concentration contained in the original sample. Each treatment was repeated 3 times, and the average value and standard deviation were obtained.

2−1−d 食感分析
従来法および例1〜3の加工処理を行った試料を用いて、食感の目安として「硬さ」と「噛み切りやすさ」を測定した。
具体的には、各処理を行った肉から調味液を取り除き、肉表面の水分をペーパータオルでふき取った後、試料を新しいプラスチック袋に入れて脱気包装(真空度99%)した。
包装した試料を70℃で1時間湯煎した後、流水で30分間冷却し、カミソリを用いて肉をおおよそ1cm角に切断した。切断した試料を、レオメーター(株)サン科学製CR-500DX)を用いて、カミソリの刃の付いていない側で、筋線維に対して垂直方向に9mm圧縮し、5mm圧縮したときの応力を「硬さ」の指標に、切断したときの応力(せん断応力)を「噛み切りやすさ」の指標にした。
1試料あたり1cm角切片を12個測定し、最大値と最小値を除いた10個の平均値をその試料の測定値とした。以上の操作を1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。
2-1-Determination of Texture Using samples processed by the conventional method and the processing of Examples 1 to 3, "hardness" and "ease of biting" were measured as a measure of texture.
Specifically, the seasoning liquid was removed from the treated meat, water on the surface of the meat was wiped off with a paper towel, and the sample was put in a new plastic bag and degassed (vacuum degree 99%).
The packed sample was roasted at 70 ° C. for 1 hour, then cooled with running water for 30 minutes, and the meat was cut into pieces of about 1 cm square using a razor. Using a rheometer (San Kagaku CR-500DX), the cut sample was compressed 9 mm in the direction perpendicular to the muscle fibers on the side without the razor blade, and the stress when compressed 5 mm The stress at the time of cutting (shear stress) was used as the index of "hardness" and the index of "easiness of biting".
Twelve 1 cm square pieces were measured for each sample, and the average value of 10 excluding the maximum value and the minimum value was used as the measured value of the sample. The above operation was repeated 3 times per treatment, and the average value and standard deviation were obtained.

2−2. 試験結果・考察
2−2−a 酸可溶性窒素(遊離アミノ酸およびペプチド)濃度
図37に、従来法および例1〜3の加工処理を行った試料の酸可溶性窒素濃度を示す。
従来法および例1〜3では、処理前の生肉よりも酸可溶性窒素濃度が上昇しており、例1〜3は、従来法よりも処理時間が大幅に短いにも関わらず、酸可溶性窒素濃度が従来法よりも高かった。
また、例1〜3の中では、処理時間の最も長い例3が最も酸可溶性窒素濃度が高かった。従って、加熱・高圧処理を利用した例1〜3では、従来法よりも短時間で旨味成分を増やすことができ、処理時間は16時間が最も旨味成分が増加すると考えられる。
2-2. Test Results / Discussion 2-2-a Acid-Soluble Nitrogen (Free Amino Acid and Peptide) Concentration FIG. 37 shows the acid-soluble nitrogen concentration of the sample subjected to the conventional method and the processing of Examples 1 to 3.
In the conventional method and Examples 1 to 3, the acid-soluble nitrogen concentration was higher than that of the raw meat before the treatment, and in Examples 1 to 3, the acid-soluble nitrogen concentration was significantly shorter than the conventional method. Was higher than the conventional method.
In addition, among Examples 1 to 3, Example 3 having the longest treatment time had the highest acid-soluble nitrogen concentration. Therefore, in Examples 1 to 3 using the heating / high pressure treatment, it is considered that the umami component can be increased in a shorter time than the conventional method, and the umami component is increased most for 16 hours.

2−2−b グルコース濃度
図38に、従来法および例1〜3の加工処理を行った試料のグルコース濃度を示す。
従来法および例2〜3では、処理前の生肉よりもグルコース濃度が上昇しており、例2〜3は、従来法よりも処理時間が大幅に短いにも関わらず、グルコース濃度が従来法とおおよそ同じ程度になっていた。また、例1〜3の中では、処理温度の最も高い例3の処理時間16時間が最もグルコース濃度が高かった。従って、加熱・高圧処理を利用した例2〜3では、従来法よりも短時間で調味液中のグルコース濃度を上昇させることができると考えられる。
2-2-b Glucose Concentration FIG. 38 shows the glucose concentration of the sample subjected to the conventional method and the processing of Examples 1 to 3.
In the conventional method and Examples 2-3, the glucose concentration is higher than that of the raw meat before the treatment, and in Examples 2-3, the glucose concentration is the same as that of the conventional method, although the treatment time is significantly shorter than that of the conventional method. It was about the same. Further, among Examples 1 to 3, the glucose concentration was highest in Example 3 having the highest treatment temperature for 16 hours. Therefore, it is considered that in Examples 2 to 3 using the heating and high pressure treatment, the glucose concentration in the seasoning liquid can be increased in a shorter time than the conventional method.

2−2−c 処理温度による加熱後の硬さの変化
図39に、従来法および例1〜3の加工処理を行った試料の、加熱後の硬さを示す。
従来法は無処理とほぼ同じ硬さであったが、例1〜3は無処理よりも柔らかくなっていた。また、例1〜3の中では、例3が最も柔らかくなり、無処理のおおよそ2/3の硬さになった。
従って、加熱後の肉を噛み切りやすくするには、100 MPa、45℃という処理条件の場合、加熱・高圧処理を16時間行えば良いと考えられる。
2-2-c Change in Hardness after Heating with Treatment Temperature FIG. 39 shows the hardness after heating of the samples subjected to the conventional method and the processing of Examples 1 to 3.
The conventional method had almost the same hardness as the untreated, but Examples 1 to 3 were softer than the untreated. In addition, among Examples 1 to 3, Example 3 was the softest, and the hardness was about 2/3 of the untreated one.
Therefore, in order to make it easier to bite off the meat after heating, it is considered that the heating and high-pressure treatment should be performed for 16 hours under the treatment conditions of 100 MPa and 45 ° C.

2−2−d 殺菌効果
表24で示す通り、本発明で行った牛肉の味噌漬は、殺菌効果が向上した。
2-2-d Bactericidal effect As shown in Table 24, the beef miso pickle according to the present invention had an improved bactericidal effect.

3.100MPa以上の処理での効果
前記段落(0086)以降に記載した畜肉の漬物の製法を高圧処理条件の圧力条件のみ100〜300MPa範囲で変えて検討したところ、表24に示す結果となり、本発明が100〜300MPaの圧力範囲でも有効であることを確認した。
3. Effect of treatment at 100 MPa or more When the production method of livestock pickles described in the paragraph (0086) and subsequent paragraphs was examined by changing only the pressure condition of the high pressure treatment condition within the range of 100 to 300 MPa, the results shown in Table 24 were obtained, and It was confirmed that the invention is effective even in the pressure range of 100 to 300 MPa.

Figure 2020062040
Figure 2020062040

豆腐の漬物
1. 実験方法
1−1 試料の調整
加工処理に先立ち、石川県特産の堅豆腐を1cmまたは5cmの厚さにスライスし、ガーゼで包んだ後、堅豆腐の全面に、下記表25に示す調味液を堅豆腐の1/2重量塗り、ポリエチレン製の袋に入れ、脱気包装機を用いて、真空度99%の脱気包装を行った。
ここでは、堅豆腐の厚さを1cmまたは5cmに、調味液の量を堅豆腐の1/2重量としたが、本発明はこの堅豆腐の厚さ、調味液の量に限定されるものではなく、脱気包装の真空度も、袋内の空気が十分に取り除かれるのであれば、任意の真空度でよい。
Pickled tofu 1. Experimental method 1-1 Preparation of samples Prior to processing, sliced Kentofu, a specialty of Ishikawa Prefecture, to a thickness of 1 cm or 5 cm, wrapped in gauze, and then placed on the entire surface of the hardened tofu, Table 25 below. The seasoning liquid shown in (1) was applied to 1/2 weight of hard tofu, put in a polyethylene bag, and deaerated with a vacuum degree of 99% using a deaeration packaging machine.
Here, the thickness of the hard bean curd is set to 1 cm or 5 cm, and the amount of the seasoning liquid is set to 1/2 weight of the hard bean curd, but the present invention is not limited to the thickness of the hard bean curd and the amount of the seasoning liquid. Also, the vacuum degree of the deaeration packaging may be any vacuum degree as long as the air in the bag is sufficiently removed.

Figure 2020062040
Figure 2020062040

1−2 加工処理
脱気包装した試料に対して、下記表26に示す加工処理を行った。従来法では、堅豆腐を5cm厚にスライスし、調味液に酒粕液を用いて、冷蔵庫内(常圧、4℃)にて9ヶ月間保管した。
1-2 Processing The processing shown in Table 26 below was performed on the degassed and packed sample. In the conventional method, hard tofu was sliced into a thickness of 5 cm, and sake cake liquid was used as a seasoning liquid and stored in a refrigerator (normal pressure, 4 ° C.) for 9 months.

Figure 2020062040
Figure 2020062040

例1では、堅豆腐を1cm厚にスライスし、調味液に酒粕液を用いて、100MPa、45℃の加熱・高圧処理を90時間行った。
例2では、堅豆腐を5cm厚にスライスし、調味液に酒粕液を用いて、前処理として冷蔵庫内(常圧、4℃)にて1週間保管した後、100MPa、45℃の加熱・高圧処理を16時間行った。
In Example 1, hard tofu was sliced to a thickness of 1 cm, and sake cake liquid was used as a seasoning liquid, and heating / high pressure treatment at 100 MPa and 45 ° C. was performed for 90 hours.
In Example 2, Kentofu was sliced to a thickness of 5 cm, and the sake lees solution was used as a seasoning solution, which was stored as a pretreatment in a refrigerator (normal pressure, 4 ° C) for 1 week, and then heated at 100 MPa and 45 ° C under high pressure. The treatment was carried out for 16 hours.

前処理は、堅豆腐の表面と内部の成分のバラつきを抑えるための工程であり、加熱・高圧処理の前に冷蔵保管することにより、あらかじめ豆腐の内部に調味液の成分・酵素を染み込ませるために行う。ここでは、脱気包装した試料を用いて前処理を行ったが、樽やトレイなどを用いて大量の豆腐を一度に調味液に漬けこみ、冷蔵保管した後、豆腐を取り出し、個別に脱気包装してから加熱・高圧処理を行っても良い。   The pre-treatment is a process to prevent variations in the components inside and outside the hard bean curd, and by refrigerating before heating and high-pressure treatment, the components of the seasoning liquid and enzymes are pre-impregnated into the tofu. To do. Here, pretreatment was performed using degassed and packed samples, but a large amount of tofu was soaked in the seasoning liquid at one time using a barrel or tray, and stored in the refrigerator, and then the tofu was taken out and degassed individually. You may heat and high-pressure process after packing.

例3では、調味液の染込みを良くするために堅豆腐を1cm厚にスライスし、調味液に酒粕液を用いて、100MPa、45℃の加熱・高圧処理を16時間行った。
例4では、堅豆腐を1cm厚にスライスし、調味液に味噌液を用いて、100MPa、45℃の加熱・高圧処理を16時間行った。
例5では、堅豆腐を1cm厚にスライスし、調味液に塩麹液を用いて、100MPa、45℃の加熱・高圧処理を16時間行った。加熱・高圧処理は、(株)東洋高圧製「まるごとエキスTFS-20」を用いて行った。
In Example 3, hard tofu was sliced to a thickness of 1 cm in order to improve the dyeing of the seasoning liquid, and the sake lees solution was used as the seasoning liquid, and heating / high pressure treatment at 100 MPa and 45 ° C. was performed for 16 hours.
In Example 4, Kentofu was sliced to a thickness of 1 cm, and miso liquid was used as a seasoning liquid, and heating and high pressure treatment at 100 MPa and 45 ° C. were performed for 16 hours.
In Example 5, Kentofu was sliced to a thickness of 1 cm, and salt koji liquid was used as a seasoning liquid, and heating and high pressure treatment at 100 MPa and 45 ° C. were performed for 16 hours. The heating and high pressure treatment were performed using "Marugoto Extract TFS-20" manufactured by Toyo High Pressure Co., Ltd.

1−3 呈味成分の測定
従来法および例1〜3の加工処理を行った試料を用いて、呈味成分として遊離アミノ酸濃度を測定した。具体的には、各処理後の試料からガーゼごと調味液を取り除き、豆腐の表層1cmを切り取ったものを「表層」、残った部分を「内部」として別々にサンプリングした。
例3〜5は全体を表層としてサンプリングした。サンプリングした表層と内部を別々にホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。定容した液に含まれる主要なアミノ酸20種の合計濃度を測定し、元の試料に含まれる遊離アミノ酸濃度に換算した。アミノ酸は日立高速アミノ酸分析計L−8900を用いて測定した。従来法は1反復のみ、例1〜3は3反復ずつ行い、平均値と標準偏差を求めた。
1-3 Measurement of taste component Using the samples subjected to the conventional method and the processing of Examples 1 to 3, the free amino acid concentration was measured as a taste component. Specifically, the seasoning liquid was removed together with the gauze from the sample after each treatment, and 1 cm of the surface layer of the tofu was cut off to sample the surface layer and the remaining portion to the inside, respectively.
In Examples 3 to 5, the entire surface was sampled as a surface layer. After homogenizing the sampled surface layer and the inside separately, 5 ml of a 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, and the mixture was vigorously shaken, filtered, and clarified to a volume of 50 ml. The total concentration of 20 major amino acids contained in the fixed volume solution was measured and converted into the concentration of free amino acid contained in the original sample. Amino acids were measured using Hitachi High Speed Amino Acid Analyzer L-8900. The conventional method was repeated only once, and Examples 1 to 3 were repeated three times, and the average value and standard deviation were obtained.

1−4 食感分析
従来法および例1〜5の加工処理を行った試料を用いて、試料表面の硬さを測定し、食感の目安とした。
具体的には、各処理後の試料からガーゼごと調味液を取り除き、試料の表層1cmを切り取った。切り取った試料をさらに1cm角に切断し、レオメーター(株)サン科学製CR-500DX)を用いて、直径10mmの円柱プランジャーで、堅豆腐の表層から内部に向かう方向に9mm圧縮し、最大応力を硬さの指標にした。1試料あたり1cm角切片を10個測定し、平均値をその試料の測定値とした。以上の操作を従来法は1反復のみ、例1〜5は3反復ずつ行い、平均値と標準偏差を求めた。
1-4 Texture analysis The hardness of the sample surface was measured using the samples subjected to the conventional method and the processing of Examples 1 to 5 and used as a measure of the texture.
Specifically, the seasoning liquid was removed together with the gauze from the sample after each treatment, and 1 cm of the surface layer of the sample was cut off. The cut sample was further cut into 1 cm square pieces, and using a rheometer (Sun Science Co., Ltd. CR-500DX), a cylindrical plunger with a diameter of 10 mm was used to compress the sample from the surface layer of hard tofu to 9 mm inward, Stress was used as an index of hardness. Ten 1 cm square pieces were measured for each sample, and the average value was used as the measured value of the sample. The above operation was repeated only once in the conventional method and three times in each of Examples 1 to 5, and the average value and the standard deviation were obtained.

2 試験結果・考察
2−1 遊離アミノ酸濃度
図40に、従来法および例1〜3の加工処理を行った試料の遊離アミノ酸濃度を示す。
従来法では、1週間冷蔵保管したものは表層が約1000mg/100g、内部が約900mg/100g、1カ月間冷蔵保管したものは表層が約1600mg/100g、内部が約1400mg/100g、9カ月間冷蔵保管したものは表層、内部ともに約3000mg/100gになり、冷蔵保管する期間が長くなるほど遊離アミノ酸濃度が上昇した。
2 Test Results / Discussion 2-1 Free Amino Acid Concentration FIG. 40 shows the free amino acid concentration of the sample subjected to the conventional method and the processing of Examples 1 to 3.
In the conventional method, the surface layer is about 1000 mg / 100 g for the one that is refrigerated for one week, about 900 mg / 100 g for the inside for one month, and the surface layer is about 1600 mg / 100 g for the one month that is refrigerated and stored for about 1400 mg / 100 g for the nine months. The product stored in the refrigeration had a surface layer and an internal content of about 3000 mg / 100 g, and the free amino acid concentration increased as the refrigerated storage period became longer.

これに対して、例1は、表層が約2500mg/100g、内部が約1600mg/100gになり、90時間という短い処理時間でありながら、1カ月間冷蔵保管したものよりも表層、内部ともに遊離アミノ酸濃度が高くなった。
例2は表層が約1500mg/100g、内部が約1000mg/100gとなり、表層は1カ月間冷蔵保管したものと、内部は1週間冷蔵保管したものとほぼ同じになった。
例3は約1500mg/100gとなり、16時間という短い処理時間でありながら、1カ月間冷蔵保管したものとほぼ同じになった。
以上の結果から、加熱・高圧処理を用いることにより、数日間(16〜90時間)の加工処理で、従来法で1カ月以上かけて製造したものと同等の遊離アミノ酸濃度にすることができると考えられる。
On the other hand, in Example 1, the surface layer had about 2500 mg / 100 g and the inside had about 1600 mg / 100 g, and although the treatment time was as short as 90 hours, both the surface layer and the inside had free amino acids more than those stored in the refrigerator for 1 month. The concentration has increased.
In Example 2, the surface layer was about 1500 mg / 100 g and the inside was about 1000 mg / 100 g, and the surface layer was almost the same as that stored for one month in a refrigerator and the inside stored for one week in a refrigerator.
In Example 3, the amount was about 1500 mg / 100 g, which was almost the same as that stored in the refrigerator for 1 month, though the processing time was as short as 16 hours.
From the above results, it is possible to achieve the same free amino acid concentration as that produced by the conventional method over one month by processing for several days (16 to 90 hours) by using heating and high pressure treatment. Conceivable.

2−2 処理方法による硬さの違い
図41に、従来法および例1〜3の加工処理を行った試料の硬さを示す。
従来法では、1週間冷蔵保管したものは処理前よりもやや硬くなっていた。これは、調味液の浸透圧により堅豆腐の水分が抜け、組織が締まったからと考えられた。
1ヶ月冷蔵保管したものは、処理前よりもやや柔らかくなっていたが、官能評価ではほとんど区別することができない程度の差であった。
9カ月冷蔵保管したものは、処理前よりも非常に柔らかく、舌でつぶせる程度の硬さ(1×10N/m以下)になっており、食べるとクリームチーズのような食感になっていた。
2-2 Difference in Hardness Depending on Treatment Method FIG. 41 shows the hardness of the sample subjected to the conventional method and the processing treatments of Examples 1 to 3.
According to the conventional method, the one refrigerated for one week was slightly harder than that before the treatment. It was considered that this was because the water of the hard bean curd was removed by the osmotic pressure of the seasoning liquid and the tissue was tightened.
The product stored in the refrigerator for one month was slightly softer than that before the treatment, but the difference was such that it could hardly be distinguished by the sensory evaluation.
The product stored in the refrigerator for 9 months is much softer than before processing and has a hardness that can be crushed by the tongue (1 × 10 4 N / m 2 or less), and when eaten, it has a texture like cream cheese. Was there.

これに対して、例1は、90時間という短い処理時間でありながら、従来法で9カ月間冷蔵保管したものと同じく、舌でつぶせる程度の硬さになっており、食べるとクリームチーズのような食感になっていた。
例2、例3は、例1よりはやや硬いが、歯ぐきでつぶせる程度の硬さ(5×10N/m以下)になっており、食べると、処理前と比較して明らかに柔らかく、チーズのような食感になっていた。
On the other hand, Example 1 has a processing time as short as 90 hours, but has a hardness that can be crushed by the tongue, like a cheese stored in the conventional method for 9 months, and when eaten, it looks like cream cheese. It had a nice texture.
Examples 2 and 3 are slightly harder than Example 1, but have hardness (5 × 10 4 N / m 2 or less) that can be crushed with gums, and when eaten, they are obviously softer than before treatment. It had a cheese-like texture.

2−3 調味液の検証
図42に、例3〜5の加工処理を行った試料の硬さを示す。
調味液に味噌液を用いた例4、塩麹を用いた例5ともに、調味液に酒粕液を用いた例3とほぼ同じ程度の硬さになっていた。
従って、本発明は酒粕漬に限定されるものではなく、味噌漬や塩麹漬など、酵素を含む調味液に豆腐を漬ける食品全般に利用できる技術と考えられる。
2-3 Verification of seasoning liquid Fig. 42 shows the hardness of the samples subjected to the processing of Examples 3 to 5.
In both Example 4 in which the miso liquid was used as the seasoning liquid and Example 5 in which the salted koji was used, the hardness was about the same as in Example 3 in which the sake cake liquid was used as the seasoning liquid.
Therefore, the present invention is not limited to sake lees pickling, but is considered to be a technique that can be used for all foods in which tofu is dipped in a seasoning liquid containing an enzyme, such as miso pickles and salt koji pickles.

2−4 殺菌効果
表27で示す通り、本発明で行った豆腐の漬物は、殺菌効果が向上した。
2-4 Sterilization effect As shown in Table 27, the pickled tofu prepared in the present invention has improved sterilization effect.

3.100MPa以上の処理での効果
前記段落(0112)以降に記載した豆腐の漬物の製法を高圧処理条件の圧力条件のみ100〜300MPa範囲で変えて検討したところ、表27に示す結果となり、本発明が100〜300MPaの圧力範囲でも有効であることを確認した。
3. Effect of treatment at 100 MPa or more When the manufacturing method of the tofu pickles described in the paragraph (0112) and subsequent paragraphs was examined by changing only the pressure condition of the high pressure treatment condition within the range of 100 to 300 MPa, the results shown in Table 27 were obtained. It was confirmed that the invention is effective even in the pressure range of 100 to 300 MPa.

Figure 2020062040
Figure 2020062040

キノコ加工品
1. 実験方法
1−1 試料の調整
加工処理に先立ち、軸を取り除いた生シイタケと、生シイタケの30%重量の調味液(醤油とバターを1:2の割合で混ぜ合わせたもの)をポリエチレン製の袋に入れ、脱気包装機を用いて、真空度99%の脱気包装を行った。
ここでは、シイタケは傘部分をまるごと使用し、調味液の量はシイタケの30%としたが、本発明はこのシイタケの形状、調味液の量に限定されるものではなく、脱気包装の真空度も、袋内の空気が十分に取り除かれるのであれば、任意の真空度でよい。
Mushroom processed products 1. Experimental method 1-1 Preparation of samples Prior to processing, raw shiitake mushrooms with their axes removed and 30% by weight seasoning liquid of fresh shiitake mushrooms (mixed soy sauce and butter in a ratio of 1: 2) It was placed in a polyethylene bag and degassed with a vacuum degree of 99% using a degassing packaging machine.
Here, the whole part of shiitake is used and the amount of seasoning liquid is 30% of that of shiitake mushroom, but the present invention is not limited to the shape of shiitake and the amount of seasoning liquid. The vacuum degree may be any vacuum degree as long as the air in the bag is sufficiently removed.

1−2 加工処理
脱気包装した試料に対して、下記表28に示す加工処理を行った。
従来法1では、ボイル殺菌として、0.1MPa、98℃で10分間の加熱処理を行った。
従来法2では、レトルト殺菌として、0.2MPa、121℃で20分間の加熱処理を行った。
従来法3では、加熱殺菌として、0.1MPa、70℃で30分間の加熱処理を行った。
本特許を利用した実施例では、加熱・高圧殺菌として、100MPa、70℃で30分間の加熱処理を行った。加熱・高圧処理は、(株)東洋高圧製「まるごとエキスTFS-20」を用いて行った。
1-2 Processing The processing shown in Table 28 below was performed on the degassed and packed sample.
In the conventional method 1, as boil sterilization, heat treatment was performed at 0.1 MPa and 98 ° C. for 10 minutes.
In the conventional method 2, as retort sterilization, a heat treatment was performed at 0.2 MPa and 121 ° C. for 20 minutes.
In Conventional Method 3, as heat sterilization, heat treatment was performed at 0.1 MPa and 70 ° C. for 30 minutes.
In the examples utilizing the present patent, heat treatment at 100 MPa and 70 ° C. for 30 minutes was performed as heating and high-pressure sterilization. The heating and high pressure treatment were performed using "Marugoto Extract TFS-20" manufactured by Toyo High Pressure Co., Ltd.

Figure 2020062040
Figure 2020062040

1−3 グアニル酸の測定
従来法1〜3および実施例の加工処理を行った試料を用いて、キノコの旨味成分であるグアニル酸の濃度を測定した。具体的には次のような方法で行った。
各処理後の試料から調味液を拭き取り、試料と同重量の蒸留水を加えてホモジナイズした後、遠心分離(3000rpm、10分間)を行い、上清を回収した。上清を孔径0.45μmのフィルタでろ過し、高速液体クロマトグラフィーで分析した。高速液体クロマトグラフィーは下記表29の条件で行った。標品には和光純薬工業(株)製のグアニル酸(グアノシン1リン酸)を使用した。
1-3 Measurement of guanylic acid The concentration of guanylic acid, which is the umami component of mushrooms, was measured using the samples that were processed according to the conventional methods 1 to 3 and the examples. Specifically, the method was as follows.
The seasoning liquid was wiped from the sample after each treatment, distilled water of the same weight as the sample was added to homogenize, and then centrifugation (3000 rpm, 10 minutes) was performed to collect the supernatant. The supernatant was filtered with a filter having a pore size of 0.45 μm and analyzed by high performance liquid chromatography. High performance liquid chromatography was performed under the conditions shown in Table 29 below. Guanyl acid (guanosine monophosphate) manufactured by Wako Pure Chemical Industries, Ltd. was used as a standard.

Figure 2020062040
Figure 2020062040

1−4 塩分分析
従来法1〜3および実施例の加工処理を行った試料を用いて、呈味成分として塩分を測定した。具体的には上記グアニル酸測定用の上清に含まれるナトリウム量を、原子吸光法により測定し、元の試料に含まれる塩化ナトリウム濃度に換算した。
1-4 Salinity Analysis Using the samples processed by the conventional methods 1 to 3 and the example, the salt content was measured as a taste component. Specifically, the amount of sodium contained in the supernatant for measuring guanylic acid was measured by an atomic absorption method and converted into the concentration of sodium chloride contained in the original sample.

1.5 食感分析
従来法1〜3および実施例の加工処理を行った試料を用いて、傘部分の硬さを春日ら(日本調理学会誌34、pp348-355、2000年)の方法を用いて測定した。すなわち、レオメーター(株)サン科学製CR-500DX)を用いて、直径1mmの円柱プランジャーで、傘部分の軸から5mm離れた箇所を、ヒダのある方向から圧縮し、貫入したときの応力を求めた。1試料あたり4か所測定し、平均値をその試料の測定値とした。1処理あたり5反復ずつ行い、平均値と標準偏差を求めた。
1.5 Texture analysis The hardness of the umbrella portion is determined by the method of Kasuga et al. (Journal of the Japanese Cooking Society 34, pp348-355, 2000) using the samples processed by the conventional methods 1 to 3 and the example. It was measured using. That is, using a rheometer (San Kagaku CR-500DX), a columnar plunger with a diameter of 1 mm was used to compress the part 5 mm away from the axis of the umbrella part from the direction of the folds, and the stress when penetrating I asked. It measured at 4 places per sample, and made the average value the measured value of the sample. Each treatment was repeated 5 times, and the average value and standard deviation were obtained.

2 試験結果・考察
2−1 グアニル酸の生成機構
グアニル酸はキノコに含まれる代表的な旨味物質である。図43にグアニル酸の生成および分解の模式図を示す。
グアニル酸は、細胞の核に含まれる核酸(RNA)が酵素(リボヌクレアーゼ)により分解されることで生成される。そのため、キノコの細胞が損傷を受けると、細胞核に存在する核酸が、細胞質中に存在するリボヌクレアーゼにより分解されやすくなるため、グアニル酸が生成されやすくなる。
干シイタケは、乾燥により細胞が損傷を受けているため、旨味成分のグアニル酸が生シイタケよりも増えやすく、古くからダシの材料として利用されている。グアニル酸はホスファターゼにより分解されると無味のグアノシンに変化する。グアニル酸を生成するリボヌクレアーゼは65〜70℃で活性が高く、グアニル酸を分解するホスファターゼは40〜60℃で活性が高い。さらにホスファターゼは65℃以上で失活するため、シイタケは65〜70℃で加熱すると旨味が最も増加しやすいことが知られている。
2 Test Results / Discussion 2-1 Guanilic Acid Formation Mechanism Guanilic acid is a typical umami substance contained in mushrooms. FIG. 43 shows a schematic diagram of production and decomposition of guanylic acid.
Guanylic acid is produced by decomposing a nucleic acid (RNA) contained in the nucleus of a cell with an enzyme (ribonuclease). Therefore, when the mushroom cell is damaged, the nucleic acid existing in the cell nucleus is easily decomposed by the ribonuclease existing in the cytoplasm, and guanylic acid is easily produced.
Since dried shiitake has damaged cells due to drying, guanylic acid, which is a umami component, tends to increase more than raw shiitake, and has been used as a material for dashi for a long time. When guanylic acid is decomposed by phosphatase, it turns into tasteless guanosine. Ribonuclease that produces guanylate is highly active at 65 to 70 ° C, and phosphatase that decomposes guanylate is highly active at 40 to 60 ° C. Further, since phosphatase is inactivated at 65 ° C. or higher, it is known that when the shiitake mushroom is heated at 65 to 70 ° C., the umami taste is most likely to increase.

2−2 グアニル酸濃度
図44に、従来法1〜3および実施例の加工処理を行った試料のグアニル酸濃度を示す。
処理前の生シイタケにはグアニル酸はほとんど含まれていないが、加熱することによりグアニル酸濃度は上昇した。実施例は、従来法1および従来法2の3倍以上、従来法3の約1.5倍にグアニル酸濃度が上昇した。
以上の結果から、本発明方法を利用することにより、シイタケに含まれるグアニル酸を通常の加熱殺菌方法よりも増加させることができると考えられる。グアニル酸が増加した理由としては、加熱・高圧処理によりリボヌクレアーゼの活性が向上した可能性と、加熱・高圧処理により核膜が損傷した可能性が考えられる。
2-2 Guanilic Acid Concentration FIG. 44 shows the guanylic acid concentrations of the samples that were processed according to the conventional methods 1 to 3 and the example.
Raw shiitake mushrooms before treatment contained little guanylic acid, but the concentration of guanylic acid increased with heating. In the example, the concentration of guanylic acid was increased to more than 3 times that of Conventional Method 1 and Conventional Method 2 and about 1.5 times that of Conventional Method 3.
From the above results, it is considered that the use of the method of the present invention makes it possible to increase the amount of guanylic acid contained in shiitake mushrooms as compared with the usual heat sterilization method. The reason for the increase in guanylic acid is considered to be that the activity of ribonuclease was improved by the heat / high pressure treatment and that the nuclear membrane was damaged by the heat / high pressure treatment.

2−3 塩分
図45に従来法1〜3および実施例の加工処理を行った試料の塩分を示す。
塩分は加熱方法ではなく、加熱時間に依存して高くなった。また、シイタケは組織内の空隙が多いため、脱気包装した際に、気液置換により調味液が染込んだと考えられる。
2-3 Salinity FIG. 45 shows the salinity of the samples processed by the conventional methods 1 to 3 and the example.
The salinity increased depending on the heating time, not on the heating method. Further, since shiitake has many voids in the tissue, it is considered that the seasoning liquid was infiltrated by gas-liquid replacement when degassed and packed.

2−4 食感
図46に従来法1〜3および実施例の加工処理を行った試料の破断能力を示す。
この図から、食感に関しては有意な差異は認められなかった。
2-4 Texture FIG. 46 shows the breaking ability of the samples that have been processed by the conventional methods 1 to 3 and the example.
From this figure, no significant difference in texture was observed.

2−5 殺菌効果
表30で示す通り、本発明で行ったキノコ加工品は、殺菌効果が向上した。
2-5 Bactericidal effect As shown in Table 30, the processed mushroom products of the present invention have an improved bactericidal effect.

3.100MPa以上の処理での効果
前記段落(0129)以降に記載したキノコ加工品の製法を高圧処理条件の圧力条件のみ100〜300MPa範囲で変えて検討したところ、表30に示す結果となり、本発明が100〜300MPaの圧力範囲でも有効であることを確認した。
3. Effect of treatment at 100 MPa or more When the manufacturing method of the processed mushroom products described in the paragraph (0129) and subsequent paragraphs was examined by changing only the pressure condition of the high pressure treatment condition within the range of 100 to 300 MPa, the results shown in Table 30 were obtained. It was confirmed that the invention is effective even in the pressure range of 100 to 300 MPa.

Figure 2020062040
Figure 2020062040

追加実験(野菜)
(1)大根の粕漬け
・処理条件
圧力:1000気圧(100MPa)
温度:40〜70℃
時間:1〜5時間
・製造内容
野菜:大根(青首)
漬床:調味粕(酒粕70%、塩10%、砂糖20%)
製法:皮を剥ぎ、幅1cmの半月状にした大根に同重量の漬床を塗り、袋に入れ真空包装した。
・評価方法
塩分:各試料を粉砕してろ過し、ろ液を測定試料として塩分濃度計(東亜電波社製)により測定した。測定結果は図47に示すように、高圧加温処理することで、成分が浸透し、塩分濃度が高くなる。処理温度や処理時間による塩分濃度の違いは若干比例する傾向がある。
噛み切り易さ:各試料を高さ1cm、幅2cm角立方体に調製し、5mmφ円柱プランジャーで6mmまで進入した時の応力をレオメータにより測定した。測定結果は図48に示すように、高圧加温処理した大根の粕漬けは、処理温度および処理時間に比例して噛み切りやすさが良くなる。さらに、その噛み切りやすさは既製品の噛み切りやすさに近い。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図49に示すように、高圧加温処理することで、酒粕の色が大根に染み込む。処理温度および処理時間におおよそ比例して染み込むと考えられる。また、図50(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30〜37 ℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表31A)は処理温度別(処理時間は全て3時間)の微生物衛生検査の結果を示し、(表31B)は処理時間別(処理温度は全て70℃)の微生物衛生検査の結果を示す。
Additional experiment (vegetable)
(1) Pickling radish and processing conditions Pressure: 1000 atmospheric pressure (100 MPa)
Temperature: 40-70 ° C
Time: 1 to 5 hours ・ Production content Vegetables: Daikon (blue neck)
Pickled floor: Seasoned meal (70% sake lees, 10% salt, 20% sugar)
Manufacturing method: The skin was peeled off, the radish shaped like a half moon having a width of 1 cm was coated with the same weight of pickled floor, put in a bag, and vacuum packed.
-Evaluation method Salt: Each sample was crushed and filtered, and the filtrate was used as a measurement sample and measured with a salt concentration meter (manufactured by Toa Denpa Co., Ltd.). As shown in FIG. 47, the measurement results show that the components permeate and the salt concentration increases by the high-pressure heating treatment. Differences in salt concentration depending on the treatment temperature and treatment time tend to be slightly proportional.
Ease of biting: Each sample was prepared into a cube having a height of 1 cm and a width of 2 cm, and the stress when the sample entered a 5 mmφ cylindrical plunger up to 6 mm was measured by a rheometer. As shown in FIG. 48, the measurement result shows that the radish pickled in the high-pressure heating treatment has a better ease of biting in proportion to the treatment temperature and the treatment time. Further, the ease of biting is close to that of ready-made products.
Color tone: Regarding the color tone of the sample under each processing condition, L *, a *, b * were measured by a reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.). As shown in FIG. 49, the measurement result shows that the color of the sake lees permeates the radish by the high-pressure heating treatment. It is considered that the soaking is performed in almost proportion to the processing temperature and the processing time. Further, FIG. 50A shows the color tone before the high-pressure heating process, and FIG. 50B shows the color tone before the high-pressure heating process.
Microbial hygiene inspection method: Each sample is suspended in physiological saline and then serially diluted, and each diluted sample is standard agar medium (Eiken, for general viable cell count) and 0.01 (w / v)% chloramphenicol. It was smeared on the contained potato dextrose agar medium (Eiken, for fungi) (pour-out method was used for standard agar). The number of microbial colonies formed after culturing at 30 to 37 ° C. for 3 days was counted, and the number of viable general bacteria and fungi per 1 g of the sample was calculated. The standard values were set to 300 cfu / g or less for general viable bacteria and 1000 cfu / g or less for fungi, referring to the standards of the Food Sanitation Law. In addition, non-detection was 50 cfu / g or less for both general live bacteria and fungi.
(Table 31A) shows the results of the microbial hygiene inspection by treatment temperature (all treatment times were 3 hours), and (Table 31B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures were 70 ° C).

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別および処理時間別ともに生菌数は衛生基準値を下回っている。これは高圧加温処理の効果だけでなく、大根に染み込んだ酒粕に含まれるアルコールによる殺菌効果との相乗効果によって菌の増殖などが抑制されたためと考えられる。
Incidentally, in the table, the standard or more, general live bacteria 100,000 / g or more, fungi 1000 / g or more, the standard or less, general live bacteria 100,000 / g or less, fungus 1000 / g or less, non- Detection refers to a detection limit of 50 / g or less.
As shown in the table, the viable cell count is below the hygienic standard value for both treatment temperature and treatment time. It is considered that this is because not only the effect of high-pressure heating treatment, but also the growth of bacteria was suppressed by the synergistic effect with the bactericidal effect of the alcohol contained in the sake lees impregnated in the radish.

(2)中島菜の粕漬け
・処理条件
圧力:1000気圧(100MPa)
温度:40〜70℃
時間:15〜45分
・製造内容
野菜:中島菜
漬床:調味粕(酒粕50%、清酒20%、塩10%、砂糖20%)
製法:中島菜の茎と葉の割合を1:1とし、総重量と同重量の漬床と共に袋に入れ真空包装した。
・評価方法
塩分:各試料を粉砕してろ過し、ろ液を測定試料として塩分濃度計(東亜電波社製)により測定した。測定結果は図51に示すように、高圧加温処理することで、成分が浸透し、塩分濃度が高くなる。処理温度は60℃まで温度の上昇に比例して塩分濃度が高くなるが、70℃では低くなる
硬さ:各試料を長さ1.5cm〜2cmに切った茎に調整し、2mmφ針状プランジャーで切った茎を横にし、中心部を貫くように10mmまで進入した時の応力をレオメータにより測定した。測定結果は図52に示すように、高圧加温処理した中島菜の粕漬けの茎の硬さは未処理よりも柔らかくなり、既製品の中島菜漬に近い食感になる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図53に示すように、処理温度および処理時間に比例して葉の緑色はかなりくすむ。また、図54(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30〜37 ℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表32A)は処理温度別(処理時間は全て30分)の微生物衛生検査の結果を示し、(表32B)は処理時間別(処理温度は全て50℃)の微生物衛生検査の結果を示す。
(2) Nakajima greens pickled and treated under conditions Pressure: 1000 atm (100 MPa)
Temperature: 40-70 ° C
Hours: 15-45 minutes ・ Production content Vegetables: Nakajima greens Pickles: Seasoned meal (50% sake lees, 20% sake, 10% salt, 20% sugar)
Production method: The ratio of stems and leaves of Nakajima greens was set to 1: 1 and put in a bag with a pickling bed having the same weight as the total weight, and vacuum packed.
-Evaluation method Salt: Each sample was crushed and filtered, and the filtrate was used as a measurement sample and measured with a salt concentration meter (manufactured by Toa Denpa Co., Ltd.). As shown in FIG. 51, the measurement results show that the components permeate and the salt concentration increases by the high-pressure heating treatment. The treatment temperature increases the salt concentration in proportion to the temperature increase up to 60 ° C, but decreases in 70 ° C. Hardness: Each sample is adjusted to a stem cut into a length of 1.5 cm to 2 cm, and a 2 mmφ needle-shaped plan is prepared. The rheometer was used to measure the stress when the stalk cut with a jar was laid on its side and penetrated through the center to a depth of 10 mm. As shown in FIG. 52, the measurement results show that the hardness of the stalk pickled in Nakajima greens subjected to high-pressure heating becomes softer than that of the untreated seeds, and the texture is similar to that of ready-made Nakajima pickled vegetables.
Color tone: Regarding the color tone of the sample under each processing condition, L *, a *, b * were measured by a reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.). As shown in FIG. 53, the measurement result shows that the green color of the leaves is considerably dull in proportion to the treatment temperature and the treatment time. Further, FIG. 54A shows a color tone before the high-pressure heating process, and FIG. 54B shows a color tone before the high-pressure heating process.
Microbial hygiene inspection method: Each sample is suspended in physiological saline and then serially diluted, and each diluted sample is standard agar medium (Eiken, for general viable cell count) and 0.01 (w / v)% chloramphenicol. It was smeared on the contained potato dextrose agar medium (Eiken, for fungi) (pour-out method was used for standard agar). The number of microbial colonies formed after culturing at 30 to 37 ° C. for 3 days was counted, and the number of viable general bacteria and fungi per 1 g of the sample was calculated. The standard values were set to 300 cfu / g or less for general viable bacteria and 1000 cfu / g or less for fungi, referring to the standards of the Food Sanitation Law. In addition, non-detection was 50 cfu / g or less for both general live bacteria and fungi.
(Table 32A) shows the results of the microbial hygiene inspection by treatment temperature (all treatment times are 30 minutes), and (Table 32B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 50 ° C).

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

尚、表において、基準以上とは、一般生菌は300/g以上、真菌は1000/g以上、基準以下とは、一般生菌は300/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別および処理時間別ともに生菌数は衛生基準値を下回っている。これは大根と同様で高圧加温処理の効果だけでなく、中島菜に染み込んだ酒粕に含まれるアルコールによる殺菌効果との相乗効果によって菌の増殖などが抑制されたためと考えられる。
(3).80MPa以下と100MPa以上の処理での効果
前記大根と中島菜の奈良漬け(粕漬け)の製法を、高圧処理条件の圧力条件のみ80〜300MPa範囲で変えて検討したところ、表33に示す結果となり、本発明が80〜300MPaの圧力範囲でも有効であることを確認した。
In the table, the standard or more, the general live bacteria is 300 / g or more, the fungus is 1000 / g or more, the standard or less, the general live bacteria is 300 / g or less, the fungus is 1000 / g or less, and undetected. Indicates a detection limit of 50 / g or less.
As shown in the table, the viable cell count is below the hygienic standard value for both treatment temperature and treatment time. It is considered that this is because, like the radish, not only the effect of high-pressure heating treatment, but also the growth of bacteria was suppressed by a synergistic effect with the bactericidal effect of the alcohol contained in the sake lees impregnated in Nakajima vegetables.
(3). Effect of treatment at 80 MPa or less and 100 MPa or more The production method of Nara-zuke (Kasu-zuke) of radish and Nakajima greens was examined by changing only the pressure condition of the high-pressure treatment condition within the range of 80 to 300 MPa. The results shown in Table 33 were obtained. It was confirmed that the invention is effective even in the pressure range of 80 to 300 MPa.

Figure 2020062040
Figure 2020062040

(3)大根の醤油漬け
・処理条件
圧力:1000気圧(100MPa)
温度:40〜70℃
時間:15〜60分
・製造内容
野菜:大根(青首)
漬液:20%醤油水溶液(塩分濃度 約3.5%)
製法:皮を剥ぎ、幅1cmの半月状にした大根を同重量の漬液と共に袋に入れ真空包装した。また、一般法として、皮を剥ぎ厚さ1cm、半月状にカットした大根を20%醤油水溶液に浸し、5℃で24時間漬け込んだものを試料とした。
・評価方法
塩分:各試料を粉砕してろ過し、ろ液を測定試料として塩分濃度計(東亜電波社製)により測定した。測定結果は図55に示すように、一般法に比べどの処理条件でも大根果肉中の塩分濃度が向上した。また、処理温度の上昇に比例して成分がより染み込み、塩分濃度が高くなる。また、処理時間も長さに比例して塩分濃度が高くなる。
噛み切り易さ:各試料を高さ1cm、幅2cm角立方体に調製し、5mmφ円柱プランジャーで6mmまで進入した時の応力をレオメータにより測定した。測定結果は図56に示すように、60℃以上の処理温度または60分以上の処理時間で食感は柔らかくなり、噛み切りやすくなる。それら以下の処理条件では生の食感を維持することができる。ただし、いずれの処理条件も一般法に比べ軟化が抑制された。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。図57(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
細胞破壊程度:本実施例では、高圧処理場合の野菜組織内の水の拡散係数の変化を調べた。各種処理条件で高圧処理した大根を試料としてNMRにより水の拡散係数を分析した。NMRの測定は、ESX400(1Hの共鳴周波数400MHz)を用いた。各サンプルの中心部を、おおむね3cm角で切り出し、筒状に丸めてNMR測定管に入れ、PGSTE法により拡散時間を0.1〜1.0secまで変化させて、それぞれの拡散係数を測定した。その結果を図58に示す。図58に示すように、水の拡散係数は、組織内での移動できる範囲が小さい場合(制限拡散)は、拡散時間が長くなるほど大きく減少する。図を見ると、未処理に比べて全ての高圧加温処理した試料共に拡散係数の減少幅が小さくなっており、高圧加温処理により、野菜の組織内の水が移動できる範囲が大きくなっていること、すなわち、細胞膜の破壊が起きていることが確認された。それにより成分が浸透しやすくなる。
旨味成分含量:各試料を生理食塩水中に懸濁して充分混合し、遠心分離もしくはフィルタリングにより残渣を除去したのちAccQ-Fluor Reagent Kit (Waters) を用いて試料中のアミノ酸を蛍光標識した。所定の移動相 (移動相 A: AccQ-Eluent A (Waters)、移動相 B: 60 (v/v) % アセトニトリル) を用いたリニアグラジエントにより高速液体クロマトグラフィー (HPLC) にて各アミノ酸を溶出した。カラムとして AccQ-tag Amino Acid Analysis Column (Waters) を用い、カラムオーブンは 40 ℃に設定し流速 1 ml/min にて溶出を行った。検出の際は、励起波長 250 nm、蛍光波長 395 nm にて蛍光強度を測定した。図59に示すように、高圧加温処理を行うと、処理温度の上昇に比例して旨味成分は増加する。これは大根の果肉に醤油の旨味成分が浸透したためと考えられる。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30〜37 ℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表34A)は処理温度別(処理時間は全て3時間)の微生物衛生検査の結果を示し、(表34B)は処理時間別(処理温度は全て70℃)の微生物衛生検査の結果を示す。
(3) Soy sauce pickled radish and processing conditions Pressure: 1000 atm (100 MPa)
Temperature: 40-70 ° C
Time: 15-60 minutes / Production content Vegetables: Daikon (blue neck)
Pickling solution: 20% soy sauce aqueous solution (salt concentration about 3.5%)
Manufacturing method: The skin was peeled off, and a half-moon-shaped radish having a width of 1 cm was put in a bag together with a pickling solution of the same weight and vacuum-packed. In addition, as a general method, a sample was prepared by peeling and peeling a radish cut in a thickness of 1 cm into a 20% soy sauce aqueous solution, and immersing the radish at 5 ° C. for 24 hours.
-Evaluation method Salt: Each sample was crushed and filtered, and the filtrate was used as a measurement sample and measured with a salt concentration meter (manufactured by Toa Denpa Co., Ltd.). As a result of the measurement, as shown in FIG. 55, the salt concentration in the radish pulp was improved under all treatment conditions as compared with the general method. In addition, the components are more soaked in proportion to the increase in the treatment temperature, and the salt concentration becomes higher. Further, the treatment time also increases the salt concentration in proportion to the length.
Ease of biting: Each sample was prepared into a cube having a height of 1 cm and a width of 2 cm, and the stress when the sample entered a 5 mmφ cylindrical plunger up to 6 mm was measured by a rheometer. As shown in FIG. 56, the measurement results show that the texture becomes softer and becomes easier to bite at a treatment temperature of 60 ° C. or higher or a treatment time of 60 minutes or longer. The raw texture can be maintained under the treatment conditions below these. However, under all the treatment conditions, softening was suppressed as compared with the general method.
Color tone: Regarding the color tone of the sample under each processing condition, L *, a *, b * were measured by a reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.). 57 (a) shows the color tone before the high-pressure heating process, and FIG. 57 (b) shows the color tone before the high-pressure heating process.
Degree of cell destruction: In this example, changes in the diffusion coefficient of water in the vegetable tissue during high-pressure treatment were examined. The diffusion coefficient of water was analyzed by NMR using radish that was subjected to high-pressure treatment under various treatment conditions as a sample. For the measurement of NMR, ESX400 (resonance frequency of 1H: 400 MHz) was used. The center part of each sample was cut out in a roughly 3 cm square, rolled into a tube and placed in an NMR measuring tube, and the diffusion time was changed by the PGSTE method from 0.1 to 1.0 sec, and the respective diffusion coefficients were measured. The result is shown in FIG. As shown in FIG. 58, the diffusion coefficient of water greatly decreases as the diffusion time becomes longer when the movable range in the tissue is small (limited diffusion). The figure shows that the decrease in the diffusion coefficient is smaller in all the high-pressure heated samples than in the untreated sample, and the high-pressure heating process increases the range in which water in the vegetable tissue can move. It was confirmed that the cell membrane was destroyed. This facilitates penetration of the ingredients.
Umami component content: Each sample was suspended in physiological saline and mixed thoroughly, the residue was removed by centrifugation or filtering, and then amino acids in the sample were fluorescently labeled using AccQ-Fluor Reagent Kit (Waters). Each amino acid was eluted by high performance liquid chromatography (HPLC) by a linear gradient using a predetermined mobile phase (mobile phase A: AccQ-Eluent A (Waters), mobile phase B: 60 (v / v)% acetonitrile). . An AccQ-tag Amino Acid Analysis Column (Waters) was used as a column, the column oven was set at 40 ° C, and elution was performed at a flow rate of 1 ml / min. At the time of detection, the fluorescence intensity was measured at an excitation wavelength of 250 nm and a fluorescence wavelength of 395 nm. As shown in FIG. 59, when the high-pressure heating process is performed, the umami component increases in proportion to the increase in the process temperature. This is probably because the umami component of soy sauce penetrated into the radish pulp.
Microbial hygiene inspection method: Each sample is suspended in physiological saline and then serially diluted, and each diluted sample is standard agar medium (Eiken, for general viable cell count) and 0.01 (w / v)% chloramphenicol. It was smeared on the contained potato dextrose agar medium (Eiken, for fungi) (pour-out method was used for standard agar). The number of microbial colonies formed after culturing at 30 to 37 ° C. for 3 days was counted, and the number of viable general bacteria and fungi per 1 g of the sample was calculated. The standard values were set to 300 cfu / g or less for general viable bacteria and 1000 cfu / g or less for fungi, referring to the standards of the Food Sanitation Law. In addition, non-detection was 50 cfu / g or less for both general live bacteria and fungi.
(Table 34A) shows the results of the microbial hygiene inspection by treatment temperature (all treatment times were 3 hours), and (Table 34B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures were 70 ° C).

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、各温度で高圧加温処理を30分行うと、40℃では1か月後に衛生基準値を超えてしまうが、50℃では一般生菌は衛生基準値を下回り、真菌は不検出であった。また、60℃以上の処理温度で完全に殺菌することができる。50℃の高圧加温処理では時間による菌数の変化は認められなかったが、すべて衛生基準値を下回っている。
Incidentally, in the table, the standard or more, general live bacteria 100,000 / g or more, fungi 1000 / g or more, the standard or less, general live bacteria 100,000 / g or less, fungus 1000 / g or less, non- Detection refers to a detection limit of 50 / g or less.
As shown in the table, if high-pressure heating treatment is performed at each temperature for 30 minutes, the hygienic standard value will be exceeded after 1 month at 40 ° C, but at 50 ° C, general viable bacteria will be below the hygienic standard value and fungi will be It was not detected. Further, it can be completely sterilized at a treatment temperature of 60 ° C or higher. No change in the number of bacteria with time was observed in the high-pressure heating treatment at 50 ° C, but all were below the hygiene standard value.

(4)中島菜の醤油漬け
・処理条件
圧力:1000気圧(100MPa)
温度:40〜70℃
時間:5〜30分
・製造内容
野菜:中島菜
漬液:40%醤油水溶液(塩分濃度 約7.3%)
製法:中島菜の茎と葉の割合を1:1とし、総重量と同量の漬液と共に袋に入れ真空包装した。
・評価方法
塩分:各試料を粉砕してろ過し、ろ液を測定試料として塩分濃度計(東亜電波社製)により測定した。測定結果は図60に示すように、処理温度の上昇に比例して成分がより染み込み、塩分濃度が高くなる。また、処理時間も長さに比例して塩分濃度が高くなる。
硬さ:各試料を長さ1.5cm〜2cmに切った茎に調整し、2mmφ針状プランジャーで切った茎を横にし、中心部を貫くように10mmまで進入した時の応力をレオメータにより測定した。測定結果は図61に示すように、高圧加温処理した中島菜の醤油漬けの茎の硬さは未処理よりも柔らかくなるが、既製品の中島菜漬と比べてより歯ごたえのある食感となる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図62に示すように、処理温度および処理時間に比例して葉の緑色はくすむ。これは醤油(塩分)の染み込みに比例している。また、図63(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30〜37 ℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表35A)は処理温度別(処理時間は全て15分)の微生物衛生検査の結果を示し、(表35B)は処理時間別(処理温度は全て60℃)の微生物衛生検査の結果を示す。
(4) Nakajima greens in soy sauce / processing conditions Pressure: 1000 atm (100 MPa)
Temperature: 40-70 ° C
Time: 5 to 30 minutes ・ Production content Vegetables: Nakajima vegetables Pickle: 40% soy sauce aqueous solution (salt concentration: 7.3%)
Production method: The ratio of stems and leaves of Nakajima greens was set to 1: 1 and they were put in a bag together with a pickling solution in the same amount as the total weight, and vacuum packed.
-Evaluation method Salt: Each sample was crushed and filtered, and the filtrate was used as a measurement sample and measured with a salt concentration meter (manufactured by Toa Denpa Co., Ltd.). As shown in FIG. 60, the measurement results show that the components are more soaked in proportion to the increase in the processing temperature, and the salt concentration becomes higher. Further, the treatment time also increases the salt concentration in proportion to the length.
Hardness: Each sample was adjusted to a stem cut to a length of 1.5 cm to 2 cm, the stem cut with a 2 mmφ needle-shaped plunger was laid down, and the stress when entering 10 mm so as to penetrate the center was measured with a rheometer. It was measured. As shown in FIG. 61, the hardness of the soy sauce-pickled stalks of Nakajima greens subjected to high-pressure heating is softer than that of the untreated ones, but it has a more chewy texture than the ready-made Nakajima pickles. Become.
Color tone: Regarding the color tone of the sample under each processing condition, L *, a *, b * were measured by a reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.). As shown in FIG. 62, the measurement result shows that the green color of the leaves is dull in proportion to the treatment temperature and the treatment time. This is proportional to the soy sauce (salt) soak. Further, FIG. 63A shows a color tone before the high-pressure heating process, and FIG. 63B shows a color tone before the high-pressure heating process.
Microbial hygiene inspection method: Each sample is suspended in physiological saline and then serially diluted, and each diluted sample is standard agar medium (Eiken, for general viable cell count) and 0.01 (w / v)% chloramphenicol. It was smeared on the contained potato dextrose agar medium (Eiken, for fungi) (pour-out method was used for standard agar). The number of microbial colonies formed after culturing at 30 to 37 ° C. for 3 days was counted, and the number of viable general bacteria and fungi per 1 g of the sample was calculated. The standard values were set to 300 cfu / g or less for general viable bacteria and 1000 cfu / g or less for fungi, referring to the standards of the Food Sanitation Law. In addition, non-detection was 50 cfu / g or less for both general live bacteria and fungi.
(Table 35A) shows the results of the microbial hygiene inspection for each treatment temperature (all treatment times are 15 minutes), and (Table 35B) shows the results of the microbial hygiene inspection for each treatment time (all treatment temperatures are 60 ° C).

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、一般生菌は全ての処理温度で検出されたが、高圧加温処理の処理温度が50℃以上では衛生基準値を下回っている。真菌は高圧加温処理の処理温度が50℃以上で衛生基準値を上回っている。60℃で高圧加温処理した場合、処理時間による生菌数の変化は認められなかったが、一般生菌では、衛生基準値を下回り、真菌では、不検出であった。
Incidentally, in the table, the standard or more, general live bacteria 100,000 / g or more, fungi 1000 / g or more, the standard or less, general live bacteria 100,000 / g or less, fungus 1000 / g or less, non- Detection refers to a detection limit of 50 / g or less.
As shown in the table, general viable bacteria were detected at all treatment temperatures, but they were below the sanitary standard value when the treatment temperature of the high-pressure heating treatment was 50 ° C or higher. The temperature of high-temperature heat treatment for fungi exceeds 50 ° C and exceeds the hygienic standard. In the case of high-pressure heating at 60 ℃, the number of viable cells did not change depending on the treatment time. However, general viable cells were below the hygienic standard, and fungi were not detected.

(5)80MPa以下と100MPa以上の処理での効果
前記大根と中島菜の醤油漬けの製法を、高圧処理条件の圧力条件のみ80〜300MPa範囲で変えて検討したところ、表36に示す結果となり、本発明が80〜300MPaの圧力範囲でも有効であることを確認した。
(5) Effect of treatment at 80 MPa or less and 100 MPa or more When the production method of soy sauce pickled radish and Nakajima vegetables was examined by changing only the pressure condition of the high pressure treatment condition within the range of 80 to 300 MPa, the results shown in Table 36 were obtained. It was confirmed that the present invention is effective even in the pressure range of 80 to 300 MPa.

Figure 2020062040
Figure 2020062040

追加実験(果実)
(1)ウメのシロップ漬け
・処理条件
圧力:1000気圧(100MPa)
温度:40〜70℃
時間:15〜60分
・製造内容
果実:石川県産 冷凍梅(石川1号)
シロップ:60%グラニュー糖水(糖度50.4%)
製法:ウメ5粒をそれらの2倍量のシロップと共に袋に入れ真空包装した。
・評価方法
糖度:各試料を粉砕してろ過し、ろ液を測定試料として糖度計(アタゴ社製)により測定した。測定結果は図64に示すように、高圧加温処理を行うと処理温度が高いほど、また、60℃では、処理時間が長いほどシロップの糖分が向上して果肉に染み込みやすくなることを確認した。
酸度:高圧加温処理したサンプルを袋から取り出し、シロップを拭き取った後、種を取り除きミキサーでホモジナイズした。ホモジナイズによりペースト化したサンプルを試料とした。酸度滴定計を用いて試料の酸度(%)を測定し、クエン酸相当量として換算して評価した。測定結果は図65に示すように、高圧加温処理を行うと処理温度が高いほどまた、60℃では、処理時間が長いほど果肉の酸度が低下して果肉から酸が溶出しやすくなることを確認した。
硬さ:冷凍梅1個を測定台に固定し、3mmφ円柱プランジャーで6mmまで圧縮した時の応力をレオメータにより測定した。測定結果は図66に示すように、60℃以上の温度およびその温度で30分以上の高圧加温処理を行うと果肉の食感は軟らかくなる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図67に示すように、高圧加温処理を行うことで、果皮の色は若干くすむが、商品性に問題はない。また、図68(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30〜37 ℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表37A)は処理温度別(処理時間は全て30分)の微生物衛生検査の結果を示し、(表37B)は処理時間別(処理温度は全て60℃)の微生物衛生検査の結果を示す。
Additional experiment (fruit)
(1) Ume syrup pickling and processing conditions Pressure: 1000 atm (100 MPa)
Temperature: 40-70 ° C
Time: 15-60 minutes ・ Production content Fruit: Ishikawa Prefecture frozen plum (Ishikawa No. 1)
Syrup: 60% granulated sugar water (sugar content 50.4%)
Production method: Five plums were put in a bag together with twice the amount of syrup and vacuum packed.
-Evaluation method Sugar content: Each sample was pulverized and filtered, and the filtrate was measured with a sugar meter (manufactured by Atago Co.) as a measurement sample. As shown in FIG. 64, the measurement results confirmed that, when the high-pressure heating treatment was performed, the higher the treatment temperature was, and at 60 ° C., the longer the treatment time was, the higher the sugar content of the syrup was, and the more easily it permeated the pulp. .
Acidity: The sample subjected to high pressure heating was taken out of the bag, the syrup was wiped off, the seeds were removed, and the mixture was homogenized with a mixer. A sample made into a paste by homogenization was used as a sample. The acidity (%) of the sample was measured using an acidity titrator and converted into citric acid equivalent amount for evaluation. As shown in FIG. 65, the measurement results show that when the high-pressure heating treatment is performed, the higher the treatment temperature is, and at 60 ° C., the longer the treatment time is, the lower the acidity of the pulp is and the more easily the acid is eluted from the pulp. confirmed.
Hardness: One frozen plum was fixed on a measuring table, and the stress when compressed to 6 mm with a 3 mmφ cylindrical plunger was measured with a rheometer. As shown in FIG. 66, the measurement result shows that the texture of the pulp becomes soft when the temperature is 60 ° C. or higher and the high-pressure heating treatment is performed for 30 minutes or longer at that temperature.
Color tone: Regarding the color tone of the sample under each processing condition, L *, a *, b * were measured by a reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.). As a result of the measurement, as shown in FIG. 67, by performing the high-pressure heating treatment, the color of the pericarp is slightly dull, but there is no problem in commerciality. Further, FIG. 68A shows the color tone before the high-pressure heating process, and FIG. 68B shows the color tone before the high-pressure heating process.
Microbial hygiene inspection method: Each sample is suspended in physiological saline and then serially diluted, and each diluted sample is standard agar medium (Eiken, for general viable cell count) and 0.01 (w / v)% chloramphenicol. It was smeared on the contained potato dextrose agar medium (Eiken, for fungi) (pour-out method was used for standard agar). The number of microbial colonies formed after culturing at 30 to 37 ° C. for 3 days was counted, and the number of viable general bacteria and fungi per 1 g of the sample was calculated. The standard values were set to 300 cfu / g or less for general viable bacteria and 1000 cfu / g or less for fungi, referring to the standards of the Food Sanitation Law. In addition, non-detection was 50 cfu / g or less for both general live bacteria and fungi.
(Table 37A) shows the results of the microbial hygiene inspection by treatment temperature (all treatment times are 30 minutes), and (Table 37B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 60 ° C).

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

尚、表において、基準以上とは、一般生菌は300/g以上、真菌は1000/g以上、基準以下とは、一般生菌は300/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、一般生菌、真菌ともに60℃以上の高圧加温処理でほとんどの試験区で不検出となり殺菌できることを確認した。また、高圧加温処理の処理温度が60℃の場合、処理時間30分以上で長期保存が可能となる。
In the table, the standard or more, the general live bacteria is 300 / g or more, the fungus is 1000 / g or more, the standard or less, the general live bacteria is 300 / g or less, the fungus is 1000 / g or less, and undetected. Indicates a detection limit of 50 / g or less.
As shown in the table, it was confirmed that both general live bacteria and fungi could not be detected in most test plots and sterilized by high-pressure heating treatment at 60 ° C or higher. Further, when the treatment temperature of the high-pressure heating treatment is 60 ° C., the treatment time of 30 minutes or more enables long-term storage.

(2)和ナシのシロップ漬け
・処理条件
圧力:1000気圧(100MPa)
温度:40〜70℃
時間:15〜60分
・製造内容
果実:和梨(陽水)
シロップ:15%グラニュー糖水(糖度14.3%)
製法:果皮および種を取り除いたナシを同じ重量のシロップと共に袋に入れ、真空包装した。
・評価方法
糖度:各試料を粉砕してろ過し、ろ液を測定試料として糖度計(アタゴ社製)により測定した。測定結果は図69に示すように、高圧加温処理を行うと、処理温度および処理時間に比例してシロップの成分が果肉に染み込む。
硬さ:各試料を高さ1cm、幅2cm角立方体に調製し、5mmφ円柱プランジャーで6mmまで進入した時の応力をレオメータにより測定した。測定結果は図70に示すように、60℃以上の温度で処理時間が長いと果肉の食感は若干柔らかくなるが、未処理の果肉の食感をほぼ維持できる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図71に示すように、シロップが染み込むことによって半透明化するが、処理条件による色の変化はほとんどない。また、この色調は商品性に問題ない。また、図72(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
細胞破壊程度:本実施例では、高圧処理場合の野菜組織内の水の拡散係数の変化を調べた。各種処理条件で高圧処理したナシを試料としてNMRにより水の拡散係数を分析した。NMRの測定は、ESX400(1Hの共鳴周波数400MHz)を用いた。各サンプルの中心部を、おおむね3cm角で切り出し、筒状に丸めてNMR測定管に入れ、PGSTE法により拡散時間を0.1〜1.0secまで変化させて、それぞれの拡散係数を測定した。その結果は図73に示すように、高圧加温処理すると、処理温度に比例して細胞が破壊されているため、高い処理温度ほど成分は染み込むことがわかる。
(2) Japanese pear soaked in syrup and processing conditions Pressure: 1000 atm (100 MPa)
Temperature: 40-70 ° C
Time: 15-60 minutes ・ Production content Fruit: Japanese pear (sun water)
Syrup: 15% granulated sugar water (sugar content 14.3%)
Manufacturing method: Peel from which the peel and seeds were removed was put in a bag together with syrup of the same weight, and vacuum-packed.
-Evaluation method Sugar content: Each sample was crushed and filtered, and the filtrate was measured with a sugar meter (manufactured by Atago Co.) as a measurement sample. As shown in FIG. 69, when the high-pressure heating treatment is performed, the measurement result shows that the syrup component permeates the pulp in proportion to the treatment temperature and the treatment time.
Hardness: Each sample was prepared into a cube having a height of 1 cm and a width of 2 cm, and the stress at the time of entering up to 6 mm with a 5 mmφ cylindrical plunger was measured by a rheometer. As shown in FIG. 70, the measurement results show that when the treatment time is long at a temperature of 60 ° C. or higher, the texture of the pulp becomes slightly soft, but the texture of the untreated pulp can be almost maintained.
Color tone: Regarding the color tone of the sample under each processing condition, L *, a *, b * were measured by a reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.). As shown in FIG. 71, the measurement results are translucent due to the syrup soaking in, but there is almost no change in color due to the processing conditions. In addition, this color tone has no problem in commerciality. Further, FIG. 72A shows the color tone before the high-pressure heating process, and FIG. 72B shows the color tone before the high-pressure heating process.
Degree of cell destruction: In this example, changes in the diffusion coefficient of water in the vegetable tissue during high-pressure treatment were examined. The diffusion coefficient of water was analyzed by NMR using a pear sample subjected to high-pressure treatment under various treatment conditions as a sample. For the measurement of NMR, ESX400 (resonance frequency of 1H: 400 MHz) was used. The center part of each sample was cut out in a roughly 3 cm square, rolled into a tube and placed in an NMR measuring tube, and the diffusion time was changed by the PGSTE method from 0.1 to 1.0 sec, and the respective diffusion coefficients were measured. As a result, as shown in FIG. 73, when the high-pressure heating treatment is performed, the cells are destroyed in proportion to the treatment temperature.

(3)ブドウのシロップ漬け
・処理条件
圧力:1000気圧(100MPa)
温度:40〜70℃
時間:15〜60分
・製造内容
果実:石川県産ブドウ(ルビーロマン)
シロップ:20%グラニュー糖水(糖度18.9%)
製法:果皮を剥いたブドウ5粒をそれらの40%量のシロップと共に袋に入れ、真空包装した。
・評価方法
糖度:各試料を粉砕してろ過し、ろ液を測定試料として糖度計(アタゴ社製)により測定した。測定結果は図74に示すように、ぶどうは、高圧加温処理を行うとどの処理温度および処理時間でもシロップの糖分が同程度に果肉へ染み込む。
硬さ、噛み切りやすさ:ブドウ1個を測定台に固定し、3mmφ円柱プランジャーで6mmまで圧縮した時の応力をレオメータにより測定した。測定結果は図75に示すようにぶどうの硬さおよび噛み切りやすさは高圧加温処理しても未処理と変わらず、生の食感を維持することができる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図76に示すように、未処理の果肉の色を基準に色差を比較すると、ぶどう果肉の色は高圧加温処理をしてもほぼ変わらず、生のぶどう果肉の色を維持することができる。また図77(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30〜37℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表38A)は処理温度別(処理時間は全て30分)の微生物衛生検査の結果を示し、(表38B)は処理時間別(処理温度は全て60℃)の微生物衛生検査の結果を示す。
(3) Grapes in syrup and processing conditions Pressure: 1000 atm (100 MPa)
Temperature: 40-70 ° C
Time: 15-60 minutes ・ Production content Fruit: Ishikawa grape (Ruby Roman)
Syrup: 20% granulated sugar water (sugar content 18.9%)
Manufacturing method: Five peeled grapes were put in a bag together with 40% of the syrup, and vacuum-packed.
-Evaluation method Sugar content: Each sample was pulverized and filtered, and the filtrate was measured with a sugar meter (manufactured by Atago Co.) as a measurement sample. As shown in FIG. 74, the measurement result shows that when high-pressure heating treatment is performed on grapes, the sugar content of the syrup penetrates into the flesh to the same extent at any treatment temperature and treatment time.
Hardness and ease of biting: One grape was fixed on a measuring table, and the stress when compressed to 6 mm with a 3 mmφ cylindrical plunger was measured by a rheometer. As shown in FIG. 75, the measurement results show that the hardness and easiness of biting the grape are the same as those not treated even after the high-pressure heating treatment, and the raw texture can be maintained.
Color tone: Regarding the color tone of the sample under each processing condition, L *, a *, b * were measured by a reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.). As shown in FIG. 76, the measurement results show that when the color difference is compared based on the color of the untreated pulp, the color of the grape pulp remains almost unchanged even after the high-pressure heating treatment, and the color of the raw grape pulp is maintained. be able to. 77A shows the color tone before the high-pressure heating process, and FIG. 77B shows the color tone before the high-pressure heating process.
Microbial hygiene inspection method: Each sample is suspended in physiological saline and then serially diluted, and each diluted sample is standard agar medium (Eiken, for general viable cell count) and 0.01 (w / v)% chloramphenicol. It was smeared on the contained potato dextrose agar medium (Eiken, for fungi) (pour-out method was used for standard agar). The number of microbial colonies formed after culturing at 30 to 37 ° C. for 3 days was counted, and the number of viable general bacteria and fungi per 1 g of the sample was calculated. The standard values were set to 300 cfu / g or less for general viable bacteria and 1000 cfu / g or less for fungi, referring to the standards of the Food Sanitation Law. In addition, non-detection was 50 cfu / g or less for both general live bacteria and fungi.
(Table 38A) shows the results of the microbial hygiene inspection by treatment temperature (all treatment times were 30 minutes), and (Table 38B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures were 60 ° C).

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

尚、表において、基準以上とは、一般生菌は300/g以上、真菌は1000/g以上、基準以下とは、一般生菌は300/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、高圧加熱処理の処理温度別では、どの温度でも一般生菌、真菌ともに基準以下または不検出であった。50℃以上の処理温度では、6か月後まで一般生菌および真菌は検出されなかった。また、高圧加熱処理の処理温度が60℃の場合では、処理時間が30分以上で一般生菌および真菌が検出されなかった。
In the table, the standard or more, the general live bacteria is 300 / g or more, the fungus is 1000 / g or more, the standard or less, the general live bacteria is 300 / g or less, the fungus is 1000 / g or less, and undetected. Indicates a detection limit of 50 / g or less.
As shown in the table, by treatment temperature of the high-pressure heat treatment, both general viable bacteria and fungi were below the standard or not detected at any temperature. At the treatment temperature of 50 ° C. or higher, general viable bacteria and fungi were not detected until after 6 months. Further, when the treatment temperature of the high-pressure heat treatment was 60 ° C., the treatment time was 30 minutes or longer, and general live bacteria and fungi were not detected.

(4).80MPa以下と100MPa以上の処理での効果
前記ウメ、和ナシおよびブドウのシロップ漬製法を、高圧処理条件の圧力条件のみ80〜300MPa範囲で変えて検討したところ、表39に示す結果となり、本発明が80〜300MPaの圧力範囲でも有効であることを確認した。
(4). Effects of treatments of 80 MPa or less and 100 MPa or more The ume syrup-pickling method of Japanese apricot, Japanese pear and grape was examined by changing only the pressure condition of the high pressure treatment condition within the range of 80 to 300 MPa, and the results shown in Table 39 were obtained. Was confirmed to be effective even in the pressure range of 80 to 300 MPa.

Figure 2020062040
Figure 2020062040

追加実験(牛肉)
(1)牛肉(外モモ)の味噌漬け
・処理条件
圧力:1000気圧(100MPa)
温度:20℃〜60℃
時間:7.5時間〜30時間
・製造内容
肉:牛肉(外モモ)
漬床:調味味噌(味噌78%、砂糖11%、みりん11%)
製法:厚さ1cmにスライスした牛モモ肉に1/2量の漬床を塗り、袋に入れ、真空包装した。一般製造法として牛モモをガーゼで包み、その上から食材の1/2量の漬床(調味味噌)を塗り、袋に入れ真空包装した後に5℃で3日保存した。
・評価方法
糖組成:高圧加温処理したサンプルを袋から取り出し、調味液などを拭きとった後、ミキサーでホモジナイズした。ホモジナイズしたサンプル1gに対して8%トリクロロ酢酸溶液1mlを加え強く撹拌した後、抽出液を濾過し、最終的に蒸留水で10mlにメスアップしたものを試料とした。分析はHPLC装置(株)島津製作所)を用いた。カラムはMightysil NH2 (5um)((株)関東化学)、検出器は示差屈折計(RID-10A)を用いて、移動相を70%アセトニトリルにし、流速1 ml/minで分析を行った。フルクトース、グルコース、スクロースの3成分について、試料の糖組成およびそれらの定量を行い評価した。測定結果は図78に示すように、未処理に比べ15時間高圧加温処理した試料は、処理温度に関わらず糖濃度が10倍以上浸透した。また、漬床に含まれる糖成分の牛モモ肉への浸透は処理温度の上昇に比例して高くなり、処理温度60℃では、一般法以上の濃度となる。
硬さ:各試料を1cm角立方体に調製し、カミソリ刃プランジャーで筋繊維に対して垂直に刃を当て8mmまで進入した時の応力をレオメータにより測定した。測定結果は図79に示すように、高圧加温処理を行うことで加熱後の硬さは未処理および一般法に比べて柔らかくなる。60℃の処理では、酵素反応が進み、柔らかくなったと考えられる。40℃の処理では、処理時間による硬さの変化があまり無いことから、処理時間は7.5時間でも十分であると考えられる。
色調:図80(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
旨味成分含量:各試料を生理食塩水中に懸濁して充分混合し、遠心分離もしくはフィルタ60 (v/v) % アセトニトリル) を用いたリニアグラジエントにより高速液体クロマトグラフィー (HPLC) にて各アミノ酸を溶出した。カラムとして AccQ-tag Amino Acid Analysis Column (Waters) を用い、カラムオーブンは 40 ℃に設定し流速 1 ml/min にて溶出を行った。検出の際は、励起波長 250 nm、蛍光波長 395 nm にて蛍光強度を測定した。測定結果は図81に示すように、高圧加温処理を行うと、処理温度および処理時間に比例して旨味成分量が増加し、特に60℃の処理温度で大きく増加する。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30〜37 ℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表40A)は処理温度別(処理時間は全て15時間)の微生物衛生検査の結果を示し、(表40B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
Additional experiment (beef)
(1) Beef (outer peach) pickled in miso and processing conditions Pressure: 1000 atm (100 MPa)
Temperature: 20 ℃ -60 ℃
Time: 7.5 to 30 hours ・ Production content Meat: Beef (external peach)
Pickled floor: Seasoned miso (miso 78%, sugar 11%, mirin 11%)
Manufacturing method: 1/2 amount of pickled floor was applied to beef thigh meat sliced to a thickness of 1 cm, put in a bag, and vacuum packed. As a general production method, beef peach was wrapped in gauze, and 1/2 the amount of the foodstuffs (seasoned miso) was applied onto it, put in a bag, vacuum-packed, and stored at 5 ° C. for 3 days.
-Evaluation method Sugar composition: A sample subjected to high-pressure heating treatment was taken out from the bag, the seasoning liquid was wiped off, and then homogenized with a mixer. To 1 g of the homogenized sample, 1 ml of an 8% trichloroacetic acid solution was added and vigorously stirred, and then the extract was filtered and finally diluted to 10 ml with distilled water to obtain a sample. The analysis was carried out using a HPLC device (Shimadzu Corporation). The column was Mightysil NH 2 (5 um) (Kanto Chemical Co., Inc.), the detector was a differential refractometer (RID-10A), the mobile phase was 70% acetonitrile, and the flow rate was 1 ml / min. The sugar composition of the sample and its quantitative analysis were evaluated for the three components of fructose, glucose and sucrose. As shown in FIG. 78, the measurement result shows that the sample subjected to the high-pressure heating treatment for 15 hours had a sugar concentration of 10 times or more permeated regardless of the treatment temperature. Further, the permeation of sugar components contained in pickled beds into beef thigh meat increases in proportion to the increase in the treatment temperature, and at the treatment temperature of 60 ° C, the concentration is higher than that of the general method.
Hardness: Each sample was prepared in a 1 cm square cube, and a blade was applied perpendicularly to the muscle fiber with a razor blade plunger, and the stress when entering to 8 mm was measured by a rheometer. As shown in FIG. 79, the measurement result shows that the hardness after heating becomes softer as compared with the untreated and general methods by performing the high-pressure heating treatment. It is considered that the treatment at 60 ° C caused the enzyme reaction to proceed and soften. It is considered that the treatment time of 7.5 hours is sufficient because the treatment at 40 ° C hardly changes the hardness depending on the treatment time.
Color tone: FIG. 80A shows the color tone before the high-pressure heating process, and FIG. 80B shows the color tone before the high-pressure heating process.
Umami ingredient content: Suspend each sample in physiological saline, mix well, and elute each amino acid by high performance liquid chromatography (HPLC) by centrifugation or a linear gradient using a filter 60 (v / v)% acetonitrile). did. An AccQ-tag Amino Acid Analysis Column (Waters) was used as a column, the column oven was set at 40 ° C, and elution was performed at a flow rate of 1 ml / min. At the time of detection, the fluorescence intensity was measured at an excitation wavelength of 250 nm and a fluorescence wavelength of 395 nm. As shown in FIG. 81, when the high-pressure heating treatment is performed, the measurement result shows that the amount of the umami component increases in proportion to the treatment temperature and the treatment time, and particularly the treatment temperature of 60 ° C. greatly increases.
Microbial hygiene inspection method: Each sample is suspended in physiological saline and then serially diluted, and each diluted sample is standard agar medium (Eiken, for general viable cell count) and 0.01 (w / v)% chloramphenicol. It was smeared on the contained potato dextrose agar medium (Eiken, for fungi) (pour-out method was used for standard agar). The number of microbial colonies formed after culturing at 30 to 37 ° C. for 3 days was counted, and the number of viable general bacteria and fungi per 1 g of the sample was calculated. The standard values were set to 300 cfu / g or less for general viable bacteria and 1000 cfu / g or less for fungi, referring to the standards of the Food Sanitation Law. In addition, non-detection was 50 cfu / g or less for both general live bacteria and fungi.
(Table 40A) shows the results of the microbial hygiene inspection by treatment temperature (all treatment times are 15 hours), and (Table 40B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 40 ° C).

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別および処理時間別ともに一般生菌は検出されたが、すべて衛生基準値は下回っている。真菌は処理温度別および処理時間別ともに検出されなかった。牛モモ肉の味噌漬けは、どの処理条件でも5℃で1か月保存が可能である。
Incidentally, in the table, the standard or more, general live bacteria 100,000 / g or more, fungi 1000 / g or more, the standard or less, general live bacteria 100,000 / g or less, fungus 1000 / g or less, non- Detection refers to a detection limit of 50 / g or less.
As shown in the table, general viable bacteria were detected by treatment temperature and treatment time, but all were below the sanitary standard values. No fungus was detected by treatment temperature or treatment time. Miso-pickled beef thigh can be stored at 5 ° C for 1 month under any treatment conditions.

(2)牛肉(タン)の味噌漬け
・処理条件
圧力:1000気圧(100MPa)
温度:20℃〜60℃
時間:7.5時間〜30時間
・製造内容
肉:牛タン(クラウンカット)
漬床:調味味噌(味噌78%、砂糖11%、みりん11%)
製法:厚さ1cmにスライスした牛モモ肉に1/2量の漬床を塗り、袋に入れ、真空包装した。一般製造法として、牛タンをガーゼで包み、その上から食材の1/2量の漬床(調味味噌)を塗り、袋に入れ真空包装した後に5℃で3日保存した。
・評価方法
糖組成:高圧加温処理したサンプルを袋から取り出し、調味液などを拭きとった後、ミキサーでホモジナイズした。ホモジナイズしたサンプル1gに対して8%トリクロロ酢酸溶液1mlを加え強く撹拌した後、抽出液を濾過し、最終的に蒸留水で10mlにメスアップしたものを試料とした。分析はHPLC装置((株)島津製作所)を用いた。カラムはMightysil NH2 (5um)((株)関東化学)、検出器は示差屈折計(RID-10A)を用いて、移動相を70%アセトニトリルにし、流速1 ml/minで分析を行った。フルクトース、グルコース、スクロースの3成分について、試料の糖組成およびそれらの定量を行い評価した。測定結果は図82に示すように、未処理に比べ15時間高圧加温処理した試料は、処理温度に関わらず糖濃度が約3g以上浸透した。また、漬床に含まれる糖成分の牛タン肉への浸透は処理温度の上昇に比例して高くなり、処理温度40℃以上では、一般法以上の濃度となる。
硬さ:各試料を1cm角立方体に調製し、カミソリ刃プランジャーで筋繊維に対して垂直に刃を当て8mmまで進入した時の応力をレオメータにより測定した。測定結果は図83に示すように、高圧加温処理を行うことで加熱後の硬さは未処理および一般法に比べて柔らかくなる。60℃の処理では、酵素反応が進み、柔らかくなったと考えられる。40℃の処理では、処理時間が長いほど柔らかくなる。
色調:図84(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
旨味成分含量:各試料を生理食塩水中に懸濁して充分混合し、遠心分離もしくはフィルタリングにより残渣を除去したのちAccQ-Fluor Reagent Kit (Waters) を用いて試料中のアミノ酸を蛍光標識した。所定の移動相 (移動相 A: AccQ-Eluent A (Waters)、移動相 B: 60 (v/v) % アセトニトリル) を用いたリニアグラジエントにより高速液体クロマトグラフィー (HPLC) にて各アミノ酸を溶出した。カラムとして AccQ-tag Amino Acid Analysis Column (Waters) を用い、カラムオーブンは 40 ℃に設定し流速 1 ml/min にて溶出を行った。検出の際は、励起波長 250 nm、蛍光波長 395 nm にて蛍光強度を測定した。測定結果は図85に示すように、60℃の処理温度で旨味成分量は大きく増加する。また、処理時間に比例して旨味成分量は増加する。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30〜37℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表41A)は処理温度別(処理時間は全て15時間)の微生物衛生検査の結果を示し、(表41B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
(2) Beef (tan) pickled in miso and processing conditions Pressure: 1000 atm (100 MPa)
Temperature: 20 ℃ -60 ℃
Time: 7.5 to 30 hours ・ Production content Meat: Beef tongue (crown cut)
Pickled floor: Seasoned miso (miso 78%, sugar 11%, mirin 11%)
Manufacturing method: 1/2 amount of pickled floor was applied to beef thigh meat sliced to a thickness of 1 cm, put in a bag, and vacuum packed. As a general production method, beef tongue was wrapped in gauze, and 1/2 the amount of the foodstuffs (seasoned miso) was applied onto the beef tongue, put in a bag and vacuum packed, and then stored at 5 ° C. for 3 days.
-Evaluation method Sugar composition: A sample subjected to high-pressure heating treatment was taken out from the bag, the seasoning liquid was wiped off, and then homogenized with a mixer. To 1 g of the homogenized sample, 1 ml of 8% trichloroacetic acid solution was added and vigorously stirred, and then the extract was filtered and finally diluted to 10 ml with distilled water to obtain a sample. The analysis was performed using an HPLC device (Shimadzu Corporation). The column was Mightysil NH 2 (5 um) (Kanto Chemical Co., Inc.), the detector was a differential refractometer (RID-10A), the mobile phase was 70% acetonitrile, and the flow rate was 1 ml / min. The sugar composition of the sample and its quantitative analysis were evaluated for the three components of fructose, glucose and sucrose. As shown in FIG. 82, the measurement results showed that the sample subjected to high-pressure heating for 15 hours had a sugar concentration of about 3 g or more permeated regardless of the treatment temperature. Further, the permeation of sugar components contained in pickled beds into beef tongue meat increases in proportion to the increase in the treatment temperature, and at the treatment temperature of 40 ° C or higher, the concentration becomes higher than that of the general method.
Hardness: Each sample was prepared in a 1 cm square cube, and a blade was applied perpendicularly to the muscle fiber with a razor blade plunger, and the stress when entering to 8 mm was measured by a rheometer. As shown in FIG. 83, the measurement result shows that the hardness after heating becomes softer as compared with the untreated and general methods by performing the high-pressure heating treatment. It is considered that the treatment at 60 ° C caused the enzyme reaction to proceed and soften. At 40 ° C, the longer the treatment, the softer it becomes.
Color tone: FIG. 84 (a) shows the color tone before the high-pressure heating process, and (b) shows the color tone before the high-pressure heating process.
Umami component content: Each sample was suspended in physiological saline and mixed thoroughly, the residue was removed by centrifugation or filtering, and then amino acids in the sample were fluorescently labeled using AccQ-Fluor Reagent Kit (Waters). Each amino acid was eluted by high performance liquid chromatography (HPLC) by a linear gradient using a predetermined mobile phase (mobile phase A: AccQ-Eluent A (Waters), mobile phase B: 60 (v / v)% acetonitrile). . An AccQ-tag Amino Acid Analysis Column (Waters) was used as a column, the column oven was set at 40 ° C, and elution was performed at a flow rate of 1 ml / min. At the time of detection, the fluorescence intensity was measured at an excitation wavelength of 250 nm and a fluorescence wavelength of 395 nm. As shown in FIG. 85, the measurement result shows that the amount of the umami component greatly increases at the treatment temperature of 60 ° C. Further, the amount of the umami component increases in proportion to the processing time.
Microbial hygiene inspection method: Each sample is suspended in physiological saline and then serially diluted, and each diluted sample is standard agar medium (Eiken, for general viable cell count) and 0.01 (w / v)% chloramphenicol. It was smeared on the contained potato dextrose agar medium (Eiken, for fungi) (pour-out method was used for standard agar). The number of microbial colonies formed after culturing at 30 to 37 ° C. for 3 days was counted, and the number of viable general bacteria and fungi per 1 g of the sample was calculated. The standard values were set to 300 cfu / g or less for general viable bacteria and 1000 cfu / g or less for fungi, referring to the standards of the Food Sanitation Law. In addition, non-detection was 50 cfu / g or less for both general live bacteria and fungi.
(Table 41A) shows the results of the microbial hygiene inspection for each treatment temperature (all treatment times are 15 hours), and (Table 41B) shows the results of the microbial hygiene inspection for each treatment time (all treatment temperatures are 40 ° C).

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別および処理時間別ともに一般生菌は検出されたが、すべて衛生基準値は下回っている。真菌は処理温度別および処理時間別ともに検出されなかった。牛タンの味噌漬けも牛モモ肉と同様に、どの処理条件でも5℃で1か月保存が可能である。
Incidentally, in the table, the standard or more, general live bacteria 100,000 / g or more, fungi 1000 / g or more, the standard or less, general live bacteria 100,000 / g or less, fungus 1000 / g or less, non- Detection refers to a detection limit of 50 / g or less.
As shown in the table, general viable bacteria were detected by treatment temperature and treatment time, but all were below the sanitary standard values. No fungus was detected by treatment temperature or treatment time. Like beef thigh, beef tongue pickles can be stored for 1 month at 5 ° C under any treatment conditions.

(3)牛肉(外モモ)の糀漬け
・処理条件
圧力:1000気圧(100MPa)
温度:20℃〜60℃
時間:1時間〜5時間
・製造内容
肉:牛肉(外モモ)
漬液:米糀水(糀:水=1:1)
製法:厚さ1cmにスライスした牛モモ肉と、1/5量の米糀水をと共に袋に入れ、真空包装した。
・評価方法
グルコース濃度:各処理後の肉をホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。定容した液のグルコース濃度を、和光純薬工業(株)製グルコースCIIテストを用いて測定し、元の試料に含まれるグルコース濃度に換算した。1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。測定結果は図86に示すように、未処理に比べて高圧加温処理の処理時間や温度に関わらず、牛モモ肉中のグルコース濃度は200mg以上に向上した。また、処理温度の上昇に比例して牛モモ肉のグルコース濃度は高くなる。また、処理時間の長さにも比例してグルコース濃度は高くなる。特に60℃の処理温度は糀の酵素の適正温度にあたるため、グルコース濃度の上昇は顕著である。
硬さ:各試料を1cm角立方体に調製し、カミソリ刃プランジャーで筋繊維に対して垂直に刃を当て8mmまで進入した時の応力をレオメータにより測定した。測定結果は図87に示すように、未処理に比べて高圧加温処理の処理時間や温度に関わらず、処理した肉の硬さは、軟化した。また、処理温度の上昇によって軟化する傾向があった。特に、糀の酵素の適正温度である60℃の処理温度で、加熱後の硬さは柔らかくなる。60℃での処理時間の長さにも比例して加熱後の硬さは柔らかくなる。
色調:図88(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
旨味成分含量:各試料を生理食塩水中に懸濁して充分混合し、遠心分離もしくはフィルタリングにより残渣を除去したのちAccQ-Fluor Reagent Kit (Waters) を用いて試料中のアミノ酸を蛍光標識した。所定の移動相 (移動相 A: AccQ-Eluent A (Waters)、移動相 B: 60 (v/v) % アセトニトリル) を用いたリニアグラジエントにより高速液体クロマトグラフィー (HPLC) にて各アミノ酸を溶出した。カラムとして AccQ-tag Amino Acid Analysis Column (Waters) を用い、カラムオーブンは 40 ℃に設定し流速 1 ml/min にて溶出を行った。検出の際は、励起波長 250 nm、蛍光波長 395 nm にて蛍光強度を測定した。測定結果は図89に示すように、高圧加温処理を行うと、処理温度および処理時間に比例して旨味成分量が増加する。また、処理時間が15時間場合では、処理温度が40℃以上、処理温度が60℃の場合では、処理時間が15時間以上であれば旨味成分の含有率は、1%以上となった
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30〜37 ℃にて培養を 3 日間行った後に形成された微生物集落数を計数し、試料 1 g あたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表42A)は処理温度別(処理時間は全て15時間)の微生物衛生検査の結果を示し、(表42B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
(3) Beef (outer peach) pickled in koji and processing conditions Pressure: 1000 atm (100 MPa)
Temperature: 20 ℃ -60 ℃
Time: 1 to 5 hours ・ Production content Meat: Beef (outer peach)
Pickling liquid: Rice koji water (koji: water = 1: 1)
Manufacturing method: Beef thighs sliced to a thickness of 1 cm and 1/5 amount of rice bran water were put together in a bag and vacuum packed.
-Evaluation method Glucose concentration: After homogenizing the meat after each treatment, 5 ml of 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, and the mixture was vigorously shaken, filtered and clarified to a constant volume of 50 ml. The glucose concentration of the constant-volume solution was measured using a glucose CII test manufactured by Wako Pure Chemical Industries, Ltd., and converted into the glucose concentration contained in the original sample. Each treatment was repeated 3 times, and the average value and standard deviation were obtained. As shown in FIG. 86, the measurement results showed that the glucose concentration in the beef thigh meat was improved to 200 mg or more, regardless of the treatment time and temperature of the high-pressure heating treatment as compared with the untreated one. In addition, the glucose concentration of beef thigh increases in proportion to the increase in the treatment temperature. In addition, the glucose concentration increases in proportion to the length of processing time. In particular, the treatment temperature of 60 ° C corresponds to the proper temperature of the enzyme in the koji, so that the increase in glucose concentration is remarkable.
Hardness: Each sample was prepared in a 1 cm square cube, and a blade was applied perpendicularly to the muscle fiber with a razor blade plunger, and the stress when entering to 8 mm was measured by a rheometer. As shown in FIG. 87, the measurement results showed that the hardness of the treated meat was softer than that of untreated regardless of the treatment time and temperature of the high-pressure heating treatment. In addition, there was a tendency for it to soften as the processing temperature increased. In particular, the hardness after heating becomes soft at the treatment temperature of 60 ° C, which is the appropriate temperature for the enzyme in koji. The hardness after heating becomes softer in proportion to the length of treatment time at 60 ° C.
Color tone: FIG. 88 (a) shows the color tone before the high-pressure heating process, and (b) shows the color tone before the high-pressure heating process.
Umami component content: Each sample was suspended in physiological saline and mixed thoroughly, the residue was removed by centrifugation or filtering, and then amino acids in the sample were fluorescently labeled using AccQ-Fluor Reagent Kit (Waters). Each amino acid was eluted by high performance liquid chromatography (HPLC) by a linear gradient using a predetermined mobile phase (mobile phase A: AccQ-Eluent A (Waters), mobile phase B: 60 (v / v)% acetonitrile). . An AccQ-tag Amino Acid Analysis Column (Waters) was used as a column, the column oven was set at 40 ° C, and elution was performed at a flow rate of 1 ml / min. At the time of detection, the fluorescence intensity was measured at an excitation wavelength of 250 nm and a fluorescence wavelength of 395 nm. As shown in FIG. 89, the measurement result shows that when the high-pressure heating treatment is performed, the amount of the umami component increases in proportion to the treatment temperature and the treatment time. When the treatment time is 15 hours, the treatment temperature is 40 ° C or higher, and when the treatment temperature is 60 ° C, the umami component content is 1% or higher if the treatment time is 15 hours or longer. Test method: Each sample was suspended in physiological saline and serially diluted, and each diluted sample was fed with standard agar medium (Eiken, for general viable cell count) and potato containing 0.01 (w / v)% chloramphenicol. It was smeared on dextrose agar medium (Eiken, for fungi) (pour method was used for standard agar). The number of microbial colonies formed after culturing at 30 to 37 ° C for 3 days was counted, and the number of general viable bacteria and fungi per 1 g of the sample was calculated. The standard values were set to 300 cfu / g or less for general viable bacteria and 1000 cfu / g or less for fungi, referring to the standards of the Food Sanitation Law. In addition, non-detection was 50 cfu / g or less for both general live bacteria and fungi.
(Table 42A) shows the results of the microbial hygiene inspection by treatment temperature (all treatment times are 15 hours), and (Table 42B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 40 ° C).

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別では、40℃以下の処理で一般生菌および真菌ともに衛生基準値を超えてしまったが、60℃以上では不検出であった。60℃での処理時間別では、1時間処理したもののみが1か月後に衛生基準値を超えない範囲で一般生菌が検出されたが、処理時間による生菌数の違いはほぼなかった。糀の酵素の活性温度が60℃であることも含めると、牛モモ肉の糀漬けは60℃以上での高圧加温処理を推奨する。
Incidentally, in the table, the standard or more, general live bacteria 100,000 / g or more, fungi 1000 / g or more, the standard or less, general live bacteria 100,000 / g or less, fungus 1000 / g or less, non- Detection refers to a detection limit of 50 / g or less.
As shown in the table, by treatment temperature, both general viable bacteria and fungi exceeded the hygiene standard value at treatments at 40 ° C or lower, but were not detected at 60 ° C or higher. By treatment time at 60 ° C, general viable bacteria were detected within a range not exceeding the hygiene standard value after 1 month only in the one treated for 1 hour, but there was almost no difference in the viable cell count depending on the treatment time. Including the fact that the enzyme activity temperature of the koji is 60 ℃, it is recommended to heat the beef thigh meat at 60 ℃ or higher by high pressure heating.

(4)牛肉(タン)の糀漬け
・処理条件
圧力:1000気圧(100MPa)
温度:20℃〜60℃
時間:1時間〜5時間
・製造内容
肉:牛タン(タン先)
漬液:米糀水(糀:水=1:1)
製法:厚さ1cmにスライスした牛モモ肉と、2/5量の米糀水をと共に袋に入れ、真空包装した。
・評価方法
グルコース濃度:各処理後の肉をホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。定容した液のグルコース濃度を、和光純薬工業(株)製グルコースCIIテストを用いて測定し、元の試料に含まれるグルコース濃度に換算した。1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。測定結果は図90に示すように、未処理に比べて高圧加温処理の処理時間や温度に関わらず、牛タン肉中のグルコース濃度は約200mg以上に向上した。また、処理温度の上昇に比例して牛タン肉のグルコース濃度は高くなる。また、処理時間の長さにも比例してグルコース濃度は高くなる。特に60℃の処理温度は糀の酵素の適正温度にあたるため、グルコース濃度の上昇は顕著である。
硬さ:各試料を1cm角立方体に調製し、カミソリ刃プランジャーで筋繊維に対して垂直に刃を当て8mmまで進入した時の応力をレオメータにより測定した。測定結果は図91に示すように、未処理に比べて高圧加温処理の処理時間や温度に関わらず、処理した肉の硬さは、軟化した。また、処理温度の上昇および処理時間の長さに比例して軟化した。
色調:図92(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
旨味成分含量:各試料を生理食塩水中に懸濁して充分混合し、遠心分離もしくはフィルタリングにより残渣を除去したのちAccQ-Fluor Reagent Kit (Waters) を用いて試料中のアミノ酸を蛍光標識した。所定の移動相 (移動相 A: AccQ-Eluent A (Waters)、移動相 B: 60 (v/v) % アセトニトリル) を用いたリニアグラジエントにより高速液体クロマトグラフィー (HPLC) にて各アミノ酸を溶出した。カラムとして AccQ-tag Amino Acid Analysis Column (Waters) を用い、カラムオーブンは 40 ℃に設定し流速 1 ml/min にて溶出を行った。検出の際は、励起波長 250 nm、蛍光波長 395 nm にて蛍光強度を測定した。測定結果は図93に示すように、高圧加温処理を行うと、処理温度および処理時間に比例して旨味成分量が増加する。また、処理時間が15時間場合では、処理温度が20℃以上、処理温度が60℃の場合では、処理時間が15時間以上であれば旨味成分の含有率は、1%以上となった。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30〜37℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表43A)は処理温度別(処理時間は全て3時間)の微生物衛生検査の結果を示し、(表43B)は処理時間別(処理温度は全て60℃)の微生物衛生検査の結果を示す。
(4) Beef (tan) pickled in koji and processing conditions Pressure: 1000 atm (100 MPa)
Temperature: 20 ℃ -60 ℃
Time: 1 to 5 hours ・ Production content Meat: Beef tongue
Pickling liquid: Rice koji water (koji: water = 1: 1)
Manufacturing method: Beef thighs sliced to a thickness of 1 cm and 2/5 amount of rice bran water were put together in a bag and vacuum packed.
-Evaluation method Glucose concentration: After homogenizing the meat after each treatment, 5 ml of 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, and the mixture was vigorously shaken, filtered and clarified to a constant volume of 50 ml. The glucose concentration of the constant-volume solution was measured using a glucose CII test manufactured by Wako Pure Chemical Industries, Ltd., and converted into the glucose concentration contained in the original sample. Each treatment was repeated 3 times, and the average value and standard deviation were obtained. As shown in FIG. 90, the measurement result showed that the glucose concentration in the beef tongue meat was improved to about 200 mg or more as compared with the untreated one, regardless of the treatment time and temperature of the high-pressure heating treatment. Further, the glucose concentration of beef tongue meat increases in proportion to the increase in the treatment temperature. In addition, the glucose concentration increases in proportion to the length of processing time. In particular, the treatment temperature of 60 ° C corresponds to the proper temperature of the enzyme in the koji, so that the increase in glucose concentration is remarkable.
Hardness: Each sample was prepared in a 1 cm square cube, and a blade was applied perpendicularly to the muscle fiber with a razor blade plunger, and the stress when entering to 8 mm was measured by a rheometer. As shown in FIG. 91, the measurement results showed that the hardness of the treated meat was softened regardless of the treatment time and temperature of the high-pressure heating treatment as compared with the untreated meat. Further, it softened in proportion to the rise of treatment temperature and the length of treatment time.
Color tone: FIG. 92 (a) shows the color tone before the high-pressure heating process, and (b) shows the color tone before the high-pressure heating process.
Umami component content: Each sample was suspended in physiological saline and mixed thoroughly, the residue was removed by centrifugation or filtering, and then amino acids in the sample were fluorescently labeled using AccQ-Fluor Reagent Kit (Waters). Each amino acid was eluted by high performance liquid chromatography (HPLC) by a linear gradient using a predetermined mobile phase (mobile phase A: AccQ-Eluent A (Waters), mobile phase B: 60 (v / v)% acetonitrile). . An AccQ-tag Amino Acid Analysis Column (Waters) was used as a column, the column oven was set at 40 ° C, and elution was performed at a flow rate of 1 ml / min. At the time of detection, the fluorescence intensity was measured at an excitation wavelength of 250 nm and a fluorescence wavelength of 395 nm. As a result of the measurement, as shown in FIG. 93, when the high-pressure heating treatment is performed, the amount of the umami component increases in proportion to the treatment temperature and the treatment time. When the treatment time was 15 hours, the treatment temperature was 20 ° C. or higher, and when the treatment temperature was 60 ° C., the umami component content was 1% or higher when the treatment time was 15 hours or longer.
Microbial hygiene inspection method: Each sample is suspended in physiological saline and then serially diluted, and each diluted sample is standard agar medium (Eiken, for general viable cell count) and 0.01 (w / v)% chloramphenicol. It was smeared on the contained potato dextrose agar medium (Eiken, for fungi) (pour-out method was used for standard agar). The number of microbial colonies formed after culturing at 30 to 37 ° C. for 3 days was counted, and the number of viable general bacteria and fungi per 1 g of the sample was calculated. The standard values were set to 300 cfu / g or less for general viable bacteria and 1000 cfu / g or less for fungi, referring to the standards of the Food Sanitation Law. In addition, non-detection was 50 cfu / g or less for both general live bacteria and fungi.
(Table 43A) shows the results of the microbial hygiene inspection by treatment temperature (all treatment times are 3 hours), and (Table 43B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 60 ° C).

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別では、40℃以下の処理で一般生菌および真菌ともに衛生基準値を超えてしまったが、60℃以上の処理では衛生基準値を下回っている。60℃での処理時間別では、一般生菌についてはどの処理時間でも衛生基準値を超えない範囲で検出されたが、処理時間による生菌数の違いはなかった。牛モモ肉と同様に、糀の酵素の活性温度が60℃であることから、牛タンの糀漬けも60℃以上での高圧加温処理を推奨する。
Incidentally, in the table, the standard or more, general live bacteria 100,000 / g or more, fungi 1000 / g or more, the standard or less, general live bacteria 100,000 / g or less, fungus 1000 / g or less, non- Detection refers to a detection limit of 50 / g or less.
As shown in the table, by treatment temperature, both general viable bacteria and fungi exceeded the hygienic standard value at 40 ° C or lower, but below the sanitary standard value at 60 ° C or higher. By treatment time at 60 ° C, general viable bacteria were detected within the range not exceeding the hygienic standard value at any treatment time, but there was no difference in viable cell count depending on the treatment time. As with beef thigh meat, the enzyme activity temperature of the koji is 60 ℃, so it is recommended to heat the beef tongue at high temperature at 60 ℃ or higher.

(5)80MPa以下と100MPa以上の処理での効果
前記牛肉の味噌および糀漬けの製法を、高圧処理条件の圧力条件のみ80〜300MPa範囲で変えて検討したところ、表44に示す結果となり、本発明が80〜300MPaの圧力範囲でも有効であることを確認した。
(5) Effect of treatment at 80 MPa or less and 100 MPa or more When the manufacturing method of the beef miso and koji-zuke was examined by changing only the pressure condition of the high pressure treatment condition within the range of 80 to 300 MPa, the results shown in Table 44 were obtained. It was confirmed that the invention is effective even in the pressure range of 80 to 300 MPa.

Figure 2020062040
Figure 2020062040

追加実験(堅豆腐)
(1)堅豆腐の粕漬け
・処理条件
圧力:1000気圧(100MPa)
温度:20℃〜60℃
時間:7.5時間〜30時間
・製造内容
加工品:堅豆腐
漬床:調味粕(酒粕40%、味噌40%、清酒10%、みりん10%)
製法:1cm幅に切った堅豆腐に1/2量の調味酒粕を塗り、袋に入れ、真空包装した。
・評価方法
グルコース濃度:各処理後の魚肉をホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。定容した液のグルコース濃度を、和光純薬工業(株)製グルコースCIIテストを用いて測定し、元の試料に含まれるグルコース濃度に換算した。1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。測定結果は図94に示すように、高圧加温処理を行うことで、グルコース濃度が高くなる。40℃の処理温度で特に高く、処理時間に比例してグルコース濃度も高くなる。
硬さ:各試料を1cm角立方体に調製し、10mmφ円柱プランジャーで80%圧縮した時の応力をレオメータにより測定した。測定結果は図95に示すように、高圧加温処理を行うことで、堅豆腐の硬さが柔らかくなる。グルコース濃度同様40℃の処理温度で特に柔らかくなり、処理時間に比例してさらに柔らかくなる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図96に示すように、処理温度および処理時間に比例して色が変化し、より黄色くなる。また図97(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
旨味成分含量:各試料を生理食塩水中に懸濁して充分混合し、遠心分離もしくはフィルタリングにより残渣を除去したのちAccQ-Fluor Reagent Kit (Waters) を用いて試料中のアミノ酸を蛍光標識した。所定の移動相 (移動相 A: AccQ-Eluent A (Waters)、移動相 B: 60 (v/v) % アセトニトリル) を用いたリニアグラジエントにより高速液体クロマトグラフィー (HPLC) にて各アミノ酸を溶出した。カラムとして AccQ-tag Amino Acid Analysis Column (Waters) を用い、カラムオーブンは 40 ℃に設定し流速 1 ml/min にて溶出を行った。検出の際は、励起波長 250 nm、蛍光波長 395 nm にて蛍光強度を測定した。測定結果は図98に示すように、高圧加温処理を行うと、旨味成分量は増加し、特に60℃の処理温度で大きく増加する。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30〜37 ℃にて培養を 3 日間行った後に形成された微生物集落数を計数し、試料 1 g あたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表45A)は処理温度別(処理時間は全て15時間)の微生物衛生検査の結果を示し、(表45B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
Additional experiment (ken tofu)
(1) Dried pickled tofu and processing conditions Pressure: 1000 atm (100 MPa)
Temperature: 20 ℃ -60 ℃
Time: 7.5 to 30 hours ・ Production details Processed product: Kentofu Pickled floor: Seasoned meal (40% sake lees, 40% miso, 10% sake, 10% mirin)
Manufacturing method: Tofu cut into 1 cm width was coated with 1/2 amount of seasoned sake lees, put in a bag, and vacuum packed.
-Evaluation method Glucose concentration: After homogenizing the fish meat after each treatment, 5 ml of 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, and the mixture was vigorously shaken, filtered and clarified to a constant volume of 50 ml. The glucose concentration of the constant-volume solution was measured using a glucose CII test manufactured by Wako Pure Chemical Industries, Ltd., and converted into the glucose concentration contained in the original sample. Each treatment was repeated 3 times, and the average value and standard deviation were obtained. As for the measurement result, as shown in FIG. 94, the glucose concentration is increased by performing the high-pressure heating treatment. It is particularly high at the treatment temperature of 40 ° C, and the glucose concentration also increases in proportion to the treatment time.
Hardness: Each sample was prepared into a 1 cm cube, and the stress when 80% compressed with a 10 mmφ cylindrical plunger was measured by a rheometer. As shown in FIG. 95, the measurement result shows that the high-pressure heating treatment softens the hardness of the tofu. Like the glucose concentration, it becomes particularly soft at the treatment temperature of 40 ° C, and becomes even softer in proportion to the treatment time.
Color tone: Regarding the color tone of the sample under each processing condition, L *, a *, b * were measured by a reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.). As shown in FIG. 96, the measurement result shows that the color changes in proportion to the processing temperature and the processing time and becomes more yellow. Further, FIG. 97 (a) shows the color tone before the high-pressure heating treatment, and FIG. 97 (b) shows the color tone before the high-pressure heating treatment.
Umami component content: Each sample was suspended in physiological saline and mixed thoroughly, the residue was removed by centrifugation or filtering, and then amino acids in the sample were fluorescently labeled using AccQ-Fluor Reagent Kit (Waters). Each amino acid was eluted by high performance liquid chromatography (HPLC) by a linear gradient using a predetermined mobile phase (mobile phase A: AccQ-Eluent A (Waters), mobile phase B: 60 (v / v)% acetonitrile). . An AccQ-tag Amino Acid Analysis Column (Waters) was used as a column, the column oven was set at 40 ° C, and elution was performed at a flow rate of 1 ml / min. At the time of detection, the fluorescence intensity was measured at an excitation wavelength of 250 nm and a fluorescence wavelength of 395 nm. As shown in FIG. 98, the measurement result shows that when the high-pressure heating treatment is performed, the amount of the umami component is increased, especially at the treatment temperature of 60 ° C.
Microbial hygiene inspection method: Each sample is suspended in physiological saline and then serially diluted, and each diluted sample is standard agar medium (Eiken, for general viable cell count) and 0.01 (w / v)% chloramphenicol. It was smeared on the contained potato dextrose agar medium (Eiken, for fungi) (pour-out method was used for standard agar). The number of microbial colonies formed after culturing at 30 to 37 ° C for 3 days was counted, and the number of general viable bacteria and fungi per 1 g of the sample was calculated. The standard values were set to 300 cfu / g or less for general viable bacteria and 1000 cfu / g or less for fungi, referring to the standards of the Food Sanitation Law. In addition, non-detection was 50 cfu / g or less for both general live bacteria and fungi.
(Table 45A) shows the results of microbial hygiene inspection by treatment temperature (all treatment times are 15 hours), and (Table 45B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 40 ° C).

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別および処理時間別ともに生菌数は衛生基準値を下回っている。これまでの粕漬けと同様に、高圧加温処理の効果だけでなく、堅豆腐に染み込んだ酒粕に含まれるアルコールによる殺菌効果との相乗効果によって菌の増殖などが抑制されたためと考えられる。
Incidentally, in the table, the standard or more, general live bacteria 100,000 / g or more, fungi 1000 / g or more, the standard or less, general live bacteria 100,000 / g or less, fungus 1000 / g or less, non- Detection refers to a detection limit of 50 / g or less.
As shown in the table, the viable cell count is below the hygienic standard value for both treatment temperature and treatment time. It is considered that the growth of bacteria was suppressed by the synergistic effect with the sterilizing effect of the alcohol contained in the sake lees impregnated in the hard bean curd as well as the effect of the high-pressure heating treatment, as in the case of pickling the lees.

(2)80MPa以下と100MPa以上の処理での効果
前記堅豆腐の漬物の製法を、高圧処理条件の圧力条件のみ80〜300MPa範囲で変えて検討したところ、表46に示す結果となり、本発明が80〜300MPaの圧力範囲でも有効であることを確認した。
(2) Effect of treatment at 80 MPa or less and 100 MPa or more When the manufacturing method of the pickled hard bean curd was examined by changing only the pressure condition of the high pressure treatment in the range of 80 to 300 MPa, the results shown in Table 46 were obtained, and the present invention was achieved. It was confirmed that it was effective even in the pressure range of 80 to 300 MPa.

Figure 2020062040
Figure 2020062040

追加実験(魚介類)
(1)フクラギの粕漬け
・処理条件
圧力:1000気圧(100MPa)
温度:20℃〜60℃
時間:7.5時間〜30時間
・製造内容
魚介:フクラギ
漬床:調味粕(酒粕73%、粉末米糀11.2%、清酒7.5%、みりん7.5%、塩0.8%)
製法:幅2cmの切り身にしたフクラギに同重量の漬床を塗り、袋に入れ、真空包装した。一般製造法として、フクラギの切り身をガーゼで包み、その上から食材と同量の調味粕を塗り、袋に入れ真空包装した後、常温で3日間保存した。
・評価方法
グルコース濃度:各処理後の魚肉をホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。定容した液のグルコース濃度を、和光純薬工業(株)製グルコースCIIテストを用いて測定し、元の試料に含まれるグルコース濃度に換算した。1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。測定結果は図99に示すように、未処理に比べて、処理条件に関わらず、0.3%以上のグルコースの浸透が確認された。処理温度の上昇に比例してグルコース濃度は高くなる。また、処理時間の長さにも比例してグルコース濃度は高くなる。さらに、処理時間15時間では、40℃以上、処理温度40℃では、15時間以上の条件で一般法でのグルコース濃度より高い濃度となった。
硬さ:各試料を1cm角立方体に調製し、カミソリ刃プランジャーで筋繊維に対して垂直に刃を当て8mmまで進入した時の応力をレオメータにより測定した。測定結果は図100に示すように、フクラギの粕漬けに関しては、高圧加温処理することで未処理や一般法に比べて硬くなる傾向が認められた。しかし、15時間処理の場合処理温度の上昇、に比例してフクラギは柔らかくなり、60℃では、未処理や一般法より柔らかくなった。また、処理時間の長さにも比例してフクラギは柔らかくなった。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図101に示すように、高圧加温処理を行うことで、成分などが染み込み鮮やかな茶色になる。また、処理温度および処理時間に比例して色の鮮やかさは良くなる。また、また図102(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30〜37℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表47A)は処理温度別(処理時間は全て15時間)の微生物衛生検査の結果を示し、(表47B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
Additional experiment (seafood)
(1) Pickling of Japanese fluffy rice cake / treatment condition Pressure: 1000 atm (100 MPa)
Temperature: 20 ℃ -60 ℃
Time: 7.5 to 30 hours ・ Production details Seafood: Fukuragi Pickled floor: Seasoned meal (73% sake lees, 11.2% rice powder, sake 7.5%, mirin 7.5%, salt 0.8%)
Manufacturing method: A stuffed bed of 2 cm wide was applied with the same weight of pickled floor, put in a bag, and vacuum packed. As a general production method, bulgari fillets were wrapped in gauze, the same amount of seasoning meal as the food material was applied onto the fillet, put in a bag and vacuum packed, and then stored at room temperature for 3 days.
-Evaluation method Glucose concentration: After homogenizing the fish meat after each treatment, 5 ml of 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, and the mixture was vigorously shaken, filtered and clarified to a constant volume of 50 ml. The glucose concentration of the constant-volume solution was measured using a glucose CII test manufactured by Wako Pure Chemical Industries, Ltd., and converted into the glucose concentration contained in the original sample. Each treatment was repeated 3 times, and the average value and standard deviation were obtained. As a result of the measurement, as shown in FIG. 99, penetration of glucose of 0.3% or more was confirmed as compared with untreated regardless of treatment conditions. The glucose concentration increases in proportion to the increase in the treatment temperature. In addition, the glucose concentration increases in proportion to the length of processing time. Furthermore, at a treatment time of 15 hours, at a temperature of 40 ° C or higher, and at a treatment temperature of 40 ° C, the concentration was higher than the glucose concentration in the general method under the conditions of 15 hours or longer.
Hardness: Each sample was prepared in a 1 cm square cube, and a blade was applied perpendicularly to the muscle fiber with a razor blade plunger, and the stress when entering to 8 mm was measured by a rheometer. As a result of the measurement, as shown in FIG. 100, it was recognized that the soaking of the Japanese oak shavings by the high-pressure heating treatment tended to be harder than the untreated or general method. However, in the case of treatment for 15 hours, the fungus became softer in proportion to the increase of treatment temperature, and at 60 ℃, it became softer than that of untreated or general method. In addition, the fluffy tree became softer in proportion to the length of processing time.
Color tone: Regarding the color tone of the sample under each processing condition, L *, a *, b * were measured by a reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.). As shown in FIG. 101, the measurement results show that the components are soaked into a bright brown color by high-pressure heating. Further, the color vividness improves in proportion to the processing temperature and the processing time. Further, FIG. 102A shows the color tone before the high-pressure heating treatment, and FIG. 102B shows the color tone before the high-pressure heating treatment.
Microbial hygiene inspection method: Each sample is suspended in physiological saline and then serially diluted, and each diluted sample is standard agar medium (Eiken, for general viable cell count) and 0.01 (w / v)% chloramphenicol. It was smeared on the contained potato dextrose agar medium (Eiken, for fungi) (pour-out method was used for standard agar). The number of microbial colonies formed after culturing at 30 to 37 ° C. for 3 days was counted, and the number of viable general bacteria and fungi per 1 g of the sample was calculated. The standard values were set to 300 cfu / g or less for general viable bacteria and 1000 cfu / g or less for fungi, referring to the standards of the Food Sanitation Law. In addition, non-detection was 50 cfu / g or less for both general live bacteria and fungi.
(Table 47A) shows the results of the microbial hygiene inspection for each treatment temperature (all treatment times are 15 hours), and (Table 47B) shows the results of the microbial hygiene inspection for each treatment time (all treatment temperatures are 40 ° C).

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別および処理時間別ともに一般生菌および真菌の生菌数は不検出または衛生基準値以下であった。これは野菜の粕漬けと同様に、高圧加温処理の効果だけでなく、フクラギに染み込んだ酒粕に含まれるアルコールによる殺菌効果との相乗効果によって菌の増殖などが抑制されたためと考えられる。
Incidentally, in the table, the standard or more, general live bacteria 100,000 / g or more, fungi 1000 / g or more, the standard or less, general live bacteria 100,000 / g or less, fungus 1000 / g or less, non- Detection refers to a detection limit of 50 / g or less.
As shown in the table, the viable cell counts of general viable bacteria and fungi were not detected or were below the hygienic standard value by treatment temperature and treatment time. It is considered that this is because, as in the case of pickling vegetables, the growth of bacteria was suppressed not only by the effect of high-pressure heating, but also by the synergistic effect with the bactericidal effect of the alcohol contained in the sake lees impregnated in the fluffy rice.

(2)イカの粕漬け
・処理条件
圧力:1000気圧(100MPa)
温度:20℃〜60℃
時間:7.5時間〜30時間
・製造内容
魚介:スルメイカ(胴)
漬床:調味粕(酒粕73%、粉末米糀11.2%、清酒7.5%、みりん7.5%、塩0.8%)
製法:皮を剥いだイカの胴部分に同重量の漬床を塗り、袋に入れ、真空包装した。一般製造法として、イカの切り身をガーゼで包み、その上から食材と同量の調味粕を塗り、袋に入れ真空包装した後、常温で3日間保存した。
・評価方法
グルコース濃度:各処理後のイカ肉をホモジナイズした後、試料5gに8%トリクロロ酢酸水溶液を5ml加えて激しく振盪し、ろ過して清澄化した液を50mlに定容した。定容した液のグルコース濃度を、和光純薬工業(株)製グルコースCIIテストを用いて測定し、元の試料に含まれるグルコース濃度に換算した。1処理あたり3反復ずつ行い、平均値と標準偏差を求めた。測定結果は図103に示すように、未処理に比べて、処理条件に関わらず、0.5%以上のグルコースの浸透が確認された。処理温度の上昇に比例してグルコース濃度は高くなる。また、処理時間の長さにも比例してグルコース濃度は高くなる。さらに、処理条件に関わらす一般法でのグルコース濃度より高い濃度となった。
硬さ:各試料を2cm角立方体に調製し、5mmφ針状プランジャーで15mmまで進入した時の応力をレオメータにより測定した。測定結果は図104に示すように、イカの粕漬けも、高圧加温処理することで未処理に比べて硬くなる傾向が認められたが、いずれの条件も一般法に比べて軟らかかった。また、15時間処理の場合処理温度40℃以上、40℃処理の場合処理時間15時間以上で未処理より柔らかくなった。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図105に示すように、高圧加温処理を行うことで、成分などが染み込み鮮やかな茶色になる。また、処理温度および処理時間に比例して色の鮮やかさは良くなる。また図106(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30〜37℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表48A)は処理温度別(処理時間は全て15時間)の微生物衛生検査の結果を示し、(表48B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
(2) Pickling squid with lees and processing conditions Pressure: 1000 atm (100 MPa)
Temperature: 20 ℃ -60 ℃
Time: 7.5 hours to 30 hours ・ Production details Seafood: Japanese squid (body)
Pickled floor: Seasoned meal (73% sake lees, 11.2% rice powder, 7.5% sake, 7.5% mirin, 0.8% salt)
Production method: The skin of the cuttlefish was coated with the same weight of pickled floor, put in a bag, and vacuum packed. As a general production method, squid fillets were wrapped in gauze, the same amount of seasoning meal as the food material was applied onto the cut squid, put in a bag and vacuum packed, and then stored at room temperature for 3 days.
Evaluation method Glucose concentration: After homogenizing the squid meat after each treatment, 5 ml of 8% trichloroacetic acid aqueous solution was added to 5 g of the sample, and the mixture was vigorously shaken and clarified by filtration to a constant volume of 50 ml. The glucose concentration of the constant-volume solution was measured using a glucose CII test manufactured by Wako Pure Chemical Industries, Ltd., and converted into the glucose concentration contained in the original sample. Each treatment was repeated 3 times, and the average value and standard deviation were obtained. As a result of the measurement, as shown in FIG. 103, 0.5% or more of glucose permeation was confirmed as compared with untreated, regardless of the treatment conditions. The glucose concentration increases in proportion to the increase in the treatment temperature. In addition, the glucose concentration increases in proportion to the length of processing time. Furthermore, the glucose concentration was higher than the glucose concentration in the general method regardless of the treatment conditions.
Hardness: Each sample was prepared into a 2 cm square cube, and the stress at the time of entering to 15 mm with a 5 mmφ needle plunger was measured by a rheometer. As a result of the measurement, as shown in FIG. 104, the squid pickled in the lees tended to be harder by the high-pressure heating treatment as compared with the untreated one, but all the conditions were softer than the general method. In the case of the treatment for 15 hours, the treatment temperature was 40 ° C. or higher, and in the case of the treatment at 40 ° C., the treatment time was 15 hours or longer, and it became softer than the untreated one.
Color tone: Regarding the color tone of the sample under each processing condition, L *, a *, b * were measured by a reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.). As shown in FIG. 105, the measurement results show that the components are soaked into a bright brown color by performing the high-pressure heating treatment. Further, the color vividness improves in proportion to the processing temperature and the processing time. Also, FIG. 106A shows the color tone before the high-pressure heating process, and FIG. 106B shows the color tone before the high-pressure heating process.
Microbial hygiene inspection method: Each sample is suspended in physiological saline and then serially diluted, and each diluted sample is standard agar medium (Eiken, for general viable cell count) and 0.01 (w / v)% chloramphenicol. It was smeared on the contained potato dextrose agar medium (Eiken, for fungi) (pour-out method was used for standard agar). The number of microbial colonies formed after culturing at 30 to 37 ° C. for 3 days was counted, and the number of viable general bacteria and fungi per 1 g of the sample was calculated. The standard values were set to 300 cfu / g or less for general viable bacteria and 1000 cfu / g or less for fungi, referring to the standards of the Food Sanitation Law. In addition, non-detection was 50 cfu / g or less for both general live bacteria and fungi.
(Table 48A) shows the results of the microbial hygiene inspection by treatment temperature (all treatment times are 15 hours), and (Table 48B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 40 ° C).

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別および処理時間別ともに一般生菌および真菌の生菌数は、不検出または、衛生基準値以下であった。野菜やフクラギの粕漬けと同様に、高圧加温処理の効果だけでなく、イカに染み込んだ酒粕に含まれるアルコールによる殺菌効果との相乗効果によって菌の増殖などが抑制されたためと考えられる。
Incidentally, in the table, the standard or more, general live bacteria 100,000 / g or more, fungi 1000 / g or more, the standard or less, general live bacteria 100,000 / g or less, fungus 1000 / g or less, non- Detection refers to a detection limit of 50 / g or less.
As shown in the table, the viable cell counts of general viable bacteria and fungi were not detected or were below the hygiene standard value for each treatment temperature and each treatment time. It is considered that the growth of bacteria was suppressed not only by the high-pressure heating treatment, but also by the synergistic effect with the bactericidal effect of the alcohol contained in the sake lees infused into the squid, as in the case of pickling vegetables and eucommia with lees.

(3)フクラギのソフトスモーク
・処理条件
圧力:1000気圧(100MPa)
温度:20℃〜60℃
時間:30分〜2時間
・製造内容
魚介:フクラギ
漬液:調味くん液(塩20%、砂糖20%、トレハロース8%、粉末くん液2%、水50%)
製法:幅2cmの切り身にしたフクラギと同重量の漬液を共に袋に入れ、真空包装した。
・評価方法
糖濃度:高圧加温処理したサンプルを袋から取り出し、調味液などを拭きとった後、ミキサーでホモジナイズした。ホモジナイズしたサンプル1gに対して8%トリクロロ酢酸溶液1mlを加え強く撹拌した後、抽出液を濾過し、最終的に蒸留水で10mlにメスアップしたものを試料とした。分析はHPLC装置(株)島津製作所)を用いた。カラムはMightysil NH2 (5um)(株)関東化学)、検出器は示差屈折計(RID-10A)を用いて、移動相を70%アセトニトリルにし、流速1 ml/minで分析を行った。フルクトース、グルコース、スクロースの3成分について、試料の糖組成およびそれらの定量を行い評価した。測定結果は図107に示すように、高圧加温処理を行うことで、糖濃度が高くなる。処理温度による違いは認められなかった。
硬さ:各試料を1cm角立方体に調製し、カミソリ刃プランジャーで筋繊維に対して垂直に刃を当て8mmまで進入した時の応力をレオメータにより測定した。測定結果は図108に示すように、製造の過程で、調味くん液の塩分などによる脱水が起こったり、乾燥処理を行ったりするため、硬さは未処理よりも硬くなる。高圧加温処理による影響は処理温度の上昇に比例して柔らかくなることや、処理時間の長さに比例して硬くなることが挙げられる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図109に示すように、高圧加温処理を行うことで、調味くん液が染み込み鮮やかな茶色になる。処理温度および処理時間に比例して色の鮮やかさは良くなる。また図110(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30〜37℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表49A)は処理温度別(処理時間は全て1時間)の微生物衛生検査の結果を示し、(表49B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
(3) Soft smoke of fluffy and processing conditions Pressure: 1000 atm (100 MPa)
Temperature: 20 ℃ -60 ℃
Time: 30 minutes to 2 hours ・ Product details Seafood: Fukuragi pickle liquid: Seasoning liquid (20% salt, 20% sugar, 8% trehalose, 2% powder liquid, 50% water)
Production method: Fillet with a width of 2 cm and the same weight of pickling solution were put in a bag together and vacuum packed.
-Evaluation method Sugar concentration: A sample subjected to high-pressure heating treatment was taken out from the bag, the seasoning liquid was wiped off, and then homogenized with a mixer. To 1 g of the homogenized sample, 1 ml of 8% trichloroacetic acid solution was added and vigorously stirred, and then the extract was filtered and finally diluted to 10 ml with distilled water to obtain a sample. The analysis was carried out using a HPLC device (Shimadzu Corporation). The column was Mightysil NH 2 (5um) (Kanto Kagaku), and the detector was a differential refractometer (RID-10A). The mobile phase was 70% acetonitrile, and the flow rate was 1 ml / min. Regarding the three components of fructose, glucose and sucrose, the sugar composition of the sample and their quantification were quantified and evaluated. As shown in FIG. 107, the measurement results show that the high-pressure heating treatment increases the sugar concentration. No difference was observed depending on the treatment temperature.
Hardness: Each sample was prepared in a 1 cm square cube, and a blade was applied perpendicularly to the muscle fiber with a razor blade plunger, and the stress when entering to 8 mm was measured by a rheometer. As shown in FIG. 108, the measurement results show that the hardness of the seasoning liquid is harder than that of the untreated product, because dehydration occurs due to the salt content of the seasoning liquid and drying treatment is performed. The effect of the high-pressure heating treatment is that the treatment becomes softer in proportion to the rise of the treatment temperature and becomes harder in proportion to the treatment time.
Color tone: Regarding the color tone of the sample under each processing condition, L *, a *, b * were measured by a reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.). As shown in FIG. 109, the measurement results show that the high-pressure heating treatment causes the seasoning liquid to soak into a bright brown color. The color vividness improves in proportion to the processing temperature and the processing time. Further, FIG. 110 (a) shows the color tone before the high-pressure heating treatment, and (b) shows the color tone before the high-pressure heating treatment.
Microbial hygiene inspection method: Each sample is suspended in physiological saline and then serially diluted, and each diluted sample is standard agar medium (Eiken, for general viable cell count) and 0.01 (w / v)% chloramphenicol. It was smeared on the contained potato dextrose agar medium (Eiken, for fungi) (pour-out method was used for standard agar). The number of microbial colonies formed after culturing at 30 to 37 ° C. for 3 days was counted, and the number of viable general bacteria and fungi per 1 g of the sample was calculated. The standard values were set to 300 cfu / g or less for general viable bacteria and 1000 cfu / g or less for fungi, referring to the standards of the Food Sanitation Law. In addition, non-detection was 50 cfu / g or less for both general live bacteria and fungi.
(Table 49A) shows the results of the microbial hygiene inspection by treatment temperature (all treatment times are 1 hour), and (Table 49B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 40 ° C).

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、処理温度別では、60℃以上の処理温度で一般生菌および真菌ともに不検出であった。40℃での処理時間別では、2時間以上で衛生基準値を下回った。
Incidentally, in the table, the standard or more, general live bacteria 100,000 / g or more, fungi 1000 / g or more, the standard or less, general live bacteria 100,000 / g or less, fungus 1000 / g or less, non- Detection refers to a detection limit of 50 / g or less.
As shown in the table, by treatment temperature, neither general live bacteria nor fungi were detected at treatment temperatures of 60 ° C or higher. By treatment time at 40 ° C, it fell below the hygienic standard for more than 2 hours.

(4)イカのソフトスモーク
・処理条件
圧力:1000気圧(100MPa)
温度:20℃〜60℃
時間:30分〜2時間
・製造内容
魚介:スルメイカ(胴)
漬液:調味くん液(塩20%、砂糖20%、トレハロース8%、粉末くん液2%、水50%)
製法:皮を剥いだイカの胴部分と同重量の漬液を共に袋に入れ、真空包装した。
・評価方法
糖濃度:高圧加温処理したサンプルを袋から取り出し、調味液などを拭きとった後、ミキサーでホモジナイズした。ホモジナイズしたサンプル1gに対して8トリクロロ酢酸溶液1mlを加え強く撹拌した後、抽出液を濾過し、最終的に蒸留水で10mlにメスアップしたものを試料とした。分析はHPLC装置((株)島津製作所)を用いた。カラムはMightysil NH2 (5um)((株)関東化学)、検出器は示差屈折計(RID-10A)を用いて、移動相を70%アセトニトリルにし、流速1 ml/minで分析を行った。フルクトース、グルコース、スクロースの3成分について、試料の糖組成およびそれらの定量を行い評価した。測定結果は図111に示すように、高圧加温処理を行うことで、フクラギと同様に糖濃度が高くなる。また、処理温度が60℃で最も糖濃度が上昇した。
硬さ:各試料を2cm角立方体に調製し、5mmφ針状プランジャーで15mmまで進入した時の応力をレオメータにより測定した。測定結果は図112に示すように、フクラギと同様に、製造の過程で未処理よりも硬くなる傾向がある。高圧加温処理による影響は、フクラギとは反対に、処理時間の長さに比例して柔らかくなる。
色調:各処理条件の試料の色調について色彩色差計(日本電色社製)を用いて反射法によりL*,a*,b*を測定した。測定結果は図113に示すように、高圧加温処理を行うことで、フクラギと同様に調味くん液が染み込み鮮やかな茶色になる。また、色の鮮やかさも処理温度および処理時間に比例して良くなる。また図114(a)は高圧加温処理前の色調を示し、(b)は高圧加温処理前の色調を示す。
微生物衛生検査法:各試料を生理食塩水にて懸濁の後に段階希釈し、各希釈試料を標準寒天培地 (栄研、一般生菌数用) および 0.01 (w/v) %クロラムフェニコール含有ポテトデキストロース寒天培地 (栄研、真菌用) に塗抹した (標準寒天の場合は混釈法を使用した)。30〜37℃にて培養を3日間行った後に形成された微生物集落数を計数し、試料1gあたりの一般生菌および真菌の生菌数を算出した。基準値は、食品衛生法規格基準を参考に一般生菌数は 300 cfu /g 以下、真菌数は 1000 cfu /g 以下とした。また、不検出は、一般生菌および真菌共に、50 cfu /g 以下とした。
(表50A)は処理温度別(処理時間は全て1時間)の微生物衛生検査の結果を示し、(表50B)は処理時間別(処理温度は全て40℃)の微生物衛生検査の結果を示す。
(4) Soft smoke of squid and processing conditions Pressure: 1000 atm (100 MPa)
Temperature: 20 ℃ -60 ℃
Time: 30 minutes to 2 hours-Production details Seafood: Surumeika (body)
Pickling liquid: Seasoning liquid (20% salt, 20% sugar, 8% trehalose, 2% powder liquid, 50% water)
Manufacturing method: A body part of peeled squid and the same amount of pickling solution were put into a bag and vacuum packed.
-Evaluation method Sugar concentration: A sample subjected to high-pressure heating treatment was taken out from the bag, the seasoning liquid was wiped off, and then homogenized with a mixer. To 1 g of the homogenized sample, 1 ml of 8 trichloroacetic acid solution was added and vigorously stirred, and then the extract was filtered and finally diluted to 10 ml with distilled water to obtain a sample. The analysis was performed using an HPLC device (Shimadzu Corporation). The column was Mightysil NH 2 (5 um) (Kanto Chemical Co., Inc.), the detector was a differential refractometer (RID-10A), the mobile phase was 70% acetonitrile, and the flow rate was 1 ml / min. The sugar composition of the sample and its quantitative analysis were evaluated for the three components of fructose, glucose and sucrose. As shown in FIG. 111, the measurement results show that the high-pressure heating treatment increases the sugar concentration as in the case of bulghi. The sugar concentration was highest at the treatment temperature of 60 ℃.
Hardness: Each sample was prepared into a 2 cm square cube, and the stress at the time of entering up to 15 mm with a 5 mmφ needle plunger was measured by a rheometer. As shown in FIG. 112, the measurement results tend to be harder than untreated during the manufacturing process, as in the case of Fukurogi. The effect of the high-pressure heating treatment is softer in proportion to the length of the treatment time, as opposed to the sleeper.
Color tone: Regarding the color tone of the sample under each processing condition, L *, a *, b * were measured by a reflection method using a color difference meter (manufactured by Nippon Denshoku Co., Ltd.). As shown in FIG. 113, the measurement result shows that the high-pressure heating treatment causes the seasoning liquid to soak into a bright brown color, as in the case of Fukuragi. Also, the vividness of the color is improved in proportion to the processing temperature and the processing time. Further, FIG. 114A shows the color tone before the high-pressure heating process, and FIG. 114B shows the color tone before the high-pressure heating process.
Microbial hygiene inspection method: Each sample is suspended in physiological saline and then serially diluted, and each diluted sample is standard agar medium (Eiken, for general viable cell count) and 0.01 (w / v)% chloramphenicol. It was smeared on the contained potato dextrose agar medium (Eiken, for fungi) (pour-out method was used for standard agar). The number of microbial colonies formed after culturing at 30 to 37 ° C. for 3 days was counted, and the number of viable general bacteria and fungi per 1 g of the sample was calculated. The standard values were set to 300 cfu / g or less for general viable bacteria and 1000 cfu / g or less for fungi, referring to the standards of the Food Sanitation Law. In addition, non-detection was 50 cfu / g or less for both general live bacteria and fungi.
(Table 50A) shows the results of the microbial hygiene inspection by treatment temperature (all treatment times are 1 hour), and (Table 50B) shows the results of microbial hygiene inspection by treatment time (all treatment temperatures are 40 ° C).

Figure 2020062040
Figure 2020062040

Figure 2020062040
Figure 2020062040

尚、表において、基準以上とは、一般生菌は10万/g以上、真菌は1000/g以上、基準以下とは、一般生菌は10万/g以下、真菌は1000/g以下、不検出とは、検出限界、50/g以下を指す。
表に示すように、イカのソフトスモークでは、製造直後の40℃で1時間処理したもの以外は一般生菌および真菌がともに不検出であった。イカのソフトスモークはどの処理条件でも5℃で1か月保存が可能である。
Incidentally, in the table, the standard or more, general live bacteria 100,000 / g or more, fungi 1000 / g or more, the standard or less, general live bacteria 100,000 / g or less, fungus 1000 / g or less, non- Detection refers to a detection limit of 50 / g or less.
As shown in the table, in squid soft smoke, neither general live bacteria nor fungi were detected except for those treated at 40 ° C for 1 hour immediately after production. Squid soft smoke can be stored at 5 ° C for 1 month under any treatment conditions.

(5)80MPa以下と100MPa以上の処理での効果
前記フクラギおよびイカの漬物およびソフトスモークの製法を、高圧処理条件の圧力条件のみ80〜300MPa範囲で変えて検討したところ、表51に示す結果となり、本発明が80〜300MPaの圧力範囲でも有効であることを確認した。
(5) Effects of treatments of 80 MPa or less and 100 MPa or more The production methods of the above-mentioned pickled squid and squid and soft smoke were examined by changing only the pressure conditions of the high-pressure treatment conditions within the range of 80 to 300 MPa, and the results shown in Table 51 were obtained. It was confirmed that the present invention is effective even in the pressure range of 80 to 300 MPa.

Figure 2020062040
Figure 2020062040

本発明に係る脱気・加熱・高圧処理方法は、野菜の奈良漬、野菜の浅漬及び野菜の生醤油漬にあっては、上記以外の野菜にも適用でき、また果実のシロップ漬にあっては、リンゴ、アンズ、ウメ以外にも適用でき、畜肉の漬物にあっては、豚ロース肉以外に鶏肉、牛肉にも利用でき、豆腐の漬物にあっては、石川県特産の堅豆腐に限らず、一般の豆腐にも利用でき、キノコの加工品にあっては、シイタケ以外のキノコにも利用することができる。   The deaeration, heating, and high-pressure treatment method according to the present invention can be applied to vegetables other than the above in the case of pickling vegetables in Nara, pickling vegetables and pickling vegetables in raw soy sauce, and in pickling fruits in syrup. Can be applied to other than apples, apricots and plums, and can be used for chicken and beef as well as pork loin for livestock pickles. For tofu pickles, it is limited to Ishikawa prefecture's specialty hard tofu. It can also be used for general tofu, and for processed mushrooms, it can be used for mushrooms other than shiitake mushrooms.

特に、ニンジン等の「野菜の生醤油漬」にも、2週間程度の製造期間が必要となる課題があり、リンゴ、ウメ、アンズなどの「果実のシロップ漬」にあっては、食感を維持しながら殺菌効果を高めて保存期間を長くしたいという要望があり、「畜肉の漬物」には、呈味成分である遊離アミノ酸や糖を増加する条件、食感が柔らかくなる条件が分かっておらず、「豆腐の漬物」についても同様に、従来では豆腐が柔らかくなり且つ遊離アミノ酸が増えるには数カ月かかっていたが、これを短時間で行う条件が分かっておらず、「キノコ加工品」については水煮の状態で旨味成分であるグアニル酸を増加させる条件が特定できていない。 In particular, "vegetable soy sauce pickled with carrots" also has the problem of requiring a manufacturing period of about 2 weeks, and the texture of "fruit syrup pickled" with apples, plums, apricots, etc. There is a demand to increase the sterilization effect while maintaining and extend the storage period. For "meat pickles", it is necessary to understand the conditions for increasing free amino acids and sugars that are taste components, and the conditions for softening the texture. Similarly, for "tofu pickles," it used to take several months for the tofu to soften and the amount of free amino acids to increase, but the conditions for doing this in a short time are unknown. Has not specified the conditions for increasing the umami component guanylic acid in the boiled state.

本発明に係る脱気・加熱・高圧処理方法によれば、遊離アミノ酸、糖などの旨味(呈味成分)成分を短時間のうちに増加させることができ、特に野菜の浅漬の場合は従来の2週間程度の製造期間を20分程度に短縮することができる。 According to the deaeration and heat-pressure processing method according to the present invention, free amino acids, umami (taste components) component such as can be increased in a short time the sugar, in the case of Asazuke of vegetables, especially The conventional manufacturing period of about 2 weeks can be shortened to about 20 minutes.

以下に本発明を実施するための最良の形態を、「野菜の浅漬」、「野菜の生醤油漬」、「果実のシロップ漬」、「畜肉の漬物」、「豆腐の漬物」、「キノコの加工品」、これらの追加実験および魚介類の粕漬けとソフトスモークの製造に分けて説明する。 The best mode for carrying out the present invention will now "vegetable Asazuke", "vegetable soy sauce pickles of", "fruit pickles syrup", "animal meat pickles", "tofu pickles", "mushroom "Processed products", these additional experiments, and distilling of seafood into lees and soft smoke production.

Claims (22)

食品の製造に適用する脱気・加熱・高圧処理方法であって、前記食品は、浅漬、生醤油漬、果実のシロップ漬、畜肉の漬物、豆腐の漬物及びキノコの加工品のいずれかであり、前記食品を調味液とともにポリエチレン袋などの容器内に入れて脱気して前記容器内に食品と調味液のみを保持し、このポリエチレン袋に食品を入れた状態で、約300MPa以下且つ20℃以上90℃以下で所定時間処理することを特徴とする脱気・加熱・高圧処理方法。   A degassing, heating, and high-pressure treatment method applied to the production of food, wherein the food is one of lightly pickled pickles, pickled soy sauce, pickled fruit syrup, pickled meat, tofu pickles, and processed mushrooms. , Put the food together with the seasoning liquid in a container such as a polyethylene bag and deaerate to retain only the food and the seasoning liquid in the container, and put the food in the polyethylene bag, the pressure is about 300 MPa or less and 20 ° C. A degassing / heating / high-pressure treatment method, which comprises treating at 90 ° C. or lower for a predetermined time. 請求項1に記載の脱気・加熱・高圧処理方法において、前記食品は野菜の嚥下漬物であり、ペクチナーゼなど組織崩壊酵素を添加した調味液を用いて脱気後の処理圧力は300MPa以下、処理温度は20℃以上90℃以下好ましくは、40℃以上60℃以下、処理時間は15〜30分とし、この後常圧加熱理を施し、更に加熱によって酵素を失活させることを特徴とする脱気・加熱・高圧処理方法。   The degassing, heating, and high-pressure treatment method according to claim 1, wherein the food is a swallowed pickle of vegetables, and a treatment pressure after deaeration is 300 MPa or less using a seasoning solution to which a tissue-disintegrating enzyme such as pectinase is added. The temperature is 20 ° C. or higher and 90 ° C. or lower, preferably 40 ° C. or higher and 60 ° C. or lower, and the treatment time is 15 to 30 minutes, after which atmospheric pressure heating is applied, and the enzyme is inactivated by further heating. Air / heating / high pressure processing method. 請求項1に記載の脱気・加熱・高圧処理方法において、前記食品はナス、ダイコンまたはウリの生醤油漬であり、脱気後の処理圧力は300MPa以下、処理温度は20℃以上90℃以下好ましくは30℃以上60℃以下、処理時間は20分〜16時間とすることを特徴とする脱気・加熱・高圧処理方法。   The degassing, heating, and high-pressure treatment method according to claim 1, wherein the food is eggplant, Japanese radish, or seaweed pickled in raw soy sauce, the treatment pressure after degassing is 300 MPa or less, and the treatment temperature is 20 ° C. or more and 90 ° C. or less. Preferably, the degassing / heating / high-pressure treatment method is characterized in that the treatment time is 20 ° C to 60 ° C and the treatment time is 20 minutes to 16 hours. 請求項3に記載の脱気・加熱・高圧処理方法において、高圧処理の前処理として食品を0.5〜1cmの厚さにカットして日干しすることを特徴とする脱気・加熱・高圧処理方法。   The degassing, heating, and high-pressure treatment according to claim 3, wherein the food is cut into a thickness of 0.5 to 1 cm and sun-dried as a pretreatment for the high-pressure treatment. Method. 請求項1に記載の脱気・加熱・高圧処理方法において、前記食品はリンゴの甘味料漬であり、脱気後の処理圧力は300MPa以下、処理温度は65℃以上75℃以下、処理時間は20分〜16時間とすることを特徴とする脱気・加熱・高圧処理方法。   The degassing / heating / high pressure processing method according to claim 1, wherein the food is a sweetener pickle of apple, the processing pressure after degassing is 300 MPa or less, the processing temperature is 65 ° C. or higher and 75 ° C. or lower, and the processing time is A degassing / heating / high-pressure treatment method, which is characterized by 20 minutes to 16 hours. 請求項1に記載の脱気・加熱・高圧処理方法において、前記食品はウメの甘味料漬であり、脱気後の処理圧力は300MPa以下、処理温度は30℃以上50℃以下、処理時間は20分〜16時間とすることを特徴とする脱気・加熱・高圧処理方法。   The degassing / heating / high pressure processing method according to claim 1, wherein the food is pickled in a sweetener of Ume, the processing pressure after degassing is 300 MPa or less, the processing temperature is 30 ° C. or more and 50 ° C. or less, and the processing time is A degassing / heating / high-pressure treatment method, which is characterized by 20 minutes to 16 hours. 請求項1に記載の脱気・加熱・高圧処理方法において、前記食品はアンズの甘味料漬であり、脱気後の処理圧力は300MPa以下、処理温度は65℃以上75℃以下、処理時間は20分〜16時間とすることを特徴とする脱気・加熱・高圧処理方法。   The degassing / heating / high pressure processing method according to claim 1, wherein the food is pickled in apricot sweetener, the processing pressure after degassing is 300 MPa or less, the processing temperature is 65 ° C. or higher and 75 ° C. or lower, and the processing time is A degassing / heating / high-pressure treatment method, which is characterized by 20 minutes to 16 hours. 請求項5〜7に記載の脱気・加熱・高圧処理方法において、前記甘味料として低粘度のものを用い、この低粘度甘味料とともにフィチン酸などの酸味料を添加することを特徴とする脱気・加熱・高圧処理方法。   The degassing / heating / high pressure treatment method according to claim 5, wherein a low viscosity sweetener is used, and an acidulant such as phytic acid is added together with the low viscosity sweetener. Air / heating / high pressure processing method. 請求項1に記載の脱気・加熱・高圧処理方法において、前記食品は畜肉の漬物であり、脱気後の処理圧力は300MPa以下、処理温度は20℃以上90℃以下好ましくは30℃以上60℃以下、処理時間は1時間以上16時間以内であることを特徴とする脱気・加熱・高圧処理方法。   The degassing / heating / high pressure processing method according to claim 1, wherein the food is a pickle of livestock meat, the processing pressure after degassing is 300 MPa or less, and the processing temperature is 20 ° C. or more and 90 ° C. or less, preferably 30 ° C. or more 60. A degassing / heating / high-pressure treatment method, characterized in that the treatment time is 1 ° C. or less and the treatment time is 1 hour or more and 16 hours or less. 請求項1に記載の脱気・加熱・高圧処理方法において、前記食品は豆腐の漬物であり、脱気後の処理圧力は300MPa以下、処理温度は20℃以上90℃以下好ましくは30℃以上60℃以下、処理時間は16時間以上90時間以内であることを特徴とする脱気・加熱・高圧処理方法。   The degassing / heating / high pressure processing method according to claim 1, wherein the food is pickled tofu, the processing pressure after degassing is 300 MPa or less, and the processing temperature is 20 ° C. or more and 90 ° C. or less, preferably 30 ° C. or more 60. A degassing / heating / high-pressure treatment method characterized in that the treatment time is 16 ° C. or less and the treatment time is 16 hours or more and 90 hours or less. 請求項1に記載の脱気・加熱・高圧処理方法において、前記食品はキノコの加工品であり、脱気後の処理圧力は300MPa以下、処理温度は20℃以上90℃以下好ましくは、60℃以上75℃以下、処理時間は30分(処理時間範囲)であることを特徴とする脱気・加熱・高圧処理方法。   The degassing / heating / high pressure processing method according to claim 1, wherein the food is a processed mushroom product, the processing pressure after degassing is 300 MPa or less, and the processing temperature is 20 ° C or more and 90 ° C or less, preferably 60 ° C. A degassing / heating / high-pressure treatment method characterized in that the treatment time is 30 minutes or less (treatment time range) at 75 ° C or lower. 食品の製造に適用する脱気・加熱・高圧処理方法であって、前記食品は梅であり、この梅を砂糖とともにポリエチレン袋などの容器内に入れ、脱気・加熱・高温処理を施すことで梅エキスを抽出し、この梅エキスを酒と混合することで梅酒とすることを特徴とする脱気・加熱・高圧処理方法。   A degassing / heating / high-pressure treatment method applied to the production of food, wherein the food is plum, and the plum is put in a container such as a polyethylene bag together with sugar and subjected to degassing / heating / high temperature treatment. A method of degassing, heating, and high-pressure treatment, which comprises extracting plum extract and mixing this plum extract with sake to make plum sake. 食品の製造に適用する脱気・加熱・高圧処理方法であって、前記食品は、大根の粕漬けであり、前記大根を調味粕とともにポリエチレン袋などの容器内に入れて脱気して前記容器内に大根と調味粕のみを保持し、このポリエチレン袋に大根を入れた状態で、80MPa以上300MPa以下、且つ40℃以上70℃以下で1〜5時間処理することを特徴とする脱気・加熱・高圧処理方法。   A degassing, heating, and high-pressure treatment method applied to the production of food, wherein the food is pickled in radish, and the radish is put in a container such as a polyethylene bag together with seasoned meal and degassed in the container. Degassing / heating, characterized in that only radish and seasoned meal are held in the bag, and the radish is put in this polyethylene bag and treated at 80 MPa or more and 300 MPa or less and 40 ° C. or more and 70 ° C. or less for 1 to 5 hours. High pressure treatment method. 食品の製造に適用する脱気・加熱・高圧処理方法であって、前記食品は、中島菜の粕漬けであり、前記大根を調味粕とともにポリエチレン袋などの容器内に入れて脱気して前記容器内に中島菜と調味粕のみを保持し、このポリエチレン袋に中島菜を入れた状態で、80MPa以上300MPa以下、且つ40℃以上70℃以下で15分〜45分処理することを特徴とする脱気・加熱・高圧処理方法。   A degassing, heating, and high-pressure treatment method applied to the production of food, wherein the food is pickled Nakashima greens, and the radish is put into a container such as a polyethylene bag together with seasoned meal to degas the container. Only Nakajima greens and seasoned meal are retained inside, and Nakajima greens are put in this polyethylene bag and treated at 80MPa or more and 300MPa or less and 40C or more and 70C or less for 15 minutes to 45 minutes. Air / heating / high pressure processing method. 食品の製造に適用する脱気・加熱・高圧処理方法であって、前記食品は、大根の醤油漬けであり、前記大根を醤油とともにポリエチレン袋などの容器内に入れて脱気して前記容器内に大根と醤油のみを保持し、このポリエチレン袋に大根を入れた状態で、80MPa以上300MPa以下、且つ40℃以上70℃以下で15分〜60分処理することを特徴とする脱気・加熱・高圧処理方法。   A degassing / heating / high-pressure treatment method applied to the production of food, wherein the food is soy sauce pickled radish, and the radish is put in a container such as a polyethylene bag together with soy sauce to be degassed and then in the container. Deaeration / heating, characterized in that only radish and soy sauce are held in the bag, and the radish is put in this polyethylene bag and treated at 80 MPa or more and 300 MPa or less and 40 ° C. or more and 70 ° C. or less for 15 minutes to 60 minutes. High pressure treatment method. 食品の製造に適用する脱気・加熱・高圧処理方法であって、前記食品は、中島菜の醤油漬けであり、前記中島菜を醤油とともにポリエチレン袋などの容器内に入れて脱気して前記容器内に中島菜と醤油のみを保持し、このポリエチレン袋に中島菜を入れた状態で、80MPa以上300MPa以下、且つ40℃以上70℃以下で5分〜30分処理することを特徴とする脱気・加熱・高圧処理方法。   A degassing, heating, and high-pressure treatment method applied to the production of food, wherein the food is soaked in Nakajima greens, and the Nakashima greens are put in a container such as a polyethylene bag together with soybeans to deaerate. In a state where only Nakashimana and soy sauce are held in a container and Nakashimana is put in this polyethylene bag, the treatment is performed at 80 MPa or more and 300 MPa or less and 40 ° C or more and 70 ° C or less for 5 minutes to 30 minutes. Air / heating / high pressure processing method. 食品の製造に適用する脱気・加熱・高圧処理方法であって、前記食品は、梅、和梨またはぶどうのシロップ漬けであり、前記梅、和梨またはぶどうをシロップとともにポリエチレン袋などの容器内に入れて脱気して前記容器内に梅、和梨またはぶどうとシロップのみを保持し、このポリエチレン袋に梅、和梨またはぶどうを入れた状態で、80MPa以上300MPa以下、且つ40℃以上70℃以下で15分〜60分処理することを特徴とする脱気・加熱・高圧処理方法。   A degassing, heating, and high-pressure treatment method applied to the production of food, wherein the food is a syrup pickled with plum, Japanese pear, or grape, and the plum, Japanese pear, or grape is put in a container such as a polyethylene bag together with syrup. Plums, Japanese pears or grapes and syrup are kept in the container, and the plums, Japanese pears or grapes are put in this polyethylene bag, and 80 MPa or more and 300 MPa or less and 40 ° C. or more 70 A degassing / heating / high-pressure treatment method, which comprises treating at 60 ° C. or lower for 15 to 60 minutes. 食品の製造に適用する脱気・加熱・高圧処理方法であって、前記食品は、牛肉外モモまたは牛タンの味噌漬けであり、前記牛肉外モモまたは牛タンを調味味噌とともにポリエチレン袋などの容器内に入れて脱気して前記容器内に牛肉外モモまたは牛タンと調味味噌のみを保持し、このポリエチレン袋に牛肉外モモまたは牛タンを入れた状態で、80MPa以上300MPa以下、且つ20℃以上60℃以下で7.5時間〜30時間処理することを特徴とする脱気・加熱・高圧処理方法。   A deaeration / heating / high-pressure treatment method applied to the production of food, wherein the food is a beef outside peach or beef tongue pickled in miso, and the outside beef peach or beef tongue is seasoned with a container such as a polyethylene bag. Put inside and deaerate and keep only beef peach or beef tongue and seasoning and miso in the container, and in a state where the beef peach or beef tongue is put in this polyethylene bag, 80 MPa or more and 300 MPa or less, and 20 ° C. A degassing / heating / high-pressure treatment method, which comprises treating at 60 ° C. or lower for 7.5 hours to 30 hours. 食品の製造に適用する脱気・加熱・高圧処理方法であって、前記食品は、牛肉外モモまたは牛タンの糀漬けであり、前記牛肉外モモまたは牛タンを米糀水とともにポリエチレン袋などの容器内に入れて脱気して前記容器内に牛肉外モモまたは牛タンと米糀水のみを保持し、このポリエチレン袋に牛肉外モモまたは牛タンを入れた状態で、80MPa以上300MPa以下且つ20℃以上60℃以下で1時間〜5時間処理することを特徴とする脱気・加熱・高圧処理方法。   A degassing, heating, and high-pressure treatment method applied to the production of food, wherein the food is beef pickled peach or beef tongue, and the beef picked peach or beef tongue together with rice bran water such as a polyethylene bag. Put in a container and deaerate to hold only beef peach or beef tongue and rice bran water in the container, and in a state where the beef peach or beef tongue is put in this polyethylene bag, 80 MPa or more and 300 MPa or less and 20 MPa or more A degassing / heating / high-pressure treatment method, which comprises treating at 1 ° C to 60 ° C for 1 hour to 5 hours. 食品の製造に適用する脱気・加熱・高圧処理方法であって、前記食品は、堅豆腐の粕漬けであり、前記堅豆腐を調味粕とともにポリエチレン袋などの容器内に入れて脱気して前記容器内に堅豆腐と調味粕のみを保持し、このポリエチレン袋に堅豆腐を入れた状態で、80MPa以上300MPa以下、且つ20℃以上60℃以下で7.5時間〜30時間処理することを特徴とする脱気・加熱・高圧処理方法。   A degassing / heating / high-pressure treatment method applied to the production of food, wherein the food is pickled in hardened tofu, and the hardened tofu is put into a container such as a polyethylene bag together with seasoned meal to degas it. Characterized by holding only hard tofu and seasoned meal in a container and putting hard tofu in this polyethylene bag at 80 MPa or more and 300 MPa or less and 20 ° C. or more and 60 ° C. or less for 7.5 to 30 hours Degassing, heating, and high-pressure treatment methods. 食品の製造に適用する脱気・加熱・高圧処理方法であって、前記食品は、フクラギまたはイカの粕漬けであり、前記フクラギまたはイカを調味粕とともにポリエチレン袋などの容器内に入れて脱気して前記容器内にフクラギまたはイカと調味粕のみを保持し、このポリエチレン袋にフクラギまたはイカを入れた状態で、80MPa以上300MPa以下、且つ20℃以上60℃以下で7.5時間〜30時間処理することを特徴とする脱気・加熱・高圧処理方法。   A degassing, heating, and high-pressure treatment method applied to the production of food, wherein the food is soaked in fluffy or squid, and the fluffy or squid is put into a container such as a polyethylene bag together with seasoned meal to be degassed. In this container, hold only the fluffy or squid and seasoned meal, and put the fluffy or squid in this polyethylene bag at 80 MPa or more and 300 MPa or less and 20 ° C. or more and 60 ° C. or less for 7.5 hours to 30 hours. A degassing / heating / high-pressure treatment method characterized by: 食品の製造に適用する脱気・加熱・高圧処理方法であって、前記食品は、フクラギまたはイカのソフトスモークであり、前記フクラギまたはイカを調味くん液とともにポリエチレン袋などの容器内に入れて脱気して前記容器内にフクラギとまたはイカ調味くん液のみを保持し、このポリエチレン袋にフクラギまたはイカを入れた状態で、80MPa以上300MPa以下、且つ20℃以上60℃以下で30分〜2時間処理することを特徴とする脱気・加熱・高圧処理方法。

A degassing, heating, and high-pressure treatment method applied to the production of food, wherein the food is soft smoke of fluffy or squid, and the fluffy or squid is placed in a container such as a polyethylene bag together with seasoning liquid to remove it. Carefully hold only the fluffy and squid seasoning liquid in the container, and put the fluffy or squid in this polyethylene bag at 80 MPa or more and 300 MPa or less and 20 ° C. or more and 60 ° C. or less for 30 minutes to 2 hours. A degassing / heating / high-pressure treatment method characterized by treatment.

JP2019235596A 2015-10-30 2019-12-26 Degassing / heating / high pressure treatment method for food Active JP6905232B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015213699 2015-10-30
JP2015213699 2015-10-30
JP2016207719A JP6818390B2 (en) 2015-10-30 2016-10-24 Deaeration / heating / high pressure treatment method for food

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016207719A Division JP6818390B2 (en) 2015-10-30 2016-10-24 Deaeration / heating / high pressure treatment method for food

Publications (2)

Publication Number Publication Date
JP2020062040A true JP2020062040A (en) 2020-04-23
JP6905232B2 JP6905232B2 (en) 2021-07-21

Family

ID=58712310

Family Applications (8)

Application Number Title Priority Date Filing Date
JP2016207719A Active JP6818390B2 (en) 2015-10-30 2016-10-24 Deaeration / heating / high pressure treatment method for food
JP2019235596A Active JP6905232B2 (en) 2015-10-30 2019-12-26 Degassing / heating / high pressure treatment method for food
JP2020077390A Active JP6990857B2 (en) 2015-10-30 2020-04-24 Degassing / heating / high pressure treatment method for food
JP2021111234A Active JP7209309B2 (en) 2015-10-30 2021-07-05 Degassing, heating, and high-pressure processing methods for food
JP2021111212A Active JP7321441B2 (en) 2015-10-30 2021-07-05 Degassing, heating, and high-pressure processing methods for food
JP2021111194A Active JP7233644B2 (en) 2015-10-30 2021-07-05 Degassing, heating, and high-pressure processing methods for food
JP2022160994A Active JP7445100B2 (en) 2015-10-30 2022-10-05 Deaeration, heating, and high-pressure processing methods for food
JP2023176362A Pending JP2023171587A (en) 2015-10-30 2023-10-12 Deaeration/heating/high pressure processing method for food

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016207719A Active JP6818390B2 (en) 2015-10-30 2016-10-24 Deaeration / heating / high pressure treatment method for food

Family Applications After (6)

Application Number Title Priority Date Filing Date
JP2020077390A Active JP6990857B2 (en) 2015-10-30 2020-04-24 Degassing / heating / high pressure treatment method for food
JP2021111234A Active JP7209309B2 (en) 2015-10-30 2021-07-05 Degassing, heating, and high-pressure processing methods for food
JP2021111212A Active JP7321441B2 (en) 2015-10-30 2021-07-05 Degassing, heating, and high-pressure processing methods for food
JP2021111194A Active JP7233644B2 (en) 2015-10-30 2021-07-05 Degassing, heating, and high-pressure processing methods for food
JP2022160994A Active JP7445100B2 (en) 2015-10-30 2022-10-05 Deaeration, heating, and high-pressure processing methods for food
JP2023176362A Pending JP2023171587A (en) 2015-10-30 2023-10-12 Deaeration/heating/high pressure processing method for food

Country Status (1)

Country Link
JP (8) JP6818390B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6515374B2 (en) * 2017-02-09 2019-05-22 株式会社紅梅園 Plum food manufacturing method
JP7231955B2 (en) * 2021-08-03 2023-03-02 天狗罐詰株式会社 Nameko container-packed product manufacturing method
CN114184612B (en) * 2021-11-11 2024-03-26 南方电网科学研究院有限责任公司 Method for evaluating degassing effect of crosslinked polyethylene cable
WO2023157723A1 (en) * 2022-02-21 2023-08-24 パナソニックIpマネジメント株式会社 Cooking device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111750A (en) * 1979-02-17 1980-08-28 Shigeru Hayakawa Preparation of pickles by vacuum treatment
JPH0330631A (en) * 1989-06-27 1991-02-08 Toppan Printing Co Ltd Preparation of pickles
JPH04183355A (en) * 1990-11-15 1992-06-30 M Y Eng:Kk Preparation of pickles
JPH0564541A (en) * 1991-09-03 1993-03-19 Hisanao Zenno Pickling base containing beancurd refuse, de-fatted soybean lees, bean jam lees, rice bran, de-fatted rice bran or wheat bran as ingredient, seasoning liquid and solid seasoning agent obtained therefrom and pickled vegetable, fish and shellfish or means produced using the same seasoning
JPH09289871A (en) * 1996-04-25 1997-11-11 Shinshin:Kk Measurement of sterilization temperature for pouched pickle and control device therefor
JP2002052662A (en) * 2000-08-10 2002-02-19 Kureha Chem Ind Co Ltd Laminated film for packaging pickles, bag consisting of the same, and package filled with pickles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109733A (en) * 1986-10-27 1988-05-14 Tsuneya Takeba Sterilization method for low-salted and pickled ume (plum)
JPH0383566A (en) * 1989-08-25 1991-04-09 Toppan Printing Co Ltd Processing of food
JPH0779675B2 (en) * 1990-04-17 1995-08-30 株式会社ジャパンエナジー Manufacturing method of medicinal liquor and fruit liquor
JPH0541945A (en) * 1991-08-13 1993-02-23 Dainippon Printing Co Ltd Production of high pressure-treated fruit product
JPH05192125A (en) * 1991-10-24 1993-08-03 Dainippon Printing Co Ltd Fruit wine and its production
JP2007274921A (en) 2006-04-04 2007-10-25 Ezaki Glico Co Ltd Cooked chestnut

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111750A (en) * 1979-02-17 1980-08-28 Shigeru Hayakawa Preparation of pickles by vacuum treatment
JPH0330631A (en) * 1989-06-27 1991-02-08 Toppan Printing Co Ltd Preparation of pickles
JPH04183355A (en) * 1990-11-15 1992-06-30 M Y Eng:Kk Preparation of pickles
JPH0564541A (en) * 1991-09-03 1993-03-19 Hisanao Zenno Pickling base containing beancurd refuse, de-fatted soybean lees, bean jam lees, rice bran, de-fatted rice bran or wheat bran as ingredient, seasoning liquid and solid seasoning agent obtained therefrom and pickled vegetable, fish and shellfish or means produced using the same seasoning
JPH09289871A (en) * 1996-04-25 1997-11-11 Shinshin:Kk Measurement of sterilization temperature for pouched pickle and control device therefor
JP2002052662A (en) * 2000-08-10 2002-02-19 Kureha Chem Ind Co Ltd Laminated film for packaging pickles, bag consisting of the same, and package filled with pickles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"石川県農総試 わずか30分で浅漬けできる オートメ化へ一歩前進", 日本農業新聞, JPN6020008671, 3 October 1989 (1989-10-03), ISSN: 0004290172 *

Also Published As

Publication number Publication date
JP7209309B2 (en) 2023-01-20
JP6990857B2 (en) 2022-01-12
JP7233644B2 (en) 2023-03-07
JP6905232B2 (en) 2021-07-21
JP2017079729A (en) 2017-05-18
JP6818390B2 (en) 2021-01-20
JP2022173566A (en) 2022-11-18
JP2023171587A (en) 2023-12-01
JP2021153605A (en) 2021-10-07
JP2021153604A (en) 2021-10-07
JP7321441B2 (en) 2023-08-07
JP2021164470A (en) 2021-10-14
JP7445100B2 (en) 2024-03-07
JP2020115888A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP7445100B2 (en) Deaeration, heating, and high-pressure processing methods for food
CN105054059A (en) Salmon-containing blood fat lowering shredded pork with salted vegetable, and making method thereof
JP5800338B2 (en) How to change the flavor of food
CH713366A2 (en) Combined method for keeping fresh a non-frozen baozis with vegetable filling.
KR100515973B1 (en) Food preservative composition and food comprising the same
CN109757677B (en) Processing method of high-moisture non-fried flavor fish capable of being preserved at normal temperature
KR102005322B1 (en) Marinated sea cucumber and method for preparing the same
KR101915708B1 (en) Method for manufacturing functionality Kimchi
CN106259854A (en) The manufacture method of HUOLONG dried fruits
Sohail et al. Combined effect of edible coating and packaging materials on post harvest storage life of plum fruits
CN108771171A (en) The pickling process of vegetables
KR100375962B1 (en) Method for preparation of kimchi which has the optimum aging period increased
CN106235111A (en) The manufacture method of dried Chinese gooseberry
KR102203932B1 (en) Dendropanax morbifera Extracting Composition Adding Meat and It's Producing Methods
KR100453702B1 (en) A method for preparing and preserving green fuit kimchi prepared using green Apricot plum or green Apricot for a long time
Premakumar et al. Effects of Salt Concentration on Storage Ability of Sauerkraut
KR100665681B1 (en) A Ginseng Pickle and Product Method of It
KR102218728B1 (en) manufacturing method of white Kimchi using cockscomb
KR102329732B1 (en) liver mackerel with dandelion extract and its method of manufacture
JP6981712B2 (en) Persimmon fruit processing method
KR100719948B1 (en) Wax Gourd Pickle and Process for Preparing the Same
Irmak et al. Effect of irradiation on total biophenol and antioxidant activity quantity during storage of natural black table olives obtained using starter culture
CN104839603A (en) Low-salt, sweet, spicy and crispy pickled mustard tuber with dates
JPH04207162A (en) Permeation of solution to plant tissue and production of flavored pickles
JPS62210947A (en) Production of processed product of edible leaf

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200813

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201225

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20210112

C272 Notice of ex officio correction

Free format text: JAPANESE INTERMEDIATE CODE: C272

Effective date: 20210409

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210413

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210616

R150 Certificate of patent or registration of utility model

Ref document number: 6905232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150